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Strongly determined types and G-compactness
by

A. A. Ivanov (Wroctaw)

Abstract. We study connections between G-compactness and existence of strongly
determined types.

0. Introduction. Theories admitting strongly determined types were
introduced in [6]. It was shown there that the class of these theories is very
wide. In particular it contains all stable theories, PA, the theory of the
field Q,, all o-minimal theories and theories of various finitely homogeneous
structures. Some other interesting examples can be found in Section 2 of [6].
A great deal of effort of [6] was concentrated on demonstration that many
results from stability theory can be carried over to the much more general
context of theories admitting strongly determined types.

Hrushovski has pointed out to the authors of [6] that a correct version of
Lemma 2.2 of [6] must involve G-compactness. This has become the starting
point of this paper. Here we study connections between existence of strongly
determined types and G-compactness. In particular we repair Lemma 2.2
of [6] and several applications of this lemma from [6]. In Section 1.1 we give
some necessary information about strongly determined types. In Section 1.2
we introduce G-trivial strongly determined types and in Section 2 we use
them in the main result of the paper asserting that admitting strongly de-
termined 1-types and type-definability of the equivalence relation of being of
the same Lascar strong type imply that this equivalence relation coincides
with the relation of being of the same strong type. In particular we have this
conclusion if the theory is simple and admits strongly determined 1-types.
Some further questions arising in the case of simple theories are discussed in
Section 3. We give some examples there.

It turns out that the scheme of the definition of strongly determined types
can be applied in the case of bounded equivalence relations. This leads us
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to KP-determined and L-determined types, very close notions which become
more natural in some situations. We discuss this in Section 4.

This research was supported by KBN grant 2 P0O3A 007 19, and basi-
cally carried out when the author held a visiting position at the Institute
of Mathematics, Polish Academy of Sciences. The author is grateful to the
referee for helpful remarks.

In this paper, T will denote a first-order theory over a countable lan-
guage. The symbols M, N will denote models of T', which are assumed to be
elementary substructures of a sufficiently saturated monster model C. We
use A, B to denote subsets of C, assumed to be much smaller than C. If a
is a tuple, we often abuse notation by writing a € M. If no such restriction
is given, then a is assumed just to live in C. If 7(Z) is a type in (possibly
infinitely many) variables Z, we denote by (M) the set of tuples (sequences)
from M which realize r. For any structure M and A C C, define Aut(M/A)
to be the group of automorphisms of M which are partial maps C — C
fixing A pointwise.

The following definitions and facts are partially taken from [10]. An A-
hyperimaginary is an equivalence class of an A-type-definable equivalence
relation [10]. It becomes an imaginary if the equivalence relation is A-
definable. Let bdd(A) be the set of all A-hyperimaginaries which have a
small orbit under Aut(C/A). A hyperimaginary e is bounded if e € bdd(().
In this paper we usually consider hyperimaginaries depending on finitely
many variables.

We recall that for ¢ € C the strong type (resp. KP-strong type) of ¢ over
A is just tp(¢/acl®d(A)) (resp. tp(¢/bdd(A))). We write S(acl®d(A)) (resp.
S(bdd(A))) for the set of strong (resp. KP-strong) types over A depending
on variables of the sorts of the language of T'. It is worth noting here that
a straightforward definition allows us to consider types of hyperimaginaries
over hyperimaginaries. We may also define acl®d(A) (resp. bdd(A)), for A
consisting of hyperimaginaries, as A together with the set of all equivalence
classes of A-definable (1) (resp. A-type-definable) equivalence relations hav-
ing finite (resp. small) orbits under Aut(C/.A). On the other hand, in this
paper we concentrate on theories admitting strongly determined types and
the corresponding definition (see [6]) involves types over sets of basic sorts.
Therefore in all our statements sets of hyperimaginaries will appear in some
particular situations when all imaginaries (hyperimaginaries) from A belong
to acl®d(A N C) (resp. bdd(A N C)); here by AN C we denote the part
of A of the sorts of the language of T'. Then acl®!(A) (resp. bdd(A)) is just
acl®d(A N C) (resp. bdd(ANC)).

(*) By an Aut(C/A)-invariant formula with parameters from C.
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Foroe{1,2,...,w} and aset A let Efj"5 be the finest bounded Aut(C/A)-
invariant equivalence relation on d-sequences. The classes of Ef 9 are called
Lascar strong types (). For A C C the relation Efjl’(S can be characterized

as follows ([1]): (a,b) € Eﬁw if there are models M;j,..., M, < C con-
taining A and sequences ag (= a),...,a, (= b) such that tp(a;/M;+1) =
tp(@i+1/M;i+1), 0 < i < n. Equivalently (a,b) € Ef’(s if there are sequences
ap (= a),...,a, (= b) such that each pair a;,a,11, 0 < i < n, extends to an
infinite indiscernible sequence over A ([1]).

Let A C C. We denote by Eﬁif the finest bounded A-type-definable

equivalence relation on d-sequences, and by ESA};(s the intersection of all finite
A-definable equivalence relations on d-sequences. Sequences a and b have
the same strong (resp. KP-strong) types over A if and only if they are ES};&—

equivalent (resp. EI?’F(,S -equivalent). It is known from [9] that for w-categorical

theories and for finite A C C and 6, Eg‘ﬁis = Eé’f,; = EI’?’J. For small theories

g’ = Egp (7). 18], [12)).

In the paragraphs above we have slightly changed the notation from [1].
The reason is that in the case when X is a set defined over A and B, the
notation EféP can be interpreted as both E{é’}? and EI%’)". These relations are
not necessarily the same. Below we often use just Fxp when it is clear over
which set we work.

For any structure M and AC C, define Autgp(M/A):=Aut(M/bdd(A))
and Autgy (M/A) := Aut(M/acl®d(A)). We call the elements of Autg,(M/A)
(resp. Autgp(M/A)) Shelah strong automorphisms over A (resp. KP-strong
automorphisms over A); the elements of Autg, (M) = Autgy (M /() are called
Shelah strong automorphisms (3). We talk similarly of Shelah strong (resp.
KP-strong) elementary maps over A.

