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Extension of point-finite partitions of unity
by

Haruto Ohta (Shizuoka) and Kaori Yamazaki (Ibaraki)

Abstract. A subspace A of atopological space X issaid to be P7-embedded (P (point-
finite)-embedded) in X if every (point-finite) partition of unity o on A with |a| < -y extends
to a (point-finite) partition of unity on X. The main results are: (Theorem A) A subspace
A of X is P”(point-finite)-embedded in X iff it is P”-embedded and every countable
intersection B of cozero-sets in X with BN A = () can be separated from A by a cozero-set
in X. (Theorem B) The product A x [0, 1] is P”(point-finite)-embedded in X x [0,1] iff
A x Y is P7(point-finite)-embedded in X X Y for every compact Hausdorff space Y with
w(Y) < v iff Ais P?-embedded in X and every subset B of X obtained from zero-sets by
means of the Suslin operation, with BN A = (), can be separated from A by a cozero-set
in X. These characterizations are used to answer certain questions of Dydak. In particular,
it is shown that, assuming CH, the property of A x [0, 1] to be P”(point-finite)-embedded
in X x [0,1] is stronger than that of A being P”(point-finite)-embedded in X.

1. Introduction. By a space we mean a topological space. A partition
of unity « on a space X is called point-finite (resp. locally finite) if the
family {coz(f) : f € a} is point-finite (resp. locally finite) in X, where
coz(f) ={xz € X : f(z) # 0}. Let A be a subspace of a space X and v an
infinite cardinal. When o = {f)\} and 8 = {g,} are partitions of unity on A
and X, respectively, we say that 3 is an extension of a if f = gy| for each A.
Dydak [3] defined A to be P7(point-finite)-embedded (resp. P (locally finite)-
embedded) in X if every point-finite (resp. locally finite) partition of unity
a on A, with |a] <+, extends to a point-finite (resp. locally finite) partition
of unity on X. Extensive studies of P7(locally finite)-embedding have been
made by Dydak [3], [4] and the second author [21] and [23].
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In this paper, we consider P7(point-finite)-embeddings. In particular, we
prove Theorems A and B stated in the abstract and apply them to answer
Dydak’s questions concerning P7(point-finite)-embeddings stated below.

Recall from [3| that A is P7-embedded in X if every partition of unity
a on A with |a] <~ extends to a partition of unity on X (see [2], [19] for
the original definition of P7-embedding). Recall from [18] that A is M-
embedded in X if for every AR Y with w(Y) < ~, every continuous map
from A to Y extends continuously over X. It is known (see [3]) that these
extension properties are related as follows, where A — B means that every
A-embedded subspace is B-embedded:

M7" — P7(point-finite) — P7 & P7(locally finite).

Przymusiniski-Wage [15] showed that the arrow (x) cannot be reversed
by giving an example of a collectionwise normal space Z having a closed
subspace which is not P“(locally finite)-embedded, and Dydak [3] showed
that the implication “P7(locally finite) — P7(point-finite)” is not true in
general (see also [24]). In Section 3, we give an example of a subspace which
is P7(point-finite)-embedded for every v but not M“-embedded (Example
3.4), and prove that every closed subspace of the space Z of Przymusiriski—
Wage mentioned above is M7-embedded for every v (Example 3.8). These
results answer Dydak’s questions [3, Problems 12.10 and 12.11] negatively.
Moreover, Dydak [3, Problem 13.6] asked: If A is P7(point-finite)-embedded
in X, is then A x [0,1] P7(point-finite)-embedded in X x [0, 1]7 It is known
that the answers to the similar questions for P7-; M7- and P7(locally finite)-
embeddings are all positive (see Alo-Sennott 1], Sennott [18] and Yamazaki
[21], respectively). As an application of Theorem B, we show that the an-
swer is negative for P7(point-finite)-embeddings under the assumption of
the continuum hypothesis (Examples 3.5 and 3.7).

