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Abstrat. Given the plane triangle with verties (0, 0), (0, 4) and (4, 0) and thetransformation F : (x, y) 7→ (x(4 − x − y), xy) introdued by A. N. Sharkovski��, we provethe existene of the following objets: a unique invariant urve of spiral type, a perioditrajetory of period 4 (given expliitly) and a periodi trajetory of period 5 (desribedapproximately). Also, we give a deomposition of the triangle whih helps to understandthe global dynamis of this disrete system whih is linked with the behavior of theShrödinger equation.1. Introdution and statement of the main results. Two-dimen-sional ontinuous transformations of the plane, G : (x, y) 7→(f(x, y), g(x, y)),have been onsidered for a long time to desribe many phenomena omingfrom population dynamis, eonomy theory, soial sienes and engineer-ing.In most ases there exist ompat subsets X ⊂ R

2, invariant under theation of the transformation (i.e., G(X) ⊆ X), where the most interestingpart of the dynamis of the system is developed. If we see them as two-dimensional disrete dynamial systems, i.e. ouples of the form (X, G|X),the interest is foused on the behavior of points of X, i.e., how the trajetoriesof all points evolve under the ation of G.In appliations, the maps f and g are usually pieewise polynomial on X,i.e., there exists a �nite partition of X, {Xi}n
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266 F. Balibrea et al.
Xi are polynomials. See, for instane, the models of stability of synhronizedstates of Glendinning [4℄ or the Du�ng transformation [12℄.More frequently, maps f and g are quadrati polynomials (or pieewisequadrati) and within the quadrati ase, the Lotka�Volterra transforma-tions (or pieewise Lotka�Volterra) of the form(1) G : (x, y) 7→ (x(a1 + b1x + c1y), y(a2 + b2x + c2y))where ai, bi, ci ∈ R for i ∈ {1, 2}. In partiular, the ase b1 = c1 = b2 = c2 =
−1 appears in several appliations (see [3℄).When we try to understand the dynamis of suh systems we onentrateon two fats. Firstly, we look for invariant sets and onsider the dynamisonly on them if we �nd that outside them the behavior is easy to desribe.Seondly, we study the dynamis on the boundaries of suh invariant sets.When the boundaries are omposed of segments, the dynamis on them anbe as ompliated as that of some interval maps. Additionally, it ould beinteresting to explore onnetions between the dynamis on the boundariesand interiors of the invariant sets.This is what happens in the example suggested by A. N. Sharkovski�� in1993 (see [9℄) for the ase a1 = 4, b1 = c1 = −1, a2 = b2 = 0 and c2 = 1,that is,(2) F : (x, y) 7→ (x(4 − x − y), xy).It is easy to see that the triangle ∆ ⊂ R

2 with verties (0, 0), (4, 0) and (0, 4)is strongly invariant under F (F (∆) = ∆) while if we set y = 0 the dynamison [0, 4] is that of the full parabola x(4− x) and on the other sides of ∆ thedynamis is trivial.Outside ∆ the dynamis is easy to follow. All points exept some periodiones (if they exist) go to in�nity and there is no onnetion between thedynamis outside and inside ∆. In fat all preimages of all points in Int(∆)are also in Int(∆).The system (2) is the result of some redutions made by Sharkovski�� ofa system given by Y. Avishai and D. Berend [1℄ linked with the dynamis ofthe Shrödinger equation.G. �wirszz [10℄ answers some of the questions posed by Sharkovski��for (2). In partiular, he onstruts an absolutely ontinuous σ-�nite invari-ant measure for F and proves that the preimages of the side I = ∆∩{y = 0}form a dense subset of ∆ and there is another dense set Λ onsisting ofpoints whose trajetories approah the interval I but are not attratedby I.The aim of this paper is to ontinue Sharkovski��'s syllabus for (2) byproving the existene of a unique invariant urve joining the points (1, 2)and (0, 0) whih is simultaneously the unstable manifold of (1, 2) and the



