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On unimodal maps with ritial order 2 + εbySimin Li and Weixiao Shen (Hefei)
Abstrat. It is proved that a smooth unimodal interval map with ritial order 2+εhas no wild attrator if ε > 0 is small.1. Introdution. In this paper, we ontinue the study of existene ofwild attrators for unimodal interval maps. This problem, originated in [11℄,has been extensively studied. In partiular, the original problem asked byMilnor, whether an S-unimodal interval map with a non-degenerate ritialpoint has a wild attrator, was solved (see [9℄ and also [4, 5℄). In [12℄, theseond author of this paper extended the result to smooth unimodal mapswith ritial order not more than 2. In this paper, we extend the resultfurther, and prove that smooth unimodal maps with ritial order not muhlarger than 2 have no wild attrator.Note that there exist unimodal maps with wild attrators (see [1℄). Forde�nition of wild attrators and more historial remarks, see the referenesabove.Unimodal maps. Let N = [a, b] be a ompat interval. A C1 map

f : N → N is alled unimodal if there exists a unique c ∈ (a, b) (alled theritial point) suh that f ′(c) = 0 and f ′ has di�erent signs on the ompo-nents of N \ {c}. Let U be the olletion of unimodal maps f whih satisfythe following onditions:
• f is C3 exept at c;
• there exists ℓ > 1 (alled the ritial order) and loal C3 di�eomor-phisms φ and ψ with φ(c) = 0 and ψ(f(c)) = 0 suh that ψ ◦ f(x) =

−|φ(x)|ℓ in a neighborhood of c.
2000 Mathematis Subjet Classi�ation: Primary 37E05.Key words and phrases: unimodal map, wild attrator.The seond author is supported by the Bai Ren Ji Hua projet of the CAS.[77℄



78 S. M. Li and W. X. Shen
Note. Without loss of generality, we shall assume that the ritial pointof f is loated at 0 and f(x) = −|x|ℓ + f(0) in a neighborhood of 0.Main Theorem. There exists ε > 0 suh that no f ∈ U with ritialorder 1 < ℓ ≤ 2 + ε has a wild attrator.A map f ∈ U is alled renormalizable if there exist an interval I whihontains the ritial point c in its interior, and a positive integer s > 1,suh that the intervals I, f(I), . . . , f s−1(I) have pairwise disjoint interiors,

f s(I) ⊂ I, and f s(∂I) ⊂ ∂I. The unimodal map f s : I → I is alled arenormalization of f .Remark 1.1. It was already known to Milnor that if a map f ∈ U hasa wild attrator, then f is at most �nitely renormalizable and the ritialpoint c is reurrent but not periodi. Sine the property of having a wildattrator does not hange under renormalization, we may restrit ourselvesto the ase that f is non-renormalizable and has a reurrent and non-periodiritial point. Let F be the olletion of all maps in U whih satisfy theseproperties.Reall that an open interval T is alled nie if fn(∂T ) ∩ T = ∅ for all
n ≥ 0. Let D(T ) = {x ∈ N : fk(x) ∈ T for some k ≥ 1}.The �rst entry map RT : D(T ) → T is de�ned as x 7→ fk(x)(x), where
k(x) is the entry time of x into T , i.e., the minimal positive integer suhthat fk(x)(x) ∈ T . It is well known that k(x) is onstant in any omponentof D(T ). The mapRT |D(T )∩T is alled the �rst return map of T . A omponentof D(T ) is alled an entry domain, and a omponent of D(T )∩ T is alled areturn domain.Prinipal nest. Consider f ∈ F . Let q denote the orientation-reversing�xed point of f . Let I0 = (q̂, q) where f(q̂) = f(q), and for all n ≥ 1, let
In be the return domain to In−1 whih ontains the ritial point. All theseintervals In are nie. The sequene

I0 ⊃ I1 ⊃ I2 ⊃ · · ·is alled the prinipal nest . Let gn denote the �rst return map to In. Let
m(0) = 0, and letm(1) < m(2) < · · · be all the non-entral return moments,i.e., positive integers suh that

gm(k)−1(0) 6∈ Im(k).Note that the fat that f is non-renormalizable implies that there are in-�nitely many non-entral return moments.



