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Extension of point-�nite partitions of unitybyHaruto Ohta (Shizuoka) and Kaori Yamazaki (Ibaraki)
Abstra
t. Asubspa
eA of a topologi
al spa
eX is said to beP γ-embedded (P γ(point-�nite)-embedded) in X if every (point-�nite) partition of unity α on A with |α| ≤ γ extendsto a (point-�nite) partition of unity on X. The main results are: (Theorem A) A subspa
e

A of X is P γ(point-�nite)-embedded in X i� it is P γ-embedded and every 
ountableinterse
tion B of 
ozero-sets in X with B∩A = ∅ 
an be separated from A by a 
ozero-setin X. (Theorem B) The produ
t A × [0, 1] is P γ(point-�nite)-embedded in X × [0, 1] i�
A × Y is P γ(point-�nite)-embedded in X × Y for every 
ompa
t Hausdor� spa
e Y with
w(Y ) ≤ γ i� A is P γ-embedded in X and every subset B of X obtained from zero-sets bymeans of the Suslin operation, with B ∩ A = ∅, 
an be separated from A by a 
ozero-setin X. These 
hara
terizations are used to answer 
ertain questions of Dydak. In parti
ular,it is shown that, assuming CH, the property of A× [0, 1] to be P γ(point-�nite)-embeddedin X × [0, 1] is stronger than that of A being P γ(point-�nite)-embedded in X.

1. Introdu
tion. By a spa
e we mean a topologi
al spa
e. A partitionof unity α on a spa
e X is 
alled point-�nite (resp. lo
ally �nite) if thefamily {coz(f) : f ∈ α} is point-�nite (resp. lo
ally �nite) in X, where
coz(f) = {x ∈ X : f(x) 6= 0}. Let A be a subspa
e of a spa
e X and γ anin�nite 
ardinal. When α = {fλ} and β = {gλ} are partitions of unity on Aand X, respe
tively, we say that β is an extension of α if fλ = gλ|A for ea
h λ.Dydak [3℄ de�ned A to be P γ(point-�nite)-embedded (resp. P γ(lo
ally �nite)-embedded) in X if every point-�nite (resp. lo
ally �nite) partition of unity
α on A, with |α| ≤ γ, extends to a point-�nite (resp. lo
ally �nite) partitionof unity on X. Extensive studies of P γ(lo
ally �nite)-embedding have beenmade by Dydak [3℄, [4℄ and the se
ond author [21℄ and [23℄.2000 Mathemati
s Subje
t Classi�
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188 H. Ohta and K. YamazakiIn this paper, we 
onsider P γ(point-�nite)-embeddings. In parti
ular, weprove Theorems A and B stated in the abstra
t and apply them to answerDydak's questions 
on
erning P γ(point-�nite)-embeddings stated below.Re
all from [3℄ that A is P γ-embedded in X if every partition of unity
α on A with |α| ≤ γ extends to a partition of unity on X (see [2℄, [19℄ forthe original de�nition of P γ-embedding). Re
all from [18℄ that A is Mγ-embedded in X if for every AR Y with w(Y ) ≤ γ, every 
ontinuous mapfrom A to Y extends 
ontinuously over X. It is known (see [3℄) that theseextension properties are related as follows, where A → B means that every
A-embedded subspa
e is B-embedded:

Mγ → P γ(point-�nite)→ P γ (∗)
←− P γ(lo
ally �nite).Przymusi«ski�Wage [15℄ showed that the arrow (∗) 
annot be reversedby giving an example of a 
olle
tionwise normal spa
e Z having a 
losedsubspa
e whi
h is not Pω(lo
ally �nite)-embedded, and Dydak [3℄ showedthat the impli
ation �P γ(lo
ally �nite) → P γ(point-�nite)� is not true ingeneral (see also [24℄). In Se
tion 3, we give an example of a subspa
e whi
his P γ(point-�nite)-embedded for every γ but not Mω-embedded (Example3.4), and prove that every 
losed subspa
e of the spa
e Z of Przymusi«ski�Wage mentioned above is Mγ-embedded for every γ (Example 3.8). Theseresults answer Dydak's questions [3, Problems 12.10 and 12.11℄ negatively.Moreover, Dydak [3, Problem 13.6℄ asked: If A is P γ(point-�nite)-embeddedin X, is then A× [0, 1] P γ(point-�nite)-embedded in X × [0, 1]? It is knownthat the answers to the similar questions for P γ-, Mγ- and P γ(lo
ally �nite)-embeddings are all positive (see Alò�Sennott [1℄, Sennott [18℄ and Yamazaki[21℄, respe
tively). As an appli
ation of Theorem B, we show that the an-swer is negative for P γ(point-�nite)-embeddings under the assumption ofthe 
ontinuum hypothesis (Examples 3.5 and 3.7).For a set A, |A| denotes the 
ardinality of A. As usual, a 
ardinal is aninitial ordinal and an ordinal is identi�ed with the set of smaller ordinals.Let ω denote the �rst in�nite 
ardinal and ω1 the �rst un
ountable 
ardinal.Our terminology and notation follow [5℄ and [13℄.2. P γ(point-�nite)-embeddings and produ
ts. A zero-set in aspa
e X is a set of the form f−1(0) for some real-valued 
ontinuous fun
-tion f on X and a 
ozero-set is the 
omplement of a zero-set. For a spa
e X,let Z(X) (resp. Coz(X)) denote the family of all zero-sets (resp. 
ozero-sets)in X. A set A ⊆ X is 
alled a Suslin-Z-set in X if there exists a family

