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Strongly determined types and G-
ompa
tnessbyA. A. Ivanov (Wro
ªaw)
Abstra
t. We study 
onne
tions between G-
ompa
tness and existen
e of stronglydetermined types.0. Introdu
tion. Theories admitting strongly determined types wereintrodu
ed in [6℄. It was shown there that the 
lass of these theories is verywide. In parti
ular it 
ontains all stable theories, PA, the theory of the�eld Qp, all o-minimal theories and theories of various �nitely homogeneousstru
tures. Some other interesting examples 
an be found in Se
tion 2 of [6℄.A great deal of e�ort of [6℄ was 
on
entrated on demonstration that manyresults from stability theory 
an be 
arried over to the mu
h more general
ontext of theories admitting strongly determined types.Hrushovski has pointed out to the authors of [6℄ that a 
orre
t version ofLemma 2.2 of [6℄ must involve G-
ompa
tness. This has be
ome the startingpoint of this paper. Here we study 
onne
tions between existen
e of stronglydetermined types and G-
ompa
tness. In parti
ular we repair Lemma 2.2of [6℄ and several appli
ations of this lemma from [6℄. In Se
tion 1.1 we givesome ne
essary information about strongly determined types. In Se
tion 1.2we introdu
e G-trivial strongly determined types and in Se
tion 2 we usethem in the main result of the paper asserting that admitting strongly de-termined 1-types and type-de�nability of the equivalen
e relation of being ofthe same Las
ar strong type imply that this equivalen
e relation 
oin
ideswith the relation of being of the same strong type. In parti
ular we have this
on
lusion if the theory is simple and admits strongly determined 1-types.Some further questions arising in the 
ase of simple theories are dis
ussed inSe
tion 3. We give some examples there.It turns out that the s
heme of the de�nition of strongly determined types
an be applied in the 
ase of bounded equivalen
e relations. This leads us2000 Mathemati
s Subje
t Classi�
ation: Primary 03C45.Key words and phrases: G-
ompa
tness, strongly determined type.[227℄



228 A. A. Ivanovto KP-determined and L-determined types, very 
lose notions whi
h be
omemore natural in some situations. We dis
uss this in Se
tion 4.This resear
h was supported by KBN grant 2 P03A 007 19, and basi-
ally 
arried out when the author held a visiting position at the Instituteof Mathemati
s, Polish A
ademy of S
ien
es. The author is grateful to thereferee for helpful remarks.In this paper, T will denote a �rst-order theory over a 
ountable lan-guage. The symbols M,N will denote models of T , whi
h are assumed to beelementary substru
tures of a su�
iently saturated monster model C. Weuse A,B to denote subsets of C, assumed to be mu
h smaller than C. If āis a tuple, we often abuse notation by writing ā ∈ M . If no su
h restri
tionis given, then ā is assumed just to live in C. If r(x̄) is a type in (possiblyin�nitely many) variables x̄, we denote by r(M) the set of tuples (sequen
es)from M whi
h realize r. For any stru
ture M and A ⊆ C, de�ne Aut(M/A)to be the group of automorphisms of M whi
h are partial maps C → C�xing A pointwise.The following de�nitions and fa
ts are partially taken from [10℄. An A-hyperimaginary is an equivalen
e 
lass of an A-type-de�nable equivalen
erelation [10℄. It be
omes an imaginary if the equivalen
e relation is A-de�nable. Let bdd(A) be the set of all A-hyperimaginaries whi
h have asmall orbit under Aut(C/A). A hyperimaginary e is bounded if e ∈ bdd(∅).In this paper we usually 
onsider hyperimaginaries depending on �nitelymany variables.We re
all that for c̄ ∈ C the strong type (resp. KP-strong type) of c̄ over
A is just tp(c̄/acleq(A)) (resp. tp(c̄/bdd(A))). We write S(acleq(A)) (resp.
S(bdd(A))) for the set of strong (resp. KP-strong) types over A dependingon variables of the sorts of the language of T . It is worth noting here thata straightforward de�nition allows us to 
onsider types of hyperimaginariesover hyperimaginaries. We may also de�ne acleq(A) (resp. bdd(A)), for A
onsisting of hyperimaginaries, as A together with the set of all equivalen
e
lasses of A-de�nable (1) (resp. A-type-de�nable) equivalen
e relations hav-ing �nite (resp. small) orbits under Aut(C/A). On the other hand, in thispaper we 
on
entrate on theories admitting strongly determined types andthe 
orresponding de�nition (see [6℄) involves types over sets of basi
 sorts.Therefore in all our statements sets of hyperimaginaries will appear in someparti
ular situations when all imaginaries (hyperimaginaries) from A belongto acleq(A ∩ C) (resp. bdd(A ∩ C)); here by A ∩ C we denote the partof A of the sorts of the language of T . Then acleq(A) (resp. bdd(A)) is just
acleq(A∩ C) (resp. bdd(A∩ C)).(1) By an Aut(C/A)-invariant formula with parameters from C.



Strongly determined types and G-
ompa
tness 229For δ∈{1, 2, . . . , ω} and a set A let EA,δ
L be the �nest bounded Aut(C/A)-invariant equivalen
e relation on δ-sequen
es. The 
lasses of EA,δ

L are 
alledLas
ar strong types (2). For A ⊂ C the relation EA,δ
L 
an be 
hara
terizedas follows ([1℄): (ā, b̄) ∈ EA,δ

L if there are models M1, . . . ,Mn < C 
on-taining A and sequen
es ā0 (= ā), . . . , ān (= b̄) su
h that tp(āi/Mi+1) =

tp(āi+1/Mi+1), 0 ≤ i < n. Equivalently (ā, b̄) ∈ EA,δ
L if there are sequen
es

ā0 (= ā), . . . , ān (= b̄) su
h that ea
h pair āi, āi+1, 0 ≤ i < n, extends to anin�nite indis
ernible sequen
e over A ([1℄).Let A ⊂ C. We denote by EA,δ
KP the �nest bounded A-type-de�nableequivalen
e relation on δ-sequen
es, and by EA,δ

Sh the interse
tion of all �nite
A-de�nable equivalen
e relations on δ-sequen
es. Sequen
es ā and b̄ havethe same strong (resp. KP-strong) types over A if and only if they are EA,δ

Sh -equivalent (resp. EA,δ
KP -equivalent). It is known from [9℄ that for ω-
ategori
altheories and for �nite A ⊂ C and δ, EA,δ

Sh = EA,δ
KP = EA,δ

L . For small theories
EA,δ

Sh = EA,δ
KP ([7℄, [8℄, [12℄).In the paragraphs above we have slightly 
hanged the notation from [1℄.The reason is that in the 
ase when X is a set de�ned over A and B, thenotation EX

KP 
an be interpreted as both EA,n
KP and EB,n

KP . These relations arenot ne
essarily the same. Below we often use just EKP when it is 
lear overwhi
h set we work.For any stru
ture M and A⊆C, de�ne AutKP(M/A) :=Aut(M/bdd(A))and AutSh(M/A) := Aut(M/acleq(A)). We 
all the elements of AutSh(M/A)(resp. AutKP(M/A)) Shelah strong automorphisms over A (resp. KP-strongautomorphisms over A); the elements of AutSh(M) = AutSh(M/∅) are 
alledShelah strong automorphisms (3). We talk similarly of Shelah strong (resp.KP-strong) elementary maps over A.Let M be a saturated stru
ture of un
ountable 
ardinality and let
AutL(M) be the group of all Las
ar strong automorphisms (�xing the
lasses of all bounded invariant equivalen
e relations). Then GalL(Th(M)) =
Aut(M)/AutL(M), the Galois group of Th(M), does not depend onM . Thefollowing group extensions show relationships among these notions:

