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The ombinatoris of reasonable ultra�ltersbySaharon Shelah (Jerusalem and New Brunswik, NJ)
Abstrat. We are interested in generalizing part of the theory of ultra�lters on ω tolarger ardinals. Here we set the sene for further investigations introduing properties ofultra�lters in strong sense dual to being normal.0. Introdution. Questions onerning ultra�lters on ω have ourredto be very stimulating for researh in several subareas of set theory andtopology. We hope that this suess story ould be repeated for ultra�lterson unountable regular ardinals λ, partiularly if λ is strongly inaessible.Our aim in the present paper is to introdue new properties of ultra�ltersand argue that these properties ould play the stimulating role that was oneplayed by P -points on ω.In the long run, we plan to �nd generalizations of the following results:(a) Consistently, some ultra�lters on ω are generated by < 2ℵ0 sets.(b) P -points are preserved by some foring notions (see, e.g., [14, V℄,[11℄).() Consistently, there is no P -point.(d) For a funtion f : ω → ω and an ultra�lter D on ω, let

D/f := {A ⊆ ω : f−1(A) ∈ D};it is an ultra�lter on ω (of ourse, we are interested in the aseswhen D and D/f are uniform, whih in this ase is the same asnon-prinipal). By Blass and Shelah [1℄, onsistently for any twonon-prinipal ultra�lters D1, D2 on ω there are �nite-to-one non-dereasing funtions f1, f2 : ω → ω suh that D1/f1 = D2/f2.2000 Mathematis Subjet Classi�ation: Primary 03E05; Seondary 03E20.Key words and phrases: reasonable ultra�lter, dominating family, unountable regularardinal.The author aknowledges support from the United States-Israel Binational SieneFoundation (Grant no. 2002323). Publiation 830.[1℄



2 S. Shelah(f) For a signi�ant family of foring notions built aording to thesheme of reatures of [11℄ we may onsider an appropriate �lter,i.e., if 〈pα : α < ω1〉 is ≤∗-inreasing it may de�ne an ultra�lter (see[11, �5, 6℄) whih is not neessarily generated by ℵ1-sets, so we mayask on this.There are many works on normal ultra�lters; their parallel on ω areRamsey ultra�lters. Now, every Ramsey ultra�lter on ω is a P -point butthere are P -points of very di�erent haraters, e.g., P -point with no Ramseyultra�lter below. Gitik [4℄ has investigated generalizations of P -points fornormal ultra�lters. But this paper goes in a di�erent diretion (whih up toreently I have not onsidered to be fruitful) and we restrit our attentionto ultra�lters whih are very non-normal�the weakly reasonable ultra�lters.What is a weakly reasonable ultra�lter on λ? It is a uniform ultra�lter ona regular ardinal λ whih does not ontain some lub of λ and suh thatthis property is preserved if we divide it by a non-dereasing f : λ → λ withunbounded range (see De�nition 1.4 below).We also want that our ultra�lters generalize P -points on ω and in theseond setion we introdue reasonable and very reasonable ultra�lters. Theproperty de�ning P -points is that ountable families of sets from the ultra-�lter have pseudo-intersetions in the ultra�lter. We modify this propertyso that we involve some desription of how the ultra�lter onsidered is gen-erated, and we postulate that the generating systems are suitably direted.This is a replaement for the existene of pseudo-intersetions and it is theessene of De�nition 2.5(4,5). The third setion shows that the number ofgenerating systems (of our type) for somewhat reasonable ultra�lters annotbe too small. We onlude the paper with a setion listing open problemsand desribing further researh.
Notation. Our notation is rather standard and ompatible with thatof lassial textbooks (like Jeh [5℄). In foring we keep the older onventionthat a stronger ondition is the larger one. (However, in the present paperwe use foring notions only for ombinatorial onstrutions and almost everymention of foring just means that we are dealing with a transitive re�exiverelation P = (P,≤P).)(1) Ordinal numbers will be denoted by lower ase initial letters of theGreek alphabet (α, β, γ, δ, . . .) and also by i, j (with possible sub-and supersripts).(2) Cardinal numbers will be alled κ, λ, µ; λ will always be assumed tobe a regular unountable ardinal (we may forget to mention it).(3) D, U will denote �lters on λ, and G, G∗, G∗

ℓ will be subsets of spei�partial orders used to generate �lters on λ.



Combinatoris of reasonable ultra�lters 3(4) A bar above a letter denotes that the objet onsidered is a sequene;usually X̄ will be 〈Xi : i < ζ〉, where ζ is the lengthlh(X̄) of X̄.Sometimes our sequenes will be indexed by a set of ordinals, say
S ⊆ λ, and then X̄ will typially be 〈Xδ : δ ∈ S〉.Definition 0.1. A dominating family in λλ is a family F ⊆ λλ suhthat

(∀g ∈ λλ)(∃f ∈ F)(∃α < λ)(∀β > α)(g(β) < f(β)).The λ-dominating number dλ is de�ned as
dλ = min{‖F‖ : F ⊆ λλ is a dominating family in λλ}.A lub-dominating family in λλ is a family F ⊆ λλ suh that

(∀g ∈ λλ)(∃f ∈ F)({β < λ : g(β) ≥ f(β)} is non-stationary in λ).The cl(λ)-dominating number dcl(λ) is de�ned as
dcl(λ) = min{‖F‖ : F ⊆ λλ is a cl(λ)-dominating family in λλ}.On dλ, dcl(λ) see, e.g., in Cummings and Shelah [2℄.Aknowledgments. I thank Tomek Bartoszy«ski and Andrzej Rosªa-nowski for stimulating disussions, and the anonymous referee for valuableomments.1. Weakly reasonable ultra�lters. In De�nition 1.4(1) we formulatethe main property of ultra�lters on λ whih is of interest to us: being a weaklyreasonable ultra�lter. In the spetrum of all ultra�lters, weakly reasonableultra�lters are at the opposite end to normal ultra�lters. We show that thereexist (in ZFC) weakly reasonable ultra�lters (see 1.10) and we also give someproperties of suh ultra�lters.Definition 1.1. For a ardinal λ,(a) ulf(λ) is the set of all ultra�lters on λ,(b) uuf(λ) is the family of all uniform ultra�lters on λ,() if D is an ultra�lter on λ and f ∈ λλ, then

D/f := {A ⊆ λ : f−1(A) ∈ D}.Let us note that in the literature D/f is also denoted by f(D) or f∗(D)and it is alled the image or the projetion of the ultra�lter D under f . Weuse the quotient notation and terminology beause we will deal mostly with
D/C, where:Definition 1.2. Assume D is an ultra�lter on λ.(1) If E is an equivalene relation on λ, then fE ∈ λλ is de�ned by

fE(α) = otp({β < α : β = min(β/E) < min(α/E)}),



4 S. Shelahand D/E is D/fE . (Here, α/E stands for the E-equivalene lassof α.)(2) For a lub C of λ let EC be the following equivalene relation on λ:
αECβ i� (∀γ ∈ C)(α < γ ⇔ β < γ)(so EC is the equivalene relation determined by the partition of λinto intervals [ξ, ζ) for onseutive members ξ < ζ of C ∪ {0}). Let

D/C be D/EC .(3) Fλ is the family of all non-dereasing unbounded funtions from λto λ.Observation 1.3. Assume that λ is a regular ardinal and D ∈ ulf(λ).(1) If f : λ → λ, then D/f ∈ ulf(λ).(2) If f ∈ Fλ and D is uniform, then also D/f is a uniform ultra�lteron λ.(3) If C is a lub of λ and 〈δξ : ξ < λ〉 is the inreasing enumeration of
C ∪ {0}, then for a set A ⊆ λ,

A ∈ D/C if and only if ⋃

{[δξ, δξ+1) : ξ ∈ A} ∈ D.Definition 1.4. Let D be a uniform ultra�lter on λ.(1) We say that D is weakly reasonable if for every f ∈ Fλ there is a lub
C of λ suh that

⋃

{[δ, δ + f(δ)) : δ ∈ C} /∈ D.(2) We de�ne a game aD between two players, Odd and Even, as follows.A play of aD lasts λ steps and during a play an inreasing ontinuoussequene ᾱ = 〈αi : i < λ〉 ⊆ λ is onstruted. The terms of ᾱ arehosen suessively by the two players so that Even hooses the αifor even i (inluding limit stages i where she has no free hoie) andOdd hooses αi for odd i.Even wins the play if and only if
⋃

{[α2i+1, α2i+2) : i < λ} ∈ D.Observation 1.5. Let D ∈ uuf(λ). Then the following onditions areequivalent :(A) D is weakly reasonable,(B) for every inreasing ontinuous sequene 〈δξ : ξ < λ〉 ⊆ λ there is alub C∗ of λ suh that
⋃

{[δξ, δξ+1) : ξ ∈ C∗} /∈ D,(C) for every lub C of λ the quotient D/C does not extend the �ltergenerated by lubs of λ.