For a set A, |A| denotes the cardinality of A. As usual, a cardinal is an
initial ordinal and an ordinal is identified with the set of smaller ordinals.
Let w denote the first infinite cardinal and wq the first uncountable cardinal.
Our terminology and notation follow [5] and [13].

2. P7(point-finite)-embeddings and products. A zero-set in a
space X is a set of the form f~1(0) for some real-valued continuous func-
tion f on X and a cozero-set is the complement of a zero-set. For a space X,
let Z(X) (resp. Coz(X)) denote the family of all zero-sets (resp. cozero-sets)
in X. Aset AC X is called a Suslin-Z-set in X if there exists a family
{Zy 10 € ““w} C Z(X) such that A = J,cuy, Ny<w Ztjn, Where “w denotes
the set of all maps from a to w and <“w = |J,,_, "w (see [16]). All Baire sets,
i.e., members of the smallest o-algebra including Z(X), are Suslin-Z-sets.
As usual, we call a Suslin-Z-set and a Baire set in a metric space an analytic
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set and a Borel set, respectively. Now, we consider the following conditions
on a subspace A of a space X:

(b1) For every Suslin-Z-set B in X with BN A = (), there exists U €
Coz(X) such that BC U and UN A = 0.

(b2) For every Baire set B in X with BN A = (), there exists U € Coz(X)
such that BC U and UN A = 0.

(b3) For every countable family {G, : n < w} C Coz(X) with (1, ., Gr
N A = 0, there exists U € Coz(X) such that (,_,Gn C U and
UNnA=0.

Evidently, (b1) implies (b2) and (b2) implies (b3) (see Remark 2.8 below).
Now, we prove the theorems announced in the abstract.

n<w

THEOREM 2.1. Let A be a subspace of a space X and ~ an infinite car-
dinal. Then the following are equivalent:

(1) A is P7(point-finite)-embedded in X,
(2) A is P7-embedded in X and P“(point-finite)-embedded in X,
(3) A is P7-embedded in X and satisfies (b3) in X.

Proof. (1)=-(2): Obvious. (2)=-(3): To prove that A satisfies (b3) in X,
take a countable family {G), : n < w} C Coz(X) with ", G, NA =10. We
may assume that G, 11 C G, for each n < w and Gy = X. Take continuous
functions f, : X — [0,1/2"], n < w, with G,, = coz(f,), and define f =
Y n<w fn- Note that f(x) > 0 for all z € X. For each n < w, define a function
fr: A—[0,1] by fi(z) = fu(z)/f(z) for x € A. Then {f} :n < w} is a
point-finite partition of unity on A. Since A is P“(point-finite)-embedded
in X, there exists a point-finite partition of unity {g, : n < w} on X such
that gn,|a = f for each n < w. Let

U= U {z € X :gn(2)- f(z) # ful2)}.
n<w

Then U € Coz(X), (<, Gn € U since {g, : n < w} is point-finite, and
U N A = (. Hence, A satisfies (b3) in X.

(3)=(1): Let @ = {f\ : A € A} be a point-finite partition of unity on
A with |A] < ~. Since A is P7-embedded in X, o extends to a partition of
unity = {gr: A € A} on X. Let B = {z € X : § is not point-finite at x}.
We show that B is the countable intersection of cozero-sets in X. For each
n < w and each z € X, define

kn(x) = max{Zg,\(x) 10 C Ao < n}
A€d

Since [ is a partition of unity, the functions k, : X — [0,1], n < w, are
continuous, and for each z € X, {\ € A : g\(z) > 0} < n if and only if
ky(xz) = 1. This implies that X \ B = {J,.., k,'(1), and hence, B is the
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intersection of countably many cozero-sets in X. Since BN A = () and A
satisfies (b3) in X, we can find a continuous function h : X — [0, 1] such
that B C coz(h) and coz(h) N A = ). For each X\ € A, define a function g}
on X by g} (z) = max{gx(x) — h(x),0} for x € X. Then {coz(g}) : A € A} is
point-finite in X, because if h(x) = 0, then g}(x) = gx(x) and = € B; and if
h(z) > 0, then only finitely many g)’s exceed h at x since ), , ga(z) = 1.
Since gi(x) < ga(x) for each A € A and each z € X, it follows from [4,
Corollary 2.6] that the function ) ,., g} is continuous. Fix an arbitrary
1 € A and define