Dynamis of a Lotka�Volterra map 267stable one of (0, 0). This urve is of spiral type and strongly invariant. Thekey point in the proof is to deompose ∆ into what we all ω-regions. Thedeomposition additionally allows us to prove that if a periodi trajetoryexists then it must have a part on ∆l and another part on ∆i where ∆i = ω0and ∆l is the rest of Int(∆) (for de�nitions see the next setion).Using algebrai systems of non-linear equations, it is immediate thatthere are no periodi points of period 2 or 3. Using algebrai properties ofthe resultant assoiated to suh systems it an be proved that
{(

2 −
√

2,
1

2

)

,

(

1 +
1√
2
, 1 − 1√

2

)

,

(

2 +
√

2,
1

2

)

,

(

1 − 1√
2
, 1 +

1√
2

)}

is the unique yle of period 4 in Int(∆). This is the �rst time in the literatureon quadrati systems where a periodi trajetory of period 4 is expliitlyobtained. For example in [11℄ some numerial work is needed to understandthe genealogies of periodi points of periods less than or equal to 5 in thetwo-parameter family
F(a,b)(x, y) = (y, ay + b − x2).In other ases periodi points have only been laimed to exist (see forinstane [8℄ for the two-dimensional logisti family of maps Fa(x, y) =

(y, ay(1 − x))).Additionally it is proved (using the same proedure for the onjugate sys-tem, i.e., (x, y) 7→ (y|x|, x2−2)) that there also exists a unique periodi pointof period 5 in Int(D) where D is the image of ∆ under the onjugay map(i.e. C : ∆ → D given by (x, y) 7→ ((x− 2)
√

x(4 − x − y), x(4−x− y)− 2)):
(x, y) = (−0.7873282213706032,−1.5245690977552053).In this ase, to give expliitly all the points of the trajetory is not possiblebeause their oordinates are roots of polynomials of degree 10. We do it inan impliit way.We have also heard from P. Mali£ký [6℄ that it ould be possible to provethat there are periodi points of periods greater than 5 (onretely, of periods6, 7 and 8) for the system (2) de�ned on the whole spae R

2.2. Notation and preliminary results. Given (x, y) ∈ ∆, we de�ne
Fn(x, y) = F (Fn−1(x, y)) and F 0 as the identity map on ∆. The sequene
{Fn(x, y)}∞n=0 is alled the trajetory of (x, y) under the ation of the system
(∆, F ). To know the dynamis of the system (∆, F ) is to have informationon the asymptoti behavior of the trajetories of all points of ∆ under F .Obviously, to reah this ompletely is very di�ult and in most ases almostimpossible, but there exist some lasses of points suh that from their studysome information about the global behavior of the system is obtained. Themost important of them is the lass of periodi points.



268 F. Balibrea et al.Definition 1. A point (x, y) ∈ ∆ is alled periodi for F if there exists apositive integer m suh that Fm(x, y) = (x, y). The smallest suh m = m(x,y)is alled the period of x. When m = 1 we have �xed points. The trajetoryof a periodi point is alled a periodi trajetory.Definition 2. A point (x, y) ∈ ∆ is alled homolini to a periodipoint (p1, p2) of F if the following onditions are satis�ed:(1) (x, y) 6= (p1, p2),(2) for every neighborhood U of (p1, p2) there exists a positive integer ksuh that (x, y) ∈ Fm·k(U) where m is the period of (p1, p2),(3) Fm·l(x, y) = (p1, p2) for some positive integer l.The trajetory of a homolini point is alled a homolini trajetory.Definition 3. Let (Y, G) be a disrete dynamial system. The systems
(∆, F ) and (Y, G) are alled topologially onjugate (respetively topologi-ally semi-onjugate) if there exists a homeomorphism (respetively an ontoontinuous map) C : ∆ → Y suh that C ◦ F (x, y) = G ◦ C(x, y) for every
(x, y) ∈ ∆.Now, after the introdution of the main notions that we need, let usstate some properties of the system (∆, F ). First of all, as mentioned inthe previous setion, the system F restrited to I is the full parabola (i.e.,
F (x, 0) = (x(4 − x), 0)). The dynamis of this unimodal map is well known(see for instane [2℄).The system (∆, F ) has three �xed points: (0, 0), (3, 0) and (1, 2). Theseond and third are repellors (see [10℄).It is interesting to split the triangle ∆ into two sets,