{Zσ : σ ∈ <ωω} ⊆ Z(X) su
h that A =
⋃

t∈ωω

⋂

n<ω Zt|n, where αω denotesthe set of all maps from α to ω and <ωω =
⋃

n<ω
nω (see [16℄). All Baire sets,i.e., members of the smallest σ-algebra in
luding Z(X), are Suslin-Z-sets.As usual, we 
all a Suslin-Z-set and a Baire set in a metri
 spa
e an analyti




Extension of partitions of unity 189set and a Borel set, respe
tively. Now, we 
onsider the following 
onditionson a subspa
e A of a spa
e X:
(b1) For every Suslin-Z-set B in X with B ∩ A = ∅, there exists U ∈

Coz(X) su
h that B ⊆ U and U ∩A = ∅.
(b2) For every Baire set B in X with B∩A = ∅, there exists U ∈ Coz(X)su
h that B ⊆ U and U ∩A = ∅.
(b3) For every 
ountable family {Gn : n < ω} ⊆ Coz(X) with ⋂

n<ω Gn

∩ A = ∅, there exists U ∈ Coz(X) su
h that ⋂

n<ω Gn ⊆ U and
U ∩A = ∅.Evidently, (b1) implies (b2) and (b2) implies (b3) (see Remark 2.8 below).Now, we prove the theorems announ
ed in the abstra
t.Theorem 2.1. Let A be a subspa
e of a spa
e X and γ an in�nite 
ar-dinal. Then the following are equivalent :(1) A is P γ(point-�nite)-embedded in X,(2) A is P γ-embedded in X and Pω(point-�nite)-embedded in X,(3) A is P γ-embedded in X and satis�es (b3) in X.Proof. (1)⇒(2): Obvious. (2)⇒(3): To prove that A satis�es (b3) in X,take a 
ountable family {Gn : n < ω} ⊆ Coz(X) with ⋂

n<ω Gn ∩A = ∅. Wemay assume that Gn+1 ⊆ Gn for ea
h n < ω and G0 = X. Take 
ontinuousfun
tions fn : X → [0, 1/2n], n < ω, with Gn = coz(fn), and de�ne f =
∑

n<ω fn. Note that f(x) > 0 for all x ∈ X. For ea
h n < ω, de�ne a fun
tion
f∗

n : A → [0, 1] by f∗
n(x) = fn(x)/f(x) for x ∈ A. Then {f∗

n : n < ω} is apoint-�nite partition of unity on A. Sin
e A is Pω(point-�nite)-embeddedin X, there exists a point-�nite partition of unity {gn : n < ω} on X su
hthat gn|A = f∗
n for ea
h n < ω. Let

U =
⋃

n<ω

{x ∈ X : gn(x) · f(x) 6= fn(x)}.Then U ∈ Coz(X), ⋂

n<ω Gn ⊆ U sin
e {gn : n < ω} is point-�nite, and
U ∩A = ∅. Hen
e, A satis�es (b3) in X.

(3)⇒(1): Let α = {fλ : λ ∈ Λ} be a point-�nite partition of unity on
A with |Λ| ≤ γ. Sin
e A is P γ-embedded in X, α extends to a partition ofunity β = {gλ : λ ∈ Λ} on X. Let B = {x ∈ X : β is not point-�nite at x}.We show that B is the 
ountable interse
tion of 
ozero-sets in X. For ea
h
n < ω and ea
h x ∈ X, de�ne

kn(x) = max
{

∑

λ∈δ

gλ(x) : δ ⊆ Λ, |δ| ≤ n
}

.Sin
e β is a partition of unity, the fun
tions kn : X → [0, 1], n < ω, are
ontinuous, and for ea
h x ∈ X, |{λ ∈ Λ : gλ(x) > 0}| ≤ n if and only if
kn(x) = 1. This implies that X \ B =

⋃

n<ω k−1
n (1), and hen
e, B is the



190 H. Ohta and K. Yamazakiinterse
tion of 
ountably many 
ozero-sets in X. Sin
e B ∩ A = ∅ and Asatis�es (b3) in X, we 
an �nd a 
ontinuous fun
tion h : X → [0, 1] su
hthat B ⊆ coz(h) and coz(h) ∩ A = ∅. For ea
h λ ∈ Λ, de�ne a fun
tion g∗λon X by g∗λ(x) = max{gλ(x)−h(x), 0} for x ∈ X. Then {coz(g∗λ) : λ ∈ Λ} ispoint-�nite in X, be
ause if h(x) = 0, then g∗λ(x) = gλ(x) and x 6∈ B; and if
h(x) > 0, then only �nitely many gλ's ex
eed h at x sin
e ∑

