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On unimodal maps with critical order 2 + ¢
by

Simin Li and Weixiao Shen (Hefei)

Abstract. It is proved that a smooth unimodal interval map with critical order 2+¢
has no wild attractor if ¢ > 0 is small.

1. Introduction. In this paper, we continue the study of existence of
wild attractors for unimodal interval maps. This problem, originated in [11],
has been extensively studied. In particular, the original problem asked by
Milnor, whether an S-unimodal interval map with a non-degenerate critical
point has a wild attractor, was solved (see [9] and also [4, 5]). In [12], the
second author of this paper extended the result to smooth unimodal maps
with critical order not more than 2. In this paper, we extend the result
further, and prove that smooth unimodal maps with critical order not much
larger than 2 have no wild attractor.

Note that there exist unimodal maps with wild attractors (see [1]). For
definition of wild attractors and more historical remarks, see the references
above.

Unimodal maps. Let N = [a,b] be a compact interval. A C' map
f: N — N is called unimodal if there exists a unique ¢ € (a,b) (called the
critical point) such that f’(¢) = 0 and f’ has different signs on the compo-
nents of N \ {c}. Let U be the collection of unimodal maps f which satisfy
the following conditions:

o fis C3 except at c;

e there exists ¢ > 1 (called the critical order) and local C? diffeomor-
phisms ¢ and ¢ with ¢(c) = 0 and ¥(f(c)) = 0 such that ¢ o f(z) =
—|¢(x)|* in a neighborhood of c.
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NoTE. Without loss of generality, we shall assume that the critical point
of f is located at 0 and f(x) = —|z|* 4+ f(0) in a neighborhood of 0.

MAIN THEOREM. There exists € > 0 such that no f € U with critical
order 1 < £ <2+ ¢ has a wild attractor.

A map f € U is called renormalizable if there exist an interval I which
contains the critical point ¢ in its interior, and a positive integer s > 1,
such that the intervals I, f(I),..., f*~1(I) have pairwise disjoint interiors,
f5(I) C I, and f*(0I) C OI. The unimodal map f° : I — I is called a
renormalization of f.

REMARK 1.1. It was already known to Milnor that if a map f € U has
a wild attractor, then f is at most finitely renormalizable and the critical
point ¢ is recurrent but not periodic. Since the property of having a wild
attractor does not change under renormalization, we may restrict ourselves
to the case that f is non-renormalizable and has a recurrent and non-periodic
critical point. Let F be the collection of all maps in I/ which satisfy these
properties.

Recall that an open interval T is called nice if f*(0T)NT = () for all
n > 0. Let

D(T) = {z € N : f¥(z) € T for some k > 1}.

The first entry map Ry : D(T) — T is defined as = — f*®)(z), where
k(x) is the entry time of x into T, i.e., the minimal positive integer such
that f*®)(z) € T. It is well known that k(z) is constant in any component
of D(T'). The map Rr|p(r)nr is called the first return map of T'. A component
of D(T) is called an entry domain, and a component of D(T") NT is called a
return domain.

Principal nest. Consider f € F. Let g denote the orientation-reversing
fixed point of f. Let I° = (4, q) where f(q) = f(q), and for all n > 1, let
I™ be the return domain to I™"~! which contains the critical point. All these
intervals I™ are nice. The sequence

’>r'orro.-.

is called the principal nest. Let g, denote the first return map to I™. Let
m(0) =0, and let m(1) < m(2) < --- be all the non-central return moments,
i.e., positive integers such that

Im(y—1(0) & I™F).

Note that the fact that f is non-renormalizable implies that there are in-
finitely many non-central return moments.
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MAIN LEMMA. For any n > 0 there exists € > 0 such that for f € F
with critical order 1 < £ < 2+ ¢, we have
Im(k)+1|

lim sup W

k—oo

<.

This result was claimed in [12] without a detailed proof. The proof given
here is a modification of the method in that paper.