Combinatoris of reasonable ultra�lters 5Proposition 1.6. Assume D ∈ uuf(λ).(1) If λ is strongly inaessible and Odd has a winning strategy in aD,then D is not weakly reasonable.(2) If D is not weakly reasonable, then Odd has a winning strategy in aD.(3) In (1), instead of �λ is strongly inaessible�, it su�es to assume
♦∗

λ.Proof. (1) Suppose towards a ontradition that λ is strongly inaes-sible, Odd has a winning strategy st in the game aD but D is weakly rea-sonable. By indution on ε < λ hoose an inreasing ontinuous sequene
〈Nε : ε < λ〉 of elementary submodels of H(λ++) so that for eah ε:(a) Nε ≺ (H(λ++),∈, <∗), ‖Nε‖ < λ, Nε ∩ λ ∈ λ,(b) εNε+1 ⊆ Nε+1,() 〈Nζ : ζ ≤ ε〉 ∈ Nε+1,(d) st, λ, D belong to N0.Let δε = Nε ∩ λ (for ε < λ). Then 〈δε : ε < λ〉 is an inreasing ontinuoussequene of limit ordinals. Let f(α) = δα+1 for α < λ, so f ∈ Fλ.Sine D is a weakly reasonable ultra�lter, there is a lub C of λ suhthat

⋃

{[δ, δ + f(δ)) : δ ∈ C} /∈ D.Let
C∗ = {ε ∈ C : ε = δε is a limit ordinal}(it is a lub of λ). Then for ε ∈ C∗ we have [δε, δε+1) ⊆ [ε, ε + f(ε)) andhene

⋃

{[δε, δε+1) : ε ∈ C∗} /∈ D.Let us de�ne a strategy st
′ for Even in the game aD as follows. For an evenordinal i < λ, in the ith move of a play, if 〈αj : j < i〉 has been played so farthen Even plays

αi =

{

sup{αj : j < i} if i is limit,
min{ε ∈ C∗ : (∀j < i)(αj < ε)} otherwise.Now onsider a play 〈αi : i < λ〉 in whih Even uses the strategy st

′ andOdd plays aording to st. Then for eah i < λ we have α2i ∈ C∗ and thus
α2i = δα2i

∈ Nα2i+1, and also {αj : j < 2i} ⊆ α2i ⊆ Nα2i+1. Sine themodel Nα2i+1 is losed under forming sequenes of length α2i + 1 (by (b)),we onlude that 〈αj : j ≤ 2i〉 ∈ Nα2i+1. Sine st ∈ N0 ≺ Nα2i+1, learly
α2i+1 ∈ Nα2i+1 ∩ λ and therefore α2i+1 < δα2i+1. Hene

⋃

{[α2i, α2i+1) : i < λ} ⊆
⋃

{[δα2i
, δα2i+1) : i < λ}

⊆
⋃

{[δε, δε+1) : ε ∈ C∗} /∈ D.



6 S. ShelahBut st is a winning strategy for Odd, so he wins the play and
⋃

{[α2i+1, α2i+2) : i < λ} /∈ D,a ontradition.(2) Suppose that D ∈ uuf(λ) is not weakly reasonable. Then we may �nd
f ∈ Fλ suh that for every lub C of λ we have

⋃

{[δ, δ + f(δ)) : δ ∈ C} ∈ D.Let st be a strategy of Odd in aD whih instruts him to play as follows.For an odd ordinal i = i0 + 1 < λ, in the ith move of a play, if 〈αj : j ≤ i0〉has been played so far, then Odd plays αi = αi0 + f(αi0) + 1.We laim that st is a winning strategy for Odd (in aD). To this endsuppose that 〈αj : j < λ〉 ⊆ λ is a result of a play of aD in whih Odd usesthe strategy st. Let C ′ = {αi : i < λ is limit}; it is a lub of λ, so by thehoie of f we have
⋃

{[δ, δ + f(δ)) : δ ∈ C ′} ∈ D.Sine ⋃

{[δ, δ + f(δ)) : δ ∈ C ′} ⊆
⋃

{[α2i, αα2i+1
) : i < λ} we may nowonlude that Odd indeed wins the play.Remark 1.7. Let us note that some assumptions on λ in 1.6(1) areneeded. This will be shown in the subsequent paper of Rosªanowski andShelah [7℄.Lemma 1.8. Suppose that λ is a regular unountable ardinal , D ∈

uuf(λ) is a weakly reasonable ultra�lter and 〈βi : i < λ〉 is an inreasingontinuous sequene of ordinals below λ. Then there is an inreasing ontin-uous sequene 〈δξ : ξ < λ〉 ⊆ λ onsisting of limit ordinals and suh that
⋃

{[βδ2ξ+1
, βδ2ξ+2

) : ξ < λ} ∈ D.Proof. It follows from 1.5 that we may �nd a lub C∗ of λ suh thatall members of C∗ are limit ordinals and ⋃

{[βξ, βξ+1) : ξ ∈ C∗} /∈ D. Let
C+ = C∗ ∪ {ξ + 1 : ξ ∈ C∗} (learly it is a lub of λ) and let 〈δξ : ξ < λ〉 bethe inreasing enumeration of C+. Note that C∗ = {δξ : ξ < λ is even} and,for an even ordinal ξ < λ, δξ+1 = δξ + 1. Hene

⋃

{[βδξ
, βδξ+1

) : ξ < λ is even} =
⋃

{[βδξ
, βδξ+1) : ξ < λ is even}

=
⋃

{[βζ , βζ+1) : ζ ∈ C∗} /∈ D.Consequently, ⋃

{[βδξ
, βδξ+1

) : ξ < λ is odd} ∈ D.Theorem 1.9. If λ is a regular unountable ardinal and D ∈ uuf(λ) isweakly reasonable, then D is a regular ultra�lter.



Combinatoris of reasonable ultra�lters 7Proof. Using Lemma 1.8 we may hoose by indution on ε < λ a sequene
〈δ̄ε : ε < λ〉 so that(a) δ̄ε = 〈δε

i : i < λ〉 is an inreasing ontinuous sequene of non-suessor ordinals below λ, δε
0 = 0,(b) the set Aε :=

⋃

{[δε
2i+1, δ

ε
2i+2) : i < λ} belongs to D,() if ζ < ε, i < λ, then δε

i ∈ {δζ
j : j < λ is a limit ordinal or zero}.For ε < λ let fε : Aε → λ be suh that

α ∈ [δε
2i+1, δ

ε
2i+2) ⇒ fε(α) = δε

2i+1.Note that
(⊗) if ζ < ε < λ, α ∈ Aζ ∩ Aε, then fε(α) < fζ(α).[Why? Let fζ(α) = δζ

2i+1 (so α ∈ [δζ
2i+1, δ

ζ
2i+2)). It follows from () that

fε(α) ∈ {δζ
j : j < λ is a limit ordinal or zero} and hene (as also fε(α) ≤ α)we may onlude that fε(α) < fζ(α).℄For α < λ, let wα = {ε < λ : α ∈ Aε}. It follows from (⊗) that (for every

