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Equimorphism invariants for scattered linear orderings

by

Antonio Montalbán (Chicago, IL)

Abstract. Two linear orderings are equimorphic if they can be embedded in each
other. We define invariants for scattered linear orderings which classify them up to equimor-
phism. Essentially, these invariants are finite sequences of finite trees with ordinal labels.

Also, for each ordinal α, we explicitly describe the finite set of minimal scattered
equimorphism types of Hausdorff rank α. We compute the invariants of each of these
minimal types.

1. Introduction. We say that a linear ordering is scattered if the order
type of the rationals does not embed in it. People have been interested in
this class of linear orderings for a long time. One of the earliest results is
the following, first proved by Hausdorff [Hau08], and rediscovered by Erdős
and Hajnal [EH63].

Theorem 1.1 (Hausdorff). Let S be the smallest class of linear orderings

such that

• 1 ∈ S;
• if A,B ∈ S, then A + B ∈ S;
• if κ is a regular cardinal and {Aγ : γ ∈ κ} ⊆ S, then both

∑
γ∈κ Aγ

and
∑

γ∈κ∗ Aγ belong to S.

Then S is the class of scattered linear orderings. (The notation used is ex-

plained in the background section below.)

Another important contribution of Hausdorff to the study of scattered
linear orderings is the definition of the Hausdorff rank (see [Ros82, Chap-
ter 5]). He first defined an operation on linear orderings which is similar to
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the Cantor–Bendixson derivative on topological spaces: Given a linear order-
ing L, let L′ be the linear ordering obtained by collapsing the elements which
have only finitely many elements between them. Informally, the Hausdorff
rank of L is the least ordinal α such that the αth iterate of this operation
on L is finite. Here is the definition we will use.

Definition 1.2. Given a linear ordering L and an ordinal α, we define
an equivalence relation ≈α on L by transfinite induction as follows. Let ≈0

be the identity relation. For x, y ∈ L, let x ≈α y if and only if for some
β < α, there are only finitely many ≈β-equivalence classes between x and y.

Let L(α) be the linear ordering which consists of the ≈α-equivalence classes
ordered in the obvious way. We let the Hausdorff rank of L, rk(L), be the
least ordinal α such that L(α) is finite. If no such α exists, we let rk(L) = ∞.
We will usually omit the word Hausdorff and just refer to the rank of a linear
ordering.

Hausdorff proved that a linear ordering is scattered if and only if rk(L)
6= ∞.

The definition above is slightly different from some other definitions of
Hausdorff rank found in the literature, but is essentially the same. We prefer
it to other definitions because it has the following three properties. Let A
and B be linear orderings. Then

(1) if A embeds in B, then rk(A) ≤ rk(B);
(2) rk(A + B) = max(rk(A), rk(B));
(3) rk(A · B) = rk(A) + rk(B).

After Hausdorff’s results, the following important structural result about
the class of scattered linear orderings was conjectured by Fräıssé in [Fra48]
in the countable case. It was proved by Richard Laver twenty three years
later.

Theorem 1.3 ([Lav71]). The class of scattered linear orderings is well-

quasiordered by the relation of embeddability.

A well-quasiordering is a quasiordering which has no infinite descending
sequences and no infinite antichains.

Moreover, Laver proved that the class of scattered linear orderings is
a better-quasiordering. Better-quasiorderings are a particular case of well-
quasiorderings introduced by Nash-Williams in [NW68]. Then, for example,
using Nash-Williams’ theorem on transfinite sequences [NW68], we deduce
that the class of ideals of scattered linear orderings (i.e., downwards closed
sets of linear orderings), ordered by inclusion, is also well-quasiordered.

In the proof of Laver’s result, indecomposable linear orderings play a very
important role. A linear ordering L is indecomposable if whenever L = A+B,
either L embeds in A or L embeds in B. Along with the theorem above, Laver
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proved some structural results about the class of σ-scattered linear orderings
(see Definition 5.2). When we restrict these results to the class of scattered
linear orderings we obtain the following theorem.

Theorem 1.4 ([Lav71]).

(1) Every scattered linear ordering can be written as a finite sum of

indecomposable linear orderings.

(2) Every indecomposable linear ordering is either a κ-sum or a κ∗-sum

of indecomposable linear orderings of smaller rank , where κ is some

regular cardinal.

When a linear ordering A can be embedded into another linear or-
dering B, we write A 4 B. The orderings A and B are equimorphic if
A 4 B 4 A. We then write A ∼ B. Everything mentioned so far about
scattered linear orderings is not really about isomorphism types of linear
orderings, but actually about equimorphism types. The properties of be-
ing scattered, of being indecomposable, and of having a certain rank are
preserved under equimorphisms. Also, the operations of taking finite sums,
products and κ-sums are well defined on equimorphism types.

In this paper we are interested in the structure of equimorphism types of
scattered linear orderings. We use Laver’s work and assign to each scattered
linear ordering L a finite sequence Inv(L) of finite trees labeled by ordinals
and signs in {−, +}. This assignment is an equimorphism invariant, that is,
given scattered linear orderings A and B, we have

A ∼ B ⇔ Inv(A) = Inv(B).

Let S denote the class of equimorphism types of scattered linear order-
ings and H the class of equimorphism types of scattered indecomposable
linear orderings. From now on, an indecomposable means a scattered and
indecomposable linear ordering, unless otherwise stated. Let Hα = {L ∈ H :
rk(L) < α}.

Jullien [Jul69, Theorem IV.6.2] proved the following. Let L be a scat-
tered linear ordering and let 〈A0, . . . ,An−1〉 be a sequence of indecompos-
ables such that L = A0 + · · · + An−1 and n is minimum possible. Then
〈A0, . . . ,An−1〉 is unique up to equimorphism (see also [Mona, Subsection
3.2]). So, to define Inv(L), it is enough to define invariants for the class of
indecomposable linear orderings. We will assign a finite tree T(Ai) to each
indecomposable linear ordering and then take

Inv(L) = 〈T(A0), . . . , T(An−1)〉.

A linear ordering is indecomposable to the left (resp. right) if, whenever
A and B are linear orderings such that L = A + B, then L is equimorphic
to A (resp. to B). Another result of Jullien [Jul69, Theorem IV.3.3] is that
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every indecomposable linear ordering is either indecomposable to the right
or to the left. (See also [Fra00, 6.3.4(3)] and [Ros82, Lemma 10.3], and see
[Monb] for a reverse mathematics analysis of this statement.) Let εL be + if
L is indecomposable to the right, and − if it is indecomposable to the left.
Given L ∈ H, let IL = {A ∈ H : 1 +A + 1 ≺ L}. Note that IL ⊆ Hrk(L) and
that IL is downwards closed. Subsets of H which are downwards closed will
be called ideals of H. We will prove in Corollary 2.6 that L is determined
by εL and IL. We use this fact to define T(L), the invariant of L.

Definition 1.5. We assign a finite tree, T(L), with labels in On ×
{+,−}, to each L ∈ H (where On is the class of ordinals). Let {L1, . . . ,Lk}
be the set of minimal elements of Hrk(L) r IL. Define

T(L) = [〈rk(L), εL〉; T(L1), . . . , T(Lk)].

That is, T (L) is a tree with a root labeled 〈rk(L), εL〉 and with k branches
T(L1), . . . , T(Lk).

The set of minimal elements of Hrk(L) r IL is finite because there are no
infinite antichains in H, and determines IL because H is well-founded, and
hence for A ∈ Hrk(L), A ∈ IL if and only if for no i ≤ k, Li 4 A.

The rest of the paper is dedicated to proving that these invariants are
actually equimorphism invariants and to showing that they are somewhat
constructive. We do the latter by showing that the definition of the embed-
dability relation on the invariants is relatively simple, and that we can easily
characterize the finite trees that correspond to invariants. We also compute
the invariants of every linear ordering which is a product of linear orderings
of the form ωα or (ωα)∗.

Let

Tr = {T(L) : L ∈ H} and In = {Inv(L) : L ∈ S}.

