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Spaces of continuous step functions over LOTS
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Raushan Z. Buzyakova (Greensboro, NC)

Abstract. We investigate spaces Cp(·, n) over LOTS (linearly ordered topological
spaces). We find natural necessary conditions for linear Lindelöfness of Cp(·, n) over LOTS.
We also characterize countably compact LOTS whose Cp(·, n) is linearly Lindelöf for
each n. Both the necessary conditions and the characterization are given in terms of the
topology of the Dedekind completion of a LOTS.

1. Introduction. We will study relations between covering properties
of Cp(·, n) over linearly ordered topological spaces (abbreviated as LOTS)
and their Dedekind completions. Let us make one simple observation that
will motivate the results of this paper. Let L = (0, 1] ∪ [0, 1)′ be the two
arrows space of Aleksandrov. It is well known that Cp(L, 2) is not Lindelöf.
This failure is witnessed by the following classical collection of functions:
F = {fr : r ∈ (0, 1)}, where fr is 0 up to r and 1 starting from r

′. If g is
a complete accumulation point for F in 2L then there exists p′ ∈ [0, 1)′

such that g([0′, p′]) = {0} and g((p′, 1]) = {1} or g([0′, p)) = {0} and
g([p, 1]) = {1}. That is, g is discontinuous, and consequently, F has no com-
plete accumulation points in Cp(L, 2). However, if we consider the LOTS
L∗ = L \ {p, p′}, and the family F ∗ of the functions of F restricted to L∗,
then the new family has a complete accumulation point in Cp(L

∗, 2), namely
g|L∗ . This is because the gap {p, p

′} is a hole now, that is, not in L∗.

Roughly speaking, for Lindelöfness of Cp(·, 2) it is necessary that “large
collections of gaps accumulate to holes”. It is of course also necessary that
“large collections of holes accumulate to holes”. We prove that in the class
of countably compact LOTS, these two conditions together form a criterion
for Cp(·, n) to be linearly Lindelöf for each n (Theorem 8). The second
statement in topological language can be stated as follows: “If Cp(·, 2) over
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a LOTS L is linearly Lindelöf then so is the Dedekind remainder of L”.
To state both conditions in one topological sentence is not hard either (see
Theorem 3) but requires one additional definition to be given later. In this
paper we refine these two statements into sufficient/necessary conditions for
linear Lindelöfness of Cp(·, n) (or certain nice subspaces of it) over LOTS.
The main results of this paper are given by Theorems 3, 7, and 8, and
Corollary 4. We demonstrate how the conditions obtained can be used.
In notation and terminology we will follow [ENG] and [ARH]. As usual,

Cp(X,Y ) is the space of all continuous functions from X to Y endowed with
the topology of pointwise convergence. All spaces considered are Tikhonov.
A space X is called linearly Lindelöf if every uncountable subset A ⊂ X of
regular cardinality has a complete accumulation point in X. Recall that a
point x ∈ X is a complete accumulation point (abbreviated as cap) for A if
every open neighborhood of x meets A in a subset of cardinality |A|. Special
constructions and definitions about LOTS will be given at the beginning of
the next section.

2. Results. Given a LOTS L, an ordered pair 〈A,B〉 of disjoint subsets
of L is called a Dedekind section if A ∪ B = L, supA does not exist, inf B
does not exist, and A is to the left of B. A pair 〈L, ∅〉 (resp. 〈∅, L〉) is
also a Dedekind section if supL (resp. inf L) does not exist. The Dedekind
completion of L is denoted by cL, and the set cL\L of all Dedekind sections
by dL.
Let us quickly recall the definition of Dedekind completion. The set cL

is the union of L and the set dL of all Dedekind sections of L. The order on
cL is very natural. The order on elements of L is not changed. If x ∈ L and
y = 〈A,B〉 ∈ dL then x is less (resp. greater) than y if x ∈ A (resp. x ∈ B).
If x = 〈A1, B1〉 and y = 〈A2, B2〉 are elements of dL, then x is less than y if
A1 is a proper subset of A2.
An ordered pair 〈a, b〉 of elements of L is called a gap if a < b and