9, (z) = g,(z) +1— Zgﬁ(z) for x € X.
A€A
Finally, putting g}* = g3 for each A € A\ {1}, we obtain a point-finite parti-
tion of unity {g}* : A € A} on X extending «. Hence, A is P7(point-finite)-
embedded in X. =

We turn to considering the problem when A x Y is P7Y(point-finite)-
embedded in X x Y for all (or certain) compact Hausdorff spaces Y. We
need the following result due to Alo and Sennott [1] as a lemma.

LEMMA 2.2 (Alo-Sennott). Let A be a PY-embedded subspace of a space
X, where v is an infinite cardinal. Then A XY is P7-embedded in X xY
for every compact Hausdorff space Y with w(Y) < ~.

Since the countable union of cozero-sets is a cozero-set, we have the
following corollary from Theorem 2.1 and Lemma 2.2.

COROLLARY 2.3. Let A be a P7(point-finite)-embedded subspace of a
space X, where v is an infinite cardinal. Then A XY is P?(point-finite)-
embedded in X XY for every countable, compact metric space Y .

The next lemma is well known, but we can find no good reference.

LEMMA 2.4 (folklore). Let X and Y be spaces and pry : X x Y — X
the projection.

(1) If Y is separable, then pry carries cozero-sets to cozero-sets.

(2) If Y is compact, then pry carries cozero-sets to cozero-sets and car-
ries zero-sets to zero-sets.

(3) If Y is compact, then pry carries Suslin-Z-sets to Suslin Z-sets.

Proof. (1) Let D be a countable dense set in Y. Then, for every cozero-set
Gin X xY, pryx[G] = Uyep{z € X : (2,y) € G} € Coz(X).

(2) This follows from the fact that if Y is compact, then for every real-
valued continuous function A on X x Y, the functions f and g on X defined
by f(x) = sup{h(z,y) : y € Y} and g(z) = inf{h(z,y) : y € Y} for x € X
are continuous (see [6, Lemma 1.1]).
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(3) This is a consequence of (2) since we can assume that Z,,, C Zy,
whenever m < n in the definition of a Suslin-Z-set. m

The next lemma is due to the referee’s suggestion.

LEMMA 2.5. For every Suslin-Z-set B in a space X, there exists a con-
tinuous map f: X — Q, where Q is the Hilbert cube, such that B = f~1[9]
for some analytic set S in Q.

Proof. This is a consequence of the following observation: For any col-
lection of countably many zero-sets Z, = f,1(0), n < w, in X, consider the

diagonal map f = Ao fn : X — Q. Then each Z,, is the inverse image of
a closed set in ). =

Now, combining Lemma 2.5 with Theorem 2.1, Lemmas 2.2 and 2.4, we
have the following theorem.

THEOREM 2.6. Let A be a subspace of a space X and -~y an infinite car-
dinal. Then the following are equivalent:

(1) AXY is P (point-finite)-embedded in X XY for every compact Haus-
dorff space Y with w(Y') < ~,

(2) A x[0,1] is PY(point-finite)-embedded in X x [0, 1],

(3) A XY is PV(point-finite)-embedded in X XY for some uncountable,
compact metric space 'Y,

(4) A is P7-embedded in X and satisfies (by) in X.