In [2], the authors assume this lemma, and prove that f € F with critical
order 2+ ¢ has an acip provided that ¢ is small and f has only finitely many
central returns, i.e., m(k) — k is constant for all large k.

The main theorem and the main lemma also extend some results of [6].

PROPOSITION 1.1. For any fy > 1 there exists a = a(ly) > 0 with the
following property. Let f € F be a map with critical order 1 < £ < {y and
assume that limsup [I™F*1|/|I™F)| < . Then f has no wild attractor.

This proposition was (implicitly) proved in Section 7 of [9] in the case
that f has negative Schwarzian. The last assumption becomes unnecessary
due to [7]. One can also prove this proposition using the Theorem of [3] or
the Theorem of [8].

Deduction of the Main Theorem from the Main Lemma. Let a = «(3) be
as in Proposition 1.1. By the Main Lemma, there exists € € (0, 1) such that if
f € F has critical order £ € (1,2+¢) then the assumption of Proposition 1.1
is satisfied, so f has no wild attractor. By the remark above, it follows that
no map f € U with critical order ¢ € (1,2 + ¢) has a wild attractor. =

1.1. Preliminaries. The following two lemmas were proved in [12].

LEMMA 1.2. Let J C I™F)=1_m(k) pe g return domain to I™F) =1 with
return time s. Then there is an interval J' with J C J' c [™K)—1 _ m(k)
such that f*:J — I 4s o diffeomorphism.

LEMMA 1.3. Let s be the return time of 0 to I"™¥). Then there is an
interval J > f(0) with f~1(J) € I"™®) such that f5=1:J — "™k 45 ¢
diffeomorphism.

The following lemma on real bounds was proved in [10, 7].

LEMMA 1.4. For any £y > 1, there exists a constant o > 1 such that if
f € F has critical order ¢ € (1,4y), then for all k sufficiently large,

Moreover, if g (I™B+1) A0, then

|Im(k+1)—1’ > Q|Im(k+1)’.
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We shall use the following cross-ratio. For any two intervals J € T, we

define
_ T

LI |R|’
where L, R are the components of T'— J. If h: T'— R is a homeomorphism
onto its image, we write

c(T,J)

C(h(T),h(J))

crJg) -

LEMMA 1.5 (|7, Theorem C]). For each k sufficiently large, there is a
positive number Oy, with O — 1 as k — oo and with the following property.
Let T' C [—1,1] be an interval and let n be a positive integer. Assume that
f"| 7 is monotone and f™(T) C I™* =V, Then for any interval J € T, we
have

C(h;T,J) =

We shall also use the following lemma which is implicit in the proof of

the Main Theorem of [12, p. 390].

LEMMA 1.6. For any ly > 1, there is a constant C = C(ly) > 0 such
that for any f € F with critical order 1 < £ < £y and sufficiently large k > 1,
we have

> >C
|]m(k’+l)| - ’Im(k)+1| - |Im(k)|

2. Lower limit. For any n > 0, write ¢, = f™(0). A closest (critical)
return time is a positive integer s such that cx & (cs, —cs) for all 1 < k < s.
The point ¢, will be called a closest (critical) return.

Let s1 < s9 < --- be all the closest return times. Let ng be such that
Sno is the return time of 0 to ™), For any n > ng, let k = k(n) be so that
cs, € I™F) — (E+1) Note that c,, € I™FH)=1 _ D) Tet T), 5 ¢, be
the maximal open interval such that:

° f5n+1_3n|Tn is monotone,
o fon1=Sn(T)) C Jmk)—1

Let z,,y, denote the endpoints of fn+1=5(T, ), with |z,| < |y,|. By Lem-
ma 3.2 of [12], y, € ormk)=1 g k) and (Tn,yn) 2 0. Let b, be an
endpoint of I™F+1)=1 Define

L/2
I L e O ( ol ) !