there is no other element between a and b. The least and greatest elements
in cL will be denoted by −∞ and ∞, respectively. When we work with
a particular LOTS L, by (a, b) we will mean the interval in the Dedekind
completion cL. The trace of this interval on a subspace X of cL (on L
in particular) will be denoted by (a, b)X . This agreement is rather un-
usual but is convenient for our discussion. A function f is a step func-
tion (with finitely many steps) from a LOTS L to X if there exist points
a1, . . . , am ∈ cL (called transition points) and elements i0, . . . , im ∈ X such
that f([−∞, a1]L) = {i0}, f((a1, a2]L) = {i1}, . . . , f((am,∞]L) = {im}.
Regarding transition points, we always assume that none of the intervals
[−∞, a1]L, (a1, a2]L, . . . , (am,∞]L is empty and ik 6= ik+1. It is clear that
if f is a continuous step function from L to a Hausdorff space, then every
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transition point of f is either in the Dedekind remainder dL or is the left
endpoint of a gap in L.

Now let us define the key structure for this paper. Given a LOTS L,
we denote by T (L) = (T, T ) the space obtained as follows. The underlying
set is the subset T of cL that consists of all Dedekind sections as well as
left endpoints of gaps of L. That is, T = dL∪{left endpoints of gaps in L}.
The topology T of T (L) is defined using the Bing–Hanner construction (see
[ENG, 5.1.22]). Namely, base neighborhoods at points of dL are those from
the subspace topology on T , while all other points are declared isolated. Let
us describe another way to obtain T (L). First insert a new single point in
each gap and denote the resulting LOTS by L′. The subspace of cL′ that
consists of all Dedekind sections and the inserted points is clearly naturally
homeomorphic to T (L). Observe that if f is a step function with finitely
many steps from L to {0, . . . , n − 1} then f is continuous iff all transition
points of f are in T .

To get used to T (L), let us see what it looks like for some simple spaces.
It is clear that for compact LOTS L, dL is empty. Therefore, T (L) is simply
a discrete space that has the same cardinality as the set of all gaps in L. As
another example, let L = (0, 1] ∪ [0, 1)′ be the two arrows of Aleksandrov
and let A ⊂ (0, 1) be any subset. Let LA = L \ {r, r

′ : r ∈ A}. The space
T (LA) can be obtained from (0, 1) by retaining Euclidean neighborhoods
at points of A and declaring points of (0, 1) \ A isolated. This is a classical
Michael-type space and is well investigated.

Let us start our study with the following technical fact.

Lemma 1. Let L be a LOTS and let F ⊂ Cp(L, n) be a family of step
functions with at most m transition points each. If a non-constant f ∈
Cp(L, n) is limit for F , then f is a step function with at most m transition
points. Moreover , if for any distinct g, h ∈ F , the sets of transition points
of g and h are disjoint then all transition points of f are in dL.

Proof. First, there is no strictly increasing sequence p1 < · · · < pm+2
in L such that f(pi) 6= f(pi+1) for i = 1, . . . ,m + 1. Indeed, the exis-
tence of such a sequence implies that the neighborhood Uf = {g : g(pi) =
f(pi), i = 1, . . . ,m + 2} does not contain step functions with fewer than
m + 1 transition points, a contradiction with f being a limit point for F .
The rest of the first part is now clear. Simply take the suprema (in cL) of
the maximal intervals (except the last one) on which the function is con-
stant.

For the “moreover” part assume the contrary and let a ∈ L be a transi-
tion point of f . Then there exists b such that 〈a, b〉 is a gap in L. Since a is a
transition point, f(a) 6= f(b). The set Uf = {g : g(a) = f(a), g(b) = f(b)} is
a neighborhood of f . If g ∈ Uf is a step function then a is a transition point



28 R. Z. Buzyakova

of g as well. Since Uf contains infinitely many elements of F , they must all
share a transition point, contradicting the hypothesis.

The next theorem is the base induction step for the proof of our main
necessary condition (Theorem 3).

Theorem 2. Let L be a LOTS. If Cp(L, 2) is linearly Lindelöf then so
is T (L).

Proof. Fix any A ⊂ T of uncountable regular cardinality. For each a ∈ A,
the function fa defined to be 0 on [−∞, a]L and 1 on (a,∞]L is either
constant or a continuous step function because the transition point is in T .
Clearly, for different a’s, the fa’s differ. Therefore, FA = {fa : a ∈ A} has
cardinality |A|. Since Cp(L, 2) is linearly Lindelöf, there exists f ∈ Cp(L, 2)
that is a cap for FA. By Lemma 1, f is either constant or a step function
with one transition point.