Let M be a saturated structure of uncountable cardinality and let
Auty, (M) be the group of all Lascar strong automorphisms (fixing the
classes of all bounded invariant equivalence relations). Then Galy,(Th(M)) =
Aut(M)/Auty, (M), the Galois group of Th(M), does not depend on M. The
following group extensions show relationships among these notions:

1 — Autgp(M)/Auty (M) — Galy, — Galgp = Aut(M)/Autgp(M) — 1
and

1 — Autgp(M)/Auty, (M) — Gal, — Galgy, = Aut(M)/Auts, (M) — 1.
It is known that the groups Galxp and Galg, are compact. The theory

(?) Usual strong types can be called Shelah strong types.
(3) They were introduced by Lascar as strong automorphisms.
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Th(M) is called G-compact if Gal, = Galgp. The main results of the paper
are connected with the question when Galy, = Galgy,.

1. Strongly determined types and equivalence relations. We start
this section with a short introduction to strongly determined types [6].

1.1. Strongly determined types. The following definition is taken from [6].
Let A C Cand A C acl®i(A4) with A C A. If ¢(y) € S(acl®d(A)) we say that
a type p(Z,y) € S(A) is a g-consistent T-type if for any sequence ay, ..., ay
of realizations of ¢ the set | J{p(Z,a;) : 1 < i < n} is consistent. A strongly
determined type over A is a function ¢ which assigns a g¢-consistent Z-type
0(q)(Z,7) to every q(y) € S(acl®d(A)), and is monotonic: if ' is a subtuple
of y and ¢(7),q (') € S(acl®d(A)) with ¢() F ¢'(¥'), then the restriction of
0(q)(Z,9) to 7" is o(¢')(, 7).

Suppose that o is a strongly determined type over A. For every B C C
define

o5(2) = (J{o(@)(#,0) : g € S(acl*(A)), b =g, b € B}.

The following notions are at the centre of [6]. We say that a theory T' ad-
mits strongly determined types over A (A C C) if every type of S(A) extends
to a strongly determined one. A theory T admits strongly determined types
if it admits strongly determined types over every set A C C of parameters.

The following lemma shows that in fact the definition of strongly deter-
mined types does not change if we strengthen it by the requirement that
0(q)(Z,y) is a type over acl®d(A). This lemma is a version of Lemma 1.3
from [6].

LEMMA 1.1. Let A C C, A C A C acl®(A) and let o(Z) be a strongly
determined type over A. Then there exists a unique strongly determined type
0 (Z) over acl®d(A) such that for any q € S(acl®d(A)), o' (q) F o(q).

Proof. Let M be very rich over A: for all n € w and all m € M, M
realizes all n-types from S(acl®d(Am)). Let ¢ = op. For ¢ € S(acl®d(A))
and b |= q, b € M, define ¢'(q) := tp(eb/acl®i(A)).

To see that the definition is correct, suppose that b, b realize the same
type over acl®¥(A). We may assume that & € M. Let bd € M be of the
same strong type over A as be. Choose d’ € M such that v'd’ is of the same
strong type over A as bd. Then o(tp(bd/acl®i(A))) = o(tp(V'd' /acl®i(A))).
Let E(y,z) (where |3| = |b| + |¢|) be a finite equivalence relation definable
over A. Since E(bé,bd), we have E(bc,b/d'). It follows by transitivity that
E(be,b/'e). As a result be and b/'¢ have the same strong type over A. The rest
is easy. =

It is clear from the proof that any strongly determined type o over A is
determined by ops, where M is very rich over A.
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LEMMA 1.2. Let A C C and let T admit strongly determined n-types over
a set A. Then every strong n-type over A extends to a strongly determined
type over A.

Proof. Let q(Z) be a type over acl®d(A) extending p(Z), a complete type
over A. Let o(Z) be a strongly determined extension of p(Z) and ¢/(Z) be
a strongly determined type over acl®d(A) defined for ¢ by Lemma 1.1. Let
¢1(Z) be the strong type over acl®)(A) defined by ¢’ (by ¢), for a saturated
model M). Since ¢ extends p, there is an automorphism « over A taking ¢;
to q. Let « take o to o1 (defined by a(¢) for ¢ |= s for sufficiently saturated
M). Then p; is a strongly determined extension of ¢. m

The following is Lemma 2.1 from [6].

LEMMA 1.3. Let A C M, and suppose that M is very rich over A. Let
p(z) € S(A). Then the following are equivalent:

(i) p extends to a strongly determined type over A;

(ii) for every finite set I' of finite partial acl®d(A)-elementary maps
M — M there exists ¢ € p(M) such that all maps in I' are ele-
mentary over cA.

Our final remark here is folklore. For example it appears in some form
in [5].

PROPOSITION 1.4. If a theory T admits strongly determined types then
T is G-compact and its Lascar strong types coincide with (Shelah) strong

types.

Proof. Let M and N be small models of T. We fix some enumerations of
M and N and assume that the corresponding sequences have the same strong
type. For any formula ¢(z1,...,2,) € tp(M) find a strongly determined type
o containing ¢. Let ¢ = opry. Then M and N have the same type over c.
By compactness there is a model C' such that M and N have the same type
over C'. This means that M and N have the same Lascar strong type. =m

This proposition shows that admitting strongly determined types can be
considered as a very strong version of G-compactness. In fact our main re-
sults below describe some situations when G-compactness implies admitting
strongly determined types.

1.2. Strongly determined types and type-definable equivalence relations.
Let A C C, A C A C acl®(A) and let p be a strongly determined type
over A. Let M be sufficiently saturated, A C M, b |= oy and e be a finite
equivalence relation definable over Ab (*). The group Aut(C/bM) naturally
acts on the set of all e-classes. Let € be the equivalence relation defined

(*) By an Aut(C/Ab)-invariant formula with parameters from C.
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on the appropriate C! by the condition that (a,a’) € € if and only if the
corresponding e-classes of @ and @’ are in the same orbit with respect to
Aut(C/bM). By the choice of b any automorphism from Autgy,(M/A) =
Aut(M/acl®d(A)) extends to an element of Aut(C/b{M}acl®l(A)) (fixing
M setwise). We have obtained the exact sequence

0 — Aut(C/bM) — Aut(C/b{M} acl®}(A)) — Autg,(M/A) — 0
where the kernel Aut(C/bM) preserves all é-classes. Hence we infer that
Aut(C/b{M} acl®d(A)) induces an action of Autgy(M/A) on the set of e-
classes.

Since e is a finite equivalence relation the pointwise stabilizer of the set
of e-classes is a normal subgroup H, < Autgy (M /A) of finite index.