n n —
|bn] = les, [* 7 |Cspia | 7

and

n =

l

C 20zal(lyal + e ) (] 7P

Vo = ., W, .
(9l + [2a) (] + [csn])

‘Csnfl ’
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Moreover, define

A ) il Y S~

A, = —FTT W, =
" |bn|2 - |Csn|2 ’ "

The argument in [12] shows the following

|Csn—1 |

PROPOSITION 2.1. There exists a constant o9 > 1 such that if £ < 3
then for all n sufficiently large, we have

gn—lvnwn > 0p.
Let
’Im(k+1)|

PROPOSITION 2.2. There is a constant o > 1 such that for any o > 0,
there exists ¢ = e(a)) > 0 which satisfies the following. If f € F has critical
order 1 < { < 24¢ and n is sufficiently large and pg—1, pg, pk+1 > o, where
k = k(n), then
(£ el Budns |
[(f*n)(c1)|Bn-1A4n

Sn /
) e)lB o Ly

|[(for)(e1)|Bn1 — 2

Proof. By the Main Lemma of [12], we only need to consider the case
£ > 2. Given o > 0. Suppose f € F has critical order £ = 2 + ¢ for some
e > 0. By the definition, ¢y, , € [N — pm+D) ¢ e k) _ mlk+2)
and z,, y, € ImF)—-1 — k),

By the Lemma in [12], ¢(z, ) = z'~/2 Si =1 dt is increasing in £. Now
the computation of [12, p. 397, first paragraph| yields

_ An—1By, <‘Cs ’
Sn+1—Sn\/ Cs > ntl
(P e 5 2

(2.1)

(2.2)

5) OkAn—lvnWm

|| ’
where (t.2)
o(t,2
te)=—2"
9(t,¢) o(t,2 +¢)
Since
|C-3n+1’ |Im(k+2)| > a3’
|z, — [Tt

for any 0 < o1 < 1, if € is small enough,

C
o) > o
n

In particular, (2.2) holds.
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Let us prove (2.1). Since

= o |[m(k)| -
"—m—o‘v

for any 0 < 09 < 1, provided that ¢ is small enough,
Wn = WEQWR > UQWn.
Since |cs, | /|yn| > [I™FHD|/[I™E-D] > o2 and |b,_1| = |yn|, we have

‘Csn‘ 2
Iyn!2+5 i |Cs |2+s 1-— (—|y | ) -
Ap—1 = 2 - ) = ol
e e 27e = les,—11\2 (lesy_1lye =
]yn| ’ sn71’ 1— ( |yn\1 ) ( |yn‘1 )

where o3 > 0 can be arbitrarily close to 1 if ¢ is small.
Therefore we get
An—an

[(fomrmom) (f(es,)] A5, .

where 01, 09,03 can be arbitrarily close to 1 if ¢ is sufficiently small. By
Proposition 2.1, (2.1) follows. =

> 0'10'20'3Okgn—1vnwn

COROLLARY 2.3. For any o > 0, there exists € = e(a) > 0 such that for

f € F with critical order 1 < £ < 2+ ¢, we have
Jm(k+1)
lim inf g

min |Im(k)| < Q.

Proof. Suppose the statement is not true. Then there exists o > 0, and
for any € > 0 there exists a map f € F with critical order 1 < £ < 2+ ¢

such that
’Im(k+1) |
lim inf > a.

Therefore for k large enough, [I™*+D|/|1™K)| > /2. Provided that ¢ is
small enough, Proposition 2.2 implies that

Ap—1By,
() el g >0

for all n large, where o > 1 is a constant. But as shown in the proof of the
Main Theorem in [12], this implies that f has decay of geometry and thus
lim [7(k+1)| /| ()| = 0, which is a contradiction.