1 → AutKP(M)/AutL(M) → GalL → GalKP = Aut(M)/AutKP(M) → 1and
1 → AutSh(M)/AutL(M) → GalL → GalSh = Aut(M)/AutSh(M) → 1.It is known that the groups GalKP and GalSh are 
ompa
t. The theory(2) Usual strong types 
an be 
alled Shelah strong types.(3) They were introdu
ed by Las
ar as strong automorphisms.
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Th(M) is 
alled G-
ompa
t if GalL = GalKP. The main results of the paperare 
onne
ted with the question when GalL = GalSh.1. Strongly determined types and equivalen
e relations. We startthis se
tion with a short introdu
tion to strongly determined types [6℄.1.1. Strongly determined types. The following de�nition is taken from [6℄.Let A ⊂ C and A ⊂ acleq(A) with A ⊆ A. If q(ȳ) ∈ S(acleq(A)) we say thata type p(x̄, ȳ) ∈ S(A) is a q-
onsistent x̄-type if for any sequen
e ā1, . . . , ānof realizations of q the set ⋃

{p(x̄, āi) : 1 ≤ i ≤ n} is 
onsistent. A stronglydetermined type over A is a fun
tion ̺ whi
h assigns a q-
onsistent x̄-type
̺(q)(x̄, ȳ) to every q(ȳ) ∈ S(acleq(A)), and is monotoni
: if ȳ′ is a subtupleof ȳ and q(ȳ), q′(ȳ′) ∈ S(acleq(A)) with q(ȳ) ⊢ q′(ȳ′), then the restri
tion of
̺(q)(x̄, ȳ) to x̄ȳ′ is ̺(q′)(x̄, ȳ′).Suppose that ̺ is a strongly determined type over A. For every B ⊂ Cde�ne

̺B(x̄) =
⋃

{̺(q)(x̄, b̄) : q ∈ S(acleq(A)), b̄ |= q, b̄ ∈ B}.The following notions are at the 
entre of [6℄. We say that a theory T ad-mits strongly determined types over A (A ⊂ C) if every type of S(A) extendsto a strongly determined one. A theory T admits strongly determined typesif it admits strongly determined types over every set A ⊂ C of parameters.The following lemma shows that in fa
t the de�nition of strongly deter-mined types does not 
hange if we strengthen it by the requirement that
̺(q)(x̄, ȳ) is a type over acleq(A). This lemma is a version of Lemma 1.3from [6℄.Lemma 1.1. Let A ⊂ C, A ⊆ A ⊆ acleq(A) and let ̺(x̄) be a stronglydetermined type over A. Then there exists a unique strongly determined type
̺′(x̄) over acleq(A) su
h that for any q ∈ S(acleq(A)), ̺′(q) ⊢ ̺(q).Proof. Let M be very ri
h over A: for all n ∈ ω and all m̄ ∈ M , Mrealizes all n-types from S(acleq(Am̄)). Let c̄ |= ̺M . For q ∈ S(acleq(A))and b̄ |= q, b̄ ∈M , de�ne ̺′(q) := tp(c̄b̄/acleq(A)).To see that the de�nition is 
orre
t, suppose that b̄, b̄′ realize the sametype over acleq(A). We may assume that b̄′ ∈ M . Let b̄d̄ ∈ M be of thesame strong type over A as b̄c̄. Choose d̄′ ∈M su
h that b̄′d̄′ is of the samestrong type over A as b̄d̄. Then ̺(tp(b̄d̄/acleq(A))) = ̺(tp(b̄′d̄′/acleq(A))).Let E(ȳ, z̄) (where |ȳ| = |b̄| + |c̄|) be a �nite equivalen
e relation de�nableover A. Sin
e E(b̄c̄, b̄d̄), we have E(b̄′c̄, b̄′d̄′). It follows by transitivity that
E(b̄c̄, b̄′c̄). As a result b̄c̄ and b̄′c̄ have the same strong type over A. The restis easy.It is 
lear from the proof that any strongly determined type ̺ over A isdetermined by ̺M , where M is very ri
h over A.



Strongly determined types and G-
ompa
tness 231Lemma 1.2. Let A ⊂ C and let T admit strongly determined n-types overa set A. Then every strong n-type over A extends to a strongly determinedtype over A.Proof. Let q(x̄) be a type over acleq(A) extending p(x̄), a 
omplete typeover A. Let ̺(x̄) be a strongly determined extension of p(x̄) and ̺′(x̄) bea strongly determined type over acleq(A) de�ned for ̺ by Lemma 1.1. Let
q1(x̄) be the strong type over acleq(A) de�ned by ̺′ (by ̺′M for a saturatedmodel M). Sin
e q1 extends p, there is an automorphism α over A taking q1to q. Let α take ̺ to ̺1 (de�ned by α(c̄) for c̄ |= ̺M for su�
iently saturated
M). Then ̺1 is a strongly determined extension of q.The following is Lemma 2.1 from [6℄.Lemma 1.3. Let A ⊆ M , and suppose that M is very ri
h over A. Let
p(x̄) ∈ S(A). Then the following are equivalent :(i) p extends to a strongly determined type over A;(ii) for every �nite set Γ of �nite partial acleq(A)-elementary maps

M →M there exists c̄ ∈ p(M) su
h that all maps in Γ are ele-mentary over c̄A.Our �nal remark here is folklore. For example it appears in some formin [5℄.Proposition 1.4. If a theory T admits strongly determined types then
T is G-
ompa
t and its Las
ar strong types 
oin
ide with (Shelah) strongtypes.Proof. Let M and N be small models of T . We �x some enumerations of
M and N and assume that the 
orresponding sequen
es have the same strongtype. For any formula φ(x1, . . . , xn) ∈ tp(M) �nd a strongly determined type
̺ 
ontaining φ. Let c̄ |= ̺MN . Then M and N have the same type over c̄.By 
ompa
tness there is a model C su
h that M and N have the same typeover C. This means that M and N have the same Las
ar strong type.This proposition shows that admitting strongly determined types 
an be
onsidered as a very strong version of G-
ompa
tness. In fa
t our main re-sults below des
ribe some situations when G-
ompa
tness implies admittingstrongly determined types.1.2. Strongly determined types and type-de�nable equivalen
e relations.Let A ⊂ C, A ⊆ A ⊆ acleq(A) and let ̺ be a strongly determined typeover A. Let M be su�
iently saturated, A ⊆ M , b̄ |= ̺M and e be a �niteequivalen
e relation de�nable over Ab̄ (4). The group Aut(C/b̄M) naturallya
ts on the set of all e-
lasses. Let ẽ be the equivalen
e relation de�ned(4) By an Aut(C/Ab̄)-invariant formula with parameters from C.



232 A. A. Ivanovon the appropriate C
l by the 
ondition that (ā, ā′) ∈ ẽ if and only if the
orresponding e-
lasses of ā and ā′ are in the same orbit with respe
t to

Aut(C/b̄M). By the 
hoi
e of b̄ any automorphism from AutSh(M/A) =
Aut(M/acleq(A)) extends to an element of Aut(C/b̄{M} acleq(A)) (�xing
M setwise). We have obtained the exa
t sequen
e

0 → Aut(C/b̄M) → Aut(C/b̄{M} acleq(A)) → AutSh(M/A) → 0where the kernel Aut(C/b̄M) preserves all ẽ-
lasses. Hen
e we infer that
Aut(C/b̄{M} acleq(A)) indu
es an a
tion of AutSh(M/A) on the set of ẽ-
lasses.Sin
e e is a �nite equivalen
e relation the pointwise stabilizer of the setof ẽ-
lasses is a normal subgroup He ⊳ AutSh(M/A) of �nite index.Definition 1.5. We say that ̺ is G-trivial if for any stru
ture M whi
hrealizes all strong types over A and is AutSh(M/A)-homogeneous for �nitemaps, and any �nite equivalen
e relation e as above, there is no AutSh(M/A)-invariant equivalen
e relation E properly re�ning EA,l

Sh on the appropriateM lsu
h that the 
orresponding group He preserves all E-
lasses (in other words,for any strong type over A the a
tion of He on the set of its M -realizationsis transitive).It is worth noting that if an equivalen
e relation E witnesses non-G-triviality of ̺ then ea
h EA,l
Sh -
lass on M l 
onsists of ≤ |AutSh(M/A) : He|
lasses of E.

