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Reflexive families of closed sets

by

Zhongqiang Yang (Shantou) and Dongsheng Zhao (Singapore)

Abstract. Let S(X) denote the set of all closed subsets of a topological space X,
and C(X) the set of all continuous mappings f : X → X. A family A ⊆ S(X) is called
reflexive if there exists F ⊆ C(X) such that A = {A ∈ S(X) : f(A) ⊆ A for every f ∈ F}.
We investigate conditions ensuring that a family of closed subsets is reflexive.

Recall [3] that a collection A of closed subspaces of a Hilbert space H is
called reflexive if there exists a collection F of continuous operators on H
such that

A = Lat(F) = {A : A is a closed subspace of H with T (A) ⊆ A, ∀T ∈ F}.

Reflexive families of continuous operators are defined in a dual way. See [2–7]
for characterizations of such families. In [8], the second author considered
reflexive families in concrete categories. For the category SET of sets, he
obtained complete characterizations for both reflexive families of sets and
reflexive families of mappings. In the present paper we investigate reflexive
families in the context of topological spaces.

Given a topological space X, let S(X) be the set of all closed subsets
of X and C(X) be the set of all continuous mappings f : X → X. For any
A ⊆ S(X) and F ⊆ C(X) define

Alg(A) = {f ∈ C(X) : f(A) ⊆ A for every A ∈ A},

Lat(F) = {A ∈ S(X) : f(A) ⊆ A for every f ∈ F}.

The two mappings Alg and Lat form a Galois connection between the
sets of all subsets of S(X) and C(X), respectively. Thus, for any A ⊆ S(X)
and F ⊆ C(X) we have

2000 Mathematics Subject Classification: 47A15, 54C05, 54D05, 54E45.
Key words and phrases: reflexive family of closed sets, s-reflexive topological space,

strongly zero-dimensional metric space, hereditarily disconnected space, reflexive closed
set.

The first author was supported by National Natural Science Foundation of China (No.
10471084) and by Guangdong Provincial Natural Science Foundation (No. 04010985).

[111]



112 Z. Q. Yang and D. S. Zhao

(i) Lat(Alg(A)) ⊇ A, Alg(Lat(F)) ⊇ F ;

(ii) Alg(Lat(Alg(A))) = Alg(A), Lat(Alg(Lat(F))) = Lat(F).

A family A ⊆ S(X) is called reflexive if A = Lat(Alg(A)). Similarly,
F ⊆ C(X) is reflexive if F = Alg(Lat(F)).

As in the general case [8], A ⊆ S(X) is reflexive if and only if there exists
F ⊆ C(X) such that A = Lat(F). Also by (i), A is reflexive if and only if

Lat(Alg(A)) ⊆ A.

Lemma 1. If A ⊆ S(X) is reflexive, then:

(a) X, ∅ ∈ A.

(b) B ⊆ A implies
⋂

B ∈ A.
(c) B ⊆ A implies cl(

⋃

B) ∈ A.
(d) If D is a connected component of A ∈ A and B ⊆ D for some

nonempty B in A, then D ∈ A.

Proof. Only (d) needs verification. For any f ∈ Alg(A), f(B) ⊆ B since
B ∈ A. Also f(B) ⊆ f(D) ⊆ f(A) ⊆ A, and f(D) ∩ D ⊇ f(B) ∩ B
= f(B) 6= ∅. Thus f(D) is a connected set contained in A and has non-
empty intersection with the connected component D of A, hence f(D) ⊆ D.
Therefore D ∈ Lat(Alg(A)) = A.

If X is a space with the discrete topology, then S(X) is the set of all
subsets of X and C(X) is the set of all mappings from X to X. By [8,
Theorem 1], a family A of subsets of X is reflexive if and only if A is closed
under arbitrary unions and intersections, so every family A of closed subsets
of a discrete space satisfying conditions (a)–(c) in Lemma 1 is reflexive.
A natural question is: besides the discrete topological spaces, what other
spaces also have this property?

Definition 1. A topological space X is called s-reflexive if every fam-
ily A of closed subsets of X satisfying conditions (a)–(c) in Lemma 1 is
reflexive.