In Section 2 we define a relation 4 on In such that Inv : 〈S, 4〉 → 〈In, 4〉
is an isomorphism. We define 4 in such a way that, given S, T ∈ In, we
can tell whether S 4 T via a finite manipulation of symbols, assuming we
can compare the ordinals that appear in the labels of S and T and their
cofinalities.

In Proposition 2.16 we characterize the finite sequences of finite trees
with labels in On×{−, +} which belong to In. This characterization is based
on Proposition 2.14, where we characterize the finite trees with labels in
On×{−, +} which belong to Tr . All the conditions in these characterizations
can be checked using a finite algorithm, except 2.14(4), which requires the
computation of the cofinality of an ideal. This condition always holds when
we deal with countable linear orderings. So, we get a characterization of the
elements of Inω1 = {Inv(L) : L ∈ S & rk(L) < ω1} via a finite algorithm.



Equimorphism invariants for orderings 155

To find invariants of linear orderings, it is necessary to find the minimal
linear orderings of complements of ideals. The first result in this direction
is the following.

Theorem 1.6 (Hausdorff, see [Ros82]). Let κ be a regular cardinal and

L be a scattered linear ordering. Then κ ≤ |L| if and only if either κ 4 L or

κ∗ 4 L.

Since a scattered linear ordering has rank ≥ κ if and only if it has size
≥ κ, it follows that {κ, κ∗} ⊂ S is the set of minimal equimorphism types of
rank κ. For each ordinal α, since S is well-quasiordered, there exists a finite
set Fα of minimal equimorphism types of rank α. In Section 3, we explicitly
define the elements of Fα for each α. In Section 4 we find the invariants of
these minimal equimorphism types.

As mentioned before, the class of ideals of H, ordered by inclusion, is
also a well-quasiordering. In Section 3, for each α, we also explicitly define
a finite set of ideals of H of rank α which contains all the minimal ideals of
rank α. Then, in Section 4, we find the invariants of these ideals. We will
use these invariants to describe an algorithm that checks if an ideal of H has
a certain rank, as needed to verify condition 2.14(3).

Many ideas in this paper originated in [Mon05b], where we proved that
every hyperarithmetic linear ordering is equimorphic to a computable one,
extending an old result of Spector about hyperarithmetic ordinals. The defi-
nitions of the invariants and the definition of minimal ideals of a certain rank
are essentially given there for the case of countable linear orderings, but this
is not explicity stated. Peter Cholak, after a talk the author gave in Notre
Dame, suggested that there might be some relation between the work in
[Mon05b] and equimorphism invariants. An important tool used in [Mon05b]
is the concept of signed trees. Some results that were already proved in
[Mon05b] only for countable linear orderings, are proved here for arbitrary
cardinality and without using signed trees. Even though the proofs with
signed trees are cleaner, we do not know how to generalize the concept of
signed trees to arbitrary cardinality preserving their nice properties. At the
end of Section 2 we mention how the results in [Mon05b] could be deduced
as an application of the results on equimorphism invariants proved here.

In the last section we mention extensions of our results to the class of
σ-scattered linear orderings, and some questions that are left open.

1.1. Background on linear orderings. The reader can find background
information about linear orderings in the introductory chapter of [Ros82].
Basic knowledge about ordinals is assumed. The reader can learn about
ordinals in any basic textbook in set theory, as for example [Kun80]. Now,
we define the notation we will use and we prove some basic lemmas about
indecomposable linear orderings. Let A = 〈A,≤A〉 be a linear ordering. We
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might sometimes abuse notation and write x ∈ A instead of x ∈ A. The
reverse linear ordering of A is A∗ = 〈A,≥A〉. We let A+ = A and A− = A∗.
Let B = 〈B,≤B〉 be another linear ordering. The product, A · B, of A and
B is obtained by substituting a copy of A for each element of B. That is,
A · B = 〈A × B,≤A·B〉 where 〈x, y〉 ≤A·B 〈x′, y′〉 iff either y <B y′, or
y = y′ and x ≤A x′. The sum,

∑
i∈A Bi, of a set {Bi}i∈A of linear orderings

indexed by another linear ordering A is constructed by substituting a copy
of Bi for each element i ∈ A. So, for example, A · B =

∑
i∈B A. When

A = {0 < 1 < · · · < m − 1}, we sometimes write B0 + · · · + Bm−1 or∑m−1
i=0 Bi instead of

∑
i∈A Bi.

We use ω to denote the ordering of the natural numbers, and 1 for the
linear ordering with one element.

The powers of ω are defined as follows: ω0 = 1 and for an ordinal α,
ωα = sup{ωβ · ω : β < α}. We write ωα∗ for (ωα)∗. Cantor proved that for
every ordinal α there exists a finite sequence of ordinals α0 ≥ α1 ≥ · · · ≥ αk

such that
α = ωα0 + ωα1 + · · · + ααk .

This decomposition is called the Cantor normal form of α. It can be proved
by induction that rk(ωα) = α. Moreover, ωα is the least ordinal of rank α.
It is also known, and not hard to prove, that an ordinal is indecomposable
if and only if it is of the form ωα.

Given a set X, we denote the set of finite sequences from X by X<ω.
Given a partial ordering P = 〈P,≤P〉, we say that a set A ⊂ P is cofinal

in P if ∀x ∈ P ∃y ∈ A (x ≤P y). The cofinality of P, cf(P), is the least car-
dinal κ such that there is a cofinal set of P of size κ. A regular cardinal is one
whose cofinality is the cardinal itself. Note that if κ is a regular cardinal and
{xγ : γ ∈ κ} is an increasing sequence cofinal in P, then P has cofinality κ.

Definition 1.7. Given an indecomposable linear ordering L, let κ be
the cofinality of LεL , and define τ(L) = κεL .

Note that if L is as above, it can be written as a sum L =
∑

i∈τ(L) Li

where the Li have rank smaller than L. Using Theorem 1.4(1), we can as-
sume that Li ∈ H for each i.

Lemma 1.8. Let L ∈ H and suppose that L 4
∑

i∈A Bi.

(1) If τ(L) 64 A, then L 4 Bi for some i ∈ A.

(2) If εL = + and τ(L) < cf(A), then there is an initial segment A0

of A, of cofinality either τ(L) or 1, such that L 4
∑

i∈A0
Bi.

(3) If A 4 τ(L) and 1 + L + 1 4
∑

i∈A Bi, then L 4 Bi for some i ∈ A.

Proof. Suppose that εL = +. Let g be an embedding L →
∑

i∈A Bi,
and let {xγ : γ ∈ τ(L)} be an increasing cofinal sequence in L. For each
γ < τ(L), let aγ ∈ A be such that g(xγ) ∈ Baγ .
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In the first case, there is a δ < τ(L) such that ∀γ ≥ δ (aγ = aδ). Then,
since L is indecomposable to the right, we have L 4 Baδ

.

In the second case, let A0 = {y ∈ A : ∃γ < τ(L) (y ≤A aγ)}. Note that
L 4

∑
i∈A0

Bi. If there is an aδ as above, then it is the maximal element of

A0 and cf(A0) = 1. Otherwise, cf(A0) = τ(L).

The last part follows from the first one.

Lemma 1.9. Let L ∈ H. Then τ(L) = (cf(rk(L)) ∨ ω)εL. (Here, α ∨ β
denotes the maximum of α and β.)

Proof. Without loss of generality suppose that εL = + and assume that
L has a first element a. If rk(L) is a successor ordinal, then L is an ω-sum of
smaller indecomposables, so τ(L) = ω. So, suppose that κ = cf(rk(L)) ≥ ω,
and let {αγ : γ < κ} be increasing and cofinal in rk(L). For each γ < κ, let
xγ ∈ L be such that a 6≈αγ xγ and ∀δ < γ (xδ ≤L xγ). We have constructed
an increasing, cofinal sequence in L of size κ. Therefore τ(L) = κ.

We let Reg± be the class of linear orderings τ such that either τ or τ∗

is a regular cardinal.