DEFINITION 1.5. We say that g is G-trivial if for any structure M which
realizes all strong types over A and is Autg(M/A)-homogeneous for finite
maps, and any finite equivalence relation e as above, there is no Autgy (M /A)-
invariant equivalence relation E properly refining E?};l on the appropriate M!
such that the corresponding group H, preserves all F-classes (in other words,
for any strong type over A the action of H, on the set of its M-realizations
is transitive).

It is worth noting that if an equivalence relation F witnesses non-G-
triviality of o then each Eg‘ﬁl—class on M' consists of < |Autgy(M/A) : H|
classes of F.

REMARK. For any a € Aut(M/A) the image of a G-trivial strongly
determined type is G-trivial. Thus the natural version of Lemma 1.2 for
G-trivial strongly determined types still holds (by inspection of the proof).

The proposition below gives three reasons why G-trivial strongly deter-
mined types are quite frequent. For ease of notation we restrict ourselves to
the case when A = A C C. We need the following notion.

We say that a strongly determined type ¢ over A is type-definable if for
any ¢(y) € S(acl®d(A)) and ¢(z,y) € o(q) there is (y) € ¢(y) such that for
any 7(y) € S(acl®d(A)) containing ¢ (y) the formula ¢(z,y) belongs to o(r).

PrROPOSITION 1.6. Let A C C be a countable set and M be an
Autgy (M /A)-homogeneous structure realizing all strong types over A.

(1) Assume that for alll € w every Autgy(M/A)-invariant equivalence
relation E C M? dividing each Eéqﬁl-class into finitely many E-
classes is type-definable over acl®d(A). Then every strongly deter-
mined type over A is G-trivial.

(2) If E{! = E{p on finite tuples (in particular if Th(M) is simple),
then every strongly determined type over A is G-trivial.

(3) A type-definable strongly determined type over A is G-trivial.
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Proof. (1) Let

p(z) = {¢o(7), ¢1(2), .., 6;(2), ... }

be a strong type over A which is divided by F into finitely many classes and
let

¥ = {Yo(z,9), v1(2,9),- -, ¥i(2,9),... }

be the type over acl®l(A) defining E. We may assume that each ¢;,1(Z)
implies ¢;(z) and each v;1(Z, y) implies 1;(Z, ). Moreover by compactness
we may assume that each ;(Z, §) is symmetric and each formula ;41 (Z, §) A
W41(7, 7) implies 1;(z, 7).

Since p/E is finite, there is j such that p(z) U p(y) implies ¢;(z,y) —
$541(2,7). By compactness some ¢;(7) A (7) implies v;(7,7) — ¥j41(7, 7).
We may also assume that for some n the formula ¢;(Z1) A-- - A¢;(Zy) implies
VA{vj(@g, &) : 0 < k <1 < n}. Thus ¢; defines a finite equivalence on ¢;
which coincides with E on p(C). This contradicts the assumption that p is
a strong type.

As a result we see that there is no Autgy(M/A)-invariant equivalence
relation F properly dividing some Eg‘h—class into finitely many FE-classes.
This means that every strongly determined type over A satisfies the definition
of G-trivial types.

(2) Let M be sufficiently saturated. That Autgy,(M/A)/Autkp(M/A) is
a compact connected group is folklore (for example it can be deduced from
Lemma 4.10 of [10] or Remark 3.1 from [8]). A complete proof of this is
given in Theorem 21 of [14]. By a theorem of Mycielski from [11] the group
Autgy (M/A)/Autkp(M/A) is divisible and does not have subgroups of finite
index. On the other hand, if F is an equivalence relation as in the definition of
G-trivial strongly determined types, then it is coarser than the corresponding
El’gi:l, (= Ef’l). This implies that the subgroup H < Autg,(M/A) fixing all
E-classes is a proper subgroup of Autgy (M /A) of finite index which contains
Autgp(M/A). This contradiction shows that every strongly determined type
over A is G-trivial.

(3) Let o be a strongly determined type over A, b = o5s and e be a finite
equivalence relation definable over Ab. As above define the corresponding
equivalence relation ¢ D e. The pointwise stabilizer of the set of e-classes
forms a normal subgroup H. < Autg, (M /A) of finite index.

For any é-class find a formula 6(i,b,d) with d € M asserting that the
tuple @ represents one of the e-classes of this class. If d € M is of the same
strong type over A as d then by the choice of b and (the proof of) Lemma 1.1,
tp(db/acl®d(A)) = tp(d'b/acl®d(A)) and we see that 6(,b,d) still describes
e-classes of some e-class. Below we assume that all e-classes are so defined
over bd by appropriate formulas.
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We see that the equivalence relation of He-orbits on the Autgy(M/A)-
orbit of d is defined by the formula over Ab which is the conjunction
P(w', w",b) of the conditions of the form Va(f(u,b,w") <« 6(u,b,w"”)) (for

all e-classes). Since b |= gy, the truth of &(d’,d",b) is determined by the
strong type of d'd” over A. This means that =@ (w’,w",b) for tuples from M
of the type tp(d/acl®i(A)) is equivalent to some disjunction of strong types

on w'w"” over A.

On the other hand, since p is type-definable, any strong type of this form
contains a formula over acl®(A) which implies ~®(w’, w",b). We now see
that @(w’,w”,b) is equivalent to a conjunction of formulas over acl®d(A).
As a result we have obtained an equivalence relation type-definable over
acl®d(A) which divides stp(d/A) into finitely many classes. The argument of
the first part of the proposition shows that the number of classes is 1. Thus
9(C,b,d) = 6(C,b,d") for § as above and d’ of the same strong type over A
as d. This shows that o is G-trivial. =

REMARK. It is worth noting that in the definition of G-triviality it only
suffices to demand that the corresponding property holds over some fixed
model M (saturated and homogeneous enough). Indeed, let ¢ be a strongly
determined type over A, M < M’ be sufficiently saturated and homoge-
neous models, b = onr, b’ = oy and @(Z,7, Z) be a formula over A such
that ¢(Z, 9, b) defines a finite equivalence relation e. As above define the cor-
responding equivalence relation € D e. The pointwise stabilizer of the set of
e-classes forms a normal subgroup H,. < Autgy(M/A) of finite index.