Proof. (1)=(2)=(3): Obvious. (3)=-(4): Assume that AxY is P7(point-
finite)-embedded in X x Y for some uncountable, compact metric space Y.
As every P7(point-finite)-embedded subspace is P7-embedded, it suffices to
show that A satisfies (b1) in X. Let B be a Suslin-Z-set in X with BN A = ().
Then, by Lemma 2.5, there exists a continuous map f : X — @ such that
B = f~1[9] for some analytic set S in Q. It is known that S is the projection
of a Gs-set G in @ x K, where K is the Cantor set (see [11]). Since K can be
embedded in Y, we regard G as a Gs-set in Q x Y. Put H = (f xidy)~![G],
where idy is the identity of Y. Then H is the intersection of countably
many cozero-sets in X x Y and B = pry[H]. Since A x Y satisfies (b3) in
X xY by Theorem 2.1, there exists U € Coz(X x Y') such that H C U and
UN(AxY)=0. Finally, put V = pry[U]. Then V € Coz(X) by Lemma
2.4(2), BCV and VN A = (. Hence, A satisfies (b) in X.

(4)=(1): Let Y be a compact Hausdorff space with w(Y) < ~. By The-
orem 2.1 and Lemma 2.2, it suffices to show that A x Y satisfies (b3) in
X x Y. Let B be the intersection of countably many cozero-sets in X x Y
with BN (A xY) = (. Then it follows from Lemma 2.4(3) that pry[B] is a
Suslin-Z-set in X with BN A = (). Since A satisfies (b1) in X, there exists
U € Coz(X) such that pry[B] CU and UN A = (. Putting V =U x Y,
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we obtain V' € Coz(X x Y') such that B C V and VN (A xY) = (). Hence,
A x Y satisfies (b3) in X X Y. m

The reader might ask if “compact metric” can be replaced by “compact
Hausdorff” in condition (3) of Theorem 2.6. In Remark 3.6 below, we show
that metrizability of Y is essential in this condition.

The following corollary can be proved similarly to (3)=-(4) in Theo-
rem 2.6 if we use Lemma 2.4(1) and the fact that every analytic set in
(@ is the projection of a zero-set in () x P, where PP is the space of irrational
numbers (see [11]).

COROLLARY 2.7. Let A be a P7-embedded closed subspace of a space X,
where v is an infinite cardinal, and assume that either X X P is normal or
(X \ A) x P is Lindelof. Then A xY is PY(point-finite)-embedded in X x Y
for every compact Hausdorff space Y with w(Y) < 7.

In the remaining part of this section, we consider the relationship between
conditions (b;), i = 1,2, 3, and the following conditions, from the literature,
on a subspace A of a space X.

(ay) For every y-separable continuous pseudometric g on X, there exists
FeZ(X)suchthat ACF C{z e X:(3ye A)(o(x,y) =0)}.
(¢) For every B € Z(X) with BN A = (), there exists U € Coz(X) such
that BC U and UN A = 0.

Here, a pseudometric d on a space X is called y-separable if the weight of the
pseudometric space (X, d) is not greater than ~. Sennott [18] proved that A
is M7-embedded in X if and only if A is P7-embedded in X and satisfies (a-)
in X. On the other hand, it is known (see [8, Theorem 1.18|) that A satisfies
(¢) in X if every real-valued continuous function on A extends continuously
over X, or equivalently, A is P“-embedded in X (see 7] and [9]). Obviously,
(bg) implies (c).

PROPOSITION 2.8. (a) implies (by).

Proof. Assume that a subspace A of a space X satisfies (a,,) in X. Let B
be a Suslin-Z-set in X with BN A = (). Then, by Lemma 2.5, there exists a
continuous map f from X to the Hilbert cube @ such that B = f~1[f[B]].
Let d be the metric on @, and define o(x,y) = d(f(x), f(y)) for z,y € X.
Then p is an w-separable continuous pseudometric on X such that {z € X :
(y € A)(o(z,y) = 0)} N B = (. Hence, by (a,), we can find U € Coz(X)
suchthat BCUand UNA=0.u

REMARK 2.9. Summing up the above observations, we have the impli-
cations

(aw) = (b1) = (b2) = (b3) = (¢)
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In the next section, we give examples showing that (b1) # (a,) and (c¢) %
(b3), and show that (b3) # (b2) and (b2) 7 (b1) assuming the continuum
hypothesis.