Lemma 1.10. Suppose that L ∈ H, εL = +, and {Lγ : γ ∈ α} is such

that Lγ + 1 4 L for each γ, and α ≺ τ(L). Then (
∑

γ∈α Lγ) + 1 ≺ L. If

α = τ(L), then
∑

γ∈α Lγ 4 L.

Sketch of proof. Use transfinite induction on α. When α is limit, use the
fact that α < cf(L).

Lemma 1.11. Let A, B, C and D be linear orderings such that A·B 4 C·D
and A has either a first or a last element. Then either A 4 C or B 4 D.

Proof. Let a be either the first or the last element of A, and let g : A·B →
C·D be an embedding. Suppose B 64 D. Then there has to exist b0 <B b1 ∈ B
such that g(〈a, b0〉) and g(〈a, b1〉) belong to the same copy of C. It follows
that A 4 C.

2. The invariants. In this section we show that the invariants Inv(·)
defined in the introduction behave well. First we show that an indecompos-
able linear ordering L is determined by εL and IL. This result is essential for
showing that different equimorphism types get different invariants. Then we
show how to define an ordering on Tr which coincides with the embeddabil-
ity relation on indecomposables. We use this relation to define an ordering
on In which coincides with the embeddability relation on scattered linear
orderings.

In the last subsection we characterize the finite trees with labels in On×
{−, +} which belong to Tr , and the sequences in Tr<ω which belong to In.
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2.1. Equimorphism invariants. We start by defining the Hausdorff rank
of an ideal and proving some of its basic properties.

Definition 2.1. Given an ideal I ⊂ H, we define its rank to be rk(I) =
sup{rk(L) + 1 : L ∈ I}.

Lemma 2.2. Let L ∈ H. Then

(1) rk(IL) = rk(L);
(2) if cf(IL) > ω, then cf(IL) = cf(rk(IL));
(3) if cf(IL) ≤ ω, then cf(rk(IL)) ≤ ω.

Proof. Write L as
∑

γ∈τ(L) Lγ where each Lγ ∈ H. Without loss of gen-

erality assume that εL = + and let κ = τ(L) = cf(rk(L)) ∨ ω.
Suppose first that κ > ω. For each γ ∈ κ, we define αγ < κ and Lγ ∈ H

by transfinite recursion as follows. Let α0 = 1 and L0 = L0. Let αγ be such
that for every δ < γ, αδ < αγ and Lδ ≺

∑
β<αγ

Lβ . Let Lγ = (
∑

δ<αγ
Lδ)·ω.

Note that, since L is indecomposable to the right, Lγ 4 L. The existence of
αγ follows from Lemma 1.8. It also follows that Lγ ∈ IL. Also, if A ∈ IL, then
A 4 Lγ for some γ ∈ κ. So {Lγ : γ ∈ κ} is an increasing cofinal sequence in
IL of size κ, and hence cf(IL) = κ and rk(IL) = sup{rk(Lγ) + 1 : γ ∈ κ} ≤
rk(L). For any two x, y ∈ L, the interval [x, y]L embeds into Lγ for some
γ ∈ κ, and hence x ≈rk(Lγ)+1 y. Therefore rk(L) ≤ sup{rk(Lγ) + 1 : γ ∈ κ},
and hence rk(IL) = rk(L).

Suppose now that κ = ω. Then it follows from Lemma 1.8(3) that
{Lγ : γ ∈ ω} is cofinal in IL and hence cf(IL) ≤ ω and rk(IL) =
sup{rk(Lγ) + 1 : γ ∈ ω} ≤ rk(L). For any two x, y ∈ L, the interval [x, y]L
embeds into a finite sum of Lγ ’s, and hence x ≈sup{rk(Lγ)+1 : γ∈ω} y. It follows
that rk(L) ≤ sup{rk(Lγ) + 1 : γ ∈ κ}, and hence rk(IL) = rk(L).

Definition 2.3. Given an ideal I ⊂ H and a τ ∈ Reg±, we say that a
linear ordering L is a τ -unbounded sum of I, and we write L = I · τ , if L
can be written as

L =
∑

i∈τ

Bi

where {Bi : i ∈ τ} ⊆ I, and any other linear ordering of that form embeds
in L. Note that, up to equimorphism, there exists at most one τ -unbounded
sum of I.

The idea for the definition above came from Laver’s regular unbounded
sums and shuffle sums [Lav71].

The τ -unbounded sum of an ideal I may not exist. But in some cases we
know it does exist:

Lemma 2.4. Let I ⊂ H be an ideal and τ ∈ Reg± be such that cf(I) ≤ |τ |.
Then the unbounded sum I · τ exists.
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Proof. Let κ = |τ | and let {Lξ : ξ < κ} be cofinal in I. Let π : τ → κ
be a function such that for every δ ∈ κ, the set π−1[δ] has size κ. Let L be
the equimorphism type of

∑
γ∈τ Lπ(γ). Using Lemma 1.10, it is not hard to

prove that if B =
∑

i∈τ Bi, and {Bi : i ∈ τ} ⊆ I, then B 4 L. So, L is the
τ -unbounded sum of I.

Corollary 2.5. Let L ∈ H. Then IL · τ(L) exists and equals L.

Proof. Clearly L4 IL·τ(L). That IL·τ(L) 4L follows from Lemma 1.10.

Corollary 2.6. If A,B ∈ H are such that εA = εB and IA = IB, then

A = B.

Proof. We know that τ(A) depends only on rk(A) and εA and that
rk(A) = rk(IA). So, τ(A) = τ(B). But then A = IA · τ(A) = IB · τ(B) = B.

It follows that the invariants T(·) defined in the introduction are one-to-
one on H. Thus, the invariants Inv(·) are one-to-one on S.

2.2. Ordering of invariants. In this subsection we define a relation 4 on
Tr such that T is an isomorphism between 〈H, 4〉 and 〈Tr , 4〉. We then define
a relation 4 on In such that Inv : 〈S, 4〉 → 〈In, 4〉 is an isomorphism.

Notation 2.7. Given a tree T = [〈β, εT 〉; T0, . . . , Tk−1], let rk(T ) = β
and τ(T ) = cf(β)εT .

Definition 2.8. Given S = [〈α, εS〉; S0, . . . , Sl−1] and T = [〈β, εT 〉;
T0, . . . , Tk−1] ∈ Tr we let S 4 T if either

• α ≤ β, τ(S) 4 τ(T ) and ∀i < k (rk(Ti) ≥ α ∨ ∃j < l (Sj 4 Ti)), or
• α < β, τ(S) 64 τ(T ) and ∀i < k (Ti 64 S).

Proposition 2.9. For A,B ∈ H, A 4 B if and only if T(A) 4 T(B).

Proof. The key point is that A 4 B if and only if either

• τ(A) 4 τ(B) and IA ⊆ IB, or
• τ(A) 64 τ(B) and A ∈ IB.

The reason is the following. If A 4 B, then clearly IA ⊆ IB, and if τ(A) 64
τ(B) then A ∈ IB by Lemma 1.8(1). Conversely, if A ∈ IB then clearly
A 4 B, and if τ(A) 4 τ(B) and IA ⊆ IB then A 4 B by Lemma 1.10.

The proposition then follows from the following observation. Let α =
rk(A) and β = rk(B), let {A0, . . . ,Al−1} be the set of minimal elements of
Hα r IA, and let {B0, . . . ,Bk−1} be the set of minimal elements of Hβ r IB.
Then IA ⊆ IB if and only if α ≤ β and for each i < k, either Bi 6∈ Hα or
there exists j < l such that Aj 4 Bi. Also, A ∈ IB if and only if α < β and
Bi 64 A for each i < k.
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Definition 2.10. Given S = 〈S0, . . . , Sl〉 ∈ In and T = [〈α, εT 〉;
T0, . . . , Tk−1] ∈ Tr we let S 4 T if either

• εT = +, Sl 4 T and ∀j ∈ {0, . . . , l − 1} (rk(Sj) < α & ∀i < k
(Ti 64 Sj)), or

• εT = −, S0 4 T and ∀j ∈ {1, . . . , l} (rk(Sj) < α & ∀i < k(Ti 64 Sj)).