The main results in this paper are: every strongly zero-dimensional com-
plete metric space is s-reflexive; every countable metric space is s-reflexive;
every Hausdorff s-reflexive space is hereditarily disconnected. From these it
is deduced that a locally compact metric space is s-reflexive if and only if it
is zero-dimensional.

Lemma 2. For every topological space X, the following conditions are

equivalent :

(1) For any nonempty proper closed subset B and any finite subset D
of X, both B \ D and B ∪ D are closed.
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(2) For any nonempty finite set D ⊆ X and any element b ∈ X, the

mapping fD,b which sends D to b and is the identity on X \ D, is

continuous.

(3) For any points a, b ∈ X, the above mapping f{a},b is continuous.

Remark 1. If X satisfies the equivalent conditions in Lemma 2 with
|X| 6= 2 and there exists one closed singleton {a}, then X is T1. The as-
sumption that |X| 6= 2 is essential.

Let A ⊆ S(X) be a collection of closed subsets of X satisfying conditions
(a)–(c) in Lemma 1. For each Y ∈ S(X), let φA(Y ) =

⋂

{A ∈ A : Y ⊆ A}. If
no confusion occurs, we simply write φ(Y ) for φA(Y ). The following lemma
can be verified easily.

Lemma 3. Let A ⊆ S(X) satisfy conditions (a)–(c).

(1) For any Y ⊆ X, φ(Y ) ∈ A. And Y ∈ A if and only if Y = φ(Y ).
(2) For any B ∈ S(X), B ∈ A if and only if φ({x}) ⊆ B for all x ∈ B.

(3) For any B ∈ S(X), B ∈ A if and only if B =
⋃

{φ({x}) : x ∈ B}.

Lemma 4. Let A ⊆ S(X) satisfy conditions (a)–(c). For each U ⊆ X
define κ(U) = {x ∈ X : φ({x}) ∩ U 6= ∅}. Then

(1) κ(V ) ⊇ V for all V ⊆ X.

(2) κ(
⋃

i∈I Ui) =
⋃

i∈I κ(Ui).
(3) If U is an open subset of X, then κ(U) is also open.

Proof. We only prove (3). Let U be an open subset of X and (xλ)λ∈D

be a net in X \ κ(U) which converges to a point a ∈ X. For each λ ∈ D,
φ({xλ}) ∩ U = ∅. Thus cl(

⋃

λ∈D φ({xλ})) ∩ U = ∅. By (c), the set B =
cl(

⋃

λ∈D φ({xλ})) is in A. Now a ∈ B, so φ({a}) ⊆ B ⊆ X \ U . Hence
φ({a}) ∩ U = ∅, which implies a ∈ X \ κ(U). Therefore, κ(U) is open.

Theorem 1. If a space X satisfies the equivalent conditions in Lemma 2,
then X is s-reflexive.

Proof. Suppose A ⊆ S(X) satisfies (a)–(c). Let B be a closed set not
in A. By Lemma 3(2), there is a ∈ B such that φ({a}) 6⊆ B. Choose a point
b ∈ φ({a}) \ B. The mapping f{a},b defined in Lemma 2 is continuous. For
every A ∈ A, if a ∈ A then φ({a}) ⊆ A, so f(a) = b ∈ φ({a}) ⊆ A, hence
f(A) ⊆ A. If a 6∈ A, then f(A) = A. Thus f ∈ Alg(A). But f(B) 6⊆ B,
so A ⊇ Lat(Alg(A)) and hence A = Lat(Alg(A)), which shows that A is
reflexive.

Example 1. (1) Every discrete and every anti-discrete space satisfies
the conditions in Lemma 2, so they are s-reflexive.

(2) Let λ be an infinite cardinal and X be any nonempty set. Define τ
to be the topology consisting of all subsets whose complements are either
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X or have cardinality less than λ. Then (X, τ) satisfies the conditions in
Lemma 2, so it is s-reflexive.

(3) Suppose E is a subset of a nonempty set X. Define τE to be the
topology consisting of those A ⊆ X such that either A = X, or A \ E
is finite. Then (X, τE) satisfies the conditions in Lemma 2, and so it is
s-reflexive.