Let f ≡ 0. Let us show that ∞ is a cap for A in T (L). First, ∞ ∈ dL.
Indeed, if it were in L then the set {g : f(∞) = 0} would be a neighborhood
of f . But this neighborhood does not contain a single element of FA \ {f},
since each function in FA \ {f} is eventually 1. Since ∞ ∈ dL, its base
neighborhoods in T (L) are from the subspace topology on T . So, fix any
x ∈ L below ∞. We need to show that (x,∞] contains |A| elements of A.
The set Uf = {g : g(x) = 0} is a neighborhood of f , hence meets FA in a
subset of cardinality |A|. If fa ∈ Uf ∩ FA, then the transition point a is in
(x,∞]. Similarly, −∞ is a cap for A in T (L) if f ≡ 1.
If f is not constant, then there exists c ∈ T such that f([−∞, c]L) = {0}

and f((c,∞]L) = {1}. By the “moreover” part of Lemma 1, c ∈ dL. Also,
since f is not constant, c 6= ±∞. Therefore, base neighborhoods of c in T (L)
are of the form (x, y)T , where c ∈ (x, y). Take any interval (x, y) ∋ c with
end-points in L. The set Uf = {g : g(x) = 0, g(y) = 1} contains f , and
therefore |A| elements of FA. If fa ∈ Uf then the transition point a has to
be in (x, y). Therefore, c is a cap for A in T (L).

Theorem 3. Let L be a LOTS. If Cp(L, n+1) is linearly Lindelöf then
so is (T (L))n.

Proof. Theorem 2 proves the statement for n = 1. Suppose that for each
natural number k less than n > 1, the statement is true. Fix an uncountable
regular cardinal number τ and A ⊂ Tn of cardinality τ . Each a ∈ A has
coordinate representation 〈a1, . . . , an〉. There is A

′ ⊂ A of size τ such that
for any a, b ∈ A′, the coordinate-wise correspondence a1 ↔ b1, a2 ↔ b2, . . .
is order-preserving (order on ai’s and bi’s is that from cL).

Case I: For some element of A′, at least two coordinates coincide. This
means that the same coordinates coincide for any other element of A′. We
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may assume that for each a ∈ A′, a1 = a2. The set S = {〈a2, . . . , an〉 :
〈a1, a2, . . . , an〉 ∈ A

′} is a subset of Tn−1. The set S has cardinality τ , be-
cause if the first coordinates of a and b in A′ differ, their second coordinates
differ too. Since Cp(L, n) is a closed subspace of Cp(L, n+1), Cp(L, n) is also
linearly Lindelöf. Therefore, by inductive assumption, (T (L))n−1 is linearly
Lindelöf. Thus, there exists a cap 〈c2, . . . , cn〉 for S in (T (L))

n−1. Clearly,
〈c2, c2, . . . , cn〉 is in T

n and is a cap for A′ in (T (L))n.

Case II: There exists a τ -sized subset A∗ of A and i∗ ∈ {1, . . . , n} such
that the i∗th coordinates of any a, b ∈ A∗ coincide and are equal to some
fixed element c1. We may assume that i

∗ = 1. By induction assumption,
there exists 〈c2, . . . , cn〉 ∈ Tn−1 which is a cap for

{〈a2, . . . , an〉 : 〈a1, a2, . . . , an〉 ∈ A
∗}

in (T (L))n−1. Clearly, 〈c1, . . . , cn〉 is a cap for A
∗ in (T (L))n.

Case III: Neither Case I nor Case II takes place. By the ∆-system
lemma there exists a set S (a root) and a τ -sized subset A′′ of A′ such that
for any 〈a1, . . . , an〉, 〈b1, . . . , bn〉 ∈ A

′′ the coordinate sets {a1, . . . , an} and
{b1, . . . , bn} meet in S. If S is not empty, then there exists i

∗ ∈ {1, . . . , n}
and a τ -sized subset A∗ of A′′ such that the i∗th coordinates of any two
elements of A∗ coincide. But this is not possible in Case III. Therefore, S is
empty. Thus we may assume that for any distinct a, b ∈ A′ no coordinate of
a is equal to any coordinate of b.
Since it is not Case I, all coordinates of some a∗ ∈ A′ are different. Re-

number the coordinate axes of Tn in such a manner that the coordinates of
a∗ are strictly increasing. Since the coordinatewise correspondence is order-
preserving on elements of A′, the coordinates of any point in A′ are now
strictly increasing. For each a ∈ A′ define fa as follows:

fa([−∞, a1]L) = {0}, fa((a1, a2]L) = {1}, . . . , fa((an,∞]L) = {n}.

