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On unimodal maps with 
riti
al order 2 + εbySimin Li and Weixiao Shen (Hefei)
Abstra
t. It is proved that a smooth unimodal interval map with 
riti
al order 2+εhas no wild attra
tor if ε > 0 is small.1. Introdu
tion. In this paper, we 
ontinue the study of existen
e ofwild attra
tors for unimodal interval maps. This problem, originated in [11℄,has been extensively studied. In parti
ular, the original problem asked byMilnor, whether an S-unimodal interval map with a non-degenerate 
riti
alpoint has a wild attra
tor, was solved (see [9℄ and also [4, 5℄). In [12℄, these
ond author of this paper extended the result to smooth unimodal mapswith 
riti
al order not more than 2. In this paper, we extend the resultfurther, and prove that smooth unimodal maps with 
riti
al order not mu
hlarger than 2 have no wild attra
tor.Note that there exist unimodal maps with wild attra
tors (see [1℄). Forde�nition of wild attra
tors and more histori
al remarks, see the referen
esabove.Unimodal maps. Let N = [a, b] be a 
ompa
t interval. A C1 map

f : N → N is 
alled unimodal if there exists a unique c ∈ (a, b) (
alled the
riti
al point) su
h that f ′(c) = 0 and f ′ has di�erent signs on the 
ompo-nents of N \ {c}. Let U be the 
olle
tion of unimodal maps f whi
h satisfythe following 
onditions:
• f is C3 ex
ept at c;
• there exists ℓ > 1 (
alled the 
riti
al order) and lo
al C3 di�eomor-phisms φ and ψ with φ(c) = 0 and ψ(f(c)) = 0 su
h that ψ ◦ f(x) =

−|φ(x)|ℓ in a neighborhood of c.
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Note. Without loss of generality, we shall assume that the 
riti
al pointof f is lo
ated at 0 and f(x) = −|x|ℓ + f(0) in a neighborhood of 0.Main Theorem. There exists ε > 0 su
h that no f ∈ U with 
riti
alorder 1 < ℓ ≤ 2 + ε has a wild attra
tor.A map f ∈ U is 
alled renormalizable if there exist an interval I whi
h
ontains the 
riti
al point c in its interior, and a positive integer s > 1,su
h that the intervals I, f(I), . . . , f s−1(I) have pairwise disjoint interiors,

f s(I) ⊂ I, and f s(∂I) ⊂ ∂I. The unimodal map f s : I → I is 
alled arenormalization of f .Remark 1.1. It was already known to Milnor that if a map f ∈ U hasa wild attra
tor, then f is at most �nitely renormalizable and the 
riti
alpoint c is re
urrent but not periodi
. Sin
e the property of having a wildattra
tor does not 
hange under renormalization, we may restri
t ourselvesto the 
ase that f is non-renormalizable and has a re
urrent and non-periodi

riti
al point. Let F be the 
olle
tion of all maps in U whi
h satisfy theseproperties.Re
all that an open interval T is 
alled ni
e if fn(∂T ) ∩ T = ∅ for all
n ≥ 0. Let D(T ) = {x ∈ N : fk(x) ∈ T for some k ≥ 1}.The �rst entry map RT : D(T ) → T is de�ned as x 7→ fk(x)(x), where
k(x) is the entry time of x into T , i.e., the minimal positive integer su
hthat fk(x)(x) ∈ T . It is well known that k(x) is 
onstant in any 
omponentof D(T ). The mapRT |D(T )∩T is 
alled the �rst return map of T . A 
omponentof D(T ) is 
alled an entry domain, and a 
omponent of D(T )∩ T is 
alled areturn domain.Prin
ipal nest. Consider f ∈ F . Let q denote the orientation-reversing�xed point of f . Let I0 = (q̂, q) where f(q̂) = f(q), and for all n ≥ 1, let
In be the return domain to In−1 whi
h 
ontains the 
riti
al point. All theseintervals In are ni
e. The sequen
e

I0 ⊃ I1 ⊃ I2 ⊃ · · ·is 
alled the prin
ipal nest . Let gn denote the �rst return map to In. Let
m(0) = 0, and letm(1) < m(2) < · · · be all the non-
entral return moments,i.e., positive integers su
h that

gm(k)−1(0) 6∈ Im(k).Note that the fa
t that f is non-renormalizable implies that there are in-�nitely many non-
entral return moments.