(4) The Euclidean interval X = [−1, 1] is not s-reflexive. As a matter
of fact, let A = {A ∈ S(X) : A ⊆ [0, 1] or A ∋ 1}. Then A satisfies
conditions (a)–(c) in Lemma 1. For every f ∈ Alg(A) and every x ∈ X,
since {x, 1} ∈ A, we have f({x, 1}) ⊆ {x, 1}, so either f(x) = x or f(x) = 1.
Let A = {x ∈ [−1, 1) : f(x) = x} and B = {x ∈ [−1, 1) : f(x) = 1}.
Then A and B are two disjoint closed sets in [−1, 1) and A ∪ B = [−1, 1).
Hence A = ∅ or B = ∅ because [−1, 1) is connected. For every x ∈ [0, 1],
since {x} ∈ A we have f(x) = x. It follows that A ⊇ [0, 1) 6= ∅. This implies
A = [−1, 1). Note that f(1) = 1 for every f ∈ Alg(A) because {1} ∈ A. Thus
Alg(A) = {idX}. But Lat({idX}) = S(X) 6= A. Hence A is not reflexive.

Since the interval [−1, 1] equipped with the discrete topology is s-reflexive
and the Euclidean interval is a continuous image of it, it follows that con-
tinuous images of s-reflexive spaces need not be s-reflexive.

Let U be an open cover of a strongly zero-dimensional metric space X
and ε > 0. Then there exists a locally finite open refinement W of U such
that for every W ∈ V, the diameter diam(W ) of W is less than ε. It then
follows from [1, Theorems 7.3.2 and 7.2.4] that there exists a refinement V
of W consisting of pairwise disjoint clopen sets. Thus we have the following
lemma.

Lemma 5. Let U be an open cover of a strongly zero-dimensional metric

space X. Then for any ε > 0, there is a refinement V of U such that V
consists of pairwise disjoint clopen sets and diam(V ) < ε for all V ∈ V.

Theorem 2. Every strongly zero-dimensional complete metric space is

s-reflexive.

Proof. Let (X, d) be a strongly zero-dimensional complete metric space
and let A be a family of closed sets in X satisfying conditions (a)–(c) in
Lemma 1. Suppose B ∈ S(X) and B 6∈ A. We shall define an f ∈ Alg(A)
so that f(B) 6⊆ B. By Lemma 3(2), there is b ∈ B such that φ({b}) 6⊆ B.
Choose c ∈ φ({b}) \B and a clopen set U0 with diam(U0) < 1 and c ∈ U0 ⊆
X \ B. By Lemma 4(3), κ(U0) is open and b ∈ κ(U0), there is a clopen set
V0 such that diam(V0) < 1, b ∈ V0 ⊆ κ(U0) and V0 ∩ U0 = ∅.

Now we construct two sequences {Un}
∞
n=1 and {Vn}

∞
n=1 of collections of

pairwise disjoint nonempty clopen sets, and a mapping αn : Vn → Un for
each n, such that the following conditions are satisfied:
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(i)
⋃

Un = U0,
⋃

Vn = V0 for each n;
(ii) diam(U) ≤ 1/n for every U ∈ Un;
(iii) Un+1 is a refinement of Un, and Vn+1 is a refinement of Vn;
(iv) V ⊆ κ(αn(V )) for every V ∈ Vn;
(v) if m ≤ n and V ∈ Vm, W ∈ Vn then either W ⊆ V or V ∩ W = ∅;
(vi) if m ≤ n, W ∈ Vn, V ∈ Vm and W ⊆ V , then αn(W ) ⊆ αm(V ).

First, let U1 = {U0}, V1 = {V0} and α1(V0) = U0. Then the above six
conditions are satisfied.