∆ = ∆l ∪ ∆rwhere ∆l = {(x, y) ∈ ∆ : 0 ≤ x ≤ 2} and ∆r = {(x, y) ∈ ∆ : 2 < x ≤ 4}.Sine eah point from Int(∆) has two preimages, one in Int(∆r) and theother in Int(∆l), the map F is not invertible but F restrited to Int(∆l) orto Int(∆r) is. The inverse maps of these restritions are given by:
F−1
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.From another point of view, it is easy to see that ∆ an be deomposedinto �ve pairwise disjoint sets:
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∪ R.From this deomposition it follows that if there are periodi points then theymust be ontained in the set R ⊂ Int(∆).3. Constrution of an invariant urve. In this setion we onstrutan invariant urve joining the points (0, 0) and (1, 2). This urve is pieewise
C1 and it is a homolini trajetory to (0, 0). It an be seen as an unstablemanifold for (0, 0) and a stable one for (1, 2). This urve ontains importantinformation on the dynamis of the system.Let us onstrut a set S with the following proedure:

K0 = {(0, 0)},
K1 = {(0, 0)} × [0, 4],

K2 = {(x, y) ∈ ∆ : 0 ≤ x ≤ 2 and x + y = 4},
Kn+3 = {(x, y) ∈ ∆l : F (x, y) ∈ Kn+2} for any n ≥ 0.It is easy to see that

F (Kn+1) = Kn for n ≥ 0,(3)
Fn(Kn) = (0, 0) for n ≥ 0.(4)Now set(5) S =

∞
⋃

n=0

Kn.By the injetivity of F on ∆l, S is a pieewise C1 urve with verties Vi(i ∈ {0, 1, . . . }), where
V0 = (0, 0),

K1 ∩ K2 = {V1} = {(0, 4)},
K2 ∩ K3 = {V2} = {(2, 2)},
K3 ∩ K4 = {V3} = {(2, 1)},
K4 ∩ K5 = {V4} = {(1, 1)},...

Kn+5 ∩ Kn+6 = {Vn+5} = {F−(n+1)
l (1, 1)} for n ≥ 0.After proving the properties of S given in Lemmas 4�6 we will see that Sis a pieewise C1 urve of spiral type. This an be done using the onjugaygiven by the homeomorphism C and a map f onjugate to F (originallystated in [10℄).
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D = {(x, y) ∈ R

2 : x2 + y2 ≤ 4},
Dl = {(x, y) ∈ R

2 : −2 < x < 0 and x2 + y2 < 4},
Dr = {(x, y) ∈ R

2 : 0 < x < 2 and x2 + y2 < 4}.De�ne the maps:
C : ∆ → D, (x, y) 7→ ((x − 2)