λ∈Λ gλ(x) = 1.Sin
e g∗λ(x) ≤ gλ(x) for ea
h λ ∈ Λ and ea
h x ∈ X, it follows from [4,Corollary 2.6℄ that the fun
tion ∑

λ∈Λ g∗λ is 
ontinuous. Fix an arbitrary
µ ∈ Λ and de�ne

g∗∗µ (x) = g∗µ(x) + 1−
∑

λ∈Λ

g∗λ(x) for x ∈ X.Finally, putting g∗∗λ = g∗λ for ea
h λ ∈ Λ\{µ}, we obtain a point-�nite parti-tion of unity {g∗∗λ : λ ∈ Λ} on X extending α. Hen
e, A is P γ(point-�nite)-embedded in X.We turn to 
onsidering the problem when A × Y is P γ(point-�nite)-embedded in X × Y for all (or 
ertain) 
ompa
t Hausdor� spa
es Y . Weneed the following result due to Alò and Sennott [1℄ as a lemma.Lemma 2.2 (Alò�Sennott). Let A be a P γ-embedded subspa
e of a spa
e
X, where γ is an in�nite 
ardinal. Then A × Y is P γ-embedded in X × Yfor every 
ompa
t Hausdor� spa
e Y with w(Y ) ≤ γ.Sin
e the 
ountable union of 
ozero-sets is a 
ozero-set, we have thefollowing 
orollary from Theorem 2.1 and Lemma 2.2.Corollary 2.3. Let A be a P γ(point-�nite)-embedded subspa
e of aspa
e X, where γ is an in�nite 
ardinal. Then A × Y is P γ(point-�nite)-embedded in X × Y for every 
ountable, 
ompa
t metri
 spa
e Y .The next lemma is well known, but we 
an �nd no good referen
e.Lemma 2.4 (folklore). Let X and Y be spa
es and prX : X × Y → Xthe proje
tion.(1) If Y is separable, then prX 
arries 
ozero-sets to 
ozero-sets.(2) If Y is 
ompa
t , then prX 
arries 
ozero-sets to 
ozero-sets and 
ar-ries zero-sets to zero-sets.(3) If Y is 
ompa
t , then prX 
arries Suslin-Z-sets to Suslin Z-sets.Proof. (1) Let D be a 
ountable dense set in Y . Then, for every 
ozero-set
G in X × Y , prX [G] =

⋃

y∈D{x ∈ X : 〈x, y〉 ∈ G} ∈ Coz(X).(2) This follows from the fa
t that if Y is 
ompa
t, then for every real-valued 
ontinuous fun
tion h on X ×Y , the fun
tions f and g on X de�nedby f(x) = sup{h(x, y) : y ∈ Y } and g(x) = inf{h(x, y) : y ∈ Y } for x ∈ Xare 
ontinuous (see [6, Lemma 1.1℄).



Extension of partitions of unity 191(3) This is a 
onsequen
e of (2) sin
e we 
an assume that Zt|n ⊆ Zt|mwhenever m < n in the de�nition of a Suslin-Z-set.The next lemma is due to the referee's suggestion.Lemma 2.5. For every Suslin-Z-set B in a spa
e X, there exists a 
on-tinuous map f : X → Q, where Q is the Hilbert 
ube, su
h that B = f−1[S]for some analyti
 set S in Q.Proof. This is a 
onsequen
e of the following observation: For any 
ol-le
tion of 
ountably many zero-sets Zn = f−1
n (0), n < ω, in X, 
onsider thediagonal map f = △n<ωfn : X → Q. Then ea
h Zn is the inverse image ofa 
losed set in Q.Now, 
ombining Lemma 2.5 with Theorem 2.1, Lemmas 2.2 and 2.4, wehave the following theorem.Theorem 2.6. Let A be a subspa
e of a spa
e X and γ an in�nite 
ar-dinal. Then the following are equivalent :(1) A×Y is P γ(point-�nite)-embedded in X×Y for every 
ompa
t Haus-dor� spa
e Y with w(Y ) ≤ γ,(2) A× [0, 1] is P γ(point-�nite)-embedded in X × [0, 1],(3) A× Y is P γ(point-�nite)-embedded in X × Y for some un
ountable,
ompa
t metri
 spa
e Y ,(4) A is P γ-embedded in X and satis�es (b1) in X.Proof. (1)⇒(2)⇒(3): Obvious. (3)⇒(4): Assume that A×Y is P γ(point-�nite)-embedded in X × Y for some un
ountable, 
ompa
t metri
 spa
e Y .As every P γ(point-�nite)-embedded subspa
e is P γ-embedded, it su�
es toshow that A satis�es (b1) in X. Let B be a Suslin-Z-set in X with B ∩A = ∅.Then, by Lemma 2.5, there exists a 
ontinuous map f : X → Q su
h that