Remark. For any α ∈ Aut(M/A) the image of a G-trivial stronglydetermined type is G-trivial. Thus the natural version of Lemma 1.2 forG-trivial strongly determined types still holds (by inspe
tion of the proof).The proposition below gives three reasons why G-trivial strongly deter-mined types are quite frequent. For ease of notation we restri
t ourselves tothe 
ase when A = A ⊂ C. We need the following notion.We say that a strongly determined type ̺ over A is type-de�nable if forany q(ȳ) ∈ S(acleq(A)) and φ(x̄, ȳ) ∈ ̺(q) there is ψ(ȳ) ∈ q(ȳ) su
h that forany r(ȳ) ∈ S(acleq(A)) 
ontaining ψ(ȳ) the formula φ(x̄, ȳ) belongs to ̺(r).Proposition 1.6. Let A ⊂ C be a 
ountable set and M be an
AutSh(M/A)-homogeneous stru
ture realizing all strong types over A.(1) Assume that for all l ∈ ω every AutSh(M/A)-invariant equivalen
erelation E ⊆ M2l dividing ea
h EA,l

Sh -
lass into �nitely many E-
lasses is type-de�nable over acleq(A). Then every strongly deter-mined type over A is G-trivial.(2) If EA
L = EA

KP on �nite tuples (in parti
ular if Th(M) is simple),then every strongly determined type over A is G-trivial.(3) A type-de�nable strongly determined type over A is G-trivial.
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ompa
tness 233Proof. (1) Let
p(x̄) = {φ0(x̄), φ1(x̄), . . . , φj(x̄), . . . }be a strong type over A whi
h is divided by E into �nitely many 
lasses andlet

Ψ = {ψ0(x̄, ȳ), ψ1(x̄, ȳ), . . . , ψj(x̄, ȳ), . . . }be the type over acleq(A) de�ning E. We may assume that ea
h φj+1(x̄)implies φj(x̄) and ea
h ψj+1(x̄, ȳ) implies ψj(x̄, ȳ). Moreover by 
ompa
tnesswe may assume that ea
h ψj(x̄, ȳ) is symmetri
 and ea
h formula ψj+1(x̄, ȳ)∧
ψj+1(ȳ, z̄) implies ψj(x̄, z̄).Sin
e p/E is �nite, there is j su
h that p(x̄) ∪ p(ȳ) implies ψj(x̄, ȳ) →
ψj+1(x̄, ȳ). By 
ompa
tness some φi(x̄)∧φi(ȳ) implies ψj(x̄, ȳ) → ψj+1(x̄, ȳ).We may also assume that for some n the formula φi(x̄1)∧· · ·∧φi(x̄n) implies∨
{ψj(x̄k, x̄l) : 0 ≤ k < l ≤ n}. Thus ψj de�nes a �nite equivalen
e on φiwhi
h 
oin
ides with E on p(C). This 
ontradi
ts the assumption that p isa strong type.As a result we see that there is no AutSh(M/A)-invariant equivalen
erelation E properly dividing some EA

Sh-
lass into �nitely many E-
lasses.This means that every strongly determined type over A satis�es the de�nitionof G-trivial types.(2) Let M be su�
iently saturated. That AutSh(M/A)/AutKP(M/A) isa 
ompa
t 
onne
ted group is folklore (for example it 
an be dedu
ed fromLemma 4.10 of [10℄ or Remark 3.1 from [8℄). A 
omplete proof of this isgiven in Theorem 21 of [14℄. By a theorem of My
ielski from [11℄ the group
AutSh(M/A)/AutKP(M/A) is divisible and does not have subgroups of �niteindex. On the other hand, if E is an equivalen
e relation as in the de�nition ofG-trivial strongly determined types, then it is 
oarser than the 
orresponding
EA,l

KP (= EA,l
L ). This implies that the subgroup H < AutSh(M/A) �xing all

E-
lasses is a proper subgroup of AutSh(M/A) of �nite index whi
h 
ontains
AutKP(M/A). This 
ontradi
tion shows that every strongly determined typeover A is G-trivial.(3) Let ̺ be a strongly determined type over A, b̄ |= ̺M and e be a �niteequivalen
e relation de�nable over Ab̄. As above de�ne the 
orrespondingequivalen
e relation ẽ ⊃ e. The pointwise stabilizer of the set of ẽ-
lassesforms a normal subgroup He ⊳ AutSh(M/A) of �nite index.For any ẽ-
lass �nd a formula θ(ū, b̄, d̄) with d̄ ∈ M asserting that thetuple ū represents one of the e-
lasses of this 
lass. If d̄′ ∈M is of the samestrong type over A as d̄ then by the 
hoi
e of b̄ and (the proof of) Lemma 1.1,
tp(d̄b̄/acleq(A)) = tp(d̄′b̄/acleq(A)) and we see that θ(ū, b̄, d̄′) still des
ribes
e-
lasses of some ẽ-
lass. Below we assume that all ẽ-
lasses are so de�nedover b̄d̄ by appropriate formulas.



234 A. A. IvanovWe see that the equivalen
e relation of He-orbits on the AutSh(M/A)-orbit of d̄ is de�ned by the formula over Ab̄ whi
h is the 
onjun
tion
Φ(w̄′, w̄′′, b̄) of the 
onditions of the form ∀ū(θ(ū, b̄, w̄′) ↔ θ(ū, b̄, w̄′′)) (forall ẽ-
lasses). Sin
e b̄ |= ̺M , the truth of Φ(d̄′, d̄′′, b̄) is determined by thestrong type of d̄′d̄′′ over A. This means that ¬Φ(w̄′, w̄′′, b̄) for tuples from Mof the type tp(d̄/acleq(A)) is equivalent to some disjun
tion of strong typeson w̄′w̄′′ over A.On the other hand, sin
e ̺ is type-de�nable, any strong type of this form
ontains a formula over acleq(A) whi
h implies ¬Φ(w̄′, w̄′′, b̄). We now seethat Φ(w̄′, w̄′′, b̄) is equivalent to a 
onjun
tion of formulas over acleq(A).As a result we have obtained an equivalen
e relation type-de�nable over
acleq(A) whi
h divides stp(d̄/A) into �nitely many 
lasses. The argument ofthe �rst part of the proposition shows that the number of 
lasses is 1. Thus
θ(C, b̄, d̄) = θ(C, b̄, d̄′) for θ as above and d̄′ of the same strong type over Aas d̄. This shows that ̺ is G-trivial.
Remark. It is worth noting that in the de�nition of G-triviality it onlysu�
es to demand that the 
orresponding property holds over some �xedmodel M (saturated and homogeneous enough). Indeed, let ̺ be a stronglydetermined type over A, M < M ′ be su�
iently saturated and homoge-neous models, b̄ |= ̺M , b̄′ |= ̺M ′ and φ(x̄, ȳ, z̄) be a formula over A su
hthat φ(x̄, ȳ, b̄) de�nes a �nite equivalen
e relation e. As above de�ne the 
or-responding equivalen
e relation ẽ ⊃ e. The pointwise stabilizer of the set of