Assume that the definition of G-triviality holds for M and b. For any -
class find a formula (@, b, d) with d € M asserting that the tuple @ represents
one of the e-classes of this e-class. If d € M is of the same strong type over
A as d then by the choice of b, tp(db/acl®l(A)) = tp(d'b/acl®l(A)) and by
G-triviality of o over M we deduce that 0(@, b, d’) still describes e-classes of
the same e-class.

If now d belongs to M’ and is of the same strong type over A as d, then
tp(db/acl®l(A)) = tp(db'/acl®l(A)) = tp(d'V' /acl®L(A)).
This implies that for ¢’ defined by ¢(Z,,b') the formulas 6(a,b’,d") and

0(u, V', d) describe e’-classes of the same ¢’-class (the strong type of b'dd’ over
A coincides with the type of some bdd” with d” € M of the type stp(d/A)).

This implies G-triviality with respect to M’. The rest is obvious.

QUESTION. Is it possible that in the situation when M is sufficiently
saturated and homogeneous, the group Autgp(M) has a subgroup of finite
index G such that the G-orbit equivalence relation on some MP* properly
refines EI]“(P?
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2. G-compactness and strongly determined types. Our main re-
sult in this section gives some sufficient conditions (in terms of strongly de-
termined types) for Ft, = Egp. Then we study to what extent G-compactness
is needed for existence of strongly determined n-types when n > 1. The fol-
lowing statement corrects Lemma 2.2 from [6] by adding the assumption
that Fr, = Fxp on finite tuples. The idea that Lemma 2.2 should have some
assumption connected with G-compactness was suggested by E. Hrushovski.

THEOREM 2.1. Let T be a complete theory such that for any finite A of
the basic sort, Eﬁ‘ = Efgp on finite tuples, and every 1-type over A extends to
a strongly determined type over A. Then for all tuples a and all n > 0, every
n-type of T over a has a strongly determined extension over a. Moreover,
all strongly determined types over a are G-trivial.

This theorem implies that if T is simple and every 1-type over a finite
set extends to a strongly determined type, then any n-type over a finite set
extends to a strongly determined one. The proof is based on the following
theorem.

THEOREM 2.2. Let T be a complete theory such that for any finite set
A of the basic sort, Eﬁ‘ = Efép on finite tuples, and every 1-type over A
extends to a strongly determined type over A. Then for all finite sets A of
the basic sort, EI:4 = Eé‘h on finite tuples. In particular, Eé’k = g&};k for
all A and k < w.

Proof. The last statement of the theorem follows from the main state-
ment by the definition of Eng and Eé“h (for example as in the proof of
Theorem 15 from [7]).

Let ¥(Z,7) be a type defining E? on n-tuples satisfying p(z) € S(a). We
may assume that

p(i) = {¢0<‘i‘)7 (bl(i)v v 7¢j('i')7 v }7
v = {%bo(f»@)»?ﬁl(f»@)» B %‘(577?3)7 cee }7
where each ¢;,1(Z) implies ¢;(Z) and each 1;41(Z,y) implies ©;(z,7). We
want to prove that ¥(Z,y) does not refine Egil” on p(C). By Proposition
1.6(2) we assume below that every 1-type over a extends to a G-trivial
strongly determined type over a.

The proof is by induction on |Z|. Let |Z| = 1. By Lemma 1.2 any strong
type over a extending p(x) extends to a strongly determined type. Let o(z) be
such a type. Let ¢ |= p(x) be of the strong type defined by o. If g.(x) contains
—1pj(x,c) for some j, then for any set C' C p(C) consisting of elements of
the same strong type as ¢, any realization of ¢ for a sufficiently saturated

structure M DO C provides an element not FEp-equivalent to any element
of C. This contradicts the boundedness of E,.
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We see that o.(x) contains all 9;(z,c) A ¢;(x). Then by the definition
of a strongly determined type for any ¢’ of the same strong type as ¢ the
type oo (z) contains all formulas ¢;(x,c’) A ¢j(x). Let b = on(x), where
¢, € M. Then (¢,b) and (¢, b) are in Fy,. Thus (¢,c) € FL.

Towards a contradiction assume that for some finite A, Ef‘ # Eé“h on
finite tuples. Choose p(Z) and a as above so that n = |Z| is minimal with
E"™ # E&" on tuples satisfying p(z). Then n > 1. We may assume that
p(Z) is not algebraic with respect to the first coordinate. Since we assume
El™ # EG" on p(C), each Egy-class from p(C) splits into several Fi-
classes.

Let po(x1) be a non-algebraic type over a containing all formulas of the
form Jzo,...,2,¢;(Z). Then by an appropriate version of Lemma 1.2 any
strong type over a extending po(z1) extends to a G-trivial strongly deter-
mined type. Fix such a strong type and take an appropriate o(z1). Let M
contain representatives of all Eﬁ’"—classes and by | opr. Take a strong type
q1(z1,...,zn) € S(acl®¥(a)) extending p(z) U stp(bi/a) and find ba, ..., b,
such that ¢;(Z) = stp(b1ba...by/a). Since any strong type over a extending
p(Z) can be chosen as ¢; for appropriate o(x1), the proof of the theorem will
be finished if we show that ¢;(C) does not split into several Ep-classes.

Let q1(z) = {¢),--.,¢}, ...} with ¢}, F ¢}, i € w. Here we assume
that each ¢, defines an equivalence class of some finite equivalence relation
over a. Below we present all ¢} by formulas over parameters from M with
Jxg, ..., 2,¢L(Z) € tp(b1/M) under that presentation. We will use the fact
that any automorphism of M strong over a fixes ¢}(M).

Let go(22,...,2n) =stp(bz...by/b1a) ={g, ..., ¢}, ...} with ¢f | F ¢,
i € w. We assume that each ¢! defines an equivalence class of a finite equiv-
alence relation defined by a formula e;(u, v, b1, a) over bja. We also assume
that ¢;(z) implies that the equivalence relation e;(,v,x1,a) over z1a is
finite.