Lemma 2.11. Let A ∈ S and L ∈ H. Then Inv(A) 4 T(L) if and only if

A 4 L.

Proof. Write A as a sum of indecomposables, A0 + · · ·+Al, and assume
without loss of generality that εL = +. Note that Inv(A) 4 T(L) if and only
if Al 4 L and Aj + 1 4 L for every j = 0, . . . , l − 1. So, it is clear that if
A 4 L, then Inv(A) 4 T(L). Suppose now that Inv(A) 4 T(L). Then, by

Lemma 1.10,
∑l−1

j=0 Aj + 1 4 L. Since Al 4 L and L is indecomposable to
the right, we conclude that A 4 L.

Definition 2.12. Now, given S = 〈S0, . . . , Sl〉 ∈ In and T = 〈T0, . . . , Tk〉
∈ In we let S 4 T if

∨

0=i0≤···≤ik≤ik+1=l+1

( ∧

n≤k

〈Sin , Sin+1, . . . , Sin+1−1〉 4 Tn

)
.

Proposition 2.13. Let A,B ∈ S. Then Inv(A) 4 Inv(B) if and only if

A 4 B.

Proof. Let A = A0 + · · · + Al and B = B0 + · · · + Bk, and let S =
〈S0, . . . , Sl〉 = Inv(A) and T = 〈T0, . . . , Tk〉 = Inv(B), where Si = T(Ai)
and Tn = T(Bn). Note that Inv(A) 4 Inv(B) if and only if for some tuple
i0, . . . , ik+1 with 0 = i0 ≤ · · · ≤ ik ≤ ik+1 = l + 1 we have

(1) A0 + · · · + Ai1−1 4 B0 & · · · & Ain + · · · + Ain−1 4 Bn

& · · · & Aik + · · · + Al 4 Bk.

It is then clear that if Inv(A) 4 Inv(B), then A 4 B.
Suppose now that A 4 B and let f : A → B be an embedding. For each i,

let fi be the restriction of A to Ai. Since each Ai is indecomposable, there
exists an embedding gi : Ai → B such that the image of gi is included in
the image of fi and also in Bn for some n. Putting these gi’s together we
get an embedding g : A → B such that the image of each Ai is included in
some Bn. For each n, let in be the first i such that the image of Ai under g
is included in Bn. Then (1) follows, and hence Inv(A) 4 Inv(B).

2.3. The class of invariants. Now we are interested in characterizing Tr
and In. Given an ordinal α and T0, . . . , Tk−1 ∈ Tr , let

Iα
T0,...,Tk−1

= {S ∈ Tr : rk(S) < α & ∀i < k (Ti 64 S)}.

Given an ideal I ⊂ Tr , let rk(I) = sup{rk(T ) + 1 : T ∈ I}.
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Proposition 2.14. A tree T = [〈α, ε〉; T0, . . . , Tk−1] with labels in Reg±

belongs to Tr if and only if

(1) for each i, Ti ∈ Tr and rk(Ti) < α;
(2) T0, . . . , Tk−1 are mutually 4-incomparable;
(3) rk(Iα

T0,...,Tk−1
) = α;

(4) cf(Iα
T0,...,Tk−1

) ∨ ω = cf(α) ∨ ω;

(5) for no i, τ(Ti) ≺ τ(T ).

Proof. First we prove the “only if” part. Suppose T = T(L) with L ∈ H.
The first two assertions are obvious from the definition of T. The third
and fourth follow from Lemma 2.2. For the last item suppose, toward a
contradiction, that ε = +, τ(T ) = κ and τ(Ti) = λ < κ. Let Li be the
minimal element of Hα r IL such that Ti = T(Li). Then Li =

∑
j∈λ Li,j for

some Li,j ∈ ILi
. For every j, Li,j ≺ Li and hence Li,j belongs to IL. By

Lemma 1.10, (
∑

λ Li,j) + 1 4 L. Therefore Li ∈ IL, contradicting its choice.
Let us now prove the other direction. Suppose that T satisfies the five

conditions above. Let I = {A ∈ Hα : T(A) ∈ Iα
T0,...,Tk−1

}. This ideal has

rank α and cofinality cf(α). Let τ = cf(α)ε = τ(T ). Let L = I · τ . We claim
that T = T(L). Clearly εL = ε, rk(L) = α and I ⊆ IL. Suppose toward
a contradiction that IL 6⊆ I. Let Li be a minimal element of IL r I. In
particular, Li is a minimal element of Hα r I, so T(Li) = Ti for some i < k.
Since τ(Li) = τ(Ti) 6≺ τ and 1 + Li + 1 ≺ L, we find that Li embeds into
one of the summands of I · τ(L), and hence belongs to I. This contradicts
the choice of Li.

Notation 2.15. If T = [〈α, ε〉; T0, . . . , Tk−1]∈Tr , let IT = Iα
T0,...,Tk−1

.

Proposition 2.16. Let T = 〈T0, . . . , Tk〉 ∈ Tr<ω. Then T ∈ In if and

only if for any i < k we have neither

(1) εi = − and Ti+1 ∈ ITi
, nor

(2) εi+1 = + and Ti ∈ ITi+1 .

Sketch of proof. Let A0, . . . ,Ak ∈ H be such that T(Ai) = Ti. Then
〈T0, . . . , Tk〉 ∈ Inv if and only if 〈A0, . . . ,Ak〉 is a minimal decomposition of
A0 + · · · + Ak. It is not hard to see that if 〈A0, . . . ,Ak〉 is not a minimal
decomposition, then for some i, either Ai +Ai+1 4 Ai or Ai +Ai+1 4 Ai+1.
Now, Ai + Ai+1 4 Ai+1 if and only if εAi+1 = + and Ai + 1 4 Ai+1, while
Ai +Ai+1 4 Ai if and only if εAi+1 = − and 1+Ai+1 4 Ai. The proposition
follows.

We note that all the conditions in the two propositions above can be
easily checked via a finite manipulation of symbols, using maybe some ba-
sic operations on ordinals, except for 2.14(3) and 2.14(4). We will prove in
the next sections that condition 2.14(3) can also be checked using such an
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algorithm (see the end of Section 4). But we know nothing about condi-
tion 2.14(4). For the countable case, it always holds, and hence we can tell
whether a sequence belongs to Inω1 or not, using a finite algorithm. As a
corollary we find that if α is a computable ordinal, then Sα is computably
presentable [Mon05b, Corollary 4.3]. We could use this result to prove that
every equimorphism type in Sα has a computably presentable member, get-
ting a different proof of [Mon05b, Theorem 2.3].

3. Minimal linear orderings. In this section we explicitly define the
elements of Fα for each α, where Fα is the set of minimal equimorphism
types of rank α. Also, for each α, we explicitly define a finite set of ideals of
H which contains the set of minimal ideals of rank α.

Definition 3.1. Given an indecomposable ordinal α > 1, and two signs
ε0 and ε1, we define an equimorphism type lin(〈α, ε0, ε1〉) as follows. Let
{αγ : γ < cf(α)} be an increasing sequence cofinal in α. Define

lin(〈α, ε0, ε1〉) =
∑

γ∈cf(α)ε1

(ωαγ )ε0 .

Observe that, up to equimorphism, this definition is independent of the
cofinal sequence chosen. We also let lin(〈1, +〉) = ω and lin(〈1,−〉) = ω∗.
We call these equimorphism types basic linear orderings. We use b.l.o. to
denote the set of codes for basic linear orderings:

b.l.o. = {〈α, ε0, ε1〉 : α = ωδ, δ ∈ On, δ > 0 & ε0, ε1 ∈ {+,−}}

∪ {〈1, +〉, 〈1,−〉}.

Finite products of basic linear orderings will be called finitely alternating

linear orderings. Let F.l.o. = b.l.o.<ω. Given ~a = 〈a0, . . . , an〉 ∈ F.l.o., let

lin(~a) = lin(a0) · · · lin(an).

Example 3.2. lin(〈α, +, +〉) = ωα and lin(〈α,−,−〉) = ωα∗.