Unimodal maps 79Main Lemma. For any η > 0 there exists ε > 0 su
h that for f ∈ Fwith 
riti
al order 1 < ℓ ≤ 2 + ε, we have
lim sup

k→∞

|Im(k)+1|
|Im(k)| < η.This result was 
laimed in [12℄ without a detailed proof. The proof givenhere is a modi�
ation of the method in that paper.In [2℄, the authors assume this lemma, and prove that f ∈ F with 
riti
alorder 2+ ε has an a
ip provided that ε is small and f has only �nitely many
entral returns, i.e., m(k) − k is 
onstant for all large k.The main theorem and the main lemma also extend some results of [6℄.Proposition 1.1. For any ℓ0 > 1 there exists α = α(ℓ0) > 0 with thefollowing property. Let f ∈ F be a map with 
riti
al order 1 < ℓ ≤ ℓ0 andassume that lim sup |Im(k)+1|/|Im(k)| < α. Then f has no wild attra
tor.This proposition was (impli
itly) proved in Se
tion 7 of [9℄ in the 
asethat f has negative S
hwarzian. The last assumption be
omes unne
essarydue to [7℄. One 
an also prove this proposition using the Theorem of [3℄ orthe Theorem of [8℄.Dedu
tion of the Main Theorem from the Main Lemma. Let α = α(3) beas in Proposition 1.1. By the Main Lemma, there exists ε ∈ (0, 1) su
h that if

f ∈ F has 
riti
al order ℓ ∈ (1, 2+ε) then the assumption of Proposition 1.1is satis�ed, so f has no wild attra
tor. By the remark above, it follows thatno map f ∈ U with 
riti
al order ℓ ∈ (1, 2 + ε) has a wild attra
tor.1.1. Preliminaries. The following two lemmas were proved in [12℄.Lemma 1.2. Let J ⊂ Im(k)−1−Im(k) be a return domain to Im(k)−1 withreturn time s. Then there is an interval J ′ with J ⊂ J ′ ⊂ Im(k)−1 − Im(k)su
h that f s : J ′ → Im(k−1) is a di�eomorphism.Lemma 1.3. Let s be the return time of 0 to Im(k). Then there is aninterval J ∋ f(0) with f−1(J) ⊂ Im(k) su
h that f s−1 : J → Im(k−1) is adi�eomorphism.The following lemma on real bounds was proved in [10, 7℄.Lemma 1.4. For any ℓ0 > 1, there exists a 
onstant ̺ > 1 su
h that if
f ∈ F has 
riti
al order ℓ ∈ (1, ℓ0), then for all k su�
iently large,

|Im(k)| ≥ ̺|Im(k)+1|.(1.1)Moreover , if gm(k)(I
m(k)+1) 6∋ 0, then

|Im(k+1)−1| ≥ ̺|Im(k+1)|.



80 S. M. Li and W. X. ShenWe shall use the following 
ross-ratio. For any two intervals J ⋐ T , wede�ne
C(T, J) =

|T | |J |
|L| |R| ,where L,R are the 
omponents of T − J . If h : T → R is a homeomorphismonto its image, we write

C(h;T, J) =
C(h(T ), h(J))

C(T, J)
.Lemma 1.5 ([7, Theorem C℄). For ea
h k su�
iently large, there is apositive number Ok with Ok → 1 as k → ∞ and with the following property.Let T ⊂ [−1, 1] be an interval and let n be a positive integer. Assume that

fn|T is monotone and fn(T ) ⊂ Im(k−1). Then for any interval J ⋐ T , wehave
C(fn;T, J) ≥ Ok.We shall also use the following lemma whi
h is impli
it in the proof ofthe Main Theorem of [12, p. 390℄.Lemma 1.6. For any ℓ0 > 1, there is a 
onstant C = C(ℓ0) > 0 su
hthat for any f ∈ F with 
riti
al order 1 < ℓ ≤ ℓ0 and su�
iently large k ≥ 1,we have

|Im(k)|
|Im(k+1)| ≥

|Im(k)|
|Im(k)+1| ≥ C

( |Im(k−1)|
|Im(k)|

)1/ℓ

.