Unimodal maps 79Main Lemma. For any η > 0 there exists ε > 0 suh that for f ∈ Fwith ritial order 1 < ℓ ≤ 2 + ε, we have
lim sup

k→∞

|Im(k)+1|
|Im(k)| < η.This result was laimed in [12℄ without a detailed proof. The proof givenhere is a modi�ation of the method in that paper.In [2℄, the authors assume this lemma, and prove that f ∈ F with ritialorder 2+ ε has an aip provided that ε is small and f has only �nitely manyentral returns, i.e., m(k) − k is onstant for all large k.The main theorem and the main lemma also extend some results of [6℄.Proposition 1.1. For any ℓ0 > 1 there exists α = α(ℓ0) > 0 with thefollowing property. Let f ∈ F be a map with ritial order 1 < ℓ ≤ ℓ0 andassume that lim sup |Im(k)+1|/|Im(k)| < α. Then f has no wild attrator.This proposition was (impliitly) proved in Setion 7 of [9℄ in the asethat f has negative Shwarzian. The last assumption beomes unneessarydue to [7℄. One an also prove this proposition using the Theorem of [3℄ orthe Theorem of [8℄.Dedution of the Main Theorem from the Main Lemma. Let α = α(3) beas in Proposition 1.1. By the Main Lemma, there exists ε ∈ (0, 1) suh that if

f ∈ F has ritial order ℓ ∈ (1, 2+ε) then the assumption of Proposition 1.1is satis�ed, so f has no wild attrator. By the remark above, it follows thatno map f ∈ U with ritial order ℓ ∈ (1, 2 + ε) has a wild attrator.1.1. Preliminaries. The following two lemmas were proved in [12℄.Lemma 1.2. Let J ⊂ Im(k)−1−Im(k) be a return domain to Im(k)−1 withreturn time s. Then there is an interval J ′ with J ⊂ J ′ ⊂ Im(k)−1 − Im(k)suh that f s : J ′ → Im(k−1) is a di�eomorphism.Lemma 1.3. Let s be the return time of 0 to Im(k). Then there is aninterval J ∋ f(0) with f−1(J) ⊂ Im(k) suh that f s−1 : J → Im(k−1) is adi�eomorphism.The following lemma on real bounds was proved in [10, 7℄.Lemma 1.4. For any ℓ0 > 1, there exists a onstant ̺ > 1 suh that if
f ∈ F has ritial order ℓ ∈ (1, ℓ0), then for all k su�iently large,

|Im(k)| ≥ ̺|Im(k)+1|.(1.1)Moreover , if gm(k)(I
m(k)+1) 6∋ 0, then

|Im(k+1)−1| ≥ ̺|Im(k+1)|.



80 S. M. Li and W. X. ShenWe shall use the following ross-ratio. For any two intervals J ⋐ T , wede�ne
C(T, J) =

|T | |J |
|L| |R| ,where L,R are the omponents of T − J . If h : T → R is a homeomorphismonto its image, we write

C(h;T, J) =
C(h(T ), h(J))

C(T, J)
.Lemma 1.5 ([7, Theorem C℄). For eah k su�iently large, there is apositive number Ok with Ok → 1 as k → ∞ and with the following property.Let T ⊂ [−1, 1] be an interval and let n be a positive integer. Assume that

fn|T is monotone and fn(T ) ⊂ Im(k−1). Then for any interval J ⋐ T , wehave
C(fn;T, J) ≥ Ok.We shall also use the following lemma whih is impliit in the proof ofthe Main Theorem of [12, p. 390℄.Lemma 1.6. For any ℓ0 > 1, there is a onstant C = C(ℓ0) > 0 suhthat for any f ∈ F with ritial order 1 < ℓ ≤ ℓ0 and su�iently large k ≥ 1,we have

|Im(k)|
|Im(k+1)| ≥

|Im(k)|
|Im(k)+1| ≥ C

( |Im(k−1)|
|Im(k)|

)1/ℓ

.