3. Examples. As stated in the introduction, we now apply Theorems
2.1 and 2.6 to answer Dydak’s questions [3, Problems 12.10, 12.11 and 13.6].
Throughout this section, R denotes the set of real numbers endowed with
the Euclidean topology 7. When A C X C R, X4 denotes the space with
the underlying set X and with the topology {UUK : U € 7x, K C X \ A},
where 7x is the subspace topology on X induced from 7. It is known that
X 4 is a paracompact Hausdorff space (see [5, Example 5.1.22]). We begin by
determining when the subspace A satisfies (b;), 7 = 1,2,3, in X4 in terms of
subsets of R.

LEMMA 3.1. Let ACX CR and S C X. Then:

(1) S is a cozero-set in X 4 if and only if there exist an open set U in R
and an Fy-set F' in R such that SNACUNX CS, SCF and
FNA=SnA.

(2) If S is a Baire set in X o, then there exists a Borel set B in R such
that SC B and BNA=SnNA.

(3) If S is a Suslin-Z-set in X 4, then there exists an analytic set B in
R such that S C B and BNA=S5nNA.

Proof. (1) First, observe that (i) a set S C X is open in X4 if and only
if there exists an open set U in R with SN A CUNX C S, and (ii) a set
S C X is closed in X4 if and only if there exists a closed set F' in R such
that S C F and SN A= FnN A. Now, (1) follows from (i) and (ii) since, by
the normality of X4, S € Coz(X,) if and only if S is an open Fy-set in X 4.

(2) Let S be the family of all sets S C X such that there exist Borel sets
B and B'in Rsuch that SNACBNXCS,SCB and BnNA=SnA.
Then S is a o-algebra of subsets of X, and Coz(X4) C S by (1). Hence, all
Baire sets in X4 belong to S, from which (2) can be deduced.

(3) If S is a Suslin-Z-set in X4, then there exists {Z, : 0 € “Yw} C
Z(Xa) such that S = J;cwy, ey Zin- Define B = (J;coy, Npew SR Zijn-
Then B is an analytic set in R with S C B. Since clg Z, N A = Z, N A for
each 0 € <“w, BNA=SNA. »

PROPOSITION 3.2. Let A C X CR. Then:

(1) A satisfies (b1) in X4 if and only if for every analytic set B in R
with BN A =0, there exists an F,-set F' in R such that BN X C F
and FNA=0.

(2) A satisfies (ba) in X 4 if and only if for every Borel set B in R with
BN A=0, there exists an Fy-set F' in R such that BN X C F and
FnA=0.
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(3) A satisfies (bs) in X 4 if and only if for every countable family {F,, :
n < w} of Fy-sets in R such that (), , Fn VA =10 and F, N A is
open in A for each n < w, there exists an Fy-set F in R such that

Mphew FnNX CFand FNA=1.

Proof. (1) Assume that A satisfies (b1) in X4 and let B be an analytic
set in R with BN A = (). Since the topology of R4 is finer than that of R, B
is a Suslin-Z-set in R4, and hence, BN X is also a Suslin-Z-set in X 4. Thus,
it follows from (b;) that there exists U € Coz(X4) such that BNX C U and
UNA = (). By Lemma 3.1(1), there exists an Fj-set F' in R such that U C F
and FNA=UNA. Then BNX C F and F N A = (). Conversely, assume
that A satisfies the latter condition in (1) and let C be a Suslin-Z-set in X 4
with C N A = (). Then, by Lemma 3.1(3), there exists an analytic set H in
R such that C € H and H N A = (). By the assumption, we can find an
F,-set F in R such that HNX C Fand FNA = 0. Since FNX € Coz(X4)
by Lemma 3.1(1), A satisfies (b;) in X 4. (2) can be proved similarly to (1)
using Lemma 3.1(2) instead of Lemma 3.1(3).