Now suppose for each i ≤ k, Ui,Vi and αi : Vi → Ui have been defined
and satisfy (i)–(vi). For any U ∈ Uk, by Lemma 5 there exists a family
Uk+1(U) of pairwise disjoint clopen sets in X such that

⋃

Uk+1(U) = U and
diam(W ) ≤ 1/(k + 1) for every W ∈ Uk+1(U). Let Uk+1 =

⋃

{Uk+1(U) :
U ∈ Uk}. Obviously Uk+1 is a refinement of Uk. Next, for each V ∈ Vk, by
(iv) we have V ⊆ κ(αk(V )). Note that κ preserves unions by Lemma 4(2); it
follows that {κ(W ) ∩ V : W ∈ Uk+1(αk(V ))} is an open cover of V . Again,
by Lemma 5, there is a cover Vk+1(V ) of V consisting of pairwise disjoint
clopen sets and Vk+1(V ) is finer than {κ(W ) ∩ V : W ∈ Uk+1(αk(V ))}. Put
Vk+1 =

⋃

{Vk+1(V ) : V ∈ Vk}. Then Vk+1 is a refinement of Vk.
To define αk+1, for each A ∈ Vk+1, there is a unique V ∈ Vk such that

A ∈ Vk+1(V ). Then A ⊆ κ(E)∩V for some E ∈ Uk+1(αk(V )) ⊆ Uk+1. Such
a set E need not be unique. Choose any of them and let αk+1(A) = E. Thus
we have defined a mapping αk+1 : Vk+1 → Uk+1.

Conditions (i)–(iv) for k+1 follow immediately from the construction of
these objects. To show (v) for k+1, let m ≤ k+1; then Vk+1 is a refinement
of Vm. If V ∈ Vm, W ∈ Vk+1 and W 6⊆ V , then W ⊆ V ′ for some V ′ ∈ Vm,
where V ′ 6= V , thus W ∩V ⊆ V ′∩V = ∅. To prove (vi) it is enough to check
the case where m = k and n = k + 1 . Let V ∈ Vk, W ∈ Vk+1 and W ⊆ V .
By the definition of αk+1, αk+1(W ) = E for some E ∈ Uk+1(αk(V )), hence
αk+1(W ) = E ⊆ αk(V ).

By induction we have defined the sequences {Un}
∞
n=1, {Vn}

∞
n=1, and the

mapping αn for each n.
Now define the mapping f : X → X as follows:

{f(x)} =







{x} if x ∈ X \ V0,
∞
⋂

n=1

{αn(Vn) : x ∈ Vn ∈ Vn} if x ∈ V0.

First, f is well defined. As a matter of fact, if x ∈ V0, then for each n,
there is a unique Vn ∈ Vn with x ∈ Vn. If x ∈ Vn ∈ Vn, x ∈ Vm ∈ Vm and
m ≤ n, then it follows from (v) and (vi) that ∅ 6= αn(Vn) ⊆ αm(Vm). Thus
{αn(Vn) : n ∈ N} is a sequence of closed sets whose every finite subfamily
has a nonempty intersection. Furthermore, diam(αn(Vn)) ≤ 1/n for each n
and X is complete, so the set

⋂∞
n=1

αn(Vn) is a singleton.
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The mapping f is clearly continuous on X \V0. For any x ∈ V0 and every
ε > 0, there exists Vn such that x ∈ Vn ∈ Vn and αn(Vn) ⊆ B(f(x), ε). For
each y ∈ Vn, by the definition of f , f(y) ∈ αn(Vn), hence f(y) ∈ B(f(x), ε).
This shows that f is also continuous on X \ V0.

For any x ∈ X, we show f(x) ∈ φ({x}). If x 6∈ V0, f(x) = x ∈ φ({x}).
If x ∈ V0, then for each n, there is a unique Vn ∈ Vn such that x ∈ Vn.
Moreover, Vn ⊆ κ(αn(Vn)), so φ({x}) ∩ αn(Vn) 6= ∅. Choose any xn ∈
φ({x})∩αn(Vn). Then the sequence {xn} converges to f(x), so f(x) ∈ φ({x})
because φ({x}) is closed.

Now for each A ∈ A, if x ∈ A and x ∈ X \ V0, then f(x) = x ∈ A; if
x ∈ A ∩ V0, then f(x) ∈ φ({x}) ⊆ A, so again f(x) ∈ A. Thus f ∈ Alg(A).
However, b ∈ V0 ∩ B, f(b) ∈ α1(V0) = U0, and U0 ∩ B = ∅, so f(b) 6∈ B.
Hence f(B) 6⊆ B, which implies B 6∈ Lat(Alg(A)). The proof is complete.