√

x(4 − x − y), x(4 − x − y) − 2),

f : D → D, (x, y) 7→ (y|x|, x2 − 2).Again, the map f is not invertible but f restrited to Int(Dl) or to Int(Dr)is and the inverse maps are
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2 + y).In fat the map C is a semionjugay, but on the interiors of the piees itis one-to-one, hene a onjugay. The onjugate images of Vn in D are (i.e.,
C(Vn) = Wn):
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Dynamis of a Lotka�Volterra map 271Lemma 4. limn→∞ An = 1.Proof. We an prove by indution that eah An (n ≥ 0) satis�es
b−(n) < An < b+(n) where
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.The assertion follows from the fat that limn→∞ b−(n) = limn→∞ b+(n) = 1.We prove by indution the right inequality (the left one an be shown simi-larly).Step 1. We an see that b+(0) > A0, b+(1) > A1 et. We an assumethat b+(n) > An for eah 0 ≤ n ≤ k.Step 2. It is easy to see that
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k+1.Lemma 5. limn→∞ Vn = (1, 2).Proof. This follows from Lemma 1 (i.e., limn→∞ Wn = (−1,−1)) andthe fat that C(1, 2) = (−1,−1).Lemma 6. Let i = j + n, where n > 0. Then Ki ∩ Kj = ∅.Proof. Let x ∈ Ki ∩ Kj . If Fn(x) = x then x is periodi, whih is aontradition (eah point of S is eventually �xed, whih follows from (4)).So there is y ∈ Ki suh that x 6= y and Fn(y) = x. Then F i(y) 6= (0, 0),in ontradition with F i(Ki) = (0, 0) for eah i ≥ 0, whih follows from theonstrution of S.Theorem 7. There is a urve S in ∆ with the following properties:(i) It is of spiral type with fous at the point (1, 2).(ii) It is strongly invariant. Moreover , eah point of S is eventually �xed(i.e., for eah (x, y) ∈ S there is n ≥ 0 suh that Fn(x, y) = (0, 0)).(iii) There is a unique urve satisfying (i) and (ii).



272 F. Balibrea et al.Proof. The fat that the urve S is of spiral type follows from Lemmas 5and 6. Strong invariane follows from (5) and from the fat that eah point iseventually �xed by (4). The proof of (iii) will be given in the next setion.
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Remark 8. It is interesting to observe that if in the previous onstru-tion of the urve S we replae the map F−1
l by F−1

r (now the preimages arein ∆r) we obtain a strongly invariant urve whih is not of spiral type but isalso strongly invariant and onverges to the repulsive �xed point (3, 0) (theproof of the onvergene is similar to the proof of Lemmas 4 and 5).
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4. Deomposition of the triangle. To understand the periodi stru-ture of the map F we deompose the triangle ∆ into in�nitely many pairwise



Dynamis of a Lotka�Volterra map 273disjoint regions. These regions will be de�ned in suh a way that it will beobvious where the yles should be.We use the same notation as in the previous setion. Let us start withthe following modi�ation. Let
L0 = {2} × [0, 2], Li+1 = {(x, y) ∈ ∆l : F (x, y) ∈ Li} for i ≥ 0.(Note that Kn+3 ⊂ Ln for n ≥ 0.) Put

X0 = (2, 0), Xn+1 = F−n
l (X0) for n ≥ 0.Thus, the points Xn and Vn+2 are on the boundary of Ln for n ≥ 0. Thesequene {Xi}∞i=0 onverges to (0, 0) and the point X0 is homolini to (0, 0)(see, e.g., [2℄ and De�nition 2).Let ω0 = Int(∆r) and ωn+1 be the interior of the region in ∆l boundedby Ln, Ln+1 and [Xn+1, Xn], for n ≥ 0.Theorem 9. Let ωn be the regions in ∆ de�ned above for all n ≥ 0.Then(i) F (ωn+1) = ωn for n ≥ 0,(ii) F (ω0) = Int(∆),(iii) ⋃

∞

n=0 ωn = ∆ and ωn ∩ ωn+i = ∅ for n ≥ 0, i > 0.Proof. Statements (i) and (ii) are obtained diretly from the onstru-tion.To prove (iii) it su�es to use the property of the map F that eah pointfrom Int(∆) has two preimages, one in Int(∆r) and the other in Int(∆l).Assuming the existene of an invariant region having empty intersetionwith eah ωn leads to a ontradition with this property.Proof of Theorem 7(iii). We have onstruted an invariant urve S byadding piees of the boundaries of the regions ωn in ∆r. The trajetory of apoint (x, y) ∈ S turns left around the point (1, 2) under the map F−1
l and sothe distane between the points F−n(x, y) and (1, 2) tends to zero as n → ∞by Lemma 5.The edges of the urve S ompose a homolini trajetory of the point