α < λ) the sequene 〈fε(α) : ε ∈ wα〉 is stritly dereasing, so neessarilyeah wα is �nite. Sine Aε ∈ D for eah ε < λ (by (b)), we have shown theregularity of D.Theorem 1.10. Let λ > ℵ0 be a regular ardinal. Then there is a uniformweakly reasonable ultra�lter D on λ.Proof. Let {fε : ε < dλ} ⊆ λλ be a dominating family and for ε < dλ let
Cε be a lub of λ suh that members of Cε are limit ordinals and

(∀δ ∈ Cε)(∀α < δ)(fε(α) < δ).Let 〈αε,i : i < λ〉 be the inreasing enumeration of Cε.By indution on ε we will hoose sets Eε, Aε so that for eah ε < dλ:(a) Aε is an unbounded subset of λ and Eε ⊆ Cε is a lub of λ,(b) Aε ∩
⋃

{[αε,γ , αε,γ+1) : γ ∈ Eε} = ∅,() if n < ω and ζ0 < · · · < ζn−1 < ε, then ‖Aε ∩
⋂

i<n Aζi
‖ = λ.So suppose that we have hosen Aζ , Eζ for ζ < ε < dλ so that the respetivereformulations of (a)�() hold true. For a �nite sequene ζ̄ = 〈ζi : i < n〉of ordinals below ε let Aζ̄ =

⋂

i<n Aζi
(note that ‖Aζ̄‖ = λ by the demandin ()). Let gε

ζ̄
∈ λλ be suh that

(⊕) if αε,i ≤ α < αε,i+1, then gε
ζ̄
(α) = min{δ > αε,i+1 : [αε,i+1, δ) ∩ Aζ̄

6= ∅}.The family {gε
ζ̄

: ζ̄ ∈ ω>ε} is a subset of λλ of ardinality ≤ |ε|+ℵ0 < dλ, soit annot be a dominating family. Therefore we may pik a funtion hε ∈
λλ



8 S. Shelahsuh that
(∀ζ̄ ∈ ω>ε)(∃λα < λ)(gε

ζ̄
(α) < hε(α)).Put

Eε = {δ < λ : δ = αε,δ is a limit ordinal and (∀α < δ)(hε(α) < δ)}

Aε =
⋃

{[αε,γ+1, αε,δ) : γ < δ are suessive members of Eε}.It should be lear that Eε, Aε satisfy demands (a), (b).Let us argue that also ondition () holds true. Let ζ̄ ∈ ω>ε and we shallprove that Aε ∩ Aζ̄ is unbounded in λ. By the hoie of hε, the set B =
{α < λ : gε

ζ̄
(α) < hε(α)} is of ardinality λ. Let us �x α ∈ B for a momentand let i < λ be suh that αε,i ≤ α < αε,i+1. Let sup(Eε∩αε,i+1) = γ = αε,γand min(Eε \ αε,γ+1) = δ = αε,δ. Then γ, δ are suessive members of Eεand

γ ≤ αε,i ≤ α < αε,i+1 < δ.Hene (by the de�nition of Eε and sine α ∈ B) we get
[αε,i+1, g

ε
ζ̄
(α)) ⊆ [αε,i+1, hε(α)) ⊆ [αε,γ+1, αε,δ) ⊆ Aε.It follows from (⊕) that [αε,i+1, g

ε
ζ̄
(α)) ∩ Aζ̄ 6= ∅, and so Aε ∩ Aζ̄ \ α 6= ∅.Sine ‖B‖ = λ we may now easily onlude that ‖Aε ∩ Aζ̄‖ = λ, showingthat Aε, Eε are as required.After the onstrution is arried out (and we have the sequene 〈Eε, Aε :

ε < dλ〉) we may �nd a uniform ultra�lter D on λ suh that {Aε : ε < dλ} ⊆
D (remember the demand in ()). We laim that D is weakly reasonable. Tothis end suppose that C is a lub of λ and 〈δξ : ξ < λ〉 ⊆ λ is the inreasingenumeration of C. By the hoie of fε, Cε (for ε < dλ) we may �nd ε < dλand j0 < λ suh that

(∀i ≥ j0)(‖[αε,i, αε,i+1) ∩ C‖ > 2).Let
C∗ = {γ ∈ Eε ∩ C \ j0 : γ = αε,γ = δγ is a limit ordinal}(it is a lub of λ). Sine for γ ∈ C∗ we have αε,γ = δγ < δγ+1 < αε,γ+1 wemay easily onlude from (b) that

⋃

{[δγ , δγ+1) : γ ∈ C∗} /∈ D,ompleting the proof (remember 1.5).2. More reasonable ultra�lters. In this setion we propose a prop-erty of ultra�lters stronger than being weakly reasonable (see De�nition2.5(5)). We believe that the notion of very reasonable ultra�lters is the right



Combinatoris of reasonable ultra�lters 9re-interpretation of being a P -point in the setting of �very non-normal ul-tra�lters� on an unountable regular ardinal λ. We start by desribing aforing notion Q1
λ whih motivated our hoie of generating systems of 2.5.As before, λ is always assumed to be an unountable regular ardinal.Definition 2.1. We de�ne a foring notion Q1

λ as follows. A onditionin Q1
λ is a tuple p = (γp, Cp, 〈Zp

δ : δ ∈ Cp〉, 〈dp
δ : δ ∈ Cp〉) suh that(i) γp < λ, Cp a lub of λ onsisting of limit ordinals only, and for

δ ∈ Cp:(ii) Zp
δ = [δ, min(Cp \ (δ + 1))),(iii) dp
δ ⊆ P(Zp

δ ) is a proper ultra�lter on Zp
δ .The order ≤Q1

λ
= ≤ of Q1

λ is given by p ≤Q1
λ

q if and only if(a) γp ≤ γq, Cp ∩ γp ⊆ Cq ⊆ Cp,(b) if δ < ε are suessive members of Cq (so Zq
δ = [δ, ε)), then

(∀A ∈ dq
δ)(∃ζ ∈ Cp ∩ [δ, ε))(A ∩ Zp

ζ ∈ dp
ζ).Remark 2.2. The foring notion Q1

λ an be represented aording to theframework of [10, �B.5℄.Proposition 2.3.(1) Q1
λ is a partial order , ‖Q1

λ‖ = 22<λ.(2) If p, q ∈ Q1
λ, p ≤ q, δ < ε are two suessive members of Cp, and

δ, ε ∈ Cq, then Zq
δ = Zp

δ and dq
δ = dp

δ .(3) Q1
λ is (<λ)-omplete (so it does not add bounded subsets of λ).(4) If p ∈ Q1

λ, A ⊆ λ, then there is a ondition q ∈ Q1
λ stronger than pand suh that either

(∀δ ∈ Cq \ γp)(A ∩ Zq
δ ∈ dq

δ) or (∀δ ∈ Cq \ γp)(A ∩ Zq
δ /∈ dq

δ).Proof. (1), (2) Straightforward.(3) Assume that δ < λ is a limit ordinal and a sequene 〈pi : i < δ〉 ⊆ Q1
λis ≤Q1

λ
-inreasing. Let E be a uniform ultra�lter on δ. Let us put:

• γ = sup{γpi : i < δ}, C =
⋂

i<δ Cpi , and for α ∈ C let
• Zα = [α, min(C \ (α + 1))) and
• dα = {A ⊆ Zα : {i < δ : A ∩ Zpi

α ∈ dpi
α } ∈ E}.It is easy to hek that p = (γ, C, 〈Zα : α ∈ C〉, 〈dα : α ∈ C〉) belongs to Q1

λand that it is a ondition stronger than all pi (for i < δ).(4) Let p ∈ Q1
λ and A ⊆ λ. Just for simpliity we may assume that

γp ∈ Cp (as we may always inrease γp). Put
Y := {α ∈ Cp : A ∩ Zp

α ∈ dp
α}and onsider two ases.