ẽ-
lasses forms a normal subgroup He ⊳AutSh(M/A) of �nite index.Assume that the de�nition of G-triviality holds for M and b̄. For any ẽ-
lass �nd a formula θ(ū, b̄, d̄) with d̄ ∈M asserting that the tuple ū representsone of the e-
lasses of this ẽ-
lass. If d̄′ ∈M is of the same strong type over
A as d̄ then by the 
hoi
e of b̄, tp(d̄b̄/acleq(A)) = tp(d̄′b̄/acleq(A)) and byG-triviality of ̺ over M we dedu
e that θ(ū, b̄, d̄′) still des
ribes e-
lasses ofthe same ẽ-
lass.If now d̄′ belongs to M ′ and is of the same strong type over A as d̄, then

tp(d̄b̄/acleq(A)) = tp(d̄b̄′/acleq(A)) = tp(d̄′b̄′/acleq(A)).This implies that for e′ de�ned by φ(x̄, ȳ, b̄′) the formulas θ(ū, b̄′, d̄′) and
θ(ū, b̄′, d̄) des
ribe e′-
lasses of the same ẽ′-
lass (the strong type of b̄′d̄d̄′ over
A 
oin
ides with the type of some b̄d̄d̄′′ with d̄′′ ∈M of the type stp(d̄/A)).This implies G-triviality with respe
t to M ′. The rest is obvious.
Question. Is it possible that in the situation when M is su�
ientlysaturated and homogeneous, the group AutKP(M) has a subgroup of �niteindex G su
h that the G-orbit equivalen
e relation on some Mk properlyre�nes Ek

KP?
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tness 2352. G-
ompa
tness and strongly determined types. Our main re-sult in this se
tion gives some su�
ient 
onditions (in terms of strongly de-termined types) for EL = ESh. Then we study to what extent G-
ompa
tnessis needed for existen
e of strongly determined n-types when n > 1. The fol-lowing statement 
orre
ts Lemma 2.2 from [6℄ by adding the assumptionthat EL = EKP on �nite tuples. The idea that Lemma 2.2 should have someassumption 
onne
ted with G-
ompa
tness was suggested by E. Hrushovski.Theorem 2.1. Let T be a 
omplete theory su
h that for any �nite A ofthe basi
 sort , EA
L = EA

KP on �nite tuples, and every 1-type over A extends toa strongly determined type over A. Then for all tuples ā and all n > 0, every
n-type of T over ā has a strongly determined extension over ā. Moreover ,all strongly determined types over ā are G-trivial.This theorem implies that if T is simple and every 1-type over a �niteset extends to a strongly determined type, then any n-type over a �nite setextends to a strongly determined one. The proof is based on the followingtheorem.Theorem 2.2. Let T be a 
omplete theory su
h that for any �nite set
A of the basi
 sort , EA

L = EA
KP on �nite tuples, and every 1-type over Aextends to a strongly determined type over A. Then for all �nite sets A ofthe basi
 sort , EA

L = EA
Sh on �nite tuples. In parti
ular , EA,k

KP = EA,k
Sh forall A and k ≤ ω.Proof. The last statement of the theorem follows from the main state-ment by the de�nition of EA

KP and EA
Sh (for example as in the proof ofTheorem 15 from [7℄).Let Ψ(x̄, ȳ) be a type de�ning Eā

L on n-tuples satisfying p(x̄) ∈ S(ā). Wemay assume that
p(x̄) = {φ0(x̄), φ1(x̄), . . . , φj(x̄), . . . },

Ψ = {ψ0(x̄, ȳ), ψ1(x̄, ȳ), . . . , ψj(x̄, ȳ), . . . },where ea
h φj+1(x̄) implies φj(x̄) and ea
h ψj+1(x̄, ȳ) implies ψj(x̄, ȳ). Wewant to prove that Ψ(x̄, ȳ) does not re�ne Eā,n
Sh on p(C). By Proposition1.6(2) we assume below that every 1-type over ā extends to a G-trivialstrongly determined type over ā.The proof is by indu
tion on |x̄|. Let |x̄| = 1. By Lemma 1.2 any strongtype over ā extending p(x) extends to a strongly determined type. Let ̺(x) besu
h a type. Let c |= p(x) be of the strong type de�ned by ̺. If ̺c(x) 
ontains

¬ψj(x, c) for some j, then for any set C ⊂ p(C) 
onsisting of elements ofthe same strong type as c, any realization of ̺M for a su�
iently saturatedstru
ture M ⊃ C provides an element not EL-equivalent to any elementof C. This 
ontradi
ts the boundedness of EL.
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ontains all ψj(x, c) ∧ φj(x). Then by the de�nitionof a strongly determined type for any c′ of the same strong type as c thetype ̺c′(x) 
ontains all formulas ψj(x, c
′) ∧ φj(x). Let b |= ̺M (x), where

c, c′ ∈M . Then (c, b) and (c′, b) are in EL. Thus (c, c′) ∈ EL.Towards a 
ontradi
tion assume that for some �nite A, EA
L 6= EA

Sh on�nite tuples. Choose p(x̄) and ā as above so that n = |x̄| is minimal with
Eā,n

L 6= Eā,n
Sh on tuples satisfying p(x̄). Then n > 1. We may assume that

p(x̄) is not algebrai
 with respe
t to the �rst 
oordinate. Sin
e we assume
Eā,n

L 6= Eā,n
Sh on p(C), ea
h ESh-
lass from p(C) splits into several EL-
lasses.Let p0(x1) be a non-algebrai
 type over ā 
ontaining all formulas of theform ∃x2, . . . , xnφj(x̄). Then by an appropriate version of Lemma 1.2 anystrong type over ā extending p0(x1) extends to a G-trivial strongly deter-mined type. Fix su
h a strong type and take an appropriate ̺(x1). Let M
ontain representatives of all Eā,n

L -
lasses and b1 |= ̺M . Take a strong type
q1(x1, . . . , xn) ∈ S(acleq(ā)) extending p(x̄) ∪ stp(b1/ā) and �nd b2, . . . , bnsu
h that q1(x̄) = stp(b1b2 . . . bn/ā). Sin
e any strong type over ā extending
p(x̄) 
an be 
hosen as q1 for appropriate ̺(x1), the proof of the theorem willbe �nished if we show that q1(C) does not split into several EL-
lasses.Let q1(x̄) = {φ′0, . . . , φ

′
i, . . . } with φ′i+1 ⊢ φ′i, i ∈ ω. Here we assumethat ea
h φ′i de�nes an equivalen
e 
lass of some �nite equivalen
e relationover ā. Below we present all φ′i by formulas over parameters from M with

∃x2, . . . , xnφ
′
i(x̄) ∈ tp(b1/M) under that presentation. We will use the fa
tthat any automorphism of M strong over ā �xes φ′i(M).Let q2(x2, . . . , xn) = stp(b2 . . . bn/b1ā) = {φ′′0, . . . , φ

′′
i , . . . } with φ′′i+1 ⊢φ

′′
i ,

i ∈ ω. We assume that ea
h φ′′i de�nes an equivalen
e 
lass of a �nite equiv-alen
e relation de�ned by a formula ei(ū, v̄, b1, ā) over b1ā. We also assumethat φ′i(x̄) implies that the equivalen
e relation ei(ū, v̄, x1, ā) over x1ā is�nite.The group Aut(C/b1M) naturally a
ts on the set of all ei-
lasses. Let
ẽi ⊃ ei be the equivalen
e relation de�ned by: (c̄1, c̄2) ∈ ẽ if the ei-
lasses of c̄1and c̄2 are in the same Aut(C/b1M)-orbit. For the Aut(C/b1M)-orbit of the
ei-
lass 
orresponding to φ′′i , �nd a formula θi(ū, b1, d̄i) ∈ tp(b2 . . . bn/b1M)with d̄i ∈ M asserting that ū represents one of the ei-
lasses of this orbit.If d̄′i ∈ M is of the same strong type over ā as d̄i then by the 
hoi
e of b1,
tp(d̄ib1/acleq(ā)) = tp(d̄′ib1/acleq(ā)) and θi(ū, b1, d̄