(3) Assume that A satisfies (b3) in X4 and let {F}, : n < w} be a countable
family of Fi,-sets in R such that (., F,NA = () and F,,N A is open in A for
each n < w. For each n < w, since X 4 is normal, we can find E,, € Coz(X4)
such that F;,, N X C E,, and E,, N A = F, N A. Since (., B, NA =10, it
follows from (b3) that there exists U € Coz(X4) such that (), _ E, € U
and U N A = (. By Lemma 3.1(1), there exists an F,-set F' in R such that
UCFand FNA=UnNA. Then

(1F.NXC()E.CUCF

n<w n<w
and FNA = (). Conversely, assume that A satisfies the latter condition in (3),
and take {Gy, : n < w} C Coz(X4) such that (N, ., Gn N A = (). For each
n < w, by Lemma 3.1(1), there exists an F,-set H,, in R such that G,, C H,,
and H,NA = G, NA. Since (., H,NA= () and H, N A is open in A for
each n < w, it follows from our assumption that there exists an F,-set H in
R such that (), ., H,NX C Hand HNA={. Then HNX € Coz(X4) by
Lemma 3.1(1), N,.,Gn € HN X and (H N X) N A = (). Hence, A satisfies
(b)) in X4. m

n<w

Now, we are in a position to construct examples. A subspace A of a space
X is said to be P-embedded in X if it is P7-embedded in X for every ~. M-
and P(point-finite)-embeddings are defined similarly. If A C X C R, then
the closed subspace A of X4 is always P-embedded in X4, since X4 is
paracompact. The last statement of the following example was proved by
the second author in [24]; however, now it is an immediate consequence of
Proposition 3.2(3) and Theorem 2.1.
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ExaMPLE 3.3. Let Q be the set of rational numbers. Then Q fails to
satisfy (b3) in Rg. Hence, Q is not P¥(point-finite)-embedded in Rg.

Example 3.3 shows that (¢) # (b3) in general. Recall from [5, 5.5.4] that
there exists a set A C R, called a Bernstein set, such that every compact set
in R contained in either A or R\ A is countable.

EXAMPLE 3.4. Let A be a Bernstein set in R. Then A satisfies (b1) in
Ry but fails to satisfy (a), in R4. Hence, A XY is P(point-finite)-embedded
in Ry XY for every compact Hausdorff space Y, but A is not M*-embedded
n Ry.

Proof. Let B be an analytic set in R with BN A = (). Then B must be
countable, since every uncountable analytic set in R contains a Cantor set
(see [10, Theorem 94|). By Proposition 3.2(1), this implies that A satisfies
(b1) in Ry4. On the other hand, the Euclidean metric d on R is an w-separable
continuous pseudometric on Ry and {z € Ry : (Jy € A)(d(z,y) =0)} = A.
Since A is not a zero-set in R4, A does not satisfy (a), in Ry (see also [18,
Corollary 5 to Theorem 1]). =

EXAMPLE 3.5. Under CH, there exist sets A and X with A C X C
R such that A satisfies (be) in X4 but fails to satisfy (by) in X 4. Hence,
A is P(point-finite)-embedded in X 4, but A x [0,1] is not P¥(point-finite)-
embedded in X x [0,1].

Proof. By [10, Corollary to Lemma 39.4|, there exists an analytic set B
in R such that R\ B is not analytic. Put A = R\ B and let B be the family
of all Borel sets in R containing A. Since |B| = 2¥, we can enumerate B as
{Ba :a <wi} by CH. Then (5., Bg N B is uncountable for each o < wy,
because A is not a Borel set. Thus, we can choose inductively a point

To € ( m BgﬁB)\{a:ﬁ:ﬁ<oz}
B<a
for each o < wy. Put X = AU{x, : @ < w;}. Then, since X \ B, is countable
for each o < w, it follows from Proposition 3.2(2) that A satisfies (b2) in X 4.
On the other hand, since B is an analytic set in R and B, N B # () for each
a < wi, Proposition 3.2(1) shows that A does not satisfy (b;) in X4. m

REMARK 3.6. Let X4 be the space defined in Example 3.5, and let
{2 = w1 + 1 with the usual order topology. Now, by proving that A x {2
is P(point-finite)-embedded in X4 x 2, we show that the assumption of
metrizability of Y is essential in condition (3) of Theorem 2.6. By Lemma
2.2, Ax (2 is P-embedded in X 4 X {2. Thus, by Theorem 2.1, it suffices to show
that A x {2 satisfies (b3) in X 4 x §2. Take a countable family {G,, : n < w} C
Coz(Xax2) with (", , GnN(Ax2)=0.Put A, ={z € A: (z,w1) € Gpn}
for each n < w. Since each A, is separable and each G,, is an F,-set, we can
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find @ < wy such that G, N (A4, x (2\ «)) = () for each n < w. Here, we may
assume that « is an isolated ordinal. For each n < w, put

H, :erA[Gnﬂ(XA x (2\ a))].