The group Aut(C/bj M) naturally acts on the set of all e;-classes. Let
€; D e; be the equivalence relation defined by: (¢1, ¢2) € € if the e;-classes of ¢;
and ¢z are in the same Aut(C/by M )-orbit. For the Aut(C/by M )-orbit of the
e;-class corresponding to ¢/, find a formula 0;(w, b1, d;) € tp(ba ... b, /b1 M)
with d; € M asserting that @ represents one of the e;-classes of this orbit.
If Jgﬁ € M is of the same strong type over a as Ji:chen by the choice of by,
tp(dib1/acl®d(a)) = tp(dbi /acl®d(a)) and 0;(u, b1, d}) still describes an orbit
of e;~classes (i.e. defines an ¢;-class). Extending d; if necessary, we may as-
sume that all ¢;-classes are defined over byd; by appropriate formulas. Since
0 is G-trivial we find that

for any J; € M of the same strong type over @ as d;,
0:(C,b1,d;) = 0;(C, by, d;).



Strongly determined types and G-compactness 237

Let ¢ = (c1,¢2,...,¢,) € M be of the same strong type as b over a. If for
some j the type tp(b1/M) contains

Vg, ..., Tp(@5(Z) A Oj(xa, ... 20, 21, dj) — —;(z,¢))
then for any ¢ C M with stp(¢/a) = stp(¢/a) and for appropriate d; € M
of the same strong type as d; over a we have
Vg, ..., an($5(T) AOj(xa,. .. 20, x1,d5) — —ap;(Z,€)) € tp(by/M).
By the previous paragraph,
Vg, ..., 2 (@5 (T) A Oj(xa, .. T,y 1, d5) — —;(Z,E)) € tp(by/M).

Thus by ... b, is not Ep-equivalent to any @ C M with stp(b/a) = stp(¢'/a).
This contradicts the choice of M.
We see that for every j the type tp(b1/M) contains all

3:172, - ,J;n(gﬁ;(:f) A Gj(azg e Ty, T1, (Zj) A ’(/Jj(i‘, 5,))

with stp(¢/a) = stp(c'/a), @ C M.
We now claim that for every ¢ as above, there is a realization of all

gb;-(bl,l‘g .. ZEn) VAN ej(.’L‘z .o T, bobs .. .bn,bld) A?/Jj(blaj‘g .. .ZEn,EI).

To see this we apply compactness and the following argument. If b}, ...0/,
realizes qb;-(bl, T2...Tp) AOj(T2. .. 2y, b1,d;) Aj(b1T2 . . . 2y, ), then by the
definition of 6, there is v € Aut(C/b; M) taking the ej-class of b),...b/, to
the ej-class of by ...b,. Then (). ..~(b;,) realizes

(ﬁ;(bl, xo ... xn) A ej(xg .o Xy, bobs ... by, blc_z) A wj(bl.%'Q .o Ty, E/).
Now assume that bb) ... bl realizes all formulas
GG(T) Nej(xa. . xp, by . by, x1,a) ANYy(Z,E).
Then by ... b, and b, ...b), have the same strong type over ab;. By induction
they realize the same Lascar strong type over bja. This obviously implies that
bib, ... b, and b;ng ... b, have the same Lascar strong type over a. Then we
see that @ and b have the same Lascar strong type as bib,...b),. Since &
is an arbitrary realization of the strong type ¢1(Z), we have a contradiction

with the assumption that the corresponding E, -class splits into several
Ef-classes. m

PROPOSITION 2.3. Let T be a complete theory such that for any finite A,
Eﬁ‘ = Eéh on finite tuples (for example T is w-categorical), and every 1-type
over A extends to a strongly determined type over A. Then for all tuples a
and all n > 0, every n-type of T over a has a strongly determined extension
over a. Moreover each strongly determined type over a is G-trivial.

Proof. Pick M and a € M, and let p(Z) be an n-type of Th(M) over a.
Form an increasing chain of sufficiently saturated structures, My := M <
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My < --- < M,, together with ¢y, ...,c, such that for each ¢ < n, if p I/
x; € acl(a{z; : j < i}) then ¢; € M; \ M;_; and ¢; realizes a 1-type over
M;_; defining a strongly determined type over (ci,...,ci—1,a), and such
that (ci,...,cy) realizes p.

To see that there is a strongly determined type ¢ over a such that
(c1,...,c,) realizes gy it suffices to show that for any b,b' € M of the
same strong type over a the tuples b and b’ have the same strong type over
ac (then define o(stp(b/a)) := tp(eb/a)). Having chosen b,b’ € M of the
same strong type over a we prove by induction that for each ¢, the tuples
b, b’ have the same strong type over aci, ..., c;. The case i = 0 is obvious.

At step i — i+ 1if ¢;41 € acl(@cy, ..., c;), then b and b’ realize the same
strong type over aci, . .., ¢;+1. Consider the case when ¢; 11 & acl(acy, ..., ).
Then there is a strongly determined type ¢ over aci,...,c; such that
Cit1 = 92\/11.-

Since Ey, = Egy there are by (= b),by,...,b, (= V') such that every
pair by, b1 belongs to some infinite acy . . . ¢;-indiscernible sequence I;, | =
0,...,m—1. Tt is clear that all ordered (according to the enumeration) pairs
from I; have the same strong type over acy,...,c;. Thus for any realization
d &= Q/Il the tuples b; and b, have the same strong type over acy, ..., c;, d;.

This implies that if d = Q%O 5 s then all b; have the same strong type over

aci,...,c;,d. By the choice of ¢; 1 we now see that the tuples b and V' realize
the same strong type over acy, ..., Cit1.
The last statement of the proposition follows from Proposition 1.6. =

Proof of Theorem 2.1. By Theorem 2.2 we may use Proposition 2.3. »

Lemma 2.2 in [6] was applied in a few places there to show that some
theories admit strongly determined types. It has already been mentioned in
[4] that most applications of Lemma 2.2 in [6] are unaffected. We can now
show this by applying Theorem 2.1. For example, Theorem 2.6 of [6] states
that every weakly o-minimal theory admits strongly determined types. We
recall that a theory is weakly o-minimal if every definable subset of every
model is a finite union of convex sets. To repair the proof given in [6] we
need the following fact:

Every automorphism of a big saturated weakly o-minimal structure is
Lascar strong. In particular Ey, = Exp over finite sets.

The proof of Lemma 24 of [14] (which states the same for o-minimal
theories) works without any changes. For completeness we mention that the
proof is based on the following statement: for any two small submodels M
and N of the same type over () every consistent formula ¢(Z) has a realization
¢ such that M and N have the same type over ¢. This can be proved by
induction on |Z|.
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We can now repeat the proof of Theorem 2.6 of [6] by replacing every-
where Lemma 2.2 by Theorem 2.1 just proved.
Another application of Theorem 2.1 is the following statement.