′
i) still des
ribes an orbitof ei-
lasses (i.e. de�nes an ẽi-
lass). Extending d̄i if ne
essary, we may as-sume that all ẽi-
lasses are de�ned over b1d̄i by appropriate formulas. Sin
e

̺ is G-trivial we �nd thatfor any d̄′i ∈M of the same strong type over ā as d̄i,
θi(C, b1, d̄i) = θi(C, b1, d̄

′
i).
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ompa
tness 237Let c̄ = (c1, c2, . . . , cn) ∈ M be of the same strong type as b̄ over ā. If forsome j the type tp(b1/M) 
ontains
∀x2, . . . , xn(φ′j(x̄) ∧ θj(x2, . . . , xn, x1, d̄j) → ¬ψj(x̄, c̄))then for any c̄′ ⊂ M with stp(c̄/ā) = stp(c̄′/ā) and for appropriate d̄′j ∈ Mof the same strong type as d̄j over ā we have

∀x2, . . . , xn(φ′j(x̄) ∧ θj(x2, . . . , xn, x1, d̄
′
j) → ¬ψj(x̄, c̄

′)) ∈ tp(b1/M).By the previous paragraph,
∀x2, . . . , xn(φ′j(x̄) ∧ θj(x2, . . . , xn, x1, d̄j) → ¬ψj(x̄, c̄

′)) ∈ tp(b1/M).Thus b1 . . . bn is not EL-equivalent to any c̄′ ⊂M with stp(b̄/ā) = stp(c̄′/ā).This 
ontradi
ts the 
hoi
e of M .We see that for every j the type tp(b1/M) 
ontains all
∃x2, . . . , xn(φ′j(x̄) ∧ θj(x2 . . . xn, x1, d̄j) ∧ ψj(x̄, c̄

′))with stp(c̄/ā) = stp(c̄′/ā), c̄′ ⊂M .We now 
laim that for every c̄′ as above, there is a realization of all
φ′j(b1, x2 . . . xn) ∧ ej(x2 . . . xn, b2b3 . . . bn, b1ā) ∧ ψj(b1x2 . . . xn, c̄

′).To see this we apply 
ompa
tness and the following argument. If b′2 . . . b′nrealizes φ′j(b1, x2 . . . xn)∧θj(x2 . . . xn, b1, d̄j)∧ψj(b1x2 . . . xn, c̄
′), then by thede�nition of θ, there is γ ∈ Aut(C/b1M) taking the ej-
lass of b′2 . . . b′n tothe ej-
lass of b2 . . . bn. Then γ(b′2) . . . γ(b′n) realizes

φ′j(b1, x2 . . . xn) ∧ ej(x2 . . . xn, b2b3 . . . bn, b1ā) ∧ ψj(b1x2 . . . xn, c̄
′).Now assume that b1b′2 . . . b′n realizes all formulas

φ′j(x̄) ∧ ej(x2 . . . xn, b2 . . . bn, x1, ā) ∧ ψj(x̄, c̄
′).Then b2 . . . bn and b′2 . . . b′n have the same strong type over āb1. By indu
tionthey realize the same Las
ar strong type over b1ā. This obviously implies that

b1b
′
2 . . . b

′
n and b1b2 . . . bn have the same Las
ar strong type over ā. Then wesee that c̄′ and b̄ have the same Las
ar strong type as b1b′2 . . . b′n. Sin
e c̄′is an arbitrary realization of the strong type q1(x̄), we have a 
ontradi
tionwith the assumption that the 
orresponding Eā

Sh-
lass splits into several
Eā

L-
lasses.Proposition 2.3. Let T be a 
omplete theory su
h that for any �nite A,
EA

L = EA
Sh on �nite tuples (for example T is ω-
ategori
al), and every 1-typeover A extends to a strongly determined type over A. Then for all tuples āand all n > 0, every n-type of T over ā has a strongly determined extensionover ā. Moreover ea
h strongly determined type over ā is G-trivial.Proof. Pi
k M and ā ∈ M , and let p(x̄) be an n-type of Th(M) over ā.Form an in
reasing 
hain of su�
iently saturated stru
tures, M0 := M ≺
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M1 ≺ · · · ≺ Mn, together with c1, . . . , cn su
h that for ea
h i < n, if p 6⊢
xi ∈ acl(ā{xj : j < i}) then ci ∈ Mi \Mi−1 and ci realizes a 1-type over
Mi−1 de�ning a strongly determined type over (c1, . . . , ci−1, ā), and su
hthat (c1, . . . , cn) realizes p.To see that there is a strongly determined type ̺ over ā su
h that
(c1, . . . , cn) realizes ̺M it su�
es to show that for any b̄, b̄′ ∈ M of thesame strong type over ā the tuples b̄ and b̄′ have the same strong type over
āc̄ (then de�ne ̺(stp(b̄/ā)) := tp(c̄b̄/ā)). Having 
hosen b̄, b̄′ ∈ M of thesame strong type over ā we prove by indu
tion that for ea
h i, the tuples
b̄, b̄′ have the same strong type over āc1, . . . , ci. The 
ase i = 0 is obvious.At step i→ i+ 1 if ci+1 ∈ acl(āc1, . . . , ci), then b̄ and b̄′ realize the samestrong type over āc1, . . . , ci+1. Consider the 
ase when ci+1 6∈ acl(āc1, . . . , ci).Then there is a strongly determined type ̺′ over āc1, . . . , ci su
h that
ci+1 |= ̺′Mi

.Sin
e EL = ESh there are b̄0 (= b̄), b̄1, . . . , b̄m (= b̄′) su
h that everypair b̄l, b̄l+1 belongs to some in�nite āc1 . . . ci-indis
ernible sequen
e Il, l =
0, . . . ,m−1. It is 
lear that all ordered (a

ording to the enumeration) pairsfrom Il have the same strong type over āc1, . . . , ci. Thus for any realization
dl |= ̺′Il

the tuples b̄l and b̄l+1 have the same strong type over āc1, . . . , ci, dl.This implies that if d |= ̺′
b̄0,...,b̄m

, then all b̄l have the same strong type over
āc1, . . . , ci, d. By the 
hoi
e of ci+1 we now see that the tuples b̄ and b̄′ realizethe same strong type over āc1, . . . , ci+1.The last statement of the proposition follows from Proposition 1.6.Proof of Theorem 2.1. By Theorem 2.2 we may use Proposition 2.3.Lemma 2.2 in [6℄ was applied in a few pla
es there to show that sometheories admit strongly determined types. It has already been mentioned in[4℄ that most appli
ations of Lemma 2.2 in [6℄ are una�e
ted. We 
an nowshow this by applying Theorem 2.1. For example, Theorem 2.6 of [6℄ statesthat every weakly o-minimal theory admits strongly determined types. Were
all that a theory is weakly o-minimal if every de�nable subset of everymodel is a �nite union of 
onvex sets. To repair the proof given in [6℄ weneed the following fa
t:Every automorphism of a big saturated weakly o-minimal stru
ture isLas
ar strong. In parti
ular EL = EKP over �nite sets.The proof of Lemma 24 of [14℄ (whi
h states the same for o-minimaltheories) works without any 
hanges. For 
ompleteness we mention that theproof is based on the following statement: for any two small submodels Mand N of the same type over ∅ every 
onsistent formula φ(z̄) has a realization
c̄ su
h that M and N have the same type over c̄. This 
an be proved byindu
tion on |z̄|.
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ompa
tness 239We 
an now repeat the proof of Theorem 2.6 of [6℄ by repla
ing every-where Lemma 2.2 by Theorem 2.1 just proved.Another appli
ation of Theorem 2.1 is the following statement.Corollary 2.4. Every C-minimal stru
ture having EKP = EL over �-nite sets admits strongly determined types.This 
an be shown by following the proof of Theorem 2.10 and Remark2.11 of [6℄. In these arguments we should repla
e Lemma 2.2 by Theorem 2.1.The statement of the 
orollary is not as strong as the 
orresponding onein [6℄. The di�eren
e is that we now assume EKP = EL over �nite sets. Onthe other hand, many C-minimal stru
tures satisfy this. In parti
ular it istrue for non-trivially valued algebrai
ally 
losed �elds where the C-relationis naturally de�ned from the valuation. In fa
t in [5℄ it is expli
itly shownthat then Ek
L = Ek