2. Lower limit. For any n ≥ 0, write cn = fn(0). A losest (ritial)return time is a positive integer s suh that ck 6∈ (cs,−cs) for all 1 ≤ k ≤ s.The point cs will be alled a losest (ritial) return.Let s1 < s2 < · · · be all the losest return times. Let n0 be suh that
sn0 is the return time of 0 to Im(1). For any n ≥ n0, let k = k(n) be so that
csn

∈ Im(k) − Im(k+1). Note that csn
∈ Im(k+1)−1 − Im(k+1). Let Tn ∋ csn

bethe maximal open interval suh that:
• f sn+1−sn |Tn

is monotone,
• f sn+1−sn(Tn) ⊂ Im(k)−1.Let xn, yn denote the endpoints of f sn+1−sn(Tn), with |xn| ≤ |yn|. By Lem-ma 3.2 of [12℄, yn ∈ ∂Im(k)−1, xn 6∈ Im(k), and (xn, yn) ∋ 0. Let bn be anendpoint of Im(k+1)−1. De�ne

An =
|bn|ℓ − |csn+1 |ℓ
|bn|ℓ − |csn

|ℓ , Bn =

( |csn
|

|csn+1 |

)ℓ/2

,and
Vn =

2|xn|(|yn| + |csn
|)

(|yn| + |xn|)(|xn| + |csn
|) , Wn =

( |xn|
|csn−1 |

)ℓ/2

.



Unimodal maps 81Moreover, de�ne
Ãn =

|bn|2 − |csn+1 |2
|bn|2 − |csn

|2 , W̃n =
|xn|

|csn−1 |
.The argument in [12℄ shows the followingProposition 2.1. There exists a onstant σ0 > 1 suh that if ℓ < 3then for all n su�iently large, we have

Ãn−1VnW̃n ≥ σ0.Let
µk =

|Im(k+1)|
|Im(k)| .Proposition 2.2. There is a onstant σ > 1 suh that for any α > 0,there exists ε = ε(α) > 0 whih satis�es the following. If f ∈ F has ritialorder 1 < ℓ ≤ 2+ε and n is su�iently large and µk−1, µk, µk+1 ≥ α, where

k = k(n), then
|(f sn+1)′(c1)|BnAn−1

|(f sn)′(c1)|Bn−1An
≥ σ,(2.1)

|(f sn+1)′(c1)|Bn

|(f sn)′(c1)|Bn−1
≥ 1

2
AnVnWn.(2.2)Proof. By the Main Lemma of [12℄, we only need to onsider the ase

ℓ > 2. Given α > 0. Suppose f ∈ F has ritial order ℓ = 2 + ε for some
ε > 0. By the de�nition, csn−1 ∈ Im(k−1) − Im(k+1), csn+1 ∈ Im(k) − Im(k+2)and xn, yn ∈ Im(k)−1 − Im(k).By the Lemma in [12℄, φ(x, ℓ) = x1−ℓ/2

T1
x t

ℓ−1 dt is inreasing in ℓ. Nowthe omputation of [12, p. 397, �rst paragraph℄ yields
|(f sn+1−sn)′(f(csn

))| An−1Bn

AnBn−1
≥ g

( |csn+1 |
|xn|

, ε

)
OkAn−1VnWn,where

g(t, ε) =
φ(t, 2)

φ(t, 2 + ε)
.Sine

|csn+1 |
|xn|

≥ |Im(k+2)|
|Im(k−1)| ≥ α3,for any 0 < σ1 < 1, if ε is small enough,

g

( |csn+1|
|xn|

, ε

)
> σ1.In partiular, (2.2) holds.