COROLLARY 2.4. FEvery C-minimal structure having Exp = Ey, over fi-
nite sets admits strongly determined types.

This can be shown by following the proof of Theorem 2.10 and Remark
2.11 of [6]. In these arguments we should replace Lemma 2.2 by Theorem 2.1.

The statement of the corollary is not as strong as the corresponding one
in [6]. The difference is that we now assume Exp = Ej, over finite sets. On
the other hand, many C-minimal structures satisfy this. In particular it is
true for non-trivially valued algebraically closed fields where the C-relation
is naturally defined from the valuation. In fact in [5] it is explicitly shown
that then EE = Elgh for all finite k as well as that every type extends to a
strongly determined one (in [4] and [5] they are called invariant types).

3. Examples of simple theories. Theorem 2.2 has some applications
connected with the problem whether Ey, = Eg;, holds for simple theories. It
is well known that simple teories are G-compact (for example, see [7]). Now
the statement below is a consequence of Theorem 2.2 and Proposition 1.6.

Let T' be a simple theory such that every 1-type of T' over any finite
set A extends to a strongly determined type over A. Then E["" = Eg"
for all n and tuples a.

It is unclear when a simple theory admits strongly determined (KP-
determined) types. In [6] there are examples of simple theories where a
strongly determined type does not exist. On the other hand, it makes sense
to verify this property for simple theories which are obtained from stable
ones by adding a relation in some “generic” way.

First, we discuss one of the constructions presented in [3]. We start with
a complete theory T' which admits elimination of quantifiers and elimination
of the quantifier 3°° (for example, a complete theory of algebraically closed
fields). Fix a sort S of the theory and extend the language by a unary
predicate P of this sort. Then Theorem 2.4 from [3] states that the theory of
all P-expansions has a model companion Tp g. Corollary 2.8 there states that
Ts p is simple if T" is simple. The following proposition concerns a number of
examples of simple theories (including random graphs and generic directed
graphs; see 2.12 in [3]).

ProrosITION 3.1. If T is simple and admits strongly determined types
then so does T's p.

Proof. Let M = Ts p be sufficiently saturated and D C M. By Lemma
1.3 (Lemma 2.1 from [6]) given a type p over D and a finite family I of finite
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acl®d(D)-elementary maps in M it suffices to find a realization a |= p such
that all maps from I" are elementary over aD. Let C' = [J{Dom(y)URng(~) :
~v € I'}. We may assume that D = (). Since T admits strongly determined
types, find d realizing a strongly determined extension gy; of p over M (with
respect to T'). Then d is forking-independent of C. In particular, for any
¢ € C (we admit the case ¢ = (}), acly(ed) N acly(C) = acly(¢). Using this
we can extend the P-structure of acly(C) to a P-expansion on acly(dC)
so that any map b — b from I' induces a P-preserving map acly(db) —
acly(db') and the corresponding P-expansion of acly(d) agrees with p. Note
that to satisfy the first condition it is enough to assume that all elements
of acly(dC) \ (acly(C) U acly(d)) are not in P. Since any map from I” acts
trivially on acly(()), we can now take any P-expansion of acly(d) extending
the P-structure of acly(0)) and agreeing with p.

By the axioms of T p (Theorem 2.4 from [3]) given a realization d’ of an
extension of the T-part of p over C, the isomorphism type of any P-expansion
of acly(d'C) extending the P-expansion of acl(C) in M is realized in M on
some acly(d"C), where d” is of the same type as d’ over C' with respect
to T. Using this find a realizing on acly(aC) the P-expansion of acly(dC)
built in the previous paragraph. By Corollary 2.6 from [3] the type p is
determined by the isomorphism type of the expanded structure on acly(a)
(with distinguished a = p). Applying this we see that a = p and any map
from I is elementary over G. =

Proposition 3.1 together with the discussion from the first paragraph of
this section gives another proof of the following statement from [3] (end of
Section 1).

COROLLARY 3.2. Let T be a simple theory of the form Ts p as in Propo-
sition 3.1. Then Er, = Egy,.

The second construction from [3]| assigns a model companion T4 (if it
exists) to the theory of all structures (M,o) (0 € Aut(M)) for models M
of a complete theory T" which admits elimination of quantifiers and has the
PAPA. Corollary 3.8 from [3| states that T4 is simple if 7" is stable. The
theory ACFA of algebraically closed fields with a generic automorphism [2]
is an example of such T4. It looks likely that the approach of Theorem 3.1
can be developed to obtain admitting strongly determined types in the case
of T4 (or ACFA). This case is open. It is more complicated than that of
Proposition 3.1.

We now give an example which in some sense has constructions very sim-
ilar to those described above: we add some generic relations to the structure.
On the other hand, the effect of this will be opposite. In this construction
we use reducts of the random graph [13].
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PROPOSITION 3.3. There exists a simple w-categorical theory such that
for any finite set of parameters A, no non-algebraic type over A extends to
a strongly determined type.

Proof. The construction uses ideas from [6]; in fact, Dugald Macpherson
pointed out to the author that these ideas can be applied to such an example.

Let Lo = {R1,Ro,..., Ry, ...} be a relational language, where each R;
has arity 2i. The structure M is built by a Fraissé construction, so we first
specify a class K of finite Lg-structures. In each C' € K each relation R, de-
termines a graph on the set (denoted by ($)) of unordered n-element subsets
of C. It is easy to see that K is an amalgamation class: given A, By, By € K
with BiN By = A, define C' € K as B U B>, so that no tuple ¢1¢3 € C which
satisfies R,, meets both By \ By and B; \ Bs. Let My be the corresponding
universal homogeneous structure. Note that Th(Mp) admits elimination of
quantifiers.

CrAamM A. The theory of My is supersimple of SU-rank 1.
Let ¢(z,b), |Z| = I, be a quantifier-free formula and (b; : i < w) be an

indiscernible sequence of tp(b). We may assume that ¢(z, l_)) implies ZNb = (.
Then any set B, = |J{b; : i < n} can be extended by a tuple ci,...,q
satisfying all ¢(Z,b;), i < n. Since My is universal homogeneous, the tuple &
can be found in My. We now see that any non-algebraic type does not divide
over (); thus Mj is simple of SU-rank 1.