B = f−1[S] for some analyti
 set S in Q. It is known that S is the proje
tionof a Gδ-set G in Q×K, where K is the Cantor set (see [11℄). Sin
e K 
an beembedded in Y , we regard G as a Gδ-set in Q×Y . Put H = (f × idY )−1[G],where idY is the identity of Y . Then H is the interse
tion of 
ountablymany 
ozero-sets in X × Y and B = prX [H]. Sin
e A × Y satis�es (b3) in
X × Y by Theorem 2.1, there exists U ∈ Coz(X × Y ) su
h that H ⊆ U and
U ∩ (A × Y ) = ∅. Finally, put V = prX [U ]. Then V ∈ Coz(X) by Lemma2.4(2), B ⊆ V and V ∩A = ∅. Hen
e, A satis�es (b1) in X.

(4)⇒(1): Let Y be a 
ompa
t Hausdor� spa
e with w(Y ) ≤ γ. By The-orem 2.1 and Lemma 2.2, it su�
es to show that A × Y satis�es (b3) in
X × Y . Let B be the interse
tion of 
ountably many 
ozero-sets in X × Ywith B ∩ (A× Y ) = ∅. Then it follows from Lemma 2.4(3) that prX [B] is aSuslin-Z-set in X with B ∩ A = ∅. Sin
e A satis�es (b1) in X, there exists
U ∈ Coz(X) su
h that prX [B] ⊆ U and U ∩ A = ∅. Putting V = U × Y ,



192 H. Ohta and K. Yamazakiwe obtain V ∈ Coz(X × Y ) su
h that B ⊆ V and V ∩ (A× Y ) = ∅. Hen
e,
A× Y satis�es (b3) in X × Y .The reader might ask if �
ompa
t metri
� 
an be repla
ed by �
ompa
tHausdor�� in 
ondition (3) of Theorem 2.6. In Remark 3.6 below, we showthat metrizability of Y is essential in this 
ondition.The following 
orollary 
an be proved similarly to (3)⇒(4) in Theo-rem 2.6 if we use Lemma 2.4(1) and the fa
t that every analyti
 set in
Q is the proje
tion of a zero-set in Q× P, where P is the spa
e of irrationalnumbers (see [11℄).Corollary 2.7. Let A be a P γ-embedded 
losed subspa
e of a spa
e X,where γ is an in�nite 
ardinal , and assume that either X × P is normal or
(X \A)× P is Lindelöf. Then A× Y is P γ(point-�nite)-embedded in X × Yfor every 
ompa
t Hausdor� spa
e Y with w(Y ) ≤ γ.In the remaining part of this se
tion, we 
onsider the relationship between
onditions (bi), i = 1, 2, 3, and the following 
onditions, from the literature,on a subspa
e A of a spa
e X.

(aγ) For every γ-separable 
ontinuous pseudometri
 ̺ on X, there exists
F ∈ Z(X) su
h that A ⊆ F ⊆ {x ∈ X : (∃ y ∈ A)(̺(x, y) = 0)}.

(c) For every B ∈ Z(X) with B∩A = ∅, there exists U ∈ Coz(X) su
hthat B ⊆ U and U ∩A = ∅.Here, a pseudometri
 d on a spa
e X is 
alled γ-separable if the weight of thepseudometri
 spa
e (X, d) is not greater than γ. Sennott [18℄ proved that Ais Mγ-embedded in X if and only if A is P γ-embedded in X and satis�es (aγ)in X. On the other hand, it is known (see [8, Theorem 1.18℄) that A satis�es
(c) in X if every real-valued 
ontinuous fun
tion on A extends 
ontinuouslyover X, or equivalently, A is Pω-embedded in X (see [7℄ and [9℄). Obviously,
(b3) implies (c).Proposition 2.8. (aω) implies (b1).Proof. Assume that a subspa
e A of a spa
e X satis�es (aω) in X. Let Bbe a Suslin-Z-set in X with B ∩A = ∅. Then, by Lemma 2.5, there exists a
ontinuous map f from X to the Hilbert 
ube Q su
h that B = f−1[f [B]].Let d be the metri
 on Q, and de�ne ̺(x, y) = d(f(x), f(y)) for x, y ∈ X.Then ̺ is an ω-separable 
ontinuous pseudometri
 on X su
h that {x ∈ X :
(∃y ∈ A)(̺(x, y) = 0)} ∩ B = ∅. Hen
e, by (aω), we 
an �nd U ∈ Coz(X)su
h that B ⊆ U and U ∩A = ∅.Remark 2.9. Summing up the above observations, we have the impli-
ations

(aω)⇒ (b1)⇒ (b2)⇒ (b3)⇒ (c)