82 S. M. Li and W. X. ShenLet us prove (2.1). Sinẽ
Wn ≥ |Im(k)|

|Im(k−1)| ≥ α,for any 0 < σ2 < 1, provided that ε is small enough,
Wn = W̃ ε/2

n W̃n ≥ σ2W̃n.Sine |csn−1 |/|yn| ≥ |Im(k+1)|/|Im(k−1)| ≥ α2 and |bn−1| = |yn|, we have
An−1 =

|yn|2+ε − |csn
|2+ε

|yn|2+ε − |csn−1|2+ε
≥

1 −
( |csn |

|yn|

)2

1 −
( |csn−1 |

|yn|

)2( |csn−1 |

|yn|

)ε
≥ σ3Ãn−1where σ3 > 0 an be arbitrarily lose to 1 if ε is small.Therefore we get

|(f sn+1−sn)′(f(csn
))| An−1Bn

AnBn−1
≥ σ1σ2σ3OkÃn−1VnW̃nwhere σ1, σ2, σ3 an be arbitrarily lose to 1 if ε is su�iently small. ByProposition 2.1, (2.1) follows.Corollary 2.3. For any α > 0, there exists ε = ε(α) > 0 suh that for

f ∈ F with ritial order 1 < ℓ ≤ 2 + ε, we have
lim inf
k→∞

|Im(k+1)|
|Im(k)| < α.Proof. Suppose the statement is not true. Then there exists α > 0, andfor any ε > 0 there exists a map f ∈ F with ritial order 1 < ℓ ≤ 2 + εsuh that

lim inf
k→∞

|Im(k+1)|
|Im(k)| ≥ α.Therefore for k large enough, |Im(k+1)|/|Im(k)| ≥ α/2. Provided that ε issmall enough, Proposition 2.2 implies that

|(f sn+1−sn)′(f(csn
))| An−1Bn

AnBn−1
> σfor all n large, where σ > 1 is a onstant. But as shown in the proof of theMain Theorem in [12℄, this implies that f has deay of geometry and thus

lim |Im(k+1)|/|Im(k)| = 0, whih is a ontradition.3. Proof of the Main LemmaProposition 3.1. For any ℓ0 > 1, there exists a onstant C = C(ℓ0)
> 0 satisfying the following. Let f ∈F be a map with ritial order 1< ℓ< ℓ0.Assume that k is su�iently large and µk, µk−1 < α. Let n be suh that sn



Unimodal maps 83is the return time of 0 into Im(k). Then
|(f sn)′(c1)|Bn−1 > C/

√
α.Proof. Notie that csn

∈ Im(k+1)−1 − Im(k+1) is also the �rst returnof 0 to Im(k+1)−1. By Lemma 1.3, there is an interval J ∋ c1 suh that
f−1(J) ⊂ Im(k) and f sn−1 : J → Im(k−1) is a di�eomorphism. We willonsider two ases.
Case 1: |f sn(Im(k+1))| ≥ 0.1|Im(k+1)−1|. Sine f(Im(k+1)) ⊂ J and

f sn(Im(k+1)) ⊂ Im(k) is well-inside Im(k−1), f sn−1|f(Im(k+1)) has uniformlybounded distortion. Therefore
|(f sn−1)′(c1)| ≥ C

|f sn(Im(k+1))|
|f(Im(k+1))| ≥ C

|Im(k+1)−1|
|Im(k+1)|ℓ .So

|(f sn)′(c1)|Bn−1 = |(f sn−1)′(c1)| |f ′(csn
)|

( |csn−1 |
|csn

|

)ℓ/2

≥ C
|Im(k+1)−1|
|Im(k+1)|ℓ ℓ|Im(k+1)|ℓ−1

( |Im(k)|
|Im(k+1)−1|

)ℓ/2

≥ C
|Im(k+1)−1|
|Im(k+1)|

( |Im(k)|
|Im(k+1)−1|

)ℓ/2

.If m(k + 1) = m(k) + 1, then
|(f sn)′(c1)|Bn−1 ≥ C

|Im(k)|
|Im(k+1)| ≥

C

α
.If m(k + 1) ≥ m(k) + 2, then

|(f sn)′(c1)|Bn−1 ≥ C

( |Im(k)|
|Im(k+1)−1|

)ℓ/2

≥ C

( |Im(k)|
|Im(k)+1|

)ℓ/2

≥ C√
αby Lemma 1.6.