3. Proof of the Main Lemma

PROPOSITION 3.1. For any ¢y > 1, there exists a constant C = C({)
> 0 satisfying the following. Let f € F be a map with critical order 1 < £ < {y.
Assume that k is sufficiently large and py, pr—1 < . Let n be such that sy,
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is the return time of 0 into I™*). Then
[(f*") (c1)|Bn-1 > C/V/av.

Proof. Notice that ¢,, € I™k+D=1 _ pm(k+1) is also the first return
of 0 to I™*+1)=1 By Lemma 1.3, there is an interval J 3 ¢ such that
fYJ) € %) and foot g — kD) s a diffeomorphism. We will
consider two cases.

Casg 1: [fer (1m0 > 0.2 1™F+D=1 Since f(I™*+1)) ¢ J and
fS"(Im(kH)) c I"™®) is well-inside 1™(+—1), fS"_1|f(Im<k+1>) has uniformly
bounded distortion. Therefore

Sn ]m(k+1))| ’Im(k+1)—1|
Sn—1\/ > ’f ( >
((f ) e) =2 C |FImED)| = 7 ke

So

|3n|

m — m 14
>0 | (k+1) 1’ eum(kﬂ),ﬁ—l I (k)| /2
= ‘Im(k-l—l)’( ’Im(k-&—l)—l’

e ‘Im(k+1)71’ “—m(k)’ £/2
= ’Im(k+1)| ’[m(k+1)71|

Csp 1 £/2
(Y e Baa = (el 17 el (222

If m(k+1) =m(k) + 1, then

Sn\/ —

If m(k+1) > m(k)+ 2, then

|(fsn)/( )’B >0 ““L(k)‘ £/2 - ”m(k)’ £/2 N C
“ -1 = | [m(k+1)71| - | [m(k)+1| = \/a
by Lemma 1.6.

CASE 2: |for (I™F+H))| < 0.1/ 1*+D=1 | First we assume that m(k + 1)
= m(k) + 1. By Lemma 1.4, ¢/ = [I™*=D|/|1"™k)| > o > 1. Let J' C J
be such that fs~1(J') = £ mk), Let K' = f~1(J') € I™*®) and K be a
component of K’ — {0}.

Since %Im(k) is well-inside J7(k+1), f*»~Y » has uniformly bounded
distortion. Thus

F K] o )
(el = € iyt 2 € -
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By assumption, cs, is close to the endpoint of 1) and it follows that

(£ ()| By 2 [(£*) (en)| = |(f* ) (en)] 1f(es,)]
|Im (k—1) ’ g

m(k)|£—1
> C e 01 2

Now we assume that m(k + 1) — m(k) > 2. By Lemma 1.4, o :=
|7 /| D=1 > k)| /| B > o, Let J' C J be such that fon~1(J’)
=T := #Im(kﬂ)_l. Let K' = f~1(J'). Then K’ C T, since otherwise
/5 will have an attracting periodic point in K’. Let K be a component of
K’ —{0}. Since f*»~1|; has uniformly bounded distortion, we have

£ (K D
c >C
[f(K)] | k=1

By assumption, cg, is close to OI™*+1)=1 and it follows that |(f*")(c1)| =
|(£5»1)(c1)] |f'(cs,)| is bounded away from 0. Therefore

(Y (en|Bun > o L) 5 o(MOL AT €
c1)|Bn-1 esa| = 2\ I > 75

() (e)] =

where we use Lemma 1.6. =

LEMMA 3.2. There is a constant 3 > 0 such that W, > [ for each
n > 0.

Proof. For eachn > 0let k > 0 be such that ¢, € I"*) — [(+1) and let
p =m(k+1)—m(k). We may assume that W,, < 1, so by Lemma 3.2 of [12],
we have p > 2,0 ¢ g,, Im(k)“) and c,, is the first return of 0 to I™®*).
Moreover, let g be such that Cs, = ggl(k)_l(O). Then there exist 1 < ¢’ < ¢
and 1 < p’ < p such that z, = gfn(k)_l(gﬁl(k)(O)) and c5, , = gfn(k)_l(()).