2. Lower limit. For any n ≥ 0, write cn = fn(0). A 
losest (
riti
al)return time is a positive integer s su
h that ck 6∈ (cs,−cs) for all 1 ≤ k ≤ s.The point cs will be 
alled a 
losest (
riti
al) return.Let s1 < s2 < · · · be all the 
losest return times. Let n0 be su
h that
sn0 is the return time of 0 to Im(1). For any n ≥ n0, let k = k(n) be so that
csn

∈ Im(k) − Im(k+1). Note that csn
∈ Im(k+1)−1 − Im(k+1). Let Tn ∋ csn

bethe maximal open interval su
h that:
• f sn+1−sn |Tn

is monotone,
• f sn+1−sn(Tn) ⊂ Im(k)−1.Let xn, yn denote the endpoints of f sn+1−sn(Tn), with |xn| ≤ |yn|. By Lem-ma 3.2 of [12℄, yn ∈ ∂Im(k)−1, xn 6∈ Im(k), and (xn, yn) ∋ 0. Let bn be anendpoint of Im(k+1)−1. De�ne

An =
|bn|ℓ − |csn+1 |ℓ
|bn|ℓ − |csn

|ℓ , Bn =

( |csn
|

|csn+1 |

)ℓ/2

,and
Vn =

2|xn|(|yn| + |csn
|)

(|yn| + |xn|)(|xn| + |csn
|) , Wn =

( |xn|
|csn−1 |

)ℓ/2

.



Unimodal maps 81Moreover, de�ne
Ãn =

|bn|2 − |csn+1 |2
|bn|2 − |csn

|2 , W̃n =
|xn|

|csn−1 |
.The argument in [12℄ shows the followingProposition 2.1. There exists a 
onstant σ0 > 1 su
h that if ℓ < 3then for all n su�
iently large, we have

Ãn−1VnW̃n ≥ σ0.Let
µk =

|Im(k+1)|
|Im(k)| .Proposition 2.2. There is a 
onstant σ > 1 su
h that for any α > 0,there exists ε = ε(α) > 0 whi
h satis�es the following. If f ∈ F has 
riti
alorder 1 < ℓ ≤ 2+ε and n is su�
iently large and µk−1, µk, µk+1 ≥ α, where

k = k(n), then
|(f sn+1)′(c1)|BnAn−1

|(f sn)′(c1)|Bn−1An
≥ σ,(2.1)

|(f sn+1)′(c1)|Bn

|(f sn)′(c1)|Bn−1
≥ 1

2
AnVnWn.(2.2)Proof. By the Main Lemma of [12℄, we only need to 
onsider the 
ase

ℓ > 2. Given α > 0. Suppose f ∈ F has 
riti
al order ℓ = 2 + ε for some
ε > 0. By the de�nition, csn−1 ∈ Im(k−1) − Im(k+1), csn+1 ∈ Im(k) − Im(k+2)and xn, yn ∈ Im(k)−1 − Im(k).By the Lemma in [12℄, φ(x, ℓ) = x1−ℓ/2

T1
x t

ℓ−1 dt is in
reasing in ℓ. Nowthe 
omputation of [12, p. 397, �rst paragraph℄ yields
|(f sn+1−sn)′(f(csn

))| An−1Bn

AnBn−1
≥ g

( |csn+1 |
|xn|

, ε

)
OkAn−1VnWn,where

g(t, ε) =
φ(t, 2)