Note that in constructing the sequences {Un}
∞
n=1, {Vn}

∞
n=1 and mappings

αn we did not make use of the completeness of X.
By [1, Corollary 6.2.8] every countable metric space is strongly zero-

dimensional but is not necessarily complete.

Theorem 3. Every countable metric space is s-reflexive.

Proof. Let X be a countable metric space. Then X is strongly zero-
dimensional. We show that X is s-reflexive. The proof is similar to that
of Theorem 2. Again, let A be a family of closed sets in X satisfying (a)–
(c) in Lemma 1, and B 6∈ A. Let b ∈ B such that φ({b}) 6⊆ B. Choose
c ∈ φ({b}) \ B and a clopen set U0 with diam(U0) < 1 and c ∈ U0 ⊆ X \B.
Since κ(U0) is open and b ∈ κ(U0) and b 6∈ U0, there is a clopen set V0 such
that diam(V0) < 1, b ∈ V0 ⊆ κ(U0) and V0 ∩ U0 = ∅.

In the following we assume that V0 is an infinite set. If V0 has only n
elements, we stop our inductive constructions in the nth step. The rest of
the arguments will be the same as in the infinite case.

Arrange V0 as {x1, x2, . . .}, where x1 = b.
We now define by induction two sequences {Un}

∞
n=1 and {Vn}

∞
n=1 of

pairwise disjoint clopen sets of X, a map αn : Vn → Un for each n, and
f(xn) (n ∈ N), such that conditions (i)–(vi) in the proof of Theorem 2 hold
and moreover:

(vii) for any 1 ≤ i < j ≤ n, if xi ∈ V ∈ Vn and xj ∈ V ′ ∈ Vn, then
V ∩ V ′ = ∅;

(viii) if i ≤ n and xi ∈ V ∈ Vn, then f(xi) ∈ αn(V ) ∩ φ(xi).

For n = 1 we let U1 = {U0},V1 = {V0}, α1(V0) = U0, and f(x1) = c.
Suppose for each i ≤ n, Ui,Vi, αi and f(xi) have been defined and they

satisfy the required conditions. To define these objects for n + 1, for each
U ∈ Un choose Un+1(U) as a collection of pairwise disjoint clopen sets with
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diameter less than 1/(n + 1) and
⋃

Un+1(U) = U . Put Un+1 =
⋃

{Un+1(U) :
U ∈ Un}. Let V ∈ Vn. We consider three cases:

Case A: V ∩{x1, . . . , xn, xn+1} = ∅ or V ∩{x1, . . . , xn, xn+1} = {xn+1}.
Then Vn+1(V ) and the restriction of αn+1 to Vn+1(V ) are defined as in the
proof of Theorem 2. When the intersection is {xn+1}, there is W ∈ Vn+1(V )
with xn+1 ∈ W . Then define f(xn+1) to be any point in αn+1(W )∩φ(xn+1).
Note that as xn+1 ∈ W ⊆ κ(αn+1(W )), such a point exists.

Case B: V ∩{x1, . . . , xn, xn+1} = {xi, xn+1} for some i ≤ n. Choose two
disjoint clopen sets C and D such that xi ∈ C, xn+1 ∈ D, and C ⊆ κ(U ′)∩V
for some U ′ ∈ Un+1(αn(V )) with f(xi) ∈ U ′ (note: by induction assumption
xi ∈ V ∈ Vn implies f(xi) ∈ αn(V ) ∩ φ(xi), so there is U ′ ∈ Un+1(αn(V ))
with f(xi) ∈ U ′∩φ(xi); it follows that U ′∩φ(xi) 6= ∅ and hence xi ∈ κ(U ′)).
Also D ⊆ κ(W ′)∩V for some W ′ ∈ Un+1(αn(V )). Now choose a refinement
Vn+1(V ) of {κ(W ) ∩ V : W ∈ Un+1(αn(V ))} consisting of pairwise disjoint
clopen sets and Vn+1(V ) contains both C and D as members. Define αn+1

on Vn+1(V ) by letting αn+1(C) = U ′, and αn+1(F ) as before if F 6= C.
Also define f(xn+1) to be any point in αn+1(D)∩φ(xn+1) (note: αn+1(D)∩
φ(xn+1) 6= ∅ because xn+1 ∈ D ⊆ κ(αn+1(D))).