Case 2: |f sn(Im(k+1))| < 0.1|Im(k+1)−1|. First we assume that m(k+ 1)
= m(k) + 1. By Lemma 1.4, ̺′ = |Im(k−1)|/|Im(k)| > ̺ > 1. Let J ′ ⊂ Jbe suh that f sn−1(J ′) = ̺′+1

2 Im(k). Let K ′ = f−1(J ′) ⊂ Im(k) and K be aomponent of K ′ − {0}.Sine ̺′+1
2 Im(k) is well-inside Im(k+1), f sn−1|J ′ has uniformly boundeddistortion. Thus

|(f sn−1)′(c1)| ≥ C
|f snK|
|f(K)| ≥ C

|Im(k−1)|
|Im(k)|ℓ .



84 S. M. Li and W. X. ShenBy assumption, csn
is lose to the endpoint of Im(k), and it follows that

|(f sn)′(c1)|Bn−1 ≥ |(f sn)′(c1)| = |(f sn−1)′(c1)| |f ′(csn
)|

≥ C
|Im(k−1)|
|Im(k)|ℓ |Im(k)|ℓ−1 ≥ C

α
.Now we assume that m(k + 1) − m(k) ≥ 2. By Lemma 1.4, ̺′ :=

|Im(k)|/|Im(k+1)−1| ≥ |Im(k)|/|Im(k)+1|>̺. Let J ′ ⊂ J be suh that f sn−1(J ′)

= T := ̺′+1
2 Im(k+1)−1. Let K ′ = f−1(J ′). Then K ′ ⊂ T , sine otherwise

f sn will have an attrating periodi point in K ′. Let K be a omponent of
K ′ − {0}. Sine f sn−1|J ′ has uniformly bounded distortion, we have

|(f sn−1)′(c1)| ≥ C
|f sn(K)|
|f(K)| ≥ C

|Im(k+1)−1|
|Im(k+1)−1|ℓ .By assumption, csn

is lose to ∂Im(k+1)−1, and it follows that |(f sn)′(c1)| =
|(f sn−1)′(c1)| |f ′(csn

)| is bounded away from 0. Therefore
|(f sn)′(c1)|Bn−1 ≥ C

( |csn−1|
|csn

|

)ℓ/2

≥ C

( |Im(k)|
|Im(k+1)−1|

)ℓ/2

≥ C√
α
,where we use Lemma 1.6.Lemma 3.2. There is a onstant β > 0 suh that Wn ≥ β for eah

n > 0.Proof. For eah n > 0 let k > 0 be suh that csn
∈ Im(k)−Im(k+1) and let

p = m(k+1)−m(k). We may assume that Wn < 1, so by Lemma 3.2 of [12℄,we have p ≥ 2, 0 /∈ gm(k)(I
m(k)+1) and csn

is the �rst return of 0 to Im(k).Moreover, let q be suh that csn
= gq

m(k)−1(0). Then there exist 1 ≤ q′ < qand 1 ≤ p′ < p suh that xn = gq′

m(k)−1(g
p′

m(k)(0)) and csn−1 = gq′

m(k)−1(0).Let J1 be the entry domain to Im(k) whih ontains csn−1 = gq′

m(k)−1(0).Then gq−q′

m(k)−1|J1 : J1 → Im(k) is a di�eomorphism and
Im(k)−1 − Im(k) ⊃ J1 ⊃ gq′

m(k)−1(I
m(k)+1) ∋ gq′

m(k)−1(g
p′

m(k)(0)) = xn.Therefore gq−q′

m(k)−1((xn, csn−1)) ⊂ (csn
, wn), where wn = gp

m(k)(0) ∈ Im(k)

− Im(k)+1.Let J ⊂ Im(k)−1 − Im(k) be the entry domain to Im(k)−1 whih ontains
csn−1 . Then J ⊃ J1. By Lemma 1.2, there is an interval J ′ with J ⊂ J ′

⊂ Im(k)−1−Im(k) suh that gq−q′

m(k)−1 : J ′ → Im(k−1) is a di�eomorphism. Sine
(csn

, wn) is well-inside Im(k−1), (xn, csn−1) is well-inside J ′. Sine 0 /∈ J ′, itfollows that Wn is bounded away from zero.