Notation 3.3. For a = 〈α, ε0, ε1〉 ∈ b.l.o., let rk(a) = α and εa = ε1,
and for a = 〈1, ε〉, let rk(a) = 1 and εa = ε. Let cf(a) = cf(rk(a)) and
τ(a) = cf(a)εa . Given ~a = 〈a0, . . . , an〉 ∈ F.l.o., let rk(~a) =

∑
i≤n rk(ai),

cf(~a) = cf(an), ε~a = εan , and τ(~a) = τ(an).

Definition 3.4. Let δ be an ordinal with Cantor normal form δ = ωα0 +
· · · + ωαk−1 where α0 ≥ α1 ≥ · · · ≥ αk−1. Let

F.l.o.δ = {〈a0, . . . , ak−1〉 ∈ F.l.o. : ∀i < k (rk(ai) = ωαi)}.

Proposition 3.5. Let L ∈ H and δ be an ordinal. Then

δ ≤ rk(L) ⇔ (∃~a ∈ F.l.o.δ) lin(~a) 4 L.

To prove this proposition we need a few lemmas.
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Lemma 3.6. Let L be a scattered linear ordering of rank α. If we color

L with finitely many colors, then there is a monochromatic subset of L of

rank α. In other words, if C is a finite set , then for every f : L → C, there

exists c ∈ C such that rk(f−1[c]) = α.

Proof. We use transfinite induction on α.

Suppose first that α is a limit ordinal. For every β < α there exists a
color cβ such that rk(f−1[cβ]) ≥ β. There is some color c such that {β < α :
cβ = c} is unbounded in α. Then f−1[c] has rank α.

Suppose now that α = β + 1. Then L(β) is infinite. Note that the set of
≈β-equivalence classes which have rank β is also infinite. For each x ∈ L(β)

that has rank β, there exists a color cx such that f−1[cx]∩x has rank β. (We
are thinking of x as a segment of L.) For some color c, the set {x ∈ L(β) :
rk(x) = β & cx = c} is infinite. For that c the set f−1[c] has rank α.

Lemma 3.7. If L is a linear ordering of rank α and α = β+γ, then there

exist indecomposable linear orderings B and C of ranks β and γ respectively

such that B · C 4 L.

Proof. Consider L(β) = L/≈β . Note that L =
∑

x∈L(β) x, viewing each
equivalence class as a segment of L. Let

L̂ =
∑

x∈L(β), rk(x)=β

x ⊆ L.

Note that L̂(β) = {x ∈ L(β) : rk(x) = β}.

We claim that rk(L̂) = α. For each δ ≥ β, let fδ : L̂(δ) → L(δ) be the
obvious embedding: fδ(y) is the unique z ∈ L(δ) such that y ⊆ z. We will

prove that fδ[L̂
(δ)] = {z ∈ L(δ) : rk(z) ≥ β} for each δ ≥ β. Clearly

fδ[L̂
(δ)] ⊆ {z ∈ L(δ) : rk(z) ≥ β}. Now, suppose that z ∈ L(δ) and rk(z) ≥ β.

Then z can be written as a sum of ≈β-equivalence classes in L(β). If it is only

one ≈β-equivalence class, then the class belongs to L̂(β), and z = fδ(z) ∈

fδ[L̂
(δ)]. If z contains more than one ≈β-equivalence class, then since L(β)

is scattered, there are x, w ∈ L(β) with x, w ⊆ z which are adjacent. Then
at least one of x and w belongs to L̂(β). This is because if rk(x) < β and
rk(w) < β, the elements of x and those of w would be ≈β-equivalent. Suppose

x ∈ L̂(β). Then z = fδ(y), where y is the ≈δ-equivalence class in L̂(δ) which

contains x. It follows that for all δ with β ≤ δ < α, L̂(δ) is infinite, and
hence rk(L̂) = α, proving our claim. Therefore, rk(L̂(β)) = γ.

Let B0, . . . ,Bk be the minimal linear orderings of rank β. So, for each
x ∈ L̂(β), there is an ix ≤ k such that Bix 4 x. By the previous lemma,

there is an i ≤ k such that Ĉ = {x ∈ L̂(β) : ix = i} has rank γ. Let C 4 Ĉ be
an indecomposable of rank γ. Note that B = Bi and C are as desired.
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Lemma 3.8. Let α > 1 be an indecomposable ordinal , and let L ∈ H.

Then α ≤ rk(L) if and only if lin(〈α, ε0, ε1〉) 4 L for some ε0, ε1 ∈ {+,−}.

Proof. The “if” part follows from the fact that rk(lin(〈α, ε0, ε1〉)) = α.
Assume, without loss of generality, that L is indecomposable and has

rank α. So |τ(L)| = cf(α). Write L as
∑

γ∈τ(L) Lγ and let ε1 = εL.
To prove the lemma it will be enough to show that for every β < α there

exists γ such that either ωβ or ωβ∗ embeds in Lγ , because then there exists
ε0∈{−, +} such that for every β < α there is a γ∈τ(L) such that ωβε0 4Lγ ,
and hence, by Lemma 1.10, lin(〈α, ε0, ε1〉) 4 L. Assume first that α = ωδ

and δ is a limit ordinal. Then ∀β < α ∃δ0 < δ (β < ωδ0), and so, by inductive

hypothesis, for some ε0 and ε1, lin(〈ωδ0 , ε0, ε1〉) 4 L, and hence βε0
4 L.

Assume now that the lemma is true for ωδ and let us prove it for α =
ωδ+1. Consider β < α. For some n < ω, β < ωδ · n. We need to prove
that either ωωδ·n or ωωδ·n∗ embeds in L. By the previous lemma there exist
A1, . . . ,A2n of rank ωδ · 2 such that A1 · · · A2n 4 L. We now claim that for
each i ≤ 2n, either ωωδ

or ωωδ∗ embeds in Ai. Note that by an application
of the pigeon-hole principle, this claim implies that either ωωδ·n 4 L or
ωωδ·n∗ 4 L.

By the previous lemma, there exist B0 and B1, both of rank ωδ, such
that B0 · B1 4 Ai. So, by the inductive hypothesis, there exist ε0, ε1, ε2, ε3 ∈
{+,−} such that lin(〈ωδ, ε0, ε1〉) 4 B0 and lin(〈ωδ, ε2, ε3〉) 4 B1. If cf(ωδ)

= ωδ, then ωωδε1
4 lin(〈ωδ, ε0, ε1〉) 4 B0 4 Ai. So, assume that cf(ωδ) < ωδ.

If ε2 = ε3, then ωωδε2
4 B1 4 Ai as desired. Otherwise, either ε0 = ε2 or

ε0 = ε3. In any case, since cf(ωδ) 4 lin(〈ωδ, ε2, ε3〉),

ωωδε0
= lin(〈ωδ, ε0, ε0〉) 4 lin(〈ωδ, ε0, ε1〉) · lin(〈ωδ, ε2, ε3〉) 4 B0 · B1 4 Ai

as required.

Proposition 3.5 follows easily from the previous two lemmas. For the case
δ = 1 use the fact that if rk(L) ≥ 1, then either ω 4 L or ω∗ 4 L.

The set {lin(~a) : ~a ∈ F.l.o.δ} is not exactly the set of minimal linear
orderings of rank δ, but a superset of it. The problem is that there might
be ~a,~b ∈ F.l.o.δ such that lin(~a) ≺ lin(~b). For example, if κ > ω is a regular
cardinal, then

lin(〈κ, +, +〉) = κ ≺ lin(〈κ,−, +〉).

Also, if β ≥ cf(α) · ω, then

lin(〈〈α, +, +〉, 〈β, +, +〉〉) ≺ lin(〈〈α, +,−〉, 〈β, +, +〉〉).

The reason is that, since lin(〈α, +, +〉) ≺ lin(〈α, +,−〉) · cf(α), we have

(2) lin(〈〈α, +, +〉, 〈β, +, +〉〉) = lin(〈α, +, +〉) · ωβ

≺ lin(〈α, +,−〉) · cf(α) · ωβ
4 lin(〈α, +,−〉) · ωcf(α)+β

4 lin(〈α, +,−〉) · ωβ = lin(〈〈α, +,−〉, 〈β, +, +〉〉).