Sh for all �nite k as well as that every type extends to astrongly determined one (in [4℄ and [5℄ they are 
alled invariant types).3. Examples of simple theories. Theorem 2.2 has some appli
ations
onne
ted with the problem whether EL = ESh holds for simple theories. Itis well known that simple teories are G-
ompa
t (for example, see [7℄). Nowthe statement below is a 
onsequen
e of Theorem 2.2 and Proposition 1.6.Let T be a simple theory su
h that every 1-type of T over any �niteset A extends to a strongly determined type over A. Then Eā,n
L = Eā,n

Shfor all n and tuples ā.It is un
lear when a simple theory admits strongly determined (KP-determined) types. In [6℄ there are examples of simple theories where astrongly determined type does not exist. On the other hand, it makes senseto verify this property for simple theories whi
h are obtained from stableones by adding a relation in some �generi
� way.First, we dis
uss one of the 
onstru
tions presented in [3℄. We start witha 
omplete theory T whi
h admits elimination of quanti�ers and eliminationof the quanti�er ∃∞ (for example, a 
omplete theory of algebrai
ally 
losed�elds). Fix a sort S of the theory and extend the language by a unarypredi
ate P of this sort. Then Theorem 2.4 from [3℄ states that the theory ofall P -expansions has a model 
ompanion TP,S . Corollary 2.8 there states that
TS,P is simple if T is simple. The following proposition 
on
erns a number ofexamples of simple theories (in
luding random graphs and generi
 dire
tedgraphs; see 2.12 in [3℄).Proposition 3.1. If T is simple and admits strongly determined typesthen so does TS,P .Proof. Let M |= TS,P be su�
iently saturated and D ⊂ M . By Lemma1.3 (Lemma 2.1 from [6℄) given a type p over D and a �nite family Γ of �nite
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acleq(D)-elementary maps in M it su�
es to �nd a realization ā |= p su
hthat all maps from Γ are elementary over āD. Let C =

⋃
{Dom(γ)∪Rng(γ) :

γ ∈ Γ}. We may assume that D = ∅. Sin
e T admits strongly determinedtypes, �nd d̄ realizing a strongly determined extension ̺M of p overM (withrespe
t to T ). Then d̄ is forking-independent of C. In parti
ular, for any
c̄ ∈ C (we admit the 
ase c̄ = ∅), aclT (c̄d̄) ∩ aclT (C) = aclT (c̄). Using thiswe 
an extend the P -stru
ture of aclT (C) to a P -expansion on aclT (d̄C)so that any map b̄ → b̄′ from Γ indu
es a P -preserving map aclT (d̄b̄) →
aclT (d̄b̄′) and the 
orresponding P -expansion of aclT (d̄) agrees with p. Notethat to satisfy the �rst 
ondition it is enough to assume that all elementsof aclT (d̄C) \ (aclT (C) ∪ aclT (d̄)) are not in P . Sin
e any map from Γ a
tstrivially on aclT (∅), we 
an now take any P -expansion of aclT (d̄) extendingthe P -stru
ture of aclT (∅) and agreeing with p.By the axioms of TS,P (Theorem 2.4 from [3℄) given a realization d̄′ of anextension of the T -part of p over C, the isomorphism type of any P -expansionof aclT (d̄′C) extending the P -expansion of acl(C) in M is realized in M onsome aclT (d̄′′C), where d̄′′ is of the same type as d̄′ over C with respe
tto T . Using this �nd ā realizing on aclT (āC) the P -expansion of aclT (d̄C)built in the previous paragraph. By Corollary 2.6 from [3℄ the type p isdetermined by the isomorphism type of the expanded stru
ture on aclT (ā)(with distinguished ā |= p). Applying this we see that ā |= p and any mapfrom Γ is elementary over ā.Proposition 3.1 together with the dis
ussion from the �rst paragraph ofthis se
tion gives another proof of the following statement from [3℄ (end ofSe
tion 1).Corollary 3.2. Let T be a simple theory of the form TS,P as in Propo-sition 3.1. Then EL = ESh.The se
ond 
onstru
tion from [3℄ assigns a model 
ompanion TA (if itexists) to the theory of all stru
tures (M,σ) (σ ∈ Aut(M)) for models Mof a 
omplete theory T whi
h admits elimination of quanti�ers and has thePAPA. Corollary 3.8 from [3℄ states that TA is simple if T is stable. Thetheory ACFA of algebrai
ally 
losed �elds with a generi
 automorphism [2℄is an example of su
h TA. It looks likely that the approa
h of Theorem 3.1
an be developed to obtain admitting strongly determined types in the 
aseof TA (or ACFA). This 
ase is open. It is more 
ompli
ated than that ofProposition 3.1.We now give an example whi
h in some sense has 
onstru
tions very sim-ilar to those des
ribed above: we add some generi
 relations to the stru
ture.On the other hand, the e�e
t of this will be opposite. In this 
onstru
tionwe use redu
ts of the random graph [13℄.
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ompa
tness 241Proposition 3.3. There exists a simple ω-
ategori
al theory su
h thatfor any �nite set of parameters A, no non-algebrai
 type over A extends toa strongly determined type.Proof. The 
onstru
tion uses ideas from [6℄; in fa
t, Dugald Ma
phersonpointed out to the author that these ideas 
an be applied to su
h an example.Let L0 = {R1, R2, . . . , Rn, . . . } be a relational language, where ea
h Rihas arity 2i. The stru
ture M0 is built by a Fraissé 
onstru
tion, so we �rstspe
ify a 
lass K of �nite L0-stru
tures. In ea
h C ∈ K ea
h relation Rn de-termines a graph on the set (denoted by (C
n )) of unordered n-element subsetsof C. It is easy to see that K is an amalgamation 
lass: given A,B1, B2 ∈ Kwith B1∩B2 = A, de�ne C ∈ K as B1∪B2, so that no tuple c̄1c̄2 ∈ C whi
hsatis�es Rn meets both B2 \ B1 and B1 \ B2. Let M0 be the 
orrespondinguniversal homogeneous stru
ture. Note that Th(M0) admits elimination ofquanti�ers.