Extension of partitions of unity 193In the next se
tion, we give examples showing that (b1) 6⇒ (aω) and (c) 6⇒
(b3), and show that (b3) 6⇒ (b2) and (b2) 6⇒ (b1) assuming the 
ontinuumhypothesis.3. Examples. As stated in the introdu
tion, we now apply Theorems2.1 and 2.6 to answer Dydak's questions [3, Problems 12.10, 12.11 and 13.6℄.Throughout this se
tion, R denotes the set of real numbers endowed withthe Eu
lidean topology τ . When A ⊆ X ⊆ R, XA denotes the spa
e withthe underlying set X and with the topology {U ∪K : U ∈ τX , K ⊆ X \A},where τX is the subspa
e topology on X indu
ed from τ . It is known that
XA is a para
ompa
t Hausdor� spa
e (see [5, Example 5.1.22℄). We begin bydetermining when the subspa
e A satis�es (bi), i = 1, 2, 3, in XA in terms ofsubsets of R.Lemma 3.1. Let A ⊆ X ⊆ R and S ⊆ X. Then:(1) S is a 
ozero-set in XA if and only if there exist an open set U in Rand an Fσ-set F in R su
h that S ∩ A ⊆ U ∩ X ⊆ S, S ⊆ F and

F ∩A = S ∩A.(2) If S is a Baire set in XA, then there exists a Borel set B in R su
hthat S ⊆ B and B ∩A = S ∩A.(3) If S is a Suslin-Z-set in XA, then there exists an analyti
 set B in
R su
h that S ⊆ B and B ∩A = S ∩A.Proof. (1) First, observe that (i) a set S ⊆ X is open in XA if and onlyif there exists an open set U in R with S ∩ A ⊆ U ∩X ⊆ S, and (ii) a set

S ⊆ X is 
losed in XA if and only if there exists a 
losed set F in R su
hthat S ⊆ F and S ∩A = F ∩A. Now, (1) follows from (i) and (ii) sin
e, bythe normality of XA, S ∈ Coz(XA) if and only if S is an open Fσ-set in XA.(2) Let S be the family of all sets S ⊆ X su
h that there exist Borel sets
B and B′ in R su
h that S ∩A ⊆ B ∩X ⊆ S, S ⊆ B′ and B′ ∩A = S ∩A.Then S is a σ-algebra of subsets of X, and Coz(XA) ⊆ S by (1). Hen
e, allBaire sets in XA belong to S, from whi
h (2) 
an be dedu
ed.(3) If S is a Suslin-Z-set in XA, then there exists {Zσ : σ ∈ <ωω} ⊆
Z(XA) su
h that S =

⋃

t∈ωω

⋂

n<ω Zt|n. De�ne B =
⋃

t∈ωω

⋂

n<ω clR Zt|n.Then B is an analyti
 set in R with S ⊆ B. Sin
e clR Zσ ∩ A = Zσ ∩ A forea
h σ ∈ <ωω, B ∩A = S ∩A.Proposition 3.2. Let A ⊆ X ⊆ R. Then:(1) A satis�es (b1) in XA if and only if for every analyti
 set B in Rwith B ∩A = ∅, there exists an Fσ-set F in R su
h that B ∩X ⊆ Fand F ∩A = ∅.(2) A satis�es (b2) in XA if and only if for every Borel set B in R with
B ∩ A = ∅, there exists an Fσ-set F in R su
h that B ∩X ⊆ F and
F ∩A = ∅.



194 H. Ohta and K. Yamazaki(3) A satis�es (b3) in XA if and only if for every 
ountable family {Fn :
n < ω} of Fσ-sets in R su
h that ⋂

n<ω Fn ∩ A = ∅ and Fn ∩ A isopen in A for ea
h n < ω, there exists an Fσ-set F in R su
h that
⋂

n<ω Fn ∩X ⊆ F and F ∩A = ∅.Proof. (1) Assume that A satis�es (b1) in XA and let B be an analyti
set in R with B ∩A = ∅. Sin
e the topology of RA is �ner than that of R, Bis a Suslin-Z-set in RA, and hen
e, B∩X is also a Suslin-Z-set in XA. Thus,it follows from (b1) that there exists U ∈ Coz(XA) su
h that B∩X ⊆ U and
U ∩A = ∅. By Lemma 3.1(1), there exists an Fσ-set F in R su
h that U ⊆ Fand F ∩ A = U ∩ A. Then B ∩X ⊆ F and F ∩ A = ∅. Conversely, assumethat A satis�es the latter 
ondition in (1) and let C be a Suslin-Z-set in XAwith C ∩ A = ∅. Then, by Lemma 3.1(3), there exists an analyti
 set H in
R su
h that C ⊆ H and H ∩ A = ∅. By the assumption, we 
an �nd an
Fσ-set F in R su
h that H ∩X ⊆ F and F ∩A = ∅. Sin
e F ∩X ∈ Coz(XA)by Lemma 3.1(1), A satis�es (b1) in XA. (2) 
an be proved similarly to (1)using Lemma 3.1(2) instead of Lemma 3.1(3).(3) Assume that A satis�es (b3) in XA and let {Fn : n < ω} be a 
ountablefamily of Fσ-sets in R su
h that ⋂

n<ω Fn∩A = ∅ and Fn∩A is open in A forea
h n < ω. For ea
h n < ω, sin
e XA is normal, we 
an �nd En ∈ Coz(XA)su
h that Fn ∩X ⊆ En and En ∩ A = Fn ∩ A. Sin
e ⋂

n<ω En ∩ A = ∅, itfollows from (b3) that there exists U ∈ Coz(XA) su
h that ⋂

n<ω En ⊆ Uand U ∩ A = ∅. By Lemma 3.1(1), there exists an Fσ-set F in R su
h that
U ⊆ F and F ∩A = U ∩A. Then