Unimodal maps 85Before proving the Main Lemma we need a lemma whih is impliit inthe proof of the Main Theorem in [12℄.Lemma 3.3. For any ℓ0 > 1 and η > 0, there exists ξ > 0 satisfying thefollowing. Let f ∈ F be a map with ritial order 1 < ℓ ≤ ℓ0, and assumethat |(f sn)′(c1)|Bn−1 > ξ for all su�iently large n. Then
|Im(k)+1|
|Im(k)| < ηfor all su�iently large k.Proof of the Main Lemma. For any α > 0, by Lemma 1.6, there exists

α1 > 0 (we may assume α1 < α) suh that if µk−1 < α1, then µk < α. ByCorollary 2.3, there exists ε > 0 suh that if f is a non-renormalizable C3unimodal map with ritial order ℓ ≤ 2 + ε, then
lim inf
k→∞

|Im(k+1)|
|Im(k)| < α1.Let k1 < k2 < · · · be all the integers suh that µki−1 < α1. Then µki

< αand µk ≥ α1 if k 6= ki − 1 (i = 1, 2, . . .).To omplete the proof, by Lemma 3.3, it is enough to prove that thequantity |(f sm)′(c1)|Bm−1 is large for m su�iently large.Fix a large integer i ≥ 1. Let n = n(i) be suh that sn is the return timeof 0 into Im(ki). Sine µki−1, µki
< α, by Proposition 3.1,

|(f sn)′(c1)|Bn−1 > C/
√
αfor some onstant C > 0.Certainly we may assume that ki+1 ≥ ki + 2, so that µk ≥ α1 for all

ki ≤ k ≤ ki+1 − 2. By Lemma 1.6, there exists α2 ∈ (0, α1) suh that
µki−1 ≥ α2. Let N = N(i) be suh that csn+N

is the �rst return of 0 to
Im(ki+1−1). By Proposition 2.2, for any n ≤ m ≤ n+N − 1,

|(f sm+1)′(c1)|Bm

|(f sm)′(c1)|Bm−1
≥ 1

2
AmVmWmIf |(f sm+1)′(c1)|Bm ≥ |(f sm)′(c1)|Bm−1 for all n ≤ m ≤ n + N − 1, then

|(f sm)′(c1)|Bm−1 > C/
√
α for all n ≤ m ≤ n+N . Otherwise, let n+N−1 ≥

ñ ≥ n be minimal suh that
|(f sñ+1)′(c1)|Bñ < |(f sñ)′(c1)|Bñ−1.Then AñVñWñ ≤ 2. Sine Vñ > 1 and Wñ ≥ β (Lemma 3.2), we obtain

Añ ≤ 1/2β. Sine
|(f sñ)′(c1)|Bñ−1 ≥ · · · ≥ |(f sn)′(c1)|Bn−1 ≥ C/

√
α,



86 S. M. Li and W. X. Shenand
|(f sñ+1)′(c1)|Bñ

|(f sñ)′(c1)|Bñ−1
≥ 1

2
AñVñWñ ≥ β

2
,we have

|(f sñ+1)′(c1)|
Bñ

Añ
≥ β2C√

α
.Now by Proposition 2.2, for any ñ+ 1 ≤ m ≤ n+N ,

|(f sm)′(c1)|Bm−1 ≥ |(f sm)′(c1)|
Bm−1

Am−1
>
β2C√
α
.Sine α > 0 an be arbitrarily small, the proof is �nished.
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