Equimorphism invariants for orderings 165

Definition 3.9. Let δ be an ordinal with Cantor normal form δ =
ωα0 + · · · + ωαk where α0 ≥ α1 ≥ · · · ≥ αk. Let Fδ be the set consisting of
lin(~a) for ~a = 〈a0, . . . , a,k 〉 ∈ F.l.o. such that for each i,

(1) if ωαi is regular and ai = 〈ωαi , εi,0, εi,1〉, then εi,0 = εi,1,
(2) if ωαi+1 > cf(ωαi) and ai+1 = 〈ωαi+1 , εi+1,0, εi+1,1〉, then εai

= εi+1,0.

Corollary 3.10. For each ordinal δ, Fδ is the set of minimal linear

orderings of rank δ.

Proof. From the remark before Definition 3.9, it follows that for every
~a ∈ F.l.o.δ, either lin(~a) ∈ Fδ, or some element of Fδ embeds in lin(~a). So,
all we need to prove is that Fδ ⊂ H is an antichain. Let δ = ωα0 + · · ·+ ωαk

be in Cantor normal form as in the definition above. By induction on k we
show that if ~a,~b ∈ F.l.o.δ are such that

lin(~a) ∈ ide(~b a〈ωαk , ε~b〉)

(see Definition 3.11 below), then ~a = ~b. Suppose that ~a = ~c a〈αk, ε
0
~a, ε~a〉 and

~b = ~d
a

〈αk, ε
0
~b
, ε~b〉, and that lin(~a) 4 lin(~b) · ωβε~b for some β < ωαk .

If ε~a 6= ε~b, then lin(~a) ∈ ide(~d
a

〈αk, ε
0
~b
〉), which is impossible because

rk(~a) = rk(~d
a

〈αk, ε
0
~b
〉). So ε~a = ε~b.

If ωαk is regular, then ε0
~a = ε~a = ε0

~b
. If not, assume that β > cf(ωαk) is

indecomposable, and hence cf(ωαk) + β = β < β + cf(ωαk). Then, since

ωβε0
~a · cf(ωαk)ε~a 4 lin(ωαk , ε0

~a, ε~a) 4 lin(ωαk , ε0
~b
, ε~a) · ω

βε~a ,

we have ε0
~a = ε0

~b
, because otherwise ε0

~a = ε~a and ωβ+cf(ωακ) 4 ωcf(ωαk )+β,

which is impossible.
What is left is to prove that ~c = ~d . Since lin(〈αk, ε

0
~a, ε~a〉) 64 ωβε~b , we have

1+lin(~c)+1 ≺ lin(~d
a

〈αk, ε
0
~a, ε~a〉). If ε0

~a = ε~a, then lin(~c) ∈ ide(~d
a

〈αk, ε
0
~a〉).

If not, then necessarily ide(~c a〈αk, ε
0
~a〉) ⊆ ide(~d

a

〈αk, ε
0
~a〉), so, we also have

lin(~c) ∈ ide(~d
a

〈αk, ε
0
~a〉) ⊆ ide(~d

a

〈αk−1, ε
0
~a〉).

If cf(~c) = cf(ωαk−1) 6< ωαk , then actually lin(~c) 4 lin(~d), and hence, by

inductive hypothesis, ~c = ~d . Otherwise, ε~c = ε0
~a = ε0

~b
= ε~d

. So, again by

inductive hypothesis, ~c = ~d .

As important as minimal linear orderings of a certain rank are minimal
ideals. We will use minimal ideals to identify the ideals of Tr which have
a certain rank. As we did in the previous subsection for linear orderings,
we will define a class of ideals called the finitely alternating ideals. We will
define a set F.id. of codes for finitely alternating ideals and an operation
ide(·) that assigns an ideal to each member of F.id.:
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Definition 3.11. Given an indecomposable ordinal α > 1, let

ide(〈α, ε〉) = I(ωαε) = {ωβε : β < α}.

We call these ideals basic ideals. Let b.id. = {〈α, ε〉 : α ∈ On, α indecom-
posable &α > 1}. Given a finitely alternating linear ordering L and a basic
ideal I we let

L · I = {A ∈ H : ∃B ∈ I (A 4 L · B)}.

Ideals of this form are called finitely alternating ideals. Let

F.id. = {~a ab : ~a ∈ F.l.o., b ∈ b.id.}.

Given ~b = ~a ab ∈ F.id., let ide(~b) = lin(~a) · ide(b).

Note that lin(〈α, ε0, ε1〉) = ide(〈α, ε0〉) · cf(α)ε1 . Now, for each limit or-
dinal δ, we want to define a finite set of finitely alternating ideals which
contains all the minimal ideals of rank δ.

Definition 3.12. Let δ have Cantor normal form δ = ωα0 + · · · + ωαk

with α0 ≥ α1 ≥ · · · ≥ αk > 1. Let

F.id.δ = {〈a0, . . . , ak−1, ak〉 ∈ F.id. : ∀i ≤ k (rk(ai) = ωαi)}.

Proposition 3.13. Let α be a limit ordinal and I ⊆ H be an ideal. Then

α ≤ rk(I) ⇔ (∃~b ∈ F.id.α) ide(~b) ⊆ I.

Proof. The implication from right to left follows from the fact that for
each ~b ∈ F.id.α, rk(ide(~b)) = α.

Let us now prove the other direction, so assume that rk(I) ≥ α. Write α
in Cantor’s normal form and let ωβ be the last term. So α = α0 +ωβ , where
ωβ divides α0. Let {Lγ : γ < κ} be a cofinal sequence in I. Assume that for
all γ < κ, rk(Lγ) > α0, and let βγ be such that rk(Lγ) = α0 + βγ . Note
that sup{βγ : γ < κ} = ωβ. For each γ there exist Aγ and Bγ of ranks α0

and βγ such that Aγ · Bγ 4 Lγ . We can assume that each Aγ is a minimal
linear ordering of rank α0 and hence a finitely alternating one. There exists
~a ∈ F.l.o.α0 such that {βγ : γ < κ, Aγ = lin(~a)} is unbounded in ωβ. Let
A = {γ < κ : Aγ = lin(~a)}. By transfinite induction and using the same
idea as in Lemma 3.8, we can prove that for each δ < ωβ there exists γ ∈ A
such that either ωδ or ωδ∗ embeds in Bγ . So, for ε either + or −, we have
ide(~a a〈β, ε〉) = lin(~a) · ide(ωβ, ε) ⊆ I.

The set FIδ of minimal ideals of H of rank δ can be defined from F.id.δ
using the ideas of Corollary 3.10.

4. Examples of invariants. For each ~a ∈ F.l.o. ∪ F.id. we define a
finite set com(~a) ⊂ F.l.o. which is the complement of ~a in the sense of
Proposition 4.2 below. We will use these sets to compute the invariants of
some finitely alternating linear orderings. Then we will use these invariants
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to define an algorithm that checks whether condition (3) of Proposition 2.14
holds.

Definition 4.1. First, let com(〈〉) = {〈1, +〉, 〈1,−〉}. Second, consider

~a ∈ F.l.o. If ~a = ~d
a

〈β, ε0, ε1〉 with β > 1, let τ = τ(〈β, ε0, ε1〉) and let

com(~a) = {~c : ~c ∈ com(~d
a

〈β, ε0〉) & τ(~c) 64 τ}.

∪ {~c a〈1, +〉,~c a〈1,−〉 : ~c ∈ com(~d
a

〈β, ε0〉) & τ(~c) 4 τ}.

Otherwise, ~a = ~d
a

〈1, ε〉. Let τ = τ(〈1, ε〉) and let

com(~a) = {~c : ~c ∈ com(~d) & τ(~c) 64 τ}

∪ {~c a〈1, +〉,~c a〈1,−〉 : ~c ∈ com(~d) & τ(~c) 4 τ}.