Since ai < ai+1, fa is defined on all of L. Since a1, . . . , an ∈ T , fa is con-
tinuous for each a ∈ A′. Clearly, for distinct a, b ∈ A′ the corresponding
functions are distinct. Therefore, FA′ = {fa : a ∈ A

′} has cardinality τ . By
hypothesis, there exists a cap f for {fa : a ∈ A

′}. By Lemma 1, f is either
constant or a step function with at most n transition points. As we remarked
earlier, distinct a and b in A′ have disjoint coordinate sets. Therefore, by
Lemma 1, all transition points of f (if there are any) are in dL.
Define the point c = 〈c1, . . . , cn〉 as follows: ci = −∞ if f(x) ≥ i for all x;

otherwise, ci = supcL{x ∈ L : f(x) < i}. We want to show that c is a cap
for A′ in (T (L))n.
First, let us show that c ∈ (dL)n. If ci is neither ∞ nor −∞, then ci

is a transition point of f , and therefore is in dL. Suppose ci = ∞ and
let us show that ∞ ∈ dL. Assume the contrary. By the definition of ci,
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f(ci) = f(∞) < i ≤ n. Since no two distinct elements of A
′ share a single

coordinate, the nth coordinates of all elements of A′, except maybe one, are
below ∞. Therefore, fa(∞) = n for all a ∈ A

′, contradicting f being a cap
for FA′ . Suppose now ci = −∞. Assume −∞ ∈ L. Then f(−∞) ≥ i ≥ 1.
But fa(−∞) = 0 for all a, a contradiction.
Now let us show that c is a cap for A′ in (T (L))n. Since base neigh-

borhoods at points of dL in T (L) are those from the subspace topology,
it is enough to show that c is a cap for A′ in (cL)n. Fix any closed box
[x1, y1] × · · · × [xn, yn] containing 〈c1, . . . , cn〉 in its interior and such that
xi ∈ L if ci 6= −∞ and yi ∈ L if ci 6=∞. Let Uf ⊂ Cp(L, n+1) be the neigh-
borhood of f that contains all functions that coincide with f at xi’s and
yi’s distinct from ±∞. Since Uf is an open neighborhood of f , it contains
τ elements of FA′ . Let us show that for any fa ∈ Uf , a is in the fixed box.
We need to show that the ith coordinate ai of a is in [xi, yi]. If ci =∞ then
f(xi) < i. Since fa ∈ Uf , fa(xi) < i. By the definition of fa, if fa(x) < i
then x ≤ ai. Therefore, ai ∈ [xi,∞] = [xi, ci] = [xi, yi]. If ci = −∞, then
f(yi) ≥ i. Since fa ∈ Uf , fa(yi) ≥ i, which means yi ∈ (ai,∞]. Therefore,
ai ∈ [−∞, yi] = [ci, yi] = [xi, yi]. If ci is between infinities, then f(xi) < i
and f(yi) ≥ i. Since fa ∈ Uf , the same inequalities hold for fa. Therefore,
by the definition of fa, ai must be in [xi, yi].

One might have an impression that this necessary condition is rather
artificial and is hard to use. Let us demonstrate the condition at work.
Nahmanson [NAH] proved that Cp over a compact LOTS L is Lindelöf iff L
is metrizable. Let us show how to derive a weaker version of Nahmanson’s
theorem from Theorem 2. As observed earlier, if L is a compact LOTS,
then T (L) is discrete and has the same cardinality as the set of all gaps
in L. Clearly, a discrete space is linear Lindelöf iff it is countable. Applying
Theorem 2 we have the following statement: “Let L be a zero-dimensional
compact LOTS. Then Cp(L, 2) is linearly Lindelöf iff L is metrizable”. This
application is certainly not very impressive but serves the demonstration
purpose.
Since dL is a closed subspace of T (L) we have the following.

Corollary 4. Let L be a LOTS. If Cp(L, n + 1) is linearly Lindelöf
then (dL)n is linearly Lindelöf.

The conclusions in the above two theorems suggest the following ques-
tion.

Question 5. Let L be a LOTS with Cp(L, n + 1) Lindelöf (or linearly
Lindelöf ). Is (dL)n Lindelöf? Is (T (L))n Lindelöf?