Let M be the reduct of My to the language L = {T,...,T,,...} of
3n-relations (of two-graphs) where a triple of n-element sets C;, Cy and C3
satisfies T,, if and only if it contains one or three edges with respect to R,,. In
this case any quadrangle of n-element sets has even T),-triples. By Claim A
the structure M is supersimple. It is easy to see (by genericity) that for all a

and A, tp(a/A) F tp(a/acl®d(A)) with respect to both Th(Mj) and Th(M).

Cram B. Let C = {c1,...,¢cn} € My. Let R), be the relation which
coincides with R,, on all pairs D, B with C ¢ {D, B} but for any D € (M)
we have: (C, D) € Ry, < (C,D) & R],. Then the structure My is isomorphic
to My = (M,R1,...,Ry_1,R], Ryi1,...) and the structure M is the reduct
of M), obtained by the same definition as M is obtained from M.

To prove the claim it suffices to note that any structure from K is em-
beddable into M/, and for every pair A < A’ from K with A’ N M) = A
there exists an A-embedding of A’ into M) (verifying the latter condition we
may assume that C' C A). Both conditions follow from the fact that M is
universal homogeneous. The second statement of the claim is obvious.

Let a = (a1,...,a,) C M. Let p(x) be a type over a which extends
to a strongly determined type, and let ap be a realization over M of the
corresponding strongly determined type. Since M is universal homogeneous,
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there exists b € M realizing p such that tp(agb/a) = tp(bap/a) with respect
to both My and M (for example one can assume that there is no R;-relation
between any [-sets C' # D with {ag,b} C CUD C aU/{ag,b}, I > 0). Since
My is universal homogeneous, there are elements ¢, d,d’ € M\ a so that the
following conditions hold in Mjy:

tp(agh/a) = tp(be/a) = tp(bd/a) = tp(cd/a) = tp(cd'/a)
and for every proper subtuple @ C a, tp(agb/a’) = tp(bd’'/a’). We also
assume that (ba,d'a) € R,41 if and only if (ba,da) € Ry+1, and for any pair
C1,Cs with Cy U Cy = dba, distinct from ba, da, the corresponding pair C
and C) (obtained by replacing d by d’) satisfies R, if and only if Cy, Cy
does.

Let R;, ,, be obtained from R, as in Claim B (by switching) with re-
spect to the (unordered) tuple da. Since the structure M{, = (M, Ry, ..., Ry,
R} 1, Rny2,...) is isomorphic to My, the type of bd’ over @ in My is the same
as the type of bd over a in M|, (by our construction mutually corresponding
subtuples from bda and bd'a satisfy the same relations). Applying the last
statement of Claim B we see that the type of bd over a in M is the same as
the type of bd’ over a in M.

Let ¢ = tpy,s(bd/a). Since ag realizes over M the corresponding strongly
determined type, one of the following cases holds: (a) for every pair ¢’ € M
realizing ¢ the triple (apa,da,c’a) belongs to T),4+1, or (b) for every pair
" € M realizing q the triple (aoa, c'a, c’a) does not belong to T,41.

In both cases one of the sets {aa, ba, ca, da} or {apa, ba, ca,da} has the
property that an odd number of triples satisfy 7,41. This contradicts the
definition of a two-graph. m

4. KP(L)-determined types and G-compact types. The results
above motivate the following question. Is there a theory admitting (having)
strongly determined 1-types and having a strongly determined type which is
not G-trivial? By Proposition 1.6(2) such a theory would be a principally
new example of a non-G-compact theory, because all known examples have
Ei, = Exp on finite tuples or do not have strongly determined types. In
this section we formulate further questions of this kind. They are motivated
by some remarks concerning possible generalizations of strongly determined
types and G-triviality.

4.1. KP-determined and L-determined types. Let A C C and A C A C
bdd(A) (°). If q(y) € S(bdd(A)), we say that a type p(Z,7) € S(A) is a
q-consistent T-type if for any sequence ag, ..., a, of realizations of g the set
U{p(z,a;) : 1 <i < n}is consistent. A KP-determined type over a set A is a

(°) In fact we may assume that A is an arbitrary set of hyperimaginaries.
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monotonic function ¢ which assigns a g-consistent z-type o(q)(Z,y) to every
q(y) € S(bdd(A)).
Suppose that g is a KP-determined type over A. For every B C C define

o5(2) = | J{o(a)(2,b) : ¢ € S(bdd(A)), b= g, b € B}.

The definition is a generalization of strongly determined types. The notions
are the same if Efép = Eé‘h. We now see that Theorem 2.2 implies that under
FExp = Ei, and admitting strongly determined 1-types, KP-determined types
are strongly determined.

To obtain the definition of L-determined types we modify the definition
of KP-determined types by the requirement that the types ¢() in that def-
inition are Lascar strong types over A. As above, for an L-determined type
o and a set B we define pp.

We now say that a theory T admits KP-determined (resp. L-determined)
types over A C C if every type of S(A) extends to a KP-determined (resp.
L-determined) one. A theory T' admits KP-determined (resp. L-determined)
types if it admits KP-determined (resp. L-determined) types over every set
A C C of parameters. Since a strongly determined type naturally defines
a KP-determined type and a KP-determined type naturally defines an L-
determined type, the class of theories admitting strongly determined types is
contained in the class of those admitting KP-determined (or L-determined)
types. This suggests that the material from [6] and above can be slightly
extended. For example note that the KP- and L-versions of Theorem 2.1 are
much easier than the corresponding version for strongly determined types.

PROPOSITION 4.1. Let T be a complete theory such that for any finite A
of the basic sort every 1-type over A extends to an L-determined type over A.
Then for all tuples a € C and all n > 0, every n-type of T over a has an
L-determined extension over a. If Ef = Efép on finite tuples (for example T
is w-categorical), then the same statement holds for KP-determined types.

Proof. Let o be an L-determined type over a.

CLAIM. For any b, b' and ¢ |= oy, if (b,b') € Ey, over a, then (b,b') € Ey,
over ac.