Then H,, € Coz(X4) by Lemma 2.4(2), and (., H.NA =0 as H,NA, =0
for each n < w. Since A satisfies (b3) in X 4, there exists U € Coz(X4) such
that (.., Hn €U and U N A = (). On the other hand, since a is countable
compact metrizable, it follows from Corollary 2.3 and Theorem 2.1 that
there exists V' € Coz(X4 x ) such that (), _ Gn N (X4 x a) €V and
VN (A x «) = 0. Finally, putting W = (U x (£2\ «)) UV, we obtain a
cozero-set W in X4 x {2 such that (), G, € W and W N (A x 2) = ().
Hence, A x (2 satisfies (b3) in X4 x (2.

EXAMPLE 3.7. Under CH, there exist sets A and X with A C X CR
such that A satisfies (bs) in X4 but fails to satisfy (b2) in X4.

Proof. Following [10], Zg denotes the family of all sets which can be
written as the union of countably many Gs-sets in R, and TI} denotes the
family of all sets which can be written as the intersection of countably many
members of X9. By [10, Corollary to Lemma 39.1] there exists a Borel set
A in R such that A ¢ TI9. Now, let B be the family of all members of
19 containing A. Since |B| = 2%, we can enumerate B as {B, : a < w;}
by CH. Then (5, Bg \ 4 is uncountable for each av < w1, because A ¢ 9.
Hence, we can define a set X = AU {z, : @ < w;} similarly to the proof
of Example 3.5. Since X \ B, is countable for each o < wy, it follows from
Proposition 3.2(3) that A satisfies (b3) in X 4. On the other hand, R\ A is
a Borel set in R, but (R\ A) N B, # 0 for each o < wy. Hence, A does not
satisfy (b2) in X 4 by Proposition 3.2(2). =

A similar example to Examples 3.5 and 3.7 was constructed by Michael
[12] for a countable non-Gs-set A to show that the product of a Lindeldf
space X 4 with P is not necessarily normal under CH.

In [15, Example 3|, Przymusinski and Wage constructed an example of
a collectionwise normal space Z having a closed subspace K which is not
P“(locally finite)-embedded in Z. Finally, we show that an M -embedded
subspace is not necessarily P“(locally finite)-embedded by proving the fol-
lowing;:

ExXAaMPLE 3.8. Fvery closed subspace A of the collectionwise normal
space Z of Przymusinski—Wage is M -embedded in Z.

Proof. The space Z is constructed from a subspace W of Rudin’s Dowker
space of [17]. All we need to know about Z is that every Gs-set in W is open
and that Z is the union of W and another space Y, where W is a Gs-set in Z
and Y is an open (in Z) set which is the topological sum of subspaces of W.
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From these facts, if a set G is the union of Gg-sets in Z, then both GN'W
and GNY are Gs-sets in Z, and therefore, G is a Gs-set in Z. Now, let A be
a closed subspace of Z. Since Z is collectionwise normal, it follows from [19,
Theorem 5.2| that A is P-embedded in Z. To show that A satisfies (a,) in Z
for every infinite cardinal ~y, let o be a «-separable continuous pseudometric
on Z. Then the set L = {x € Z : (Jy € A)(o(x,y) = 0)} is a Gs-set in
Z since it is the union of Gs-sets in Z. Thus, by the normality of Z, there
exists a zero-set I' in Z such that A C F' C L. Hence, A is M-embedded
inZ. n