For n = 1, the answer to this question is “yes”. Indeed, since L is a
LOTS, T is hereditarily countably paracompact [ENG, 5.5.22]. Since the
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Bing–Hanner construction does not destroy hereditary countable paracom-
pactness, T (L) is a countably paracompact linearly Lindelöf space. (It is
proved in [ENG, 5.1.22] that the Bing–Hanner construction preserves heredi-
tary paracompactness. For hereditary countable paracompactness, the proof
is almost the same with obvious modifications.) Hence, by the result of
Mishchenko [MIS], T (L) is Lindelöf.

Corollary 6. Let L be a LOTS. If Cp(L, n) is linearly Lindelöf for
each n then (T (L))n is linearly Lindelöf for each n.

It is natural to ask if the implication in the previous corollary can be
reversed. No it cannot be. Let S = {0}∪{1/n : n ∈ ω\{0}}. Remove from the
lexicographical product ω1 ×l S all points of the form 〈α, 0〉, where α is limit.
The resulting space L is a LOTS. Any neighborhood of the point∞ in T (L)
contains all of T (L) except maybe a countable part of it. Therefore, T (L) is a
continuous image of the Aleksandrov one-point Lindelöfication of an ω1-sized
discrete space, and therefore, a Lindelöf P-space. Hence, (T (L))n is Lindelöf
for each n. However, Cp(L, 2) is not linearly Lindelöf. Indeed, L contains a
clopen subspace homeomorphic to the free sum of ω1 copies of S. Therefore,
Cp(L, 2) contains a closed subspace homeomorphic to (Cp(S, 2))

ω1 . Since
Cp(S, 2) is not compact, its uncountable power cannot be Lindelöf. Since
every linearly Lindelöf space of weight ω1 is Lindelöf and the weight of
(Cp(S, 2))

ω1 is ω1, the power cannot be linearly Lindelöf either.

In Theorem 8 below, we show that the converse of Corollary 6 does
nevertheless hold for countably compact LOTS. In Theorem 7, we show
that linear Lindelöfness of (T (L))n for each n implies linear Lindelöfness of
certain very nice subspaces of Cp(L, n).

For the next theorem, we denote by Sp(L, n) the subspace of Cp(L, n)
that consists of all step functions with finitely many steps and all constant
functions. An open set U ⊂ Cp(L, n) will be called standard if there exist
x1, . . . , xm ∈ L and b1, . . . , bm ∈ {0, . . . , n − 1} such that U = {g : g(xi) =
bi, i = 1, . . . ,m}. If x is one of xi’s we say that U depends on x. In other
words, U depends on x if x participates in the definition of U .

Theorem 7. Let L be a LOTS and let (T (L))n be linearly Lindelöf for
each n. Then Sp(L, n) is linearly Lindelöf for each n.

Proof. Fix any n > 0 and an uncountable regular cardinal τ . Let F ⊂
Sp(L, n) be of size τ . There exist F

′ ⊂ F of size τ , m > 0, and i0, . . . , im ∈
{0, 1, . . . , n−1} such that each f ∈ F ′ is a function with m transition points
and

f([−∞, af1 ]L) = {i0}, f((a
f
1 , a
f
2 ]L) = {i1}, . . . , f((a

f
m,∞]L) = {im},

where af1 , . . . , a
f
m are the transition points of f . Since f is continuous, all
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afi ’s are in T . Since i0, . . . , im are the same for all functions in F
′, different

functions in F ′ must have different collections of transition points. Therefore,
AF ′ = {〈a

f
1 , . . . , a

f
m〉 : f ∈ F

′} has cardinality τ . By hypothesis, there exists
c = 〈c1, . . . , cm〉 ∈ T

m which is a complete accumulation point for AF ′ in
(T (L))m. It is clear that ci ≤ ci+1. Therefore, the following function h is
defined on all of L:

h([−∞, c1]L) = {i0}, h((c1, c2]L) = {i1}, . . . , h((cm,∞]L) = {im}.

This function is continuous since all ci’s are in T . Clearly, h ∈ Sp(L, n). Let
us show that h is a cap for F ′. Let Uh be a standard neighborhood of h.
We may assume that Uh satisfies the following conditions (make it smaller
if needed):

P1. If cj is in L then Uh depends on cj .
P2. If cj 6= −∞ (resp. cj 6= ∞) then there exists z ∈ (−∞,∞)L such
that Uh depends on z and z ≤ cj (resp. cj ≤ z). Let us show this
for cj 6= −∞. If cj ∈ L put z = cj . Otherwise, cj ∈ dL \ {−∞}.
Therefore, cj is limit for [−∞, cj)L, so pick any z in this interval.