Proof of Claim. Find by (= b),b1,...,b, (= b') such that every pair b;,
b;+1 belongs to some infinite a-indiscernible sequence I;, i = 0,...,n — 1.
Then for any realization ¢ |= g1, the tuples b; and 51’-5—1 have the same
Lascar strong type over a¢;. This implies that if ¢ = g5 5 , then all b; have
the same Lascar strong type over ac. m

Now to finish the proof of the proposition it suffices to repeat the proof of
Proposition 2.3 replacing everywhere strong and strongly determined types
by Lascar strong and L-determined types respectively.
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Under the assumption Eﬁ‘ = Efgp on finite tuples the claim above be-
comes the corresponding claim for KP-determined types. Therefore it is clear
that the proposition holds for KP-determined types. n

As in Section 1 we can show that in fact the definitions of KP-determined
and L-determined types over A do not change if we strengthen them by the
requirement that o(q)(Z,y) is a type over bdd(A) (resp. is a Lascar strong
type over A).

LEMMA 4.2. Let A C C and A C A C bdd(A). Let o(Z) be a KP-
determined (resp. L-determined) type over A. Then there ezists a unique
KP-determined type ¢ (Z) over bdd(A) (resp. L-determined type over the set
of classes of all bounded Aut(C/A)-invariant equivalence relations) such that
for any KP-strong (resp. Lascar strong type) q, o'(q) F 0(q).

Proof. We start with the case when g is KP-determined. Let M be very
KP-rich over A: for all n € w and all m € M, M realizes all n-types from
S(bdd(Am)). Let ¢ = op. For ¢ € S(bdd(A)) and b = ¢, b € M, define
¢'(q) := tp(cb/bdd(A)).

To see that the definition is correct, repeat the corresponding proof of
Lemma 1.1 replacing everywhere finite equivalence relations by bounded
type-definable equivalence relations, and strong types by KP-strong types.

In the case when p is L-determined let M be very L-rich over A: for all
n € w and all m € M, M realizes all Lascar strong n-types over Am. Let
¢ |= oy For a Lascar strong type q over A and b |= q, b € M, define ¢'(q)
to be the Lascar strong type of éb over A.

To see that the definition is correct take any b, & € M of the same Lascar
strong type over A. There are by (= b), by, ...,b, (= ') such that every pair
b;, bi1 belongs to some infinite A-indiscernible sequence I;, i = 0,...,n— 1.
We may assume that these sequences consist of tuples from M. Since ¢ =
01,4, the tuples b; and b1 have the same Lascar strong type over Aé. This
implies that all b; have the same Lascar strong type over A. In particular
¢b and eb’ have the same Lascar strong type over A. m

Repeating the proof of Lemma 1.2 we obtain

LEMMA 4.3. Let T admit KP-determined (resp. L-determined) n-types
over a set A. Then every KP-strong (resp. L-strong) n-type over A extends
to a KP-determined (resp. L-determined) type.

The compactness argument from the proof of Lemma 2.1 from [6] can be
easily applied to the following lemma.

LEMMA 4.4. Suppose that M is very KP-rich (resp. L-rich) over A. Let
p(z) € S(A). Then the following are equivalent:

(i) p extends to a KP-determined (resp. an L-determined) type over A;
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(ii) for every finite set I' of finite partial KP-strong (L-strong) elemen-
tary maps M — M there exists ¢ € p(M) such that all the maps in
I' are elementary over CA.

We now see by inspection that Proposition 3.1 also holds for KP-deter-
mined (resp. L-determined) types.

The proof of Proposition 1.4 also works for the following statement: If a
theory T admits KP-determined types, then T is G-compact.

4.2. G-compact strongly determined types. Let o be a KP-determined
type over A. Let M be sufficiently saturated, A C M®4, b = ops and e be
a bounded bA-type-definable equivalence relation. Let € be the equivalence
relation defined on the appropriate C! by the condition that (a,a’) € ¢ if
and only if the corresponding e-classes of @ and @’ are in the same orbit with
respect to Aut(C/bM).

The group Aut(C/{M}bdd(A)b) has a natural action on é-classes. By
the choice of b any automorphism from Autgp(M/A) extends to an element
of Aut(C/b{M}bdd(A)) (fixing M setwise). We have obtained the exact
sequence

0 — Aut(C/bM) — Aut(C/b{M}bdd(A)) — Autkp(M/A) — 0

where the kernel Aut(C/bM) preserves all é-classes. Hence we deduce that
Aut(C/b{M}bdd(A)) induces an action of Autkp(M/.A) on the set of e-
classes.

Since e is a bounded equivalence relation the pointwise stabilizer of the
set of e-classes is a normal subgroup H, < Autgp(M/A) of bounded index.

DEFINITION 4.5. We say that g is G-compact if for any sufficiently homo-
geneous structure M realizing all KP-strong types over A and any bounded
equivalence relation e as above, there is no Autgp(M/A)-invariant equiva-
lence relation E refining Efg on the appropriate M', such that the corre-
sponding group H,. preserves all F-classes.

For simplicity let A = A C C. It is worth noting that if an equivalence
relation F witnesses non-G-compactness then each E{éiﬁ—class on M! consists
of < |Autgp(M/A) : He| classes of E. Since the intersection of a bounded
number of subgroups of Aut(M/A) of bounded index also has bounded index,
we see that in this case Th(M, a),c4 is not G-compact (the intersection of
all conjugates of F contradicts G-compactness). Since we do not know too
many examples of non-G-compact theories, the case of non-G-compact KP-
determined types looks slightly artificial. Nevertheless we conjecture that
such KP-determined types exist.

REMARK. It is worth noting that replacing Autkp and e above by Autr,
and a bounded equivalence relation invariant over bA respectively we ob-
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tain another version of G-compactness. This version is satisfied by any L-
determined type because Eﬁ‘ ! is the finest bounded equivalence relation.

Now let o be a strongly determined type over A C C. Let M be suffi-
ciently saturated and homogeneous, b = onm and e be a finite equivalence
relation definable over Ab. Let € be the equivalence relation defined on the
appropriate C! by the condition that (@, a’) € € if and only if the correspond-
ing e-classes of @ and @ are in the same orbit with respect to Aut(C/bM).
We know that the pointwise stabilizer of the set of e-classes is a normal
subgroup H, < Aut(M/acl®d(A)) of finite index.

We say that p is G-finite if the intersection of all subgroups of
Autgy (M/A) of the form H, for finite equivalence relations e as above is
of finite index in Autgy(M/A). The following question looks interesting. Is a
G-finite strongly determined type G-trivial? We know from Section 1.2 that
the theory of the corresponding counterexample must be non-G-compact.
Moreover, it looks likely that a G-finite strongly determined type naturally
defines a G-compact KP-determined type (this may be connected with the
question finishing Section 1).
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