(1, 2), i.e., limn→∞ F−n(Vn) = (1, 2). In fat S is the unstable manifold of
(1, 2) and the stable manifold of (0, 0) sine for any point (x, y) ∈ S we have
limn→∞ Fn(x, y) = (0, 0) and limn→∞ F−n(x, y) = (1, 2). In this situation Sonnets dynamially the points (0, 0) and (1, 2).Also S is the unique urve with properties (i) and (ii) of Theorem 7.To see this, let S′ be another urve di�erent from S onneting the verties
Vi and let (x, y) ∈ S′ be not a vertex point. Then (x, y) would belong tosome region ωk and as a onsequene Fn(x, y) would not onverge to (0, 0),



274 F. Balibrea et al.nor F−n(x, y) to (1, 2), as n → ∞. Therefore S is the unique urve havingproperties (i) and (ii) from Theorem 7.Corollary 10. F−1
l |∆l

has the point (1, 2) as its global attrator.From Theorem 9 it is straightforward that there are no yles in Int(∆l)and analogously it an also be proved that there are no yles in Int(∆r).We onlude that if there is a yle in Int(∆) then it must have non-emptyintersetion with both Int(∆l) and Int(∆r).
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5. Periodi trajetories of (∆, F ). We are interested in the periodipoints in Int(∆).The �xed points satisfy F (x, y) = (x, y). It is easy to hek that theunique �xed point in Int(∆) is (1, 2).The 2-periodi points satisfy F 2(x, y) = (x, y), or equivalently
(−(−2 + x)2x(−4 + x + y),−x2y(−4 + x + y)) = (x, y).It is not di�ult to see that this system has no solution in Int(∆).The 3-periodi points satisfy F 3(x, y) = (x, y), or equivalently

−(−2 + x)2x(−4 + x + y)(2 − 4x + x2 + xy)
2

= x,

(−2 + x)2x3y(−4 + x + y)2 = y.A straightforward omputation shows that this system has no solution in
Int(∆).In short, F has no periodi trajetory of periods 2 and 3 in Int(∆). But,as proved in Theorem 11, it has a unique periodi trajetory of period 4 in



Dynamis of a Lotka�Volterra map 275Int(∆) whih is obtained expliitly using some properties of the resultant.This proedure allows us to prove the existene of a periodi point of period 5;its trajetory is given in an impliit way. Before proving this result we needto reall some properties of the resultant.Let ai, i ∈ {1, . . . , n}, and bj , j ∈ {1, . . . , m}, be the roots of the poly-nomials P (x) and Q(x), respetively, both with leading oe�ient 1. Theresultant of P and Q, Res[P, Q], is the produt of all the di�erenes ai − bj ,
i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. In order to see how to ompute Res[P, Q], seefor instane [5℄ and [7℄. The main property of the resultant is that if P and
Q have a ommon root then neessarily Res[P, Q] = 0.Consider now polynomials in two variables, say P (U, V ) and Q(U, V ).These polynomials an be seen as polynomials in X = U with polynomialoe�ients in Y = V . Then the resultant with respet to U , Res[P, Q, U ], isa polynomial in Y with the following property. If P (U, V ) and Q(U, V ) havea ommon root (U0, V0), then

Res[P, Q, U ](V0) = 0,and similarly for the variable V . In partiular, if we ompute all the roots ofthe following two polynomials in one variable p(U) = Res[P, Q, V ], q(V ) =
Res[P, Q, U ], and denote them by U0 and V0, respetively, then we an hekwhen (U0, V0) is a solution of the system P (U, V ) = Q(U, V ) = 0.In short, using the resultant we redue the problem of �nding solutionsof a polynomial system in two variables to �nding roots of two polynomialsin one variable.Theorem 11. The map F has a unique periodi trajetory of period 4in Int(∆). This trajetory is
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.Proof. We must �nd the points (x, y) in Int(∆) suh that F 4(x, y) =
(x, y), or equivalently(6) (f(x, y), g(x, y)) = (0, 0),where

f(x, y) = (−2 + x)2x(−4 + x + y)(2 − 4x + x2 + xy)
2

× (2 − 16x + 20x2 − 8x3 + x4 + 4xy − 4x2y + x3y)
2
+ x,

g(x, y) = (−2 + x)4x4y(−4 + x + y)3(2 − 4x + x2 + xy)
2
+ y.Therefore to �nd the 4-periodi trajetories of the map F in Int(∆) is equiv-alent to �nding the solutions of the polynomial system (6) in Int(∆).