10 S. Shelah
Case 1: Y is unbounded in λ. Then we may hoose an inreasing on-tinuous sequene 〈δi : i < λ〉 ⊆ Cp suh that δ0 = γp and (∀i < λ)([δi, δi+1)∩

Y 6= ∅). Put
• γ = γp, C = {δi : i < λ} ∪ (Cp ∩ γp),
• if α ∈ Cp ∩ γp, then Zα = Zp

α and dα = dp
α,

• if α = δi, i < λ, then Zα = [δi, δi+1) and
dα = {B ⊆ Zα : B ∩ Zp

min(Y \α) ∈ dp
min(Y \α)}.It is straightforward to verify that q = (γ, C, 〈Zα : α ∈ C〉, 〈dα : α ∈ C〉)

∈ Q1
λ is a ondition stronger than p and it is also lear that (∀α ∈ C \ γp)

(A ∩ Zα ∈ dα).
Case 2: Y is bounded in λ. Then the set λ \ Y is unbounded, so wemay apply the onstrution of q from Case 1 replaing Y by its omplement

λ \ Y . It should be lear that the ondition q we then get satis�es (∀α ∈
Cq \ γp)(A ∩ Zq

α /∈ dq
α).Remark 2.4. The following disussion presents our motivations for thede�nitions and onepts presented later in this setion.Suppose that G ⊆ Q1

λ is a generi �lter over V. In V[G] we de�ne
C =

⋃

{Cp∩γp : p ∈ G} and for α ∈ C we let dα = dp
α for some (equivalently:all) p ∈ G suh that α < γp and Cp ∩ (α, γp) 6= ∅. Then C is a lub of λ and(for α ∈ C) dα is an ultra�lter on [α, min(C \ (α + 1))). Let

D = {A ∈ P(λ)V : (∃ε < λ)(∀α > ε)(A ∩ [α, min(C \ (α + 1))) ∈ dα)}.It follows from 2.3(4) that D is an ultra�lter on the Boolean algebra P(λ)V.Let D
˜

be a Q1
λ-name for the D de�ned as above. Note that if p ∈ Q1

λ,
A ⊆ λ and (∃ε < λ)(∀δ ∈ Cp\ε)(A∩Zp

δ ∈ dp
δ), then p Q1

λ
�A ∈ D

˜
�. Plainly,the family {A ⊆ λ : p Q1

λ
�A ∈ D

˜
�} is a uniform �lter on λ, and, of ourse,for a generi �lter G ⊆ Q1

λ over V,
D
˜

G =
⋃

{{A ⊆ λ : p Q1
λ
�A ∈ D

˜
�} : p ∈ G}.Definition 2.5. (1) We de�ne a foring notion Q0

λ as follows. Aondition in Q0
λ is a tuple p = (Cp, 〈Zp

δ : δ ∈ Cp〉, 〈dp
δ : δ ∈ Cp〉) suhthat (0, Cp, 〈Zp

δ : δ ∈ Cp〉, 〈dp
δ : δ ∈ Cp〉) ∈ Q1

λ. The order ≤Q0
λ

= ≤of Q0
λ is inherited from Q1

λ in a natural way.(2) We de�ne a relation ≤∗
Q0

λ

=≤∗ on Q0
λ as follows: p ≤∗ q if and only iffor some α < λ we have

(Cp \ α, 〈Zp
δ : δ ∈ Cp \ α〉, 〈dp

δ : δ ∈ Cp \ α〉)

≤Q0
λ

(Cq \ α, 〈Zq
δ : δ ∈ Cq \ α〉, 〈dq

δ : δ ∈ Cq \ α〉).



Combinatoris of reasonable ultra�lters 11(3) For a ondition q ∈ Q0
λ we let

fil(q) := {A ⊆ λ : (∃ε < λ)(∀δ ∈ Cq \ ε)(A ∩ Zq
δ ∈ dq

δ)},and for a set G∗ ⊆ Q0
λ we let fil(G∗) :=

⋃

{fil(p) : p ∈ G∗}. We alsode�ne a binary relation ≤0 on Q0
λ by

p ≤0 q if and only if fil(p) ⊆ fil(q).(4) We say that an ultra�lter D on λ is reasonable if it is weakly rea-sonable (see 1.4(1)) and there is a direted (with respet to ≤0) set
G∗ ⊆ Q0

λ suh that D = fil(G∗). The family G∗ may be alled agenerating system for D.(5) An ultra�lter D on λ is said to be very reasonable if it is weaklyreasonable and there is a (<λ+)-direted (with respet to ≤0) set
G∗ ⊆ Q0

λ suh that D = fil(G∗).Remark 2.6. Note that ‖fil(p)‖ = 2λ whenever p ∈ Q0
λ is suh that allultra�lters dp

α (for α ∈ Cp) are non-prinipal. Thus even if D = fil(G∗) forsome small generating system G∗ ⊆ Q0
λ, the minimal number of generatorsfor D as a �lter may be 2λ.Observation 2.7.(1) If p ≤∗

Q0
λ

q, then fil(p) ⊆ fil(q) (so p ≤0 q).(2) If a set G∗ ⊆ Q0
λ is direted with respet to ≤0, then fil(G∗) is a �lterof subsets of λ ontaining all o-bounded subsets of λ.Definition 2.8. Suppose that(a) X is a non-empty set and e is an ultra�lter on X,(b) dx is an ultra�lter on a set Zx (for x ∈ X).We let

⊕e

x∈X
dx =

{

A ⊆
⋃

x∈X

Zx : {x ∈ X : Zx ∩ A ∈ dx} ∈ e
}

.(Clearly, ⊕e
x∈X dx is an ultra�lter on ⋃

x∈X Zx.)Proposition 2.9. Let p, q ∈ Q0
λ. Then the following are equivalent :(a) p ≤0 q,(b) there is ε < λ suh that

(∀α ∈ Cq \ ε)(∀A ∈ dq
α)(∃β ∈ Cp)(A ∩ Zp

β ∈ dp
β),() there is ε < λ suh that if α ∈ Cq \ ε and β0 = sup(Cp ∩ (α + 1)),

β1 = min(Cp \ min(Cq \ (α + 1))), then there is an ultra�lter e on
[β0, β1) ∩ Cp suh that

dq
α =

{

A ∩ Zq
α : A ∈

⊕e
{dp

β : β ∈ [β0, β1) ∩ Cp}
}

.



12 S. ShelahProof. (a)⇒(b). Assume towards a ontradition that p ≤0 q, but (b)fails. Then we may pik a sequene 〈αξ, Aξ : ξ < λ〉 suh that for eah ξ < λ,(i) αξ ∈ Cq, Aξ ∈ dq
αξ
,(ii) if ξ < ζ < λ, β ∈ Cp∩min(Cq\(αξ+1)), then min(Cp\(β+1)) < αζ ,(iii) (∀β ∈ Cp)(Aξ ∩ Zp
β /∈ dp

β).It follows from (ii) that for every β ∈ Cp there is at most one ξ < λ suh that
Zp

β ∩Zq
αξ

6= ∅. Also if β ∈ Cp and Zp
β ∩Zq

αξ
∈ dp

β, then (Zq
αξ

\Aξ)∩Zp
β ∈ dp

β.Put A =
⋃

ξ<λ Aξ. By what we have said above, for all β ∈ Cp we have
(λ \ A) ∩ Zp

β ∈ dp
β, and hene λ \ A ∈ fil(p) ⊆ fil(q). This ontradits (i).(b)⇒(). Assume that (b) holds true as witnessed by ε < λ. Let α ∈

Cq \ε, α′ = min(Cq \ (α+1)), β0 = sup(Cp∩ (α+1)) and β1 = min(Cp \α′).For A ∈ dq
α put

w(A) = {β ∈ [β0, β1) ∩ Cp : A ∩ Zp
β ∈ dp

β}.It follows from (b) that w(A) 6= ∅. Plainly w(A ∩ A′) = w(A) ∩ w(A′)for A, A′ ∈ dq
α, so we may pik an ultra�lter e on [β0, β1) ∩ Cp suh that

{w(A) : A ∈ dq
α} ⊆ e. Now it should be lear that

dq
α ⊆

{

B ∩ Zq
α : B ∈

⊕e
{dp

β : β ∈ [β0, β1) ∩ Cp}
}

and (sine learly Zq
α ∈

⊕e{dp
β : β ∈ [β0, β1)∩Cp}) the set on the right-handside is a proper �lter on Zq

α. Consequently, the two sets are equal.()⇒(a). Assume that () holds true as witnessed by ε < λ, and supposethat A ∈ fil(p). Pik ε′ < λ suh that ε < ε′ and
(∀β ∈ Cp \ ε′)(A ∩ Zp