4. Another application and questions. By AR we mean an abso-
lute retract for the class of metrizable spaces. In [14] Morita proved that
a subspace A of a space X is P7-embedded in X if and only if for every
complete AR Y with w(Y') < ~, every continuous map from A to Y extends
continuously over X. As another application of Theorem 2.1, we prove the
following theorem by a similar argument to the proofs of Morita’s theorems
in [14] (see also |9, Theorems 2.8 and 2.14]). We now call a metrizable space
X o-complete if there exist a metric d on X, which induces the topology of
X, and a countable cover {X,, : n < w} of X such that each X, is a complete
subspace of the metric space (X, d).

THEOREM 4.1. Let A be a subspace of a space X and ~ an infinite car-
dinal. Then the following are equivalent:

(1) A is P7(point-finite)-embedded in X,

(2) for every o-complete AR'Y with w(Y') < v, every continuous map
from A toY extends continuously over X,

(3) for every Banach space B and every convexr Fy-set Y in B with
w(Y) < 7, every continuous map from A toY extends to a con-
tinuous map from X toY.

Proof. (1)=>(2): Let f: A — Y be a continuous map to a o-complete AR
Y with w(Y") <. We consider Y a metric space having a countable cover by
complete subspaces. Then, by Kuratowski-Wojdystawski’s theorem (see [9]),
there exist a Banach space B and an isometrical embedding ¢ : Y — B such
that w(Z) <+, where Z is the convex hull of i[Y]. We identify Y and i[Y].
Since A is P7-embedded in X and w(clp Z) <7, f extends to a continuous
map ¢ : X — B with g[X] C clg Z by Morita’s theorem mentioned above.
Since Y is an F,-set in B, g~![Y] is a countable union of zero-sets in X such
that A C g~1[Y]. Since A is P?(point-finite)-embedded in X, it follows from
Theorem 2.1 that there exists a continuous function ¢ : X — [0, 1] such that
the set F' = ¢~ 1(0) satisfies A C F' C g~ 1[Y]. Consider the diagonal map
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h=gAy:X — Bx]|0,1]

and let p, ¢ denote the projections of B x [0, 1] onto B and [0, 1], respectively.
Then h[F] = h[X] N ¢ 1(0) is closed in A[X] and p[h[F]] = g[F] C Y.
Since Y is an AR, the restriction p|h[F] can be extended to a continuous
map p* : h[X] — Y. Then p* oh : X — Y is a continuous extension of
(poh)a=gla=1T.

The implication (2)=-(3) follows from the fact that every convex Fi-set
in a Banach space is a o-complete AR. For a set S, let £1(S) be the Banach
space of all real-valued functions v on S such that [[v|| = > g[v(s)| < oo,
and Ag the subspace of ¢1(5) consisting of all v € ¢1(S) such that v(s) =0
for all but finitely many s € S, v > 0, and ) _gv(s) = 1. Dydak [3] proved
that A is P7(point-finite)-embedded in X if (and only if) for every set S
with |S| <+, every continuous map from A to Ag extends to a continuous
map from X to Ag. Since Ag is a convex Fy-set in £1(S), we have the final
implication (3)=(1). =

REMARK 4.2. By Hausdorff’s extension theorem, a metrizable space is
o-complete if and only if it has a countable cover by closed completely metriz-
able subspaces. The term “o-complete” was used by A. H. Stone in |20,
Lemma 4] without an explicit definition.

We conclude the paper with some open questions.

QUESTION 4.3. Does there exist an example in ZFC of a P-embedded

subspace which satisfies (bs) but not (be)? Does there exist an example in
ZFC of a P-embedded subspace which satisfies (b2) but not (by)?

The next question was first asked by the second author in [22, Prob-
lem 2.3.4|, which asks if there is a P7(locally finite)-embedding analogue of
Theorem 2.1.

QUESTION 4.4. Let A be a subspace of a space X and v an uncount-
able cardinal. Is then A P7(locally finite)-embedded in X if A is P7- and
P¥(locally finite)-embedded in X ¢
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