Third, consider ~b ∈ F.id. and write ~b as ~a a〈α, ε〉, where ~a ∈ F.l.o. might
be empty. Let I = ide(〈α, ε〉), let ǭ be the opposite of ε (i.e., +̄ = − and
−̄ = +), and let

com(~b) = {~c : ~c ∈ com(~a) & τ(~c) 6∈ I}

∪ {~c a〈α, ε, ε〉,~c a〈1, ǭ〉 : ~c ∈ com(~a) & τ(~c) ∈ I}.

The definition above might look complicated at first. The motivation for
it is just to make the following proposition work. Note that if ~a ∈ F.l.o. ∪
F.id. and ~c ∈ com(~a), then lin(~c) is a product of linear orderings of the form
ωγ or ωγ∗.

Proposition 4.2. Let ~a ∈ F.l.o., ~b ∈ F.id. and L ∈ H. Then

(1) L 64 lin(~a) if and only if (∃~c ∈ com(~a)) lin(~c) 4 L,

(2) L 6∈ ide(~b) if and only if (∃~c ∈ com(~b)) lin(~c) 4 L.

We start by proving the implications from right to left.

Lemma 4.3.

(1) For every ~b ∈ F.l.o. and ~c ∈ com(~b), lin(~c) 64 lin(~b).

(2) For every ~b ∈ F.id. and ~c ∈ com(~b), lin(~c) 6∈ ide(~b).

Proof. We only show the second part, since the idea to prove the first
one is very similar. We use induction on the size of ~b. Suppose ~b = ~a a〈α, +〉,

where ~a ∈ F.l.o., and consider ~d ∈ com(~b). Of course, the case ~b = ~a a〈α,−〉

is analogous. Assume, toward a contradiction, that lin(~d) ∈ ide(~b). So lin(~d)

4 lin(~a) · C for some C ∈ ide(〈α, +〉). There are three possibilities for ~d . The

first one is that τ(~d) 6∈ ide(〈α, +〉) and ~d ∈ com(~a). In this case, τ(~d) 64 τ(C),

and hence lin(~d) 4 lin(~a), contrary to ~d ∈ com(~a). The second case is that
~d = ~c a〈1,−〉, where ~c ∈ com(~a) and τ(~c) ∈ ide(〈α, +〉). In this case, since
ω∗ 64 C, necessarily lin(~c) 4 lin(~a), again contradicting the choice of ~c . The

last case is that ~d = ~c a〈α, +, +〉, where ~c ∈ com(~a) and τ(~c) ∈ ide(〈α, +〉).
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Let C1 be such that C 4 ω|τ(~c )| · C1 ≺ ωα. Then ωα = ωα−|τ(~c)| 64 C1.
So, since lin(~c) · ωα = lin(~d) 4 lin(~a) · C 4 lin(~a) · ω|τ(~c )| · C1, we have
lin(~c) + 1 4 lin(~a) · ω|τ(~c)|. Then, by Lemma 1.8(3), lin(~c) 4 lin(~a), again
contradicting the assumption that ~c ∈ com(~a).

Before proving the proposition we need a few definitions and observa-
tions about presentations of equimorphism types of indecomposable linear
orderings.

Definition 4.4. An indecomposable linear ordering L is hereditarily

normal if either

• L = 1, or
• L =

∑
i∈ωε Li, where each Li is hereditarily normal and appears in-

finitely often in the sum, or
• L =

∑
γ∈κε Lγ , where κ>ω is a regular cardinal, and for each α, β<κ,

∑

γ∈[ωα·β,ωα·(β+1))ε

Lγ

is a hereditarily normal indecomposable linear ordering.

Note that being hereditarily normal is a property of the isomorphism type
of L and not of its equimorphism type.

Given a hereditarily normal indecomposable linear ordering L, we let
bSeg(L) be the set of building segments of L. More precisely, bSeg(1) = {1};
if L =

∑
ωε Li, then bSeg(L) = {L} ∪

⋃
i∈ω bSeg(Li); and if L =

∑
γ∈κε Lγ ,

then
bSeg(L) = {L} ∪

⋃

α,β<κ

bSeg

( ∑

γ∈[ωα·β,ωα·(β+1))ε

Lγ

)
.

Note that bSeg(L) is not a set of isomorphism types, but a set of subsets
of L.

Lemma 4.5. Every indecomposable linear ordering is equimorphic to a

hereditarily normal one.

Proof. The proof is by transfinite induction. Let L ∈ H be such that

L =
∑

γ∈τ(L) Lγ and each Lγ is hereditarily normal. If τ(L) = ω, then
since L is indecomposable,

∑

γ∈ω

Lγ ∼
∑

n∈ω

( ∑

γ<n

Lγ

)
= L0 + L0 + L1 + L0 + L1 + L2 + · · · ,

which is hereditarily normal. Suppose now that τ(L) = κ > ω. For each

γ < κ, by transfinite recursion we define L̂γ ∈ H such that if δ < γ, then L̂δ

is an initial segment of L̂γ . Let L̂0 = L0. If γ = δ +1, let L̂γ = (L̂δ +Lγ) ·ω.
If γ is a limit ordinal and cf(γ) = ω, let γ0 < γ1 < · · · be a cofinal sequence

in γ and let L̂γ be an ω-sum of {Lγ ,Lγ0 ,Lγ1 , . . .} in which each term appears
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infinitely often. If cf(γ) > ω, let L̂γ be the union of the L̂δ, δ < γ. Note that

L̂κ is hereditarily normal and equimorphic to L.

Observation 4.6. Let L be a hereditarily normal indecomposable linear
ordering.

(1) 〈bSeg(L),⊆〉 is well-founded, because 〈H, 4〉 is well-founded, and if
A,B ∈ bSeg(L) and A ( B, then A ≺ B.

(2) Any two elements of bSeg(L) are either disjoint or one contains the
other.

(3) Every A ∈ bSeg(L) r {L} has a successor , succ(A), in bSeg(L),
that is, the least element of bSeg(L) that strictly includes A. This is
because {B ∈ bSeg(L) : A ( B} is well-ordered. Moreover, the suc-
cessor of A is either an ω-sum or an ω∗-sum of members of bSeg(L),
infinitely many of which are isomorphic to A.

(4) If A,B ∈ bSeg(L), there is a least C ∈ bSeg(L) which contains both.
Moreover, if A and B are incomparable, then C is a successor element.
This is because if C is a τ -sum and |τ | > ω, then there is a smaller
building segment that contains both A and B.

(5) Let A be an antichain of bSeg(L), and let Ã be the upwards closure
of A. Define

B = A ∪ {B ∈ bSeg(L) : B 6∈ Ã & succ(B) ∈ Ã}.

We claim that B is a maximal antichain in bSeg(L). Suppose not,
and let C ∈ bSeg(L) be incomparable with all the elements of B.

Let C1 ∈ Ã be the least that contains C. Then C1 is the least upper
bound of C and some B ∈ A, so it is the successor of some C2 ⊇ C.
But then C2 ∈ B, contradicting the definition of C.

Proof of Proposition 4.2. The direction from right to left follows from
Lemma 4.3.

Consider ~a ∈ F.l.o. and assume that L 64 lin(~a). We want to show
that lin(~c) 4 L for some ~c ∈ com(~a). If ~a = 〈〉, then L is infinite, and

then either ω 4 L or ω∗ 4 L. So, suppose that ~a = ~d
a

〈α, ε0, ε1〉 where

α > 1. The case ~a = ~d
a

〈1, ε〉 is similar, but simpler. Consider the set of

building segments of L which do not belong to ide(~d
a

〈α, ε0〉). Suppose first

that there is some L̂ ∈ bSeg(L) r {L} and L̂ 6∈ ide(~d
a

〈α, ε0〉). Then there

exists ~c ∈ com(~d
a

〈α, ε0〉) such that lin(~c) 4 L̂. If τ(~c) 64 τ(〈α, ε0, ε1〉), then
~c ∈ com(~a), and we are done. Otherwise, both ~c a〈1, +〉 and ~c a〈1,−〉 belong

to com(~a). Since either L̂·ω or L̂·ω∗ embeds in L, either lin(~c a〈1, +〉) 4 L or
lin(~c a〈1,−〉) 4 L. Suppose now that L is the only member of bSeg(L) which

is not in ide(~d
a

〈α, ε0〉). Let ~c ∈ com(~d
a

〈α, ε0〉) be such that lin(~c) 4 L.
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Note that τ(~c) = τ(L), because otherwise lin(~c) would embed into a smaller
building segment of L. If τ(~c) 64 τ(〈α, ε0, ε1〉), then ~c ∈ com(~a), and we
are done. Otherwise, τ(L) = τ(~c) 4 τ(〈α, ε0, ε1〉). But then we have L 4

ide(~d
a

〈α, ε0〉) ·τ(〈α, ε0, ε1〉) = lin(~a), contradicting our initial assumptions.

