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Extreme topological measures

by

S. V. Butler (Urbana-Champaign, IL)

Abstract. It has been an open question since 1997 whether, and under what as-
sumptions on the underlying space, extreme topological measures are dense in the set
of all topological measures on the space. The present paper answers this question. The
main result implies that extreme topological measures are dense on a variety of spaces,
including spheres, balls and projective planes.

1. Introduction. A topological measure on a compact Hausdorff space
is a real-valued, nonnegative, monotone, countably additive and regular set
function defined on the family of sets that are either closed or open. Topo-
logical measures on X correspond to functionals that are linear on singly
generated subalgebras of C(X) and, hence, generalize linear functionals on
C(X). See [2] for details. The fact that a topological measure has all the
properties of a regular Borel measure, except that it is only defined on closed
and open sets, has a profound effect on characteristics of topological mea-
sures compared with those of regular Borel measures.

Here we consider the nature of extreme topological measures, i.e. ex-
treme points of the space of all topological measures on a given set. It is
known (see [7]) that the collection of extreme topological measures has a rich
structure and includes different types of topological measures that are not
{0, 1}-valued. It has been an open question since 1997 whether, and under
what assumptions on the underlying space, extreme topological measures
are dense in the set of all topological measures on the space. In the present
paper we answer this question.

If E is a set, we will denote by |E| its cardinality and by P(E) its
power set. In this article we will often use disjoint collections of sets. This
means that if D is a disjoint collection and U, V ∈ D then either U = V
or U ∩ V = ∅. We use the symbol

⊔
for the union of sets that belong to a
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disjoint family of sets. For example,
⊔

H =
⊔

A∈H A means that we take the
union of sets in a disjoint family H. If W is a finite collection of subsets of a
space X, we will denote by DC(W) ⊆ P(W) the set of disjoint subfamilies
of W . We will also use MDC(W) ⊆ DC(W), the set of all maximal elements
of DC(W) with respect to inclusion. An element D ∈ MDC(W) is a maximal
disjoint collection of sets from W .

Definition 1.1. Let X be a compact Hausdorff space. Let C(X) (re-
spectively O(X)) denote the collection of closed (respectively open) subsets
of X, and A(X) = C(X) ∪ O(X). A topological measure on X is a function
µ : A(X) → R

+ such that:

(i) µ(
⊔n

i=1 Ai) =
∑n

i=1 µ(Ai) (all Ai and
⊔n

i=1 Ai are assumed to be in
A(X)),

(ii) µ(U) = sup{µ(C) : C ⊆ U, C ∈ C(X)} for all U ∈ O(X).

From (i) and (ii) it follows that topological measures are monotone.
Topological measures are not only finitely, but also countably additive:
if A =

⊔∞
i=1 Ai, where A, Ai ∈ A(X) (i = 1, 2, . . .), then µ(A) =

∑∞
i=1 µ(Ai)

(see [10]).
Topological measures on a given set X form a convex set, and the ex-

treme points of this convex set will be called extreme topological measures.
Topological measures that only assume values 0 and 1 are called simple. Any
simple topological measure is extreme.

Definition 1.1 involves open and closed sets. We frequently use special
open or closed sets. A set A is solid if both A and its complement are
connected. We will denote collections of open solid sets and of closed solid
sets by Os(X) and Cs(X) respectively. We will also use As(X) = Os(X) ∪
Cs(X). To use the technique of solid sets (Theorem 2.2 below) we assume that
X is connected and locally connected. We shall also assume for simplicity
that X has a certain topological characteristic, genus g = 0 (see [3] for
details). Intuitively, X does not have holes or loops. One way to describe the
“g = 0” condition is the following: if the union of two open solid sets in X is
the whole space, their intersection must be connected (see [8]). Note also that
a space has genus 0 if and only if U \C is connected for any open connected
set U and any closed solid set C contained in U . (See Remark 2.6 below.) In
the case where X is locally path connected, g = 0 if the fundamental group
π1(X) is finite (in particular, if X is simply connected) or, more generally,
if H1(X) = 0 ([9, 12]). A compact, connected, locally connected Hausdorff
space with genus 0 will be called a q-space. Examples of q-spaces include
spheres Sn, balls Bn for n ≥ 2, and dendrites.

In this paper X is always a q-space, and all topological measures are
assumed to be normalized, i.e. µ(X) = 1. On the space of all normalized
topological measures on X, denoted by TM(X), we consider the weak∗
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topology which is generated by basic open sets

Û(W , b) = {µ ∈ TM(X) : µ(U) > b(U) for all U ∈ W},

where W is a finite collection of open solid sets, and b : W → [0, 1] is
a function. The space TM(X) is a compact Hausdorff convex topological
space. (See [1]; a more general result is in [11].)

2. Preliminaries

Definition 2.1. A solid set function on a q-space X is a function µ :
As(X) → [0, 1] such that

1. if C1⊔· · ·⊔Cn ⊆ C, C, C1, . . . , Cn ∈ Cs(X), then
∑n

i=1 µ(Ci) ≤ µ(C),
2. µ(U) = sup{µ(C) : C ⊆ U, C ∈ Cs(X)} for U ∈ Os(X),
3. µ(U) + µ(X \ U) = 1 for U ∈ Os(X).

The proof of the next theorem is in [3].

Theorem 2.2. A solid set function on a q-space extends uniquely to a

topological measure on X.

Now we give two examples of topological measures that first appeared
in [2] and [3]. These topological measures are not subadditive, hence they
are not Borel measures.