276 F. Balibrea et al.Now the resultant Res[f, g, x] is the polynomial in y given by
q(y) = −8589934592(−2 + y)y20(−1 + 2y)2(1 − 4y + 2y2).Its roots without taking into aount their multipliity are 0, 2, 1/2, 1+1/

√
2and 1 − 1/

√
2. Hene, a �xed point (x, y) of F 4 (i.e. a periodi point of Fwith period 1, 2 or 4) must have its y oordinate equal to one of these �vepossible values.We are not interested in the �xed points (x, y) of F 4 with v = 0 beauseall these points are on the boundary of the triangle ∆.Now we study the �xed points (x, y) of F 4 with v = 2. From easy om-putations we get
f(x, 2) = (1 − x)xF (x), g(x, 2) = 2(x − 1)G(x),where

F (x) = (127 − 1345x + 6559x2 − 19505x3 + 39311x4

− 56801x5 + 60807x6 − 49101x7 + 30099x8 − 13949x9

+ 4811x10 − 1197x11 + 203x12 − 21x13 + x14,

G(x) = −1 − x − x2 − x3 + 511x4 − 2305x5 + 4991x6

− 6721x7 + 6175x8 − 4017x9 + 1863x10 − 605x11

+ 131x12 − 17x13 + x14.The ommon fator x − 1 of f(x, 2) and g(x, 2) provides the �xed point
(1, 2) of F , whih is also �xed for F 4. Sine the fator x of f(x, 2) does notappear in g(x, 2), the point (0, 2) is not a solution of system (6). Finally, sine
Res[F (x), G(x), x] = 154618822656 6= 0, there are no additional periodipoints (x, y) with y = 2.We study the �xed points (x, y) of F 4 with y = 1/2. From easy ompu-tations we get

f(x, 1/2) = − 1

32
x(2 − 4x + x2)F (x),

g(x, 1/2) = − 1

64
(2 − 4x + x2)G(x),where

F (x) = −3568 + 60192x − 390696x2 + 1304640x3 − 2617156x4

+ 3435080x5 − 3096854x6 + 1968868x7 − 891687x8

+ 286314x9 − 63736x10 + 9360x11 − 816x12 + 32x13,

G(x) = 16 + 32x + 56x2 + 96x3 − 43740x4 + 191576x5

− 364250x6 + 394624x7 − 269087x8 + 120010x9

− 35064x10 + 6480x11 − 688x12 + 32x13.



Dynamis of a Lotka�Volterra map 277Sine the fator x of f(x, 1/2) does not appear in g(x, 1/2), the point (0, 1/2)is not a solution of system (6). Moreover, sine Res[F (x), G(x), x] is
−137015778499772148581595453067151533092743675904 6= 0,there are no additional �xed points (x, y) of F 4 with y = 1/2 oming fromthe fators F (x) and G(x). Finally, the ommon fator 2 − 4x + x2 to F (x)and G(x) provides two solutions to system (6), namely

(

2 −
√

2,
1

2

) and (

2 +
√

2,
1

2

)

.So these two points are �xed points of F 4. It is easy to hek that they belongto the periodi trajetory desribed in the statement of the proposition.Lastly, if we study in a similar way the �xed points (x, y) of F 4 with
y = 1 ± 1/

√
2, we only get the same 4-periodi trajetory.