⋂

n<ω

Fn ∩X ⊆
⋂

n<ω

En ⊆ U ⊆ Fand F∩A = ∅. Conversely, assume that A satis�es the latter 
ondition in (3),and take {Gn : n < ω} ⊆ Coz(XA) su
h that ⋂

n<ω Gn ∩ A = ∅. For ea
h
n < ω, by Lemma 3.1(1), there exists an Fσ-set Hn in R su
h that Gn ⊆ Hnand Hn ∩A = Gn ∩A. Sin
e ⋂

n<ω Hn ∩A = ∅ and Hn ∩A is open in A forea
h n < ω, it follows from our assumption that there exists an Fσ-set H in
R su
h that ⋂

n<ω Hn ∩X ⊆ H and H ∩A = ∅. Then H ∩X ∈ Coz(XA) byLemma 3.1(1), ⋂

n<ω Gn ⊆ H ∩X and (H ∩X) ∩A = ∅. Hen
e, A satis�es
(b3) in XA.Now, we are in a position to 
onstru
t examples. A subspa
e A of a spa
e
X is said to be P -embedded in X if it is P γ-embedded in X for every γ. M -and P (point-finite)-embeddings are de�ned similarly. If A ⊆ X ⊆ R, thenthe 
losed subspa
e A of XA is always P -embedded in XA, sin
e XA ispara
ompa
t. The last statement of the following example was proved bythe se
ond author in [24℄; however, now it is an immediate 
onsequen
e ofProposition 3.2(3) and Theorem 2.1.



Extension of partitions of unity 195Example 3.3. Let Q be the set of rational numbers. Then Q fails tosatisfy (b3) in RQ. Hen
e, Q is not Pω(point-�nite)-embedded in RQ.Example 3.3 shows that (c) 6⇒ (b3) in general. Re
all from [5, 5.5.4℄ thatthere exists a set A ⊆ R, 
alled a Bernstein set, su
h that every 
ompa
t setin R 
ontained in either A or R \A is 
ountable.Example 3.4. Let A be a Bernstein set in R. Then A satis�es (b1) in
RA but fails to satisfy (a)ω in RA. Hen
e, A×Y is P (point-�nite)-embeddedin RA× Y for every 
ompa
t Hausdor� spa
e Y , but A is not Mω-embeddedin RA.Proof. Let B be an analyti
 set in R with B ∩ A = ∅. Then B must be
ountable, sin
e every un
ountable analyti
 set in R 
ontains a Cantor set(see [10, Theorem 94℄). By Proposition 3.2(1), this implies that A satis�es
(b1) in RA. On the other hand, the Eu
lidean metri
 d on R is an ω-separable
ontinuous pseudometri
 on RA and {x ∈ RA : (∃y ∈ A)(d(x, y) = 0)} = A.Sin
e A is not a zero-set in RA, A does not satisfy (a)ω in RA (see also [18,Corollary 5 to Theorem 1℄).Example 3.5. Under CH , there exist sets A and X with A ⊆ X ⊆
R su
h that A satis�es (b2) in XA but fails to satisfy (b1) in XA. Hen
e,
A is P (point-�nite)-embedded in XA, but A × [0, 1] is not Pω(point-�nite)-embedded in X × [0, 1].Proof. By [10, Corollary to Lemma 39.4℄, there exists an analyti
 set Bin R su
h that R \B is not analyti
. Put A = R \B and let B be the familyof all Borel sets in R 
ontaining A. Sin
e |B| = 2ω, we 
an enumerate B as
{Bα : α < ω1} by CH. Then ⋂

β<α Bβ ∩ B is un
ountable for ea
h α < ω1,be
ause A is not a Borel set. Thus, we 
an 
hoose indu
tively a point
xα ∈

(

⋂

β<α

Bβ ∩B
)