β ∈ dp
β).Suppose α ∈ Cq \ (min(Cp \ ε′) + 1) and let β0 = sup(Cp ∩ (α + 1), β1 =

min(Cp \min(Cq \ (α+1))). Let e be an ultra�lter on [β0, β1)∩Cp suh that
dq

α =
{

B ∩ Zq
α : B ∈

⊕e
{dp

β : β ∈ [β0, β1) ∩ Cp}
}

.Note that β0 ≥ ε′ and hene A ∩ Zp
β ∈ dp

β for all β ∈ [β0, β1) ∩ Cp. Conse-quently,
A ∩ [β0, β1) ∈

⊕e
{dp

β : β ∈ [β0, β1) ∩ Cp}and therefore also
A ∩ Zq

α = (A ∩ [β0, β1)) ∩ Zq
α ∈ dq

α.Now we easily onlude that A ∈ fil(q).Definition 2.10. Let p ∈ Q0
λ. Suppose that X ∈ [Cp]λ and C ⊆ Cp isa lub of λ suh thatif α < β are suessive elements of C, then |[α, β) ∩ X| = 1.



Combinatoris of reasonable ultra�lters 13(In this situation we say that p is restritable to 〈X, C〉.) We de�ne therestrition of p to 〈X, C〉 as an element q = p↾〈X, C〉 ∈ Q0
λ suh that Cq = C,and if α < β are suessive elements of C, x ∈ [α, β) ∩ X, then Zq

α = [α, β)and dq
α = {A ⊆ Zq

α : A ∩ Zp
x ∈ dp

x}.Proposition 2.11.(1) Assume that G∗ ⊆ Q0
λ is ≤0-direted and ≤0-downward losed , p ∈

G∗, X ∈ [Cp]λ and C ⊆ Cp is a lub of λ suh that p is restritableto 〈X, C〉. If ⋃

x∈X Zp
x ∈ fil(G∗), then p↾〈X, C〉 ∈ G∗.(2) If G∗ ⊆ Q0

λ is ≤0-direted and ‖G∗‖ ≤ λ, then G∗ has a ≤0-upperbound. (Hene, in partiular , fil(G∗) is not an ultra�lter.)Proof. (1) Suppose that G∗, p, X, C are as in the assumptions and
⋃

x∈X Zp
x ∈ fil(G∗). Sine G∗ is ≤0-direted (and p ∈ G∗) we may pik

r ∈ G∗ suh that p ≤0 r and ⋃

x∈X Zp
x ∈ fil(r). We are going to show that

q := p↾〈X, C〉 ≤0 r (whih will imply that q ∈ G∗ as G∗ is downward losed).Sine ⋃

x∈X Zp
x ∈ fil(r), there is ε < λ suh that

(∀α ∈ Cr \ ε)
(

⋃

x∈X

Zp
x ∩ Zr

α ∈ dr
α

)

and
(∀α ∈ Cr \ ε)(∀A ∈ dr

α)(∃β ∈ Cp)(A ∩ Zp
β ∈ dp

β)(remember 2.9(b)). Now suppose that α ∈ Cr \ε and A ∈ dr
α. Then ⋃

x∈X Zp
x

∩A ∈ dr
α so there is β ∈ Cp suh that ⋃

x∈X Zp
x ∩A∩Zp

β ∈ dp
β. In partiular,

⋃

x∈X Zp
x ∩ Zp

β ∩ A 6= ∅, so neessarily β ∈ X. Let β0 < β1 be the suessiveelements of C suh that β0 ≤ β < β1. Sine
Zp

β ∩ A =
⋃

x∈X

Zp
x ∩ Zp

β ∩ A ∈ dp
β,we also have A ∩ Zq

β0
∈ dq

β0
. Thus we have shown thatif α ∈ Cr \ ε and A ∈ dr

α, then there is β0 ∈ Cq suh that A ∩ Zq
β0

∈ dq
β0
.Consequently, q ≤0 r (remember 2.9).(2) Let 〈pξ : ξ < λ〉 list (with possible repetitions) all members of G∗.For ξ < λ let Cξ = {δ < λ : δ = sup(δ ∩ Cpξ)} (it is a lub of λ), and for

ξ, ζ < λ let ε({ξ, ζ}) < λ be suh that if pξ ≤0 pζ , then
(∀α ∈ Cpζ \ ε({ξ, ζ}))(∀A ∈ d

pζ
α )(∃β ∈ Cpξ)(A ∩ Z

pξ

β ∈ d
pξ

β )(remember 2.9). Let
C∗ = {δ < λ : δ is limit and {pξ : ξ < δ} is ≤0-direted}(again, it is a lub of λ). Finally, let

C = {δ ∈ C∗ ∩ △
ξ<λ

Cξ : (∀ξ, ζ < δ)(ε({ξ, ζ}) < δ)}.



14 S. ShelahPlainly, C is a lub of λ. Now, suppose that δ < γ are two suessive membersof C. Put Zδ = [δ, γ) and let
Iδ = {A ⊆ Zδ : (∃ξ < δ)(∀α ∈ Cpξ \ δ)(A ∩ Z

pξ
α /∈ d

pξ
α )}.It easily follows from the de�nition of C that Iδ is a proper ideal on Zδ, sowe may pik an ultra�lter dδ on Zδ disjoint from Iδ. Let q = (C, 〈Zδ : δ ∈ C〉,

〈dδ : δ ∈ C〉). Clearly q ∈ Q0
λ and we will argue that q is a ≤0-upper boundto G∗. So let ξ < λ. Suppose that δ ∈ C \ (ξ + 1) and A ∈ dδ. Then A /∈ Iδ,so there is α ∈ Cpξ \ δ suh that A ∩ Z

pξ
α ∈ d

pξ
α . Now we may use 2.9 toonlude that pξ ≤0 q.Proposition 2.12. If 2λ = λ+, then there is a ≤∗

Q0
λ

-inreasing sequene
p̄ = 〈pε : ε < λ+〉 ⊆ Q0

λ suh that
fil(p̄) :=

⋃

{fil(pε) : ε < λ+}is a uniform ultra�lter on λ.Proof. Straightforward indution using 2.3(4) and the proof of 2.11(2).For basi information on the ideal of meager subsets of λλ and its overingnumber we refer the reader e.g. to Matet, Rosªanowski and Shelah [6, �4℄.Here we state only the de�nitions we will need.Definition 2.13.(1) The spae λλ is endowed with the topology obtained by taking asbasi open sets ∅ and Os for s ∈ λ>λ, where Os = {f ∈ λλ : s ⊆ f}.(2) The (<λ)-omplete ideal of subsets of λλ generated by nowhere densesubsets of λλ is denoted by M
λ
λ,λ.(3) cov(Mλ

λ,λ) is the minimal size of a family A ⊆ M
λ
λ,λ suh that

⋃

A = λλ.Theorem 2.14. Assume that λ<λ = λ and cov(Mλ
λ,λ) = 2λ. Then thereexists a very reasonable ultra�lter on λ.Proof. Fix a model N ≺ H(χ) (for some large regular ardinal χ) suhthat ‖N‖ = λ and λ>N ⊆ N .For p ∈ Q0

λ let 〈δp
α : α < λ〉 be the inreasing enumeration of Cp and let

ηp be the sequene of length λ suh that
(∀α < λ)(ηp(α) = 〈Zp

δ
p
α
, dp

δ
p
α
〉).Next let

Tα = {ηp↾α : p ∈ Q0
λ} ∩ N (for α < λ) and T =

⋃

α<λ

Tα.Clearly T is a tree isomorphi to λ>λ by an isomorphism preserving the levels(i.e., mapping Tα onto αλ). Also, every λ-branh η ∈ lim(T ) determines aondition p ∈ Q0
λ suh that η = ηp. Let Q∗ = {p ∈ Q0

λ : ηp ∈ lim(T )}.