φ(t, 2 + ε)
.Sin
e

|csn+1 |
|xn|

≥ |Im(k+2)|
|Im(k−1)| ≥ α3,for any 0 < σ1 < 1, if ε is small enough,

g

( |csn+1|
|xn|

, ε

)
> σ1.In parti
ular, (2.2) holds.
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ẽ
Wn ≥ |Im(k)|

|Im(k−1)| ≥ α,for any 0 < σ2 < 1, provided that ε is small enough,
Wn = W̃ ε/2

n W̃n ≥ σ2W̃n.Sin
e |csn−1 |/|yn| ≥ |Im(k+1)|/|Im(k−1)| ≥ α2 and |bn−1| = |yn|, we have
An−1 =

|yn|2+ε − |csn
|2+ε

|yn|2+ε − |csn−1|2+ε
≥

1 −
( |csn |

|yn|

)2

1 −
( |csn−1 |

|yn|

)2( |csn−1 |

|yn|

)ε
≥ σ3Ãn−1where σ3 > 0 
an be arbitrarily 
lose to 1 if ε is small.Therefore we get

|(f sn+1−sn)′(f(csn
))| An−1Bn

AnBn−1
≥ σ1σ2σ3OkÃn−1VnW̃nwhere σ1, σ2, σ3 
an be arbitrarily 
lose to 1 if ε is su�
iently small. ByProposition 2.1, (2.1) follows.Corollary 2.3. For any α > 0, there exists ε = ε(α) > 0 su
h that for

f ∈ F with 
riti
al order 1 < ℓ ≤ 2 + ε, we have
lim inf
k→∞

|Im(k+1)|
|Im(k)| < α.Proof. Suppose the statement is not true. Then there exists α > 0, andfor any ε > 0 there exists a map f ∈ F with 
riti
al order 1 < ℓ ≤ 2 + εsu
h that

lim inf
k→∞

|Im(k+1)|
|Im(k)| ≥ α.Therefore for k large enough, |Im(k+1)|/|Im(k)| ≥ α/2. Provided that ε issmall enough, Proposition 2.2 implies that

|(f sn+1−sn)′(f(csn
))| An−1Bn

AnBn−1
> σfor all n large, where σ > 1 is a 
onstant. But as shown in the proof of theMain Theorem in [12℄, this implies that f has de
ay of geometry and thus

lim |Im(k+1)|/|Im(k)| = 0, whi
h is a 
ontradi
tion.3. Proof of the Main LemmaProposition 3.1. For any ℓ0 > 1, there exists a 
onstant C = C(ℓ0)
> 0 satisfying the following. Let f ∈F be a map with 
riti
al order 1< ℓ< ℓ0.Assume that k is su�
iently large and µk, µk−1 < α. Let n be su
h that sn



Unimodal maps 83is the return time of 0 into Im(k). Then
|(f sn)′(c1)|Bn−1 > C/

√
α.Proof. Noti
e that csn

∈ Im(k+1)−1 − Im(k+1) is also the �rst returnof 0 to Im(k+1)−1. By Lemma 1.3, there is an interval J ∋ c1 su
h that
f−1(J) ⊂ Im(k) and f sn−1 : J → Im(k−1) is a di�eomorphism. We will
onsider two 
ases.
Case 1: |f sn(Im(k+1))| ≥ 0.1|Im(k+1)−1|. Sin
e f(Im(k+1)) ⊂ J and

f sn(Im(k+1)) ⊂ Im(k) is well-inside Im(k−1), f sn−1|f(Im(k+1)) has uniformlybounded distortion. Therefore
|(f sn−1)′(c1)| ≥ C

|f sn(Im(k+1))|
|f(Im(k+1))| ≥ C

|Im(k+1)−1|
|Im(k+1)|ℓ .So

|(f sn)′(c1)|Bn−1 = |(f sn−1)′(c1)| |f ′(csn
)|

( |csn−1 |
|csn

|

)ℓ/2

≥ C
|Im(k+1)−1|
|Im(k+1)|ℓ ℓ|Im(k+1)|ℓ−1

( |Im(k)|
|Im(k+1)−1|

)ℓ/2

≥ C
|Im(k+1)−1|
|Im(k+1)|

( |Im(k)|
|Im(k+1)−1|

)ℓ/2

.If m(k + 1) = m(k) + 1, then
|(f sn)′(c1)|Bn−1 ≥ C

|Im(k)|
|Im(k+1)| ≥

C

α
.If m(k + 1) ≥ m(k) + 2, then

|(f sn)′(c1)|Bn−1 ≥ C

( |Im(k)|
|Im(k+1)−1|

)ℓ/2

≥ C

( |Im(k)|
|Im(k)+1|

)ℓ/2

≥ C√
αby Lemma 1.6.