Case C: V ∩ {x1, . . . , xn, xn+1} = {xi} for some i ≤ n. Then Vn+1(V )
is defined as in the proof of Theorem 2.

Finally, let Vn+1 =
⋃

{Vn+1(V ) : V ∈ Vn}. Since there is a unique V ∈ Vn

that contains xn+1 and satisfies the condition in either Case A or Case B,
f(xn+1) is defined.

Let g : X → X be defined by g(x) = x for x 6∈ V0 and g(xi) = f(xi) (i =
1, 2, . . .). From the above construction it is clear that g(x) ∈ φ(x) for all
x ∈ X, thus g(A) ⊆ A for all A ∈ A. In addition g(b) = f(b) = c 6∈ B,
so g(B) 6⊆ B. To complete the proof we only need to verify that g is
continuous, and for this it is enough to show that f is continuous on V0.
For any x = xn ∈ V0 and any ε > 0, choose m ≥ n with 1/m < ε.
Let xn ∈ V ∈ Vm. Then f(xn) ∈ αm(V ). If i ≥ m and xi ∈ V , then
there is W ∈ Vi with xi ∈ W ⊆ V . Then f(xi) ∈ αi(W ) ⊆ αm(V ). Thus
d(f(xn), f(xi)) < diam(V ) < 1/m < ε. Hence f is continuous at xn.

A space is called hereditarily disconnected if it does not contain any
connected subset of cardinality larger than one.

Lemma 6. Every T1 connected space with more than two elements con-

tains a proper connected subset with more than one element.

Lemma 7. Every s-reflexive Hausdorff space is hereditarily disconnected.

Proof. Let X be an s-reflexive Hausdorff space. If X has at most two
elements, it is clearly hereditarily disconnected. Now assume X has more
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than two elements. Suppose X is not hereditarily disconnected. If X is not
connected, then as it is not hereditarily disconnected, one of its connected
components, say B, is a proper non-singleton connected subset. If X is
connected, by Lemma 6 there also exists a proper non-singleton connected
subset B. Choose b1, b2 ∈ B with b1 6= b2 and x0 ∈ X \ B. Let

A = {A ∈ S(X) : A = {b1} or A ∋ x0} ∪ {∅}.

Then A satisfies conditions (a)–(c) in Lemma 1, and {b2} 6∈ A. However,
{b2} ∈ Lat(Alg(A)), which implies that X is not s-reflexive. In fact, if f ∈
Alg(A) and b ∈ B, from {b, x0} ∈ A it follows that f(b) = b or f(b) = x0.
Thus B is the union of the disjoint closed sets E = {b ∈ B : f(b) = b}
and K = {b ∈ B : f(b) = x0}. Trivially, b1 ∈ E, thus E = B because B is
connected. In particular, f(b2) = b2. We are done.

Theorem 4. A locally compact metric space is s-reflexive if and only

if it is zero-dimensional (or , equivalently , if and only if it is strongly zero-

dimensional or hereditarily disconnected).

Proof. The equivalence of all the above conditions except s-reflexivity
follows from [1, Theorem 6.2.9]. Since the s-reflexivity is topological and
every locally compact metrizable space is completely metrizable, the result
follows from Theorem 2 and Lemma 7.

In the following we construct a locally compact countable complete met-
ric space which has a one-point extension that is not s-reflexive. We shall
define a family of closed sets in the one-point extension space which satisfies
all the conditions (a)–(d) in Lemma 1 and is not reflexive.

Example 2. Let

Y1 = {(1/n, m) : n, m = 1, 2, . . .},

Y0 = {(1/n, 0) : n = 1, 2, . . .} ∪ {(0, 0)}.

As a subspace of R
2, Y = Y0 ∪ Y1 is a locally compact countable complete

space. Let X = Y ∪{p}, where p is an element not in Y . Define a local base
at p as follows: for every map g : N\D → N∪{0}, where D is a finite subset
of N, let

U(g) = {p} ∪ {(1/n, m) : n ∈ N \ D, m > g(n)}.