Combinatoris of reasonable ultra�lters 15A family G∗ ⊆ Q∗ is linked if it is (<ω)-linked with respet to thepartial order ≤0-restrited to Q∗, that is, if every �nite subset of G∗ has a
≤0-upper bound in Q∗ (but the bound does not have to be in G∗). Note thatif p0, . . . , pn ∈ Q∗ have a ≤0-upper bound in Q0

λ, then they have a ≤0-upperbound in Q∗ as well. For p0, . . . , pn ∈ Q∗, δ < δ′ < λ and an ultra�lter d on
[δ, δ′) let (⊕)p0,...,pn(δ, δ′, d) mean
(⊕)p0,...,pn (a) δ, δ′ ∈ Cp0 ∩ . . . ∩ Cpn , and(b) if B ∈ d, i ≤ n, then there is ξ ∈ [δ, δ′) ∩ Cpi suh that

B ∩ Zpi

ξ ∈ dpi

ξ .Claim 2.14.1. If G∗ ⊆ Q∗ is a linked family , ‖G∗‖ < cov(Mλ
λ,λ), and

A ⊆ λ, then there is p ∈ Q∗ suh that(a) G∗ ∪ {p} is linked ,(b) either A ∈ fil(p) or λ \ A ∈ fil(p).Proof of the Claim. We will onsider two ases.
Case 1: For every p0, . . . , pn ∈ G∗, n < ω, there is p ∈ Q∗ suh that

A ∈ fil(p) and p0 ≤0 p, . . . , pn ≤0 p. Note that the assumption of the presentase is equivalent to
(⊗) for every p0, . . . , pn ∈ G∗, n < ω, and α < λ there are δ < δ′ < λand an ultra�lter d ∈ N on [δ, δ′) suh that (⊕)p0,...,pn(δ, δ′, d) holdstrue and α < δ and A ∩ [δ, δ′) ∈ d.We let
TA = {η ∈ T : (∀α < lh(η))(∀Z, d)(η(α) = 〈Z, d〉 ⇒ A ∩ Z ∈ d)}.Clearly, TA is a λ-branhing subtree of T and TA is isomorphi to λ>λ. Now,for p0, . . . , pn ∈ G∗, n < ω, and α < λ let IA

α (p0, . . . , pn) be the set
{η ∈ lim(TA) : (∃β > α)(∃δ, δ′, d)((⊕)p0,...,pn(δ, δ′, d) & η(β) = 〈[δ, δ′), d〉)}.It should be lear that IA

α (p0, . . . , pn) is an open dense subset of lim(TA)(remember (⊗)). Therefore (as ‖G∗‖ < cov(Mλ
λ,λ)) we know that

⋂

{IA
α (p0, . . . , pn) : n < ω & p0, . . . , pn ∈ G∗ & α < λ} 6= ∅and we may hoose η from the set on the left-hand side above. Let p ∈ Q∗be suh that η = ηp. Sine η ∈ lim(TA) we know that A ∈ fil(p). Also, forevery p0, . . . , pn ∈ G∗ we have η ∈

⋂

α<λ IA
α (p0, . . . , pn) and hene

‖{δ ∈ Cp : if δ′ = min(Cp \ (δ + 1)) then (⊕)p0,...,pn(δ, δ′, dp
δ)}‖ = λ.So one may easily onstrut p∗ ∈ Q∗ whih is ≤0-stronger than p, p0, . . . , pn(remember 2.9). Thus we have justi�ed that G∗ ∪ {p} is linked.

Case 2: There are p0, . . . , pn ∈ G∗, n < ω, suh thatif p ∈ Q∗ is ≤0-stronger than p0, . . . , pn, then A /∈ fil(p).



16 S. ShelahIt follows from the proof of 2.3(4) that thenfor every q0, . . . , qm ∈ G∗, m < ω, there is q ∈ Q∗ suh that
λ \ A ∈ fil(q) and q0 ≤0 q, . . . , qm ≤0 q(remember G∗ is linked and that bounded subsets of λ are in N). Thus wemay repeat the arguments of Case 1 for λ \ A and we �nd p ∈ Q∗ suh that

G∗ ∪ {p} is linked and λ \ A ∈ fil(p).Claim 2.14.2. If G∗ ⊆ Q∗ is linked , ‖G∗‖ < cov(Mλ
λ,λ) and p0, p1 ∈ G∗,then there is p ∈ Q∗ suh that(a) G∗ ∪ {p} is linked ,(b) p0 ≤0 p and p1 ≤0 p.Proof of the Claim. Let p0, p1 ∈ G∗. Note that

(⊙) for every p2, . . . , pn ∈ G∗, 2 ≤ n < ω, and α < λ there are δ < δ′ < λand an ultra�lter d ∈ N on [δ, δ′) suh that (⊕)p0,p1,p2,...,pn(δ, δ′, d)holds true and α < δ.We let T p0,p1 be the set
{η ∈ T : (∀α < lh(η))(∀δ, δ′, d)(η(α) = 〈[δ, δ′), d〉 ⇒ (⊕)p0,p1(δ, δ′, d))}and we note that T p0,p1 is a λ-branhing subtree of T isomorphi to λ>λ.For p2, . . . , pn ∈ G∗, 2 ≤ n < ω, and α < λ we let Ip0,p1

α (p2, . . . , pn) be theset
{η ∈ lim(T p0,p1) : (∃β > α)(∃δ, δ′, d)((⊕)p2,...,pn(δ, δ′, d) &

η(β) = 〈[δ, δ′), d〉)}.Then Ip0,p1
α (p2, . . . , pn) is an open dense subset of lim(T p0,p1) (remember

(⊙)). Sine ‖G∗‖ < cov(Mλ
λ,λ), we may hoose p ∈ Q∗ suh that

ηp ∈
⋂

{Ip0,p1

α (p2, . . . , pn) : 2 ≤ n < ω & p2, . . . , pn ∈ G∗ & α < λ} 6= ∅.As in the proof of 2.14.1 we argue that G∗ ∪ {p} is linked. Sine ηp ∈
lim(T p0,p1) we easily see that p is ≤0-stronger than both p0 and p1.Claim 2.14.3. If G∗ ⊆ Q∗ is a linked family , ‖G∗‖ < cov(Mλ

λ,λ), ξ ≤ λis a limit ordinal and a sequene 〈pζ : ζ < ξ〉 ⊆ G∗ is ≤0-inreasing , thenthere is p ∈ Q∗ suh that(a) G∗ ∪ {p} is linked ,(b) (∀ζ < ξ)(pζ ≤0 p).Proof of the Claim. First let us onsider the ase when ξ < λ. Supposethat a sequene p̄ = 〈pζ : ζ < ξ〉 ⊆ G∗ is ≤0-inreasing and let
Tp̄ = {η ∈ T : (∀α < lh(η))(∀δ, δ′, d)(η(α) = 〈[δ, δ′), d〉

⇒ (∀ζ < ξ)(⊕)pζ (δ, δ′, d))}.



Combinatoris of reasonable ultra�lters 17By arguments similar to that of 2.3(3) we verify that Tp̄ is a λ-branhingsubtree of T and it is isomorphi to λ>λ. As in the previous laims, for
p′0, . . . , p

′
n ∈ G∗, n < ω, and α < λ we let I p̄

α(p′0, . . . , p
′
n) be the set

{η ∈ lim(Tp̄) : (∃β > α)(∃δ, δ′, d)((⊕)p′
0
,...,p′n(δ, δ′, d) & η(β) = 〈[δ, δ′), d〉)}.Then eah I p̄

α(p′0, . . . , p
′
n) is an open dense subset of lim(Tp̄). [Why? Let

η ∈ Tp̄. We may assume that for eah ε < ζ < ξ and β ∈ Cpζ \ lh(η) and
A ∈ d

pζ

β there is γ ∈ Cpε suh that A∩Zpε
γ ∈ dpε

γ . We also may demand that
δ0 := sup(δ′ < λ : (∃α < lh(η))(∃δ, d)(η(α) = 〈[δ, δ′), d〉)) ∈

⋂

ε<ξ

Cpε∩
⋂

i≤n

Cp′i .Choose indutively a sequene 〈δζ , dζ : ζ < ξ〉 so that(a) 〈δζ : ζ < ξ〉 is an inreasing ontinuous sequene of ordinals below λ,(b) dζ ∈ N is an ultra�lter on [δζ , δζ+1), δζ+1 ∈
⋂