Claim A. The theory of M0 is supersimple of SU-rank 1.Let φ(x̄, b̄), |x̄| = l, be a quanti�er-free formula and (b̄i : i < ω) be anindis
ernible sequen
e of tp(b̄). We may assume that φ(x̄, b̄) implies x̄∩b̄ = ∅.Then any set Bn =
⋃
{b̄i : i ≤ n} 
an be extended by a tuple c1, . . . , clsatisfying all φ(x̄, b̄i), i ≤ n. Sin
e M0 is universal homogeneous, the tuple c̄
an be found inM0. We now see that any non-algebrai
 type does not divideover ∅; thus M0 is simple of SU-rank 1.Let M be the redu
t of M0 to the language L = {T1, . . . , Tn, . . . } of

3n-relations (of two-graphs) where a triple of n-element sets C1, C2 and C3satis�es Tn if and only if it 
ontains one or three edges with respe
t to Rn. Inthis 
ase any quadrangle of n-element sets has even Tn-triples. By Claim Athe stru
ture M is supersimple. It is easy to see (by generi
ity) that for all āand A, tp(ā/A) ⊢ tp(ā/acleq(A)) with respe
t to both Th(M0) and Th(M).
Claim B. Let C = {c1, . . . , cn} ⊆ M0. Let R′

n be the relation whi
h
oin
ides with Rn on all pairs D,B with C 6∈ {D,B} but for any D ∈ (M
n )we have: (C,D) ∈ Rn ↔ (C,D) 6∈ R′

n. Then the stru
ture M0 is isomorphi
to M ′
0 = (M,R1, . . . , Rn−1, R

′
n, Rn+1, . . .) and the stru
ture M is the redu
tof M ′

0 obtained by the same de�nition as M is obtained from M0.To prove the 
laim it su�
es to note that any stru
ture from K is em-beddable into M ′
0 and for every pair A < A′ from K with A′ ∩ M ′

0 = Athere exists an A-embedding of A′ into M ′
0 (verifying the latter 
ondition wemay assume that C ⊆ A). Both 
onditions follow from the fa
t that M0 isuniversal homogeneous. The se
ond statement of the 
laim is obvious.Let ā = (a1, . . . , an) ⊂ M . Let p(x) be a type over ā whi
h extendsto a strongly determined type, and let a0 be a realization over M of the
orresponding strongly determined type. Sin
eM0 is universal homogeneous,
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h that tp(a0b/ā) = tp(ba0/ā) with respe
tto both M0 and M (for example one 
an assume that there is no Rl-relationbetween any l-sets C 6= D with {a0, b} ⊆ C ∪D ⊆ ā ∪ {a0, b}, l > 0). Sin
e
M0 is universal homogeneous, there are elements c, d, d′ ∈M0 \ ā so that thefollowing 
onditions hold in M0:

tp(a0b/ā) = tp(bc/ā) = tp(bd/ā) = tp(cd/ā) = tp(cd′/ā)and for every proper subtuple ā′ ⊂ ā, tp(a0b/ā
′) = tp(bd′/ā′). We alsoassume that (bā, d′ā) ∈ Rn+1 if and only if (bā, dā) 6∈ Rn+1, and for any pair

C1, C2 with C1 ∪ C2 = dbā, distin
t from bā, dā, the 
orresponding pair C ′
1and C ′

2 (obtained by repla
ing d by d′) satis�es Rn+1 if and only if C1, C2does.Let R′
n+1 be obtained from Rn+1 as in Claim B (by swit
hing) with re-spe
t to the (unordered) tuple dā. Sin
e the stru
ture M ′

0 = (M,R1, . . . , Rn,
R′

n+1, Rn+2, . . . ) is isomorphi
 toM0, the type of bd′ over ā inM0 is the sameas the type of bd over ā in M ′
0 (by our 
onstru
tion mutually 
orrespondingsubtuples from bdā and bd′ā satisfy the same relations). Applying the laststatement of Claim B we see that the type of bd over ā in M is the same asthe type of bd′ over ā in M .Let q = tpM (bd/ā). Sin
e a0 realizes over M the 
orresponding stronglydetermined type, one of the following 
ases holds: (a) for every pair c′c′′ ∈Mrealizing q the triple (a0ā, c
′ā, c′′ā) belongs to Tn+1, or (b) for every pair

c′c′′ ∈M realizing q the triple (a0ā, c
′ā, c′′ā) does not belong to Tn+1.In both 
ases one of the sets {a0ā, bā, cā, dā} or {a0ā, bā, cā, d

′ā} has theproperty that an odd number of triples satisfy Tn+1. This 
ontradi
ts thede�nition of a two-graph.4. KP(L)-determined types and G-
ompa
t types. The resultsabove motivate the following question. Is there a theory admitting (having)strongly determined 1-types and having a strongly determined type whi
h isnot G-trivial? By Proposition 1.6(2) su
h a theory would be a prin
ipallynew example of a non-G-
ompa
t theory, be
ause all known examples have
EL = EKP on �nite tuples or do not have strongly determined types. Inthis se
tion we formulate further questions of this kind. They are motivatedby some remarks 
on
erning possible generalizations of strongly determinedtypes and G-triviality.4.1. KP-determined and L-determined types. Let A ⊆ C and A ⊆ A ⊂
bdd(A) (5). If q(ȳ) ∈ S(bdd(A)), we say that a type p(x̄, ȳ) ∈ S(A) is a
q-
onsistent x̄-type if for any sequen
e ā1, . . . , ān of realizations of q the set⋃
{p(x̄, āi) : 1 ≤ i ≤ n} is 
onsistent. A KP-determined type over a set A is a(5) In fa
t we may assume that A is an arbitrary set of hyperimaginaries.
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tness 243monotoni
 fun
tion ̺ whi
h assigns a q-
onsistent x̄-type ̺(q)(x̄, ȳ) to every
q(ȳ) ∈ S(bdd(A)).Suppose that ̺ is a KP-determined type over A. For every B ⊂ C de�ne

̺B(x̄) =
⋃

{̺(q)(x̄, b̄) : q ∈ S(bdd(A)), b̄ |= q, b̄ ∈ B}.The de�nition is a generalization of strongly determined types. The notionsare the same if EA
KP = EA

Sh. We now see that Theorem 2.2 implies that under
EKP = EL and admitting strongly determined 1-types, KP-determined typesare strongly determined.To obtain the de�nition of L-determined types we modify the de�nitionof KP-determined types by the requirement that the types q(ȳ) in that def-inition are Las
ar strong types over A. As above, for an L-determined type
̺ and a set B we de�ne ̺B.We now say that a theory T admits KP-determined (resp. L-determined)types over A ⊂ C if every type of S(A) extends to a KP-determined (resp.L-determined) one. A theory T admits KP-determined (resp. L-determined)types if it admits KP-determined (resp. L-determined) types over every set
A ⊂ C of parameters. Sin
e a strongly determined type naturally de�nesa KP-determined type and a KP-determined type naturally de�nes an L-determined type, the 
lass of theories admitting strongly determined types is
ontained in the 
lass of those admitting KP-determined (or L-determined)types. This suggests that the material from [6℄ and above 
an be slightlyextended. For example note that the KP- and L-versions of Theorem 2.1 aremu
h easier than the 
orresponding version for strongly determined types.Proposition 4.1. Let T be a 
omplete theory su
h that for any �nite Aof the basi
 sort every 1-type over A extends to an L-determined type over A.Then for all tuples ā ∈ C and all n > 0, every n-type of T over ā has anL-determined extension over ā. If EA

L = EA
KP on �nite tuples (for example Tis ω-
ategori
al), then the same statement holds for KP-determined types.Proof. Let ̺ be an L-determined type over ā.