(4,0)(1,0) (3,0)(0,0) (2,0)

(0,4)

(0,3)

(0,1)

(0,2)

Conerning the trajetories of (∆, F ) of period 5, arguments similar tothose for Theorem 11 an be used for the onjugate system on the dis
f : D → D given by (x, y) 7→ (y|x|, x2 − 2) to simplify alulations. Theresult is the following.Theorem 12. The map f in Int(D) has a unique periodi trajetory ofperiod 5 assoiated to the point

(x, y) = (−0.7873282213706032,−1.5245690977552053).The �ve seond oordinates of the points of the trajetory are roots of the



278 F. Balibrea et al.following polynomial :
1−98y−461y2−560y3 +353y4 +1255y5 +903y6 +144y7−76y8−21y9 +y10.Analogously , the �rst oordinates of these points are roots of the followingtwo polynomials:

1 + 20x − 7x2 − 74x3 + 5x4 + 89x5 + 9x6 − 40x7 − 8x8 + 5x9 + x10,

1 − 20x − 7x2 + 74x3 + 5x4 − 89x5 + 9x6 + 40x7 − 8x8 − 5x9 + x10.Obviously, for omputational reasons it is not possible to analyze theexistene of periodi trajetories of periods n > 5 using this proedure.There are no reasons for the non-existene of suh trajetories. On theother hand, if we onsider the system (R2, F ) other new periodi traje-tories ould appear and the uniqueness of the 4,5-periodi trajetories oulddisappear.Aknowledgements. Part of the work on this paper was done duringthe stay of the third author at the University of Muria and Politéniade Cartagena in Spain, of the seond author at the Universitat Autónomade Barelona and of the fourth author at the University of Muria. Theinvitations and support of these institutions are gratefully aknowledged.The authors are grateful to Professors A. N. Sharkovski�� and D. Berendfor their valuable suggestions.
Referenes[1℄ Y. Avishai and D. Berend, Transmission through a Thue�Morse hain, Phys. Rev.B 45 (1992), 2717�2724.[2℄ P. Collet and J.-P. Ekmann, Iterated Maps on the Interval as Dynamial Systems,Birkhäuser, Basel, 1980.[3℄ G. H. Erjaee and F. M. Dannan, Stability analysis of periodi solutions to the non-standard disrete model of the Lotka�Volterra predator-prey system, Int. J. Bifurat.Chaos 14 (2004), 4301�4308.[4℄ P. Glendinning, Milnor attrators and topologial attrators of a pieewise linearmap, Nonlinearity 14 (2001), 239�257.[5℄ S. Lang, Algebra, 3rd ed., Addison-Wesley, 1993.[6℄ P. Mali£ký, personal ommuniation, September 2005.[7℄ P. Olver, Classial Invariant Theory, London Math. So. Student Texts 44, Cam-bridge Univ. Press, New York, 1999.[8℄ T. D. Rogers, Chaos in systems in populations biology, in: Progr. Theor. Biol. 6,Aademi Press, 1981, 91�146.[9℄ A. N. Sharkovski��, Low dimensional dynamis, Tagungsberiht 20/1993, Proeedingsof Mathematishes Forshungsinstitut Oberwolfah, 1993, 17.[10℄ G. �wirszz, On a ertain map of the triangle, Fund. Math. 155 (1998), 45�57.[11℄ D. Whitley, On the periodi points of a two-parameter family of maps of the plane,Ata Appl. Math. 5 (1986), 279�311.



Dynamis of a Lotka�Volterra map 279[12℄ S. Wiggins, Introdution to Applied Nonlinear Dynamial Systems and Chaos, Textin Appl. Math. 2, Springer, 1990.Departamento de MatemátiasUniversidad de Muria30100 Muria (Región de Muria), SpainE-mail: balibrea�um.esMathematial Institute at OpavaSilesian University at OpavaNa Rybní£ku 1746 01 Opava, Czeh RepubliE-mail: marek.lampart�math.slu.z

Departamento de MatemátiaApliada y EstadístiaUniversidad Politénia de CartagenaC/ Paseo Alfonso XIII30203 Cartagena (Región de Muria), SpainE-mail: juan.garia�upt.esDepartament de MatemàtiquesUniversitat Autònoma de BarelonaBellaterra, 08193 Barelona (Catalunya), SpainE-mail: jllibre�mat.uab.esReeived 10 November 2005;in revised form 30 May 2006