\ {xβ : β < α}for ea
h α < ω1. Put X = A∪{xα : α < ω1}. Then, sin
e X \Bα is 
ountablefor ea
h α < ω, it follows from Proposition 3.2(2) that A satis�es (b2) in XA.On the other hand, sin
e B is an analyti
 set in R and Bα ∩B 6= ∅ for ea
h
α < ω1, Proposition 3.2(1) shows that A does not satisfy (b1) in XA.Remark 3.6. Let XA be the spa
e de�ned in Example 3.5, and let
Ω = ω1 + 1 with the usual order topology. Now, by proving that A × Ωis P (point-�nite)-embedded in XA × Ω, we show that the assumption ofmetrizability of Y is essential in 
ondition (3) of Theorem 2.6. By Lemma2.2, A×Ω is P -embedded in XA×Ω. Thus, by Theorem 2.1, it su�
es to showthat A×Ω satis�es (b3) in XA×Ω. Take a 
ountable family {Gn : n < ω} ⊆
Coz(XA×Ω) with ⋂

n<ω Gn∩(A×Ω) = ∅. Put An = {x ∈ A : 〈x, ω1〉 6∈ Gn}for ea
h n < ω. Sin
e ea
h An is separable and ea
h Gn is an Fσ-set, we 
an
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h that Gn∩ (An× (Ω \α)) = ∅ for ea
h n < ω. Here, we mayassume that α is an isolated ordinal. For ea
h n < ω, put
Hn = prXA

[Gn ∩ (XA × (Ω \ α))].Then Hn ∈ Coz(XA) by Lemma 2.4(2), and ⋂

n<ω Hn∩A = ∅ as Hn∩An = ∅for ea
h n < ω. Sin
e A satis�es (b3) in XA, there exists U ∈ Coz(XA) su
hthat ⋂

n<ω Hn ⊆ U and U ∩A = ∅. On the other hand, sin
e α is 
ountable
ompa
t metrizable, it follows from Corollary 2.3 and Theorem 2.1 thatthere exists V ∈ Coz(XA × α) su
h that ⋂

n<ω Gn ∩ (XA × α) ⊆ V and
V ∩ (A × α) = ∅. Finally, putting W = (U × (Ω \ α)) ∪ V , we obtain a
ozero-set W in XA × Ω su
h that ⋂

n<ω Gn ⊆ W and W ∩ (A × Ω) = ∅.Hen
e, A×Ω satis�es (b3) in XA ×Ω.Example 3.7. Under CH , there exist sets A and X with A ⊆ X ⊆ Rsu
h that A satis�es (b3) in XA but fails to satisfy (b2) in XA.Proof. Following [10℄, Σ0
3 denotes the family of all sets whi
h 
an bewritten as the union of 
ountably many Gδ-sets in R, and Π0

4 denotes thefamily of all sets whi
h 
an be written as the interse
tion of 
ountably manymembers of Σ0
3. By [10, Corollary to Lemma 39.1℄ there exists a Borel set

A in R su
h that A 6∈ Π0
4. Now, let B be the family of all members of

Π0
4 
ontaining A. Sin
e |B| = 2ω, we 
an enumerate B as {Bα : α < ω1}by CH. Then ⋂

β<α Bβ \A is un
ountable for ea
h α < ω1, be
ause A 6∈ Π0
4.Hen
e, we 
an de�ne a set X = A ∪ {xα : α < ω1} similarly to the proofof Example 3.5. Sin
e X \ Bα is 
ountable for ea
h α < ω1, it follows fromProposition 3.2(3) that A satis�es (b3) in XA. On the other hand, R \ A isa Borel set in R, but (R \ A) ∩ Bα 6= ∅ for ea
h α < ω1. Hen
e, A does notsatisfy (b2) in XA by Proposition 3.2(2).A similar example to Examples 3.5 and 3.7 was 
onstru
ted by Mi
hael[12℄ for a 
ountable non-Gδ-set A to show that the produ
t of a Lindelöfspa
e XA with P is not ne
essarily normal under CH.In [15, Example 3℄, Przymusi«ski and Wage 
onstru
ted an example ofa 
olle
tionwise normal spa
e Z having a 
losed subspa
e K whi
h is not

Pω(lo
ally �nite)-embedded in Z. Finally, we show that an M -embeddedsubspa
e is not ne
essarily Pω(lo
ally �nite)-embedded by proving the fol-lowing:Example 3.8. Every 
losed subspa
e A of the 
olle
tionwise normalspa
e Z of Przymusi«ski�Wage is M -embedded in Z.Proof. The spa
e Z is 
onstru
ted from a subspa
e W of Rudin's Dowkerspa
e of [17℄. All we need to know about Z is that every Gδ-set in W is openand that Z is the union of W and another spa
e Y , where W is a Gδ-set in Zand Y is an open (in Z) set whi
h is the topologi
al sum of subspa
es of W .
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ts, if a set G is the union of Gδ-sets in Z, then both G ∩Wand G∩Y are Gδ-sets in Z, and therefore, G is a Gδ-set in Z. Now, let A bea 
losed subspa
e of Z. Sin
e Z is 
olle
tionwise normal, it follows from [19,Theorem 5.2℄ that A is P -embedded in Z. To show that A satis�es (aγ) in Zfor every in�nite 
ardinal γ, let ̺ be a γ-separable 
ontinuous pseudometri
on Z. Then the set L = {x ∈ Z : (∃y ∈ A)(̺(x, y) = 0)} is a Gδ-set in
Z sin
e it is the union of Gδ-sets in Z. Thus, by the normality of Z, thereexists a zero-set F in Z su
h that A ⊆ F ⊆ L. Hen
e, A is M -embeddedin Z.