Let J; be the entry domain to I™(*) which contains c,, , = gfn(k)il(O).

Then gg;(z;_lbl . Jp — I™F) is a diffeomorphism and
k=1 _ pm(k) Jy O ggn(k)—l(lm(k)+1) 5 ggn(k)—l(giz(k)(o)) = Tp.

Therefore gl (k) (((znycs,_4)) C (cs,,wp), where w, = gfn(k)(O) e k)
_ m(k)+1

Let J ¢ I™mk)=1 _ m(k) be the entry domain to I™F)~1 which contains
¢s,_,- Then J D Ji. By Lemma 1.2, there is an interval J' with J C J’
C Im(k) 1_ (k) guch that ¢? (k) . J' — "™ =1 5 a diffeomorphism. Since
(cs,,,wy) is well-inside ™=, (xn,csnfl) is well-inside J'. Since 0 ¢ J', it
follows that W, is bounded away from zero. m
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Before proving the Main Lemma we need a lemma which is implicit in
the proof of the Main Theorem in [12].

LEMMA 3.3. For any €y > 1 and n > 0, there exists & > 0 satisfying the
following. Let f € F be a map with critical order 1 < £ < fy, and assume

that |(f*")'(c1)|Bn-1 > & for all sufficiently large n. Then
’Im(k)+1‘

FEZCIN

for all sufficiently large k.

Proof of the Main Lemma. For any o > 0, by Lemma 1.6, there exists
a1 > 0 (we may assume o1 < «) such that if pup_1 < aq, then ux < a. By
Corollary 2.3, there exists ¢ > 0 such that if f is a non-renormalizable C?
unimodal map with critical order ¢ < 2 + ¢, then

Im(k+1)
lim inf | |

i ] Y

Let k1 < ko < --- be all the integers such that pz, 1 < a1. Then p, < o
and M > Qa1 ifk?éki—l (i:1,2,...).

To complete the proof, by Lemma 3.3, it is enough to prove that the
quantity |(f*m)'(¢1)|Bm—1 is large for m sufficiently large.

Fix a large integer ¢ > 1. Let n = n(i) be such that s,, is the return time
of 0 into ™), Since Mk, —1, Pk; < o, by Proposition 3.1,

[(f*) (c1)|Bn-1 > C/Va

for some constant C > 0.

Certainly we may assume that k;11 > k; + 2, so that pux > oy for all
ki < k < kiy1 — 2. By Lemma 1.6, there exists ag € (0,c;) such that
pk;—1 > ao. Let N = N(i) be such that ¢, is the first return of 0 to
1mkit1=1) By Proposition 2.2, for any n <m <n+ N — 1,

|(f5m+1) (e1)| B

|(fom) (1) Bm—1
If |(f5t1) (c1)|Bm = [(f*™) (c1)|Bm-1 for all n < m < n+ N — 1, then
|(f*™) (c1)|Bm-1 > C/\/afor alln < m < n+ N. Otherwise, let n+ N —1 >
7. > n be minimal such that

|(f5+1) (e))| B < [(f*)'(e1)| Bi-1-

Then A;V;W; < 2. Since V; > 1 and W5 >  (Lemma 3.2), we obtain
Ay < 1/25. Since

() (eD)|Baoa 2 -+ 2 (£ (e1) [ Buct > C/Va,

> %Amvmwm
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e () (el B 1 :
Sn+1 cl _
> - AVaWes >
(P () Bas ~ 2 2’
we have ﬁ
B;
Sh+1 ! -_n [
() )] 72
Now by Proposition 2.2, forany n+1<m <n-+ N,
B, B2C
sm Bpo1 > |(f°m —.
|(f*) (e1)| Bm—1 = [(f*) (1 )’Amq > e

Since a > 0 can be arbitrarily small, the proof is finished. =
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