Claim. For any b̄, b̄′ and c̄ |= ̺b̄b̄′ , if (b̄, b̄′) ∈ EL over ā, then (b̄, b̄′) ∈ ELover āc̄.Proof of Claim. Find b̄0 (= b̄), b̄1, . . . , b̄n (= b̄′) su
h that every pair b̄i,
b̄i+1 belongs to some in�nite ā-indis
ernible sequen
e Ii, i = 0, . . . , n − 1.Then for any realization c̄i |= ̺āIi

the tuples b̄i and b̄i+1 have the sameLas
ar strong type over āc̄i. This implies that if c̄ |= ̺b̄0,...,b̄n
, then all b̄i havethe same Las
ar strong type over āc̄.Now to �nish the proof of the proposition it su�
es to repeat the proof ofProposition 2.3 repla
ing everywhere strong and strongly determined typesby Las
ar strong and L-determined types respe
tively.
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L = EA

KP on �nite tuples the 
laim above be-
omes the 
orresponding 
laim for KP-determined types. Therefore it is 
learthat the proposition holds for KP-determined types.As in Se
tion 1 we 
an show that in fa
t the de�nitions of KP-determinedand L-determined types over A do not 
hange if we strengthen them by therequirement that ̺(q)(x̄, ȳ) is a type over bdd(A) (resp. is a Las
ar strongtype over A).Lemma 4.2. Let A ⊂ C and A ⊆ A ⊂ bdd(A). Let ̺(x̄) be a KP-determined (resp. L-determined) type over A. Then there exists a uniqueKP-determined type ̺′(x̄) over bdd(A) (resp. L-determined type over the setof 
lasses of all bounded Aut(C/A)-invariant equivalen
e relations) su
h thatfor any KP-strong (resp. Las
ar strong type) q, ̺′(q) ⊢ ̺(q).Proof. We start with the 
ase when ̺ is KP-determined. Let M be veryKP-ri
h over A: for all n ∈ ω and all m̄ ∈ M , M realizes all n-types from
S(bdd(Am̄)). Let c̄ |= ̺M . For q ∈ S(bdd(A)) and b̄ |= q, b̄ ∈ M , de�ne
̺′(q) := tp(c̄b̄/bdd(A)).To see that the de�nition is 
orre
t, repeat the 
orresponding proof ofLemma 1.1 repla
ing everywhere �nite equivalen
e relations by boundedtype-de�nable equivalen
e relations, and strong types by KP-strong types.In the 
ase when ̺ is L-determined let M be very L-ri
h over A: for all
n ∈ ω and all m̄ ∈ M , M realizes all Las
ar strong n-types over Am̄. Let
c̄ |= ̺M . For a Las
ar strong type q over A and b̄ |= q, b̄ ∈ M , de�ne ̺′(q)to be the Las
ar strong type of c̄b̄ over A.To see that the de�nition is 
orre
t take any b̄, b̄′ ∈M of the same Las
arstrong type over A. There are b̄0 (= b̄), b̄1, . . . , b̄n (= b̄′) su
h that every pair
b̄i, b̄i+1 belongs to some in�nite A-indis
ernible sequen
e Ii, i = 0, . . . , n−1.We may assume that these sequen
es 
onsist of tuples from M . Sin
e c̄ |=
̺IiA, the tuples b̄i and b̄i+1 have the same Las
ar strong type over Ac̄. Thisimplies that all b̄i have the same Las
ar strong type over Ac̄. In parti
ular
c̄b̄ and c̄b̄′ have the same Las
ar strong type over A.Repeating the proof of Lemma 1.2 we obtainLemma 4.3. Let T admit KP-determined (resp. L-determined) n-typesover a set A. Then every KP-strong (resp. L-strong) n-type over A extendsto a KP-determined (resp. L-determined) type.The 
ompa
tness argument from the proof of Lemma 2.1 from [6℄ 
an beeasily applied to the following lemma.Lemma 4.4. Suppose that M is very KP-ri
h (resp. L-ri
h) over A. Let
p(x̄) ∈ S(A). Then the following are equivalent :(i) p extends to a KP-determined (resp. an L-determined) type over A;
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tness 245(ii) for every �nite set Γ of �nite partial KP-strong (L-strong) elemen-tary maps M → M there exists c̄ ∈ p(M) su
h that all the maps in
Γ are elementary over c̄A.We now see by inspe
tion that Proposition 3.1 also holds for KP-deter-mined (resp. L-determined) types.The proof of Proposition 1.4 also works for the following statement: If atheory T admits KP-determined types, then T is G-
ompa
t.4.2. G-
ompa
t strongly determined types. Let ̺ be a KP-determinedtype over A. Let M be su�
iently saturated, A ⊆ M eq, b̄ |= ̺M and e bea bounded b̄A-type-de�nable equivalen
e relation. Let ẽ be the equivalen
erelation de�ned on the appropriate C

l by the 
ondition that (ā, ā′) ∈ ẽ ifand only if the 
orresponding e-
lasses of ā and ā′ are in the same orbit withrespe
t to Aut(C/b̄M).The group Aut(C/{M}bdd(A)b̄) has a natural a
tion on ẽ-
lasses. Bythe 
hoi
e of b̄ any automorphism from AutKP(M/A) extends to an elementof Aut(C/b̄{M}bdd(A)) (�xing M setwise). We have obtained the exa
tsequen
e
0 → Aut(C/b̄M) → Aut(C/b̄{M}bdd(A)) → AutKP(M/A) → 0where the kernel Aut(C/b̄M) preserves all ẽ-
lasses. Hen
e we dedu
e that

Aut(C/b̄{M}bdd(A)) indu
es an a
tion of AutKP(M/A) on the set of ẽ-
lasses.Sin
e e is a bounded equivalen
e relation the pointwise stabilizer of theset of ẽ-
lasses is a normal subgroup He ⊳AutKP(M/A) of bounded index.Definition 4.5. We say that ̺ is G-
ompa
t if for any su�
iently homo-geneous stru
ture M realizing all KP-strong types over A and any boundedequivalen
e relation e as above, there is no AutKP(M/A)-invariant equiva-len
e relation E re�ning EA,l
KP on the appropriate M l, su
h that the 
orre-sponding group He preserves all E-
lasses.For simpli
ity let A = A ⊂ C. It is worth noting that if an equivalen
erelation E witnesses non-G-
ompa
tness then ea
h EA,l

KP-
lass onM l 
onsistsof ≤ |AutKP(M/A) : He| 
lasses of E. Sin
e the interse
tion of a boundednumber of subgroups of Aut(M/A) of bounded index also has bounded index,we see that in this 
ase Th(M,a)a∈A is not G-
ompa
t (the interse
tion ofall 
onjugates of E 
ontradi
ts G-
ompa
tness). Sin
e we do not know toomany examples of non-G-
ompa
t theories, the 
ase of non-G-
ompa
t KP-determined types looks slightly arti�
ial. Nevertheless we 
onje
ture thatsu
h KP-determined types exist.
Remark. It is worth noting that repla
ing AutKP and e above by AutLand a bounded equivalen
e relation invariant over b̄A respe
tively we ob-
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ompa
tness. This version is satis�ed by any L-determined type be
ause EA,l
L is the �nest bounded equivalen
e relation.Now let ̺ be a strongly determined type over A ⊂ C. Let M be su�-
iently saturated and homogeneous, b̄ |= ̺M and e be a �nite equivalen
erelation de�nable over Ab̄. Let ẽ be the equivalen
e relation de�ned on theappropriate C

l by the 
ondition that (ā, ā′) ∈ ẽ if and only if the 
orrespond-ing e-
lasses of ā and ā′ are in the same orbit with respe
t to Aut(C/b̄M).We know that the pointwise stabilizer of the set of ẽ-
lasses is a normalsubgroup He ⊳Aut(M/acleq(A)) of �nite index.We say that ̺ is G-�nite if the interse
tion of all subgroups of
AutSh(M/A) of the form He for �nite equivalen
e relations e as above isof �nite index in AutSh(M/A). The following question looks interesting. Is aG-�nite strongly determined type G-trivial? We know from Se
tion 1.2 thatthe theory of the 
orresponding 
ounterexample must be non-G-
ompa
t.Moreover, it looks likely that a G-�nite strongly determined type naturallyde�nes a G-
ompa
t KP-determined type (this may be 
onne
ted with thequestion �nishing Se
tion 1).
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