4. Another appli
ation and questions. By AR we mean an abso-lute retra
t for the 
lass of metrizable spa
es. In [14℄ Morita proved thata subspa
e A of a spa
e X is P γ-embedded in X if and only if for every
omplete AR Y with w(Y ) ≤ γ, every 
ontinuous map from A to Y extends
ontinuously over X. As another appli
ation of Theorem 2.1, we prove thefollowing theorem by a similar argument to the proofs of Morita's theoremsin [14℄ (see also [9, Theorems 2.8 and 2.14℄). We now 
all a metrizable spa
e
X σ-
omplete if there exist a metri
 d on X, whi
h indu
es the topology of
X, and a 
ountable 
over {Xn : n < ω} of X su
h that ea
h Xn is a 
ompletesubspa
e of the metri
 spa
e (X, d).Theorem 4.1. Let A be a subspa
e of a spa
e X and γ an in�nite 
ar-dinal. Then the following are equivalent :(1) A is P γ(point-�nite)-embedded in X,(2) for every σ-
omplete AR Y with w(Y ) ≤ γ, every 
ontinuous mapfrom A to Y extends 
ontinuously over X,(3) for every Bana
h spa
e B and every 
onvex Fσ-set Y in B with

w(Y ) ≤ γ, every 
ontinuous map from A to Y extends to a 
on-tinuous map from X to Y .Proof. (1)⇒(2): Let f : A→ Y be a 
ontinuous map to a σ-
omplete AR
Y with w(Y ) ≤ γ. We 
onsider Y a metri
 spa
e having a 
ountable 
over by
omplete subspa
es. Then, by Kuratowski�Wojdysªawski's theorem (see [9℄),there exist a Bana
h spa
e B and an isometri
al embedding i : Y → B su
hthat w(Z) ≤ γ, where Z is the 
onvex hull of i[Y ]. We identify Y and i[Y ].Sin
e A is P γ-embedded in X and w(clB Z) ≤ γ, f extends to a 
ontinuousmap g : X → B with g[X] ⊆ clB Z by Morita's theorem mentioned above.Sin
e Y is an Fσ-set in B, g−1[Y ] is a 
ountable union of zero-sets in X su
hthat A ⊆ g−1[Y ]. Sin
e A is P γ(point-�nite)-embedded in X, it follows fromTheorem 2.1 that there exists a 
ontinuous fun
tion ϕ : X → [0, 1] su
h thatthe set F = ϕ−1(0) satis�es A ⊆ F ⊆ g−1[Y ]. Consider the diagonal map
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h = g△ ϕ : X → B × [0, 1]and let p, q denote the proje
tions of B×[0, 1] onto B and [0, 1], respe
tively.Then h[F ] = h[X] ∩ q−1(0) is 
losed in h[X] and p[h[F ]] = g[F ] ⊆ Y .Sin
e Y is an AR, the restri
tion p|h[F ] 
an be extended to a 
ontinuousmap p∗ : h[X] → Y . Then p∗ ◦ h : X → Y is a 
ontinuous extension of

(p ◦ h)|A = g|A = f .The impli
ation (2)⇒(3) follows from the fa
t that every 
onvex Fσ-setin a Bana
h spa
e is a σ-
omplete AR. For a set S, let ℓ1(S) be the Bana
hspa
e of all real-valued fun
tions v on S su
h that ‖v‖ ≡∑

s∈S |v(s)| < ∞,and ∆S the subspa
e of ℓ1(S) 
onsisting of all v ∈ ℓ1(S) su
h that v(s) = 0for all but �nitely many s ∈ S, v ≥ 0, and ∑

s∈S v(s) = 1. Dydak [3℄ provedthat A is P γ(point-�nite)-embedded in X if (and only if) for every set Swith |S| ≤ γ, every 
ontinuous map from A to ∆S extends to a 
ontinuousmap from X to ∆S . Sin
e ∆S is a 
onvex Fσ-set in ℓ1(S), we have the �nalimpli
ation (3)⇒(1).Remark 4.2. By Hausdor�'s extension theorem, a metrizable spa
e is
σ-
omplete if and only if it has a 
ountable 
over by 
losed 
ompletely metriz-able subspa
es. The term �σ-
omplete� was used by A. H. Stone in [20,Lemma 4℄ without an expli
it de�nition.We 
on
lude the paper with some open questions.Question 4.3. Does there exist an example in ZFC of a P -embeddedsubspa
e whi
h satis�es (b3) but not (b2)? Does there exist an example inZFC of a P -embedded subspa
e whi
h satis�es (b2) but not (b1)?The next question was �rst asked by the se
ond author in [22, Prob-lem 2.3.4℄, whi
h asks if there is a P γ(lo
ally �nite)-embedding analogue ofTheorem 2.1.Question 4.4. Let A be a subspa
e of a spa
e X and γ an un
ount-able 
ardinal. Is then A P γ(lo
ally �nite)-embedded in X if A is P γ- and
Pω(lo
ally �nite)-embedded in X?A
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