Consider now ~b = ~d
a

〈α, +〉 ∈ F.id. Let {Li : i ∈ L̂} ⊆ bSeg(L) be

the set of minimal building segments of L which do not embed in lin(~d).

For each i ∈ L̂ there exists ~c i ∈ com(~d) such that lin(~c i) 4 Li. Note that

for each i ∈ L̂, τ(~c i) = τ(Li), because otherwise lin(~c) would embed into

a smaller building segment of Li. If for some i ∈ L̂, τ(~c i) 6∈ ide(〈α, +〉),

then ~c i ∈ com(~a), so we are done. Suppose now that for every i ∈ L̂,
τ(Li) = τ(~c i) ∈ ide(〈α, +〉).

Extend {Li : i ∈ L̂} to a maximal antichain {Li : i ∈ L} ⊆ bSeg(L)

as in Observation 4.6(5). For i ∈ L̂, let κi = τ(Li), and for i ∈ L r L̂,
let κi = 1. Let L = 〈L,≤L〉, where ≤L is the ordering on L induced by
the ordering on L in the obvious way. First, we observe that if some A ∈
bSeg(L) extending some element of L is indecomposable to the left, then
lin(~c i) · ω

∗ 4 L for some i, and so we are done. So, we can assume that L is

an ordinal. If
∑

i∈L κi ≺ ωα then we would have L ∈ ide(~b), contradicting
our assumptions. So, ωα 4

∑
i∈L κi. We note that

∑
i∈L κi =

∑
i∈L̂

κi. The

reason is the following. Let A ∈ bSeg(L) be a successor of some Li, i ∈ L;

it is also a successor of some Lj , j ∈ L̂. So, A =
∑

k∈B Lk, where B ⊆ L has
order type either ω or ω∗, and each Lk appears infinitely often in the sum.
It is then not hard to show that

∑
k∈B κk is equimorphic to

∑
k∈B∩L̂

κk. It
follows that

∑
i∈L κi =

∑
i∈L̂

κi. So, ωα 4
∑

i∈L̂
κi.

It is known that ωα is strongly indecomposable or indivisible (see [Fra00,
6.8.1]). That is, for every coloring of ωα into finitely many colors, there
is a monochromatic subset of ωα equimorphic to ωα. Therefore, there is
some ~c ∈ com(~d) such that ωα 4

∑
i∈L̂,~c i=~c

κi = τ(~c) · {i ∈ L̂ : ~c i = ~c}.

Since α is indecomposable and τ(~c) < α, we have τ(~c) + α = α. Therefore

ωα 4 {i ∈ L̂ : ~c i = ~c}, and hence lin(~c a〈α, +, +〉) = lin(~c) · ωα 4 L.

Now we use the results above to compute the invariants of linear or-
derings which are products of indecomposable ordinals or reverse inde-
composable ordinals. Note that if ωδ is an indecomposable ordinal, and
δ = ωα0 + · · · + ωαk , then

ωδ = lin(〈ωα0, +, +〉, . . . , 〈ωαk , +, +〉).

Corollary 4.7. Let ~a ∈ F.l.o. be such that lin(~a) is a product of inde-

composable ordinals and reverse ordinals. Then

T(lin(~a)) = [〈rk(~a), ε〉; {T(lin(~b)) : ~b ∈ com(~a), rk(~b) < rk(~a)}].



Equimorphism invariants for orderings 171

Proof. The proof is straightforward from the proposition above and the
definition of T(·).

Observation 4.8. Suppose that T0, . . . , Tk ∈ Tr . Let I = {lin(T ) : T ∈
Iα

T0,...,Tk
}. We note that

rk(Iα
T0,...,Tk

) = α ⇔ ∃~b ∈ F.id.α (ide(~b) ⊆ I).

We can check whether ide(~b) ⊆ I because

ide(~b) ⊆ I ⇔ ∀i ≤ k ∃~c ∈ com(~b) (T(lin(~c)) 4 Ti).

5. Open questions. In this section we mention how to extend our re-
sults to the class of σ-scattered linear orderings, and some possible directions
for future work.

Operations on Tr. The main question we leave open is whether, given a
tree with labels in On × {+,−}, we can tell if it belongs to Tr via a finite
manipulation of the symbols in the tree, using some basic operations on
ordinals. Using our results, it remains to find a procedure to check that an
ideal in Tr has a certain cofinality, the ideal being given by the minimal
elements of its complement (see Proposition 2.14).

Then comes the question of which operations on Tr can be done via a
finite manipulation of symbols. An interesting operation is the product of
linear orderings.

Another possible definition. A variant of the definition of the invariant
T(L) could be the following. Instead of using IL, we can take Imin

L , the min-
imal ideal such that L = Imin

L · τ(L). Here is a proof that such a minimal
ideal exists.

Lemma 5.1. Let L ∈ H. There exists an ideal J ⊂ Hrk(L) which is the

least one such that J · τ(L) = L.

Proof. As mentioned in the introduction, since H is a better-quasiorde-
ring, the class of ideals of H is well-quasiordered by inclusion. Let I0, . . . , Ik−1

be the set of minimal ideals I such that I · τ(L) = L. We claim that k = 1.
Suppose not, and let I = I0∩ I1. Let A ∈ I0. If τ(A) 6≺ τ(L), then A embeds
into one of the summands of I1 · τ(L) = L, and hence A ∈ I0 ∩ I1 = I.
Therefore, every A ∈ I0 r I has τ(A) ≺ τ(L). We claim that for each
A ∈ I0 r I, there exists an αA ≺ τ(L) and a set {Bi : i < αA} ⊆ I such
that A 4

∑
i∈αA

Bi. The proof is by induction on the rank of A. Since
τ(A) ≺ τ(L), A =

∑
j∈τ(A) Aj where each Aj ∈ I0 has rank smaller than A.

So, for each Aj there exists αAj
< τ(L) and a set {Bj,k : k < αAj

} ⊆ I such
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that Aj 4
∑

k∈αAj
Bj,k. Therefore

A 4

∑

j∈τ(A)

∑

k∈αj

Bj,k 4

∑

〈k,j〉∈
∑

i∈τ(A) αi

Bj,k.

Let αA =
∑

j∈τ(A) αj . Since |τ(L)| is regular, αA < τ(L).

Now, using Lemma 1.10, we infer that I0 · τ(L) 4 I · τ(L) and hence that
L = I · τ(L). This contradicts the minimality of I0 and I1.

Invariants for Galvin’s class. The same idea we used to define invariants
for S can be used to define equimorphism invariants for the class of σ-
scattered linear orderings.

Definition 5.2. We say that L is σ-scattered if it is a countable union
of scattered linear orderings.

This class was first studied by Galvin. The reason why one can define
invariants for this class as we did for the class of scattered linear orderings
is that versions of Theorems 1.1, 1.3 and 1.4 can be proved for this class.
(Each of these theorems is due either to Galvin or to Laver; see [Lav71].)
In this case, the labels of the trees should also include information about
how the linear ordering is constructed from smaller ones. In other words,
the label at the root of T(L) should include τ(L), which is now an element
of Reg± ∪ {ηα,β : 〈α, β〉 is admissible}.
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