ε<ξ Cpε ,() (⊕)p′
0
,...,p′n,pζ (δζ , δζ+1, dζ) holds true (for eah ζ < ξ).Let δξ = sup(δζ : ζ < ξ) and let e ∈ N be an ultra�lter on ξ ontaining allo-bounded subsets of ξ. Put d =

⊕e
ζ<ξ dζ�it is an ultra�lter on [δ0, δξ),

d ∈ N and (⊕)p′
0
,...,p′n,pζ (δ0, δξ, d) holds true for eah ζ < ξ. Consequently,

η ∪ {(lh(η), 〈[δ0, δξ), d〉)} ∈ Tp̄ and every member of lim(Tp̄) extending itbelongs to I p̄
α(p′0, . . . , p

′
n).℄Thus we may pik p ∈ Q∗ suh that

ηp ∈
⋂

{I p̄
α(p′0, . . . , p

′
n) : n < ω & p′0, . . . , p

′
n ∈ G∗ & α < λ}.Sine ηp ∈ lim(Tp̄) we easily see that pζ ≤0 p for all ζ < ξ, and as in theproof of 2.14.1 we argue that G∗ ∪ {p} is linked.If ξ = λ and p̄ = 〈pζ : ζ < λ〉 is ≤0-inreasing, then we proeed in asimilar manner exept that we work in the tree

T ∗
p̄ = {η ∈ T : (∀α < lh(η))(∀δ, δ′, d)(η(α) = 〈[δ, δ′), d〉

⇒ (∀ζ < α)(⊕)pζ (δ, δ′, d))}.Claim 2.14.4. Assume that G∗ ⊆ Q∗ is a linked family , ‖G∗‖ <
cov(Mλ

λ,λ), C ⊆ λ is a lub and 〈δξ : ξ < λ〉 is the inreasing enumera-tion of C. Then there is p ∈ Q∗ and a lub C∗ of λ suh that(a) G∗ ∪ {p} is linked ,(b) ⋃

{[δξ+1, δζ) : ξ < ζ are suessive members of C∗} ∈ fil(p).Proof of the Claim. Let
TC = {η ∈ T : for eah α < lh(η) suh that α = δα and for every α′, d,

η(α) = 〈[α, α′), d〉 ⇒ δα+1 < α′ & [δα, δα+1) /∈ d)}.One easily veri�es that TC is a λ-branhing subtree of T whih is isomorphito λ>λ. As before, for p0, . . . , pn ∈ G∗, n < ω, and α < λ we let IC
α (p0, . . . , pn)



18 S. Shelahbe the set
{η ∈ lim(TC) : (∃β > α)(∃δ, δ′, d)((⊕)p0,...,pn(δ, δ′, d) & η(β) = 〈[δ, δ′), d〉)}.Eah IC

α (p0, . . . , pn) is an open dense subset of lim(TC) and hene there is
p ∈ Q∗ suh that

ηp ∈
⋂

{IC
α (p0, . . . , pn) : n < ω & p0, . . . , pn ∈ G∗ & α < λ}.As in the proof of 2.14.1 we argue that G∗ ∪ {p} is linked. Put

C∗ = {α < λ : α = δα is limit & (∃α′, d)(ηp(α) = 〈[α, α′), d〉)}and note that C∗ is a lub of λ. Note that if α ∈ C∗ and ηp(α) = 〈[α, α′), d〉,then δα+1 < α′ and [δα, δα+1) /∈ d. Consequently,
⋃

{[δα+1, δβ) : α < β are suessive members of C∗} ∈ fil(p).To prove the theorem we onstrut indutively a sequene 〈qζ : ζ < 2λ〉of elements of Q∗ suh that
• for eah ξ < 2λ the family {qζ : ζ < ξ} is linked,
• for eah A ⊆ λ there is ζ < 2λ suh that either A ∈ fil(qζ) or λ \ A ∈

fil(qζ),
• for eah ζ < ξ < 2λ there is α < 2λ suh that qζ ≤0 qα and qξ ≤0 qα,
• if ξ ≤ λ and 〈pζ : ζ < ξ〉 is a ≤0-inreasing sequene of elements of
{qζ : ζ < 2λ}, then there is α < 2λ suh that qα is a ≤0-upper boundto all pζ 's,

• if a sequene 〈δξ : ξ < λ〉 ⊆ λ is inreasing ontinuous, then for some
ζ < 2λ and a lub C∗ of λ we have

⋃

{[δξ+1, δξ′) : ξ < ξ′ are suessive members of C∗} ∈ fil(qζ).The onstrution is a straightforward appliation of a suitable bookkeepingdevie and Claims 2.14.1�2.14.4. After it is arried out put G∗ = {qζ :
ζ < 2λ} and note that fil(G∗) is a very reasonable ultra�lter on λ.Let us �nish this setion with an observation showing that the assumption
λ<λ = λ in Theorem 2.14 is very natural in the given ontext.Proposition 2.15. Assume θ < λ = cf(λ) < 2θ. Then cov(Mλ

λ,λ) = λ+.Proof. Let 〈νξ : ξ < λ+〉 be a sequene of distint funtions from θ to 2.Let 〈δα : α < λ〉 ⊆ λ be an inreasing ontinuous sequene suh that δ0 = 0,
δα+1 = δα + θ (for α < λ). Now, for ξ < λ+ we de�ne

Fξ = {η ∈ λλ : (∀α < λ)(∃i < θ)(η(δα + i) 6= νξ(i))}.Plainly, eah Fξ is a losed nowhere dense subset of λλ. We laim that
⋃

ξ<λ+ Fξ = λλ. To this end suppose that η ∈ λλ and onsider the restri-tions η↾[δα, δα+1) for α < λ. These restritions determine λ funtions from θ



Combinatoris of reasonable ultra�lters 19to 2, so we may �nd ξ < λ+ suh that νξ is distint from all these funtions,i.e., (∀α < λ)(∃i < θ)(η(δα + i) 6= νξ(i)). Then η ∈ Fξ.3. fil(G∗) and dominating families. In this setion we show that fam-ilies G∗ ⊆ Q0
λ generating reasonable ultra�lters annot be too small.Theorem 3.1. For p ∈ Q0

λ let fp ∈ λλ be suh that
(∀α < λ)(fp(α) ∈ Cp & otp(Cp ∩ fp(α)) = ω · α + ω).(1) Suppose that G∗

0 ⊆ Q0
λ is (<ℵ1)-direted (with respet to ≤0) and

fil(G∗
0) is a weakly reasonable ultra�lter. Then F0 = {fp : p ∈ G∗

0} isa dominating family in λλ.(2) Suppose that G∗
1 ⊆ Q0

λ is direted (with respet to ≤0) and fil(G∗
1) isa weakly reasonable ultra�lter on λ. Then F1 = {fp : p ∈ G∗

1} is alub-dominating family in λλ.Proof. (1) First note that if p, q ∈ G∗
0, p ≤0 q, then for some ε < λ, if

α < β < γ are suessive members of Cq \ ε, then (α, γ) ∩ Cp 6= ∅. Thus
p ≤0 q implies that for all su�iently large α < λ we have fp(α) ≤ fq(α).Consequently, the family F0 is (<ℵ1)-direted (with respet to ≤∗).Suppose towards a ontradition that F0 is not a dominating family.Then we may hoose an inreasing ontinuous sequene ᾱ0 = 〈α0

ξ : ξ < λ〉suh that
(∀p ∈ G∗

0)(∃
λε < λ)(fp(α

0
ε) < α0

ε+1).Now, by indution on n < ω, hoose inreasing ontinuous sequenes ᾱn =
〈αn

ξ : ξ < λ〉 so that letting Cn = {αn
ξ : ξ < λ} we have(i) ᾱ0 is the one hosen earlier,(ii) Cn+1 ⊆ {αn