Thus (1/n, m) 6∈ U(g) for any n ∈ D and m ∈ N ∪ {0}. Note that U(g) ∩
U(h) = U(max{g, h}), where g : N \ D1 → N ∪ {0}, h : N \ D2 → N ∪ {0}
and max{g, h} : N \ (D1 ∪ D2) → N ∪ {0} is defined by max{g, h}(n) =
max{f(n), g(n)} for every n ∈ N \ (D1 ∪ D2). Thus all U(g)’s form a local
base at p. Assuming that Y is an open subspace of X, we have thus defined
a topology on X.
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We show that X is not s-reflexive. Define a map q : X → Y0 by
q((1/n, m)) = (1/n, 0), q(p) = q((0, 0)) = (0, 0) for any n ∈ N and m ∈ {0}
∪ N. Clearly, q is continuous.

The family

A = {q−1(A) : A is closed in Y0}

satisfies conditions (a)–(c). In fact, (a) and (b) are clearly valid. To see
that (c) is also satisfied, consider any family {Ai : i ∈ I} of closed sub-
sets of Y0. Then cl(

⋃

i∈I q−1(Ai)) = cl(q−1(
⋃

i∈I Ai)) = q−1(cl(
⋃

i∈I Ai)).
But A is not reflexive. In fact, {(0, 0)} 6∈ A. For any f ∈ Alg(A), as
{(0, 0), p} = q−1({(0, 0)}) is in A, we have f((0, 0)) = (0, 0) or f((0, 0)) = p.
If the latter holds, then p = limn→∞ f((1/n, 0)). By the definition of A,
f((1/n, 0)) ∈ q−1({(1/n, 0)}); set f((1/n, 0)) = (1/n, g(n)), n ∈ N. This
yields a mapping g : N → N ∪ {0}. But then f((1/n, 0)) 6∈ U(g) for all
n ∈ N, which contradicts p = limn→∞ f((1/n, 0)). This contradiction indi-
cates f((0, 0)) = (0, 0), hence {(0, 0)} ∈ Lat(Alg(A)). Thus A is not reflex-
ive.

Note that the only nonempty connected subsets of X are singletons, so
the family A constructed above also satisfies condition (d) in Lemma 1.

A closed subset A of a space X is called reflexive if {∅, A, X} is reflexive.
Obviously both ∅ and X are reflexive.

Lemma 8. A closed subset A of a space X is reflexive if and only if for

each B ∈ S(X) with A ⊂ B 6= X, there exists f ∈ C(X) such that f(A) ⊆ A
but f(B) 6⊆ B.

Proof. Assume that A 6= ∅ and A 6= X. The necessity is trivial. To show
the sufficiency, suppose B ∈ S(X) and B 6∈ {∅, A, X}. If A 6⊂ B, choose
a ∈ A \ B and define f ∈ C(X) by f(x) = a for all x ∈ X. Then f(A) ⊆ A
but f(B) 6⊆ B. If A ⊂ B, it follows from the assumption that there exists
f ∈ C(X) such that f(A) ⊆ A but f(B) 6⊆ B. Thus {∅, A, X} is reflexive.

Proposition 1. If each path-connected component of a Tikhonov space

X is dense in X, then every closed subset of X is reflexive.

Proof. Let A, B ∈ S(X) with ∅ 6= A ⊂ B 6= X. Choose a ∈ A and a
continuous mapping g : X → [0, 1] such that g(x) = 0 for all x ∈ A and
g(b) = 1 for some b ∈ B. Since the path component of a intersects X \ B,
there is a path h : [0, 1] → X such that h(0) = a and h(1) ∈ X \ B. Now
f = h ◦ g ∈ C(X) and f(A) ⊆ A. However, f(b) = h(1) 6∈ B, so f(B) 6⊆ B.
By Lemma 8, A is reflexive.

Proposition 2. Every closed subset of a zero-dimensional space is re-

flexive.
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Proof. Let X be a zero-dimensional space, and A, B ∈ S(X) with ∅ 6=
A ⊂ B 6= X. Choose a ∈ A and x0 ∈ X \ A. There exists a clopen set
U ∋ x0 such that U ∩ A = ∅. Consider the mapping f : X → X defined by
f(x) = a if x 6∈ U and f(x) = x0 if x ∈ U . Then f ∈ C(X) and f(A) ⊆ A
but f(B) 6⊆ B.
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