Case 2: |f sn(Im(k+1))| < 0.1|Im(k+1)−1|. First we assume that m(k+ 1)
= m(k) + 1. By Lemma 1.4, ̺′ = |Im(k−1)|/|Im(k)| > ̺ > 1. Let J ′ ⊂ Jbe su
h that f sn−1(J ′) = ̺′+1

2 Im(k). Let K ′ = f−1(J ′) ⊂ Im(k) and K be a
omponent of K ′ − {0}.Sin
e ̺′+1
2 Im(k) is well-inside Im(k+1), f sn−1|J ′ has uniformly boundeddistortion. Thus

|(f sn−1)′(c1)| ≥ C
|f snK|
|f(K)| ≥ C

|Im(k−1)|
|Im(k)|ℓ .
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is 
lose to the endpoint of Im(k), and it follows that

|(f sn)′(c1)|Bn−1 ≥ |(f sn)′(c1)| = |(f sn−1)′(c1)| |f ′(csn
)|

≥ C
|Im(k−1)|
|Im(k)|ℓ |Im(k)|ℓ−1 ≥ C

α
.Now we assume that m(k + 1) − m(k) ≥ 2. By Lemma 1.4, ̺′ :=

|Im(k)|/|Im(k+1)−1| ≥ |Im(k)|/|Im(k)+1|>̺. Let J ′ ⊂ J be su
h that f sn−1(J ′)

= T := ̺′+1
2 Im(k+1)−1. Let K ′ = f−1(J ′). Then K ′ ⊂ T , sin
e otherwise

f sn will have an attra
ting periodi
 point in K ′. Let K be a 
omponent of
K ′ − {0}. Sin
e f sn−1|J ′ has uniformly bounded distortion, we have

|(f sn−1)′(c1)| ≥ C
|f sn(K)|
|f(K)| ≥ C

|Im(k+1)−1|
|Im(k+1)−1|ℓ .By assumption, csn

is 
lose to ∂Im(k+1)−1, and it follows that |(f sn)′(c1)| =
|(f sn−1)′(c1)| |f ′(csn

)| is bounded away from 0. Therefore
|(f sn)′(c1)|Bn−1 ≥ C

( |csn−1|
|csn

|

)ℓ/2

≥ C

( |Im(k)|
|Im(k+1)−1|

)ℓ/2

≥ C√
α
,where we use Lemma 1.6.Lemma 3.2. There is a 
onstant β > 0 su
h that Wn ≥ β for ea
h

n > 0.Proof. For ea
h n > 0 let k > 0 be su
h that csn
∈ Im(k)−Im(k+1) and let

p = m(k+1)−m(k). We may assume that Wn < 1, so by Lemma 3.2 of [12℄,we have p ≥ 2, 0 /∈ gm(k)(I
m(k)+1) and csn

is the �rst return of 0 to Im(k).Moreover, let q be su
h that csn
= gq

m(k)−1(0). Then there exist 1 ≤ q′ < qand 1 ≤ p′ < p su
h that xn = gq′

m(k)−1(g
p′

m(k)(0)) and csn−1 = gq′

m(k)−1(0).Let J1 be the entry domain to Im(k) whi
h 
ontains csn−1 = gq′

m(k)−1(0).Then gq−q′

m(k)−1|J1 : J1 → Im(k) is a di�eomorphism and
Im(k)−1 − Im(k) ⊃ J1 ⊃ gq′

m(k)−1(I
m(k)+1) ∋ gq′

m(k)−1(g
p′

m(k)(0)) = xn.Therefore gq−q′

m(k)−1((xn, csn−1)) ⊂ (csn
, wn), where wn = gp

m(k)(0) ∈ Im(k)

− Im(k)+1.Let J ⊂ Im(k)−1 − Im(k) be the entry domain to Im(k)−1 whi
h 
ontains
csn−1 . Then J ⊃ J1. By Lemma 1.2, there is an interval J ′ with J ⊂ J ′

⊂ Im(k)−1−Im(k) su
h that gq−q′

m(k)−1 : J ′ → Im(k−1) is a di�eomorphism. Sin
e
(csn

, wn) is well-inside Im(k−1), (xn, csn−1) is well-inside J ′. Sin
e 0 /∈ J ′, itfollows that Wn is bounded away from zero.