P3. If cj < cj+1 then there are x, y ∈ L such that Uh depends on x, y
and cj ≤ y < x ≤ cj+1.

Put xj = −∞ if cj = −∞ and xj = max{x ≤ cj : Uh depends on x}
otherwise (max is evaluated for a non-empty set due to P2). Put yj = ∞
if cj = ∞, and yj = min{y ≥ cj : Uh depends on y} otherwise. Due to
P1, if cj ∈ L then [xj , yj ] = {cj}, which is an open neighborhood of cj
in T (L). If cj ∈ dL then [xj , yj ] has cj in its interior in cL. Therefore the
interior of the box B = [x1, y1]T × · · · × [xm, ym]T in (T (L))

m contains the
point c = 〈c1, . . . , cm〉. Since c is a cap for AF ′ , B meets AF ′ in a subset
of size τ . Let us show that f belongs to Uh for τ many a

f ∈ B ∩ AF ′ . Fix
af = 〈af1 , . . . , a

f
m〉 ∈ B ∩ AF ′ . Fix any z such that Uh depends on z. We

need to show that f(z) = h(z).

Case I: z = xj for some j. Let j
′ be the smallest such that cj = cj′ . We

have cj′ ∈ [xj′ , yj′ ] = [xj , yj ]. Since a
f ∈ B, we have afj′ ∈ [xj′ , yj′ ]. If j

′ = 1

then xj′ belongs to [−∞, c1] and to [−∞, a
f
1 ], and therefore, f(xj′) = i0 =

h(xj′). If j
′ > 1 then, by the choice of j′, cj′−1 < cj′ . By P3, yj′−1 < xj′ .

Since af ∈ B, we have afj′−1 ∈ [xj′−1, yj′−1] and a
f
j′ ∈ [xj′ , yj′ ]. Therefore,

xj′ ∈ (a
f
j′−1, a

f
j′ ]. Thus, f(xj′) = ij′−1. Also since xj′ ∈ (cj′−1, cj′ ], we have

h(xj′) = ij′−1. Since xj′ = xj , we have f(xj) = h(xj).

Case II: z = yj for some j. If yj = cj then xj = yj . Therefore z = xj
and Case I applies. Suppose now yj > cj , in which case cj is in dL.
Let B∗ = [x∗1, y

∗

1 ]T × · · · × [x
∗

m, y
∗

m]T be a sub-box of the box B whose
interior contains c and that has the following property:
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P4. If ci ∈ dL and ci is limit in cL from the right (resp. left) then y
∗

i < yi
(resp. xi < x

∗

i ).

Since B∗ is a neighborhood of c, it contains τ elements of AF ′ . So we may
assume that the fixed af is in fact in B∗. Let j′ be the largest such that
cj = cj′ . Since yj > cj , we have yj ∈ (cj′ ,∞]. Thus, if j

′ = m then h(yj) =
im. Now assume j

′ < m. By P3, yj′ ≤ cj′+1. Therefore, yj ∈ (cj′ , cj′+1] and
h(yj) = ij′ . Let us prove that f has the same values. Since a

f ∈ B∗, we

have afj′ ∈ [x
∗

j′ , y
∗

j′ ]. Since cj < yj and cj′ = cj , we conclude that cj′ ∈ dL

and is below ∞. By P4, afj′ ≤ y
∗

j′ < yj′ . Therefore, yj′ is in (a
f
j′ ,∞] and so

is yj . Thus, if j
′ = m then f(yj) = im. If j

′ < m then afj′+1 ∈ [xj′+1, yj′+1]

and yj′ ≤ xj′+1. Therefore, yj ∈ (a
f
j′ , a

f
j′+1] and f(yj) = ij′ .

Case III: Neither Case I nor Case II takes place. Then z is either in
(yj , xj+1) for some j, or in [−∞, x1) or in (ym,∞]. Assume z is in (yj , xj+1)
for some j. Then z ∈ (cj , cj+1) and therefore h(z) = ij . Since a

f ∈ B,

we have afj ≤ yj and a
f
j+1 ≥ xj+1. Hence, z is in (a

f
j , a
f
j+1]. Therefore,

f(z) = ij .
Assume now z ∈ [−∞, x1). Since c1 ≥ x1 we have z ∈ [−∞, c1]. There-

fore, h(z) = i0. Since a
f ∈ B we have af1 ∈ [x1, y1]. By transitivity,

z ∈ [−∞, af1 ]. Therefore, f(z) = i0. The case z ∈ (ym,∞] is similar.