ε : ε = αn
ε is a limit ordinal},(iii) ⋃

{[αn
ε , αn

ε+1) : ε ∈ Cn+1} /∈ fil(G∗
0).It should be lear that the onstrution of ᾱn's is possible (remember that

fil(G∗
0) is a weakly reasonable ultra�lter; use 1.5). Let Cω =

⋂

n<ω Cn andlet 〈αω
ξ : ξ < λ〉 be the inreasing enumeration of Cω. It follows from (ii)that for every ε < λ the sequene 〈αn

ε+1 : n < ω〉 is stritly inreasing and
sup(αn

ε+1 : n < ω) ∈ Cω, and if ξ = αω
ε , then sup(αn

ξ+1 : n < ω) = αω
ε+1. Itfollows from (iii) that for every n < ω,

An :=
⋃

{[αω
ε , αn

ξ+1) : ε < λ & ξ = αω
ε } /∈ fil(G∗

0).Fix p ∈ G∗
0 for a moment. By the hoie of ᾱ0 we know that the set

{ξ < λ : fp(α
0
ξ) < α0

ξ+1} is unbounded in λ, and hene also the set {ε < λ :
fp(α

ω
ε ) < αω

ε+1} is unbounded in λ. Therefore for some n < ω we have
‖{ε < λ : ξ = αω

ε ⇒ fp(α
ω
ε ) < αn

ξ+1}‖ = λ;let n(p) be the �rst suh n < ω.



20 S. ShelahNote that if p ≤0 q are from G∗
0, then n(p) ≤ n(q) (as fp ≤∗ fq). Con-sequently, sine G∗

0 is (<ℵ1)-direted, there is n∗ < ω suh that (∀p ∈ G∗
0)

(n(p) ≤ n∗). Look at the set An∗ : for every p ∈ G∗
0 there are λ many ε < λsuh that αω

ε < fp(α
ω
ε ) < αn∗

ξ+1, where ξ = αω
ε , and so (by the de�nition of

fp) we get An∗ ∈ (fil(p))+. Sine fil(G∗
0) is an ultra�lter we get an immediateontradition with An∗ /∈ fil(G∗

0).(2) Suppose towards a ontradition that F1 is not lub-dominating in λλ.Then we may �nd an inreasing funtion h ∈ λλ suh that
(∀p ∈ G∗

1)({ε < λ : fp(ε) < h(ε)} is stationary in λ).Pik an inreasing ontinuous sequene 〈δξ : ξ < λ〉 ⊆ λ suh that (∀ξ < λ)
(h(δξ) < δξ+1). Sine fil(G∗

1) is weakly reasonable, we may use 1.5 to pik alub C of λ suh that C ⊆ {ξ < λ : δξ = ξ is a limit ordinal} and
⋃

{[δξ, δξ+1) : ξ ∈ C} /∈ fil(G∗
1).Sine fil(G∗

1) is an ultra�lter, for some p ∈ G∗
1 we have

λ \
⋃

{[δξ, δξ+1) : ξ ∈ C} ∈ fil(p).However, by the hoie of h, the set {ξ < λ : δξ = ξ ∈ C & fp(ξ) < h(ξ) <
δξ+1} is stationary (so of size λ), and we get an immediate ontraditionwith the de�nition of fp.Corollary 3.2.(1) If G∗

0 ⊆ Q0
λ is (<ℵ1)-direted (with respet to ≤0) and fil(G∗) is aweakly reasonable ultra�lter , then ‖G∗

0‖ ≥ dλ.(2) If G∗
1 ⊆ Q0

λ is direted (with respet to ≤0) and fil(G∗
1) is a weaklyreasonable ultra�lter on λ, then ‖G∗

1‖ ≥ dcl(λ).Proposition 3.3. Suppose that G∗
0 ⊆ Q0

λ is (<λ)-direted (with respetto ≤Q0
λ
) and fil(G∗) is an ultra�lter. For p ∈ G∗

0 let fp ∈ λλ be de�ned asin 3.1. If F0 = {fp : p ∈ G∗
0} is not a dominating family in λλ, then λ ismeasurable.Proof. Similarly to the proof of 3.1(1), we note that F0 is (<λ)-direted(with respet to ≤∗). Assume F0 is not dominating family. Then we mayhoose an inreasing ontinuous sequene 〈αξ : ξ < λ〉 suh that

(∀p ∈ G∗
0)(∃

λε < λ)(fp(αε) < αε+1).Let
U = {A ⊆ λ : (∃p ∈ G∗

0)(∃δ < λ)(∀ε > δ)(fp(αε) < αε+1 ⇒ ε ∈ A)}.We are going to show that U is a λ-omplete uniform ultra�lter on λ. Itshould be lear that U inludes all o-bounded subsets of λ and that it is a
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λ-omplete �lter (remember that F0 is (< λ)-direted). To show that it isan ultra�lter suppose that A ⊆ λ and let

B =
⋃

{[αε, αε+1) : ε ∈ A} ⊆ λ.Sine fil(G∗
0) is an ultra�lter, then either B ∈ fil(G∗

0) or λ \ B ∈ fil(G∗
0).Suppose that the former happens, so we may hoose p ∈ G∗

0 suh that
B ∈ fil(p). Then for some δ < λ we have

(∀β ∈ Cp \ δ)(B ∩ Zp
β ∈ dp

β).Now, if ε > δ and fp(αε) < αε+1, then [αε, αε+1) ∩ B 6= ∅ and thus
[αε, αε+1) ⊆ B, so ε ∈ A. Consequently, A ∈ U (as witnessed by p, δ).In the same manner one shows that if λ \ B ∈ fil(G∗

0), then λ \ A ∈ U .4. Open problems and further investigations. It may well be thatour foring tehniques for unountable λ are still not strong enough to arryout the arguments parallel to the onsisteny results for ultra�lters on ω.However, we feel that the reent progress in the theory of foring iteratedwith unountable supports (as exempli�ed by [15℄, Rosªanowski and She-lah [12℄, [10℄, [9℄ and Eisworth [3℄) may prove to be useful in developingiterated foring for �killing� and/or �preserving� some subfamilies of thelass of reasonable ultra�lters. In partiular, in Rosªanowski and Shelah[8℄ we ontinue the researh of the present paper and we introdue superreasonable ultra�lters whih are stronger than very reasonable ultra�lters.We show that for inaessible λ it is onsistent that there are suh ul-tra�lters determined by generating systems of size less than 2λ, and wealso prove a result on preserving them in λ-support iterations. We alsoshow that onsistently there are no ultra�lters generated by small systems.These results may be interpreted as some progress towards generalizing (a),(b) and () from the introdution. However, several other natural prob-lems remain untouhed. One of the main questions we are interested inareProblem 4.1. Let λ be a regular unountable ardinal. Is it provablein ZFC that there exist reasonable ultra�lters on λ? Very reasonable? (See2.5(4, 5).)Problem 4.2. Is it onsistent that there exists a very reasonable ultra-�lter D on λ suh that for every very reasonable ultra�lter D′ on λ for somefuntion f ∈ Fλ we have D/f = D′/f?Sine in the present paper we deal with dividing by f ∈ Fλ, and thenormal ultra�lters are �xed points for this operation, the natural questionis:



22 S. ShelahProblem 4.3. Is it onsistent that for every D ∈ uuf there is f ∈ Fλsuh that either D/f is normal or D/f is reasonable (or even very reason-able)?We may also re-interpret our aim as follows.Definition 4.4.(1) Let UE∗
λ,µ be the family of all (<µ)-direted (with respet to ≤0)subsets G∗ of Q0

λ suh that fil(G∗) is a proper ultra�lter on λ.(2) UF∗
λ,µ = {fil(G∗) : G∗ ∈ UE∗

λ,µ}; UF∗
λ = UF∗

λ,λ+ and UFλ = UF∗
λ,ℵ0

.Aim 4.5. Investigate UF∗
λ, UFλ; in partiular hek if any two of theman have ommon quotients.We expet that the foring theorems needed for further researh will besimilar to [15℄ and even more so to [12, 10, 9℄, in some respets, and forothers to [13℄.Let us also note that ombinatorial aspets of generating ultra�lters bymeans similar to generating systems of De�nition 2.5 will be studied inRosªanowski and Shelah [7℄.
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