Unimodal maps 85Before proving the Main Lemma we need a lemma whi
h is impli
it inthe proof of the Main Theorem in [12℄.Lemma 3.3. For any ℓ0 > 1 and η > 0, there exists ξ > 0 satisfying thefollowing. Let f ∈ F be a map with 
riti
al order 1 < ℓ ≤ ℓ0, and assumethat |(f sn)′(c1)|Bn−1 > ξ for all su�
iently large n. Then
|Im(k)+1|
|Im(k)| < ηfor all su�
iently large k.Proof of the Main Lemma. For any α > 0, by Lemma 1.6, there exists

α1 > 0 (we may assume α1 < α) su
h that if µk−1 < α1, then µk < α. ByCorollary 2.3, there exists ε > 0 su
h that if f is a non-renormalizable C3unimodal map with 
riti
al order ℓ ≤ 2 + ε, then
lim inf
k→∞

|Im(k+1)|
|Im(k)| < α1.Let k1 < k2 < · · · be all the integers su
h that µki−1 < α1. Then µki

< αand µk ≥ α1 if k 6= ki − 1 (i = 1, 2, . . .).To 
omplete the proof, by Lemma 3.3, it is enough to prove that thequantity |(f sm)′(c1)|Bm−1 is large for m su�
iently large.Fix a large integer i ≥ 1. Let n = n(i) be su
h that sn is the return timeof 0 into Im(ki). Sin
e µki−1, µki
< α, by Proposition 3.1,

|(f sn)′(c1)|Bn−1 > C/
√
αfor some 
onstant C > 0.Certainly we may assume that ki+1 ≥ ki + 2, so that µk ≥ α1 for all

ki ≤ k ≤ ki+1 − 2. By Lemma 1.6, there exists α2 ∈ (0, α1) su
h that
µki−1 ≥ α2. Let N = N(i) be su
h that csn+N

is the �rst return of 0 to
Im(ki+1−1). By Proposition 2.2, for any n ≤ m ≤ n+N − 1,

|(f sm+1)′(c1)|Bm

|(f sm)′(c1)|Bm−1
≥ 1

2
AmVmWmIf |(f sm+1)′(c1)|Bm ≥ |(f sm)′(c1)|Bm−1 for all n ≤ m ≤ n + N − 1, then

|(f sm)′(c1)|Bm−1 > C/
√
α for all n ≤ m ≤ n+N . Otherwise, let n+N−1 ≥

ñ ≥ n be minimal su
h that
|(f sñ+1)′(c1)|Bñ < |(f sñ)′(c1)|Bñ−1.Then AñVñWñ ≤ 2. Sin
e Vñ > 1 and Wñ ≥ β (Lemma 3.2), we obtain

Añ ≤ 1/2β. Sin
e
|(f sñ)′(c1)|Bñ−1 ≥ · · · ≥ |(f sn)′(c1)|Bn−1 ≥ C/

√
α,
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|(f sñ+1)′(c1)|Bñ

|(f sñ)′(c1)|Bñ−1
≥ 1

2
AñVñWñ ≥ β

2
,we have

|(f sñ+1)′(c1)|
Bñ

Añ
≥ β2C√

α
.Now by Proposition 2.2, for any ñ+ 1 ≤ m ≤ n+N ,

|(f sm)′(c1)|Bm−1 ≥ |(f sm)′(c1)|
Bm−1

Am−1
>
β2C√
α
.Sin
e α > 0 
an be arbitrarily small, the proof is �nished.
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