We are finally ready to characterize countably compact LOTS whose
Cp(·, n) are linearly Lindelöf for all n.

Theorem 8. Let L be a countably compact LOTS. Then Cp(L, n) is
linearly Lindelöf for each n iff T (L) is linearly Lindelöf.

Proof. Necessity is given by Theorem 3. Let us prove sufficiency. Every
continuous function from a countably compact LOTS to n is constant or a
step function with finitely many steps. Therefore, by Theorem 7, it suffices
to show that (T (L))n is linearly Lindelöf for each n. We proved earlier that
T (L) is Lindelöf (see discussion after Question 5). Let us show that T (L) is
a P-space. Let S =

⋂
n Un, where Un is open in T (L) for each n. Fix x ∈ S.

If x ∈ L then {x} is open, hence x is in the interior of S. Suppose x ∈ dL.
Assume x ∈ (−∞,∞). Since base neighborhoods at x in T (L) are from the
subspace topology on T , for each n we can fix an interval (an, bn) ∋ x such
that (an, bn)T ⊂ Un. We may assume that an, bn ∈ L and the (n + 1)st
interval is inside the nth interval. Then x ∈

⋂
n(an, bn)T ⊂ S. If x is not

in the interior of S then either an → x or bn → x. Since x 6∈ L, we arrived
at a contradiction with countable compactness of L. Therefore, x is in the
interior of S.
Since T (L) is a Lindelöf P-space, every finite power of T (L) is Lindelöf.

Hence Cp(L, n) is linearly Lindelöf for each n.
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Observe that if the Dedekind completion of L is connected (=“L has no
gaps”) then T (L) = dL.

Corollary 9. Let L be a countably compact LOTS with connected
Dedekind completion. Then Cp(L, n) is linearly Lindelöf for each n iff dL is
linearly Lindelöf.

Let us demonstrate Theorem 8 in application. In [BUZ], the author
proved that Cp(X) is Lindelöf if X is a first-countable countably compact
subspace of some ordinal τ . Using Theorem 8, it is easy to derive a weaker
version of that result as follows. First, it is possible to introduce an order
on X that induces the topology of X. The space T (X) is linearly Lindelöf
because any uncountable subset of X accumulates to some missing ordinal
of uncountable cofinality in τ + 1. By Theorem 8, Cp(X,n) is linearly Lin-
delöf for every n. Since our conclusion is weaker than the one in [BUZ] we
do not give the details.

Twice in this paper we applied our results to derive only weaker versions
of older results. This motivates the following questions.

Question 10. Let X be a countably compact space and let Cp(X) be
linearly Lindelöf. Is Cp(X) Lindelöf?

In general, it is interesting to know for which classes of spaces, linear
Lindelöf and Lindelöf properties of Cp are equivalent.

Question 11. Let X be a first-countable countably compact space (or
compact). Suppose Cp(X, 2) is Lindelöf. Is Cp(X, 2

ω) Lindelöf? What if
Cp(X,n) is Lindelöf for each n?

If we do not require first-countability then an answer to this question is
consistently “no” even for a compact space. In [POL], R. Pol constructed an
example of a separable zero-dimensional compactum X such that Cp(X, 2

n)
is Lindelöf for all n while Cp(X, 2

ω) is not. For first-countable pseudo-
compact spaces, the answer to Question 11 is consistently “no” too. In
[D&S], A. Dow and P. Simon proved that under certain set-theoretic as-
sumptions there exists a mad family A on ω such that the corresponding
Mrówka space Ψ(A) has Cp(Ψ(A), 2) Lindelöf. Recall that any Ψ -space is
first-countable and pseudocompact. In the same paper, the authors discov-
ered that Cp(Ψ(A), 2

ω) is not Lindelöf for any mad family A. They state
their result as follows: “Cp(Ψ(A)) is not Lindelöf for any mad family A”.
However, their proof needs from the reals only the existence of a non-trivial
convergent sequence. Therefore, they actually proved much more, namely,
that “the space Cp(Ψ(A), convergent sequence) is not Lindelöf for any mad
family A”.
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