Example 2.3. Let X be the unit square and B be the boundary of X.
Fix a point p in X \ B. Define µ on solid sets as follows: µ(A) = 1 if (i)
B ⊂ A, or (ii) p ∈ A and A ∩ B 6= ∅. Otherwise, we let µ(A) = 0. Then µ
is a solid set function and hence extends to a topological measure on X. To
demonstrate that µ is not a measure we shall show that µ is not subadditive.
Let A1 be a closed solid set consisting of two adjacent sides of B, let A2 be
a closed solid set that is the other two adjacent sides of B, and A3 = X \B
be an open solid subset of X. Then X = A1 ∪ A2 ∪ A3, µ(X) = 1, but
µ(A1) + µ(A2) + µ(A3) = 0.

Example 2.4. Let X be a sphere. Fix three points x, y, z in X. Define
µ on solid sets as follows: µ(A) = 1 if A contains the majority of the three
points, otherwise µ(A) = 0. The resulting topological measure is not sub-
additive, since µ(X) = 1, and it is easy to represent X as a union of three
overlapping solid sets each of which contains exactly one of the points x, y, z.
Notice also that µ(A) = 1 for any connected set A that contains at least two
points. This follows easily from Lemmas 3.1 and 3.2 in [3].

Proposition 2.5. In a q-space, U \ C is connected for any open con-

nected set U and any closed solid set C contained in U . In particular , in a

q-space with no cut points, U \ {x} is connected for any open connected set

U and any point x.
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Proof. We give a proof, suggested by D. Grubb, that uses topological
measures. Observe first that C intersects the closure of every component of
U \ C. Indeed, let U \ C =

⊔
β Vβ and assume that C ∩ Vα = ∅ for some

component Vα. All components are open by local connectivity, so Vα∩Vβ = ∅
for all β 6= α. Then V ′ = U \ Vα =

⊔
β 6=α Vβ ⊔ C is an open set and hence

U = Vα ⊔ V ′ is a disconnection of U .
Now, if V1 and V2 are two components of U \ C, take x ∈ C, y ∈ V1,

z ∈ V2. Let µ be the simple topological measure based on points x, y, z as
in Example 2.4. Note that µ(U) = 1, µ(C) = 0, so µ(U \ C) = 1. Pick the
component Vα of U \ C with µ(Vα) = 1. Since Vα cannot contain both y
and z, we may assume that y 6∈ Vα, i.e. Vα 6= V1. Then x and y must be in
different components of X \ Vα because µ(X \ Vα) = 0. But then C and V1

are contained in different components of X \ Vα. So C ∩ V1 = ∅ (note that
components of X \ Vα are closed), which contradicts the statement at the
beginning of the proof.

Remark 2.6. From Propositions 2.5 and 2.2 in [3] we get a characteri-
zation of genus 0. A compact Hausdorff connected locally connected space
has genus 0 if and only if U \ C is connected for any open connected set U
and any closed solid set C contained in U .

Definition 2.7. A topological measure µ on X is finitely defined if
there is a finite subset F ⊂ X such that

∑n
i=1 µ(Ai) ≤ µ(A) whenever⊔n

i=1(Ai ∩ F ) ⊆ A ∩ F , where A, A1, . . . , An ∈ As(X).

The topological measure in Example 2.4 is finitely defined, but the one
in Example 2.3 is not. Both topological measures are simple, hence extreme.

Definition 2.8. A supermeasure on a finite set E is a function ν :
P(E) → [0, 1] satisfying

1. ν(A) + ν(E \ A) = 1 for all A ∈ P(E),
2. ν(A ⊔ B) ≥ ν(A) + ν(B).

The second condition says that ν is superadditive, hence the term su-
permeasure. From the definition it immediately follows that ν(∅) = 0 and
that ν is monotone, i.e. J ⊆ K ⇒ ν(J) ≤ ν(K). From (ii) we also deduce
(by induction) that if

⊔
iJi ⊆ J then

∑
iν(Ji) ≤ ν(J).

The reason behind the introduction of supermeasures is demonstrated
by the next two results (see [4]).

Proposition 2.9. Let E be a finite subset of X, and let i : E → X be

the inclusion. For any supermeasure ν on E let

µ(A) = i∗ν(A) = ν(A ∩ E), A ∈ As(X).

Then µ is a solid set function on X, and it uniquely extends to a topological

measure µ = i∗ν which is finitely defined.
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Definition 2.10. A pre-supermeasure on a finite set E is a function
α : F → [0, 1], where F is a subset of P(E), such that

(∗)
⊔

A∈H

A ⊆ B implies
∑

A∈H

α(A) ≤ α(B).

Theorem 2.11. If |E| is odd , F ⊆ P(E) is a family containing E and

α : F → [0, 1] is a pre-supermeasure, then there exists a supermeasure ν on

E such that ν(A) ≥ α(A) for all A ∈ F and ν(A) = α(A) for all A ∈ F
with |A| ≤ 1

2 |E|.

This is Lemma 2.5 in [4] without the condition ∅ /∈ F . (From the way ν
is defined it is clear that ν(∅) = 0, whether or not ∅ ∈ F .) The proof also
shows that ν(A) = α(A) for all A ∈ F with |A| ≤ 1

2 |E|.

Definition 2.12. A family F of nonempty sets has order m if F con-
tains a collection of m disjoint sets but no collection of m + 1 disjoint sets.

Definition 2.13. Let C = {I1, . . . , Ik} be a sequence of distinct sets.
Let m ≤ k be an integer. We say that C is an m-disjoint k-chain if C has
order m and for each i = 1, . . . , k the sets Ii+1, . . . , Ii+m are disjoint (indices
are mod k). An m-disjoint (2m + 1)-chain is called an m-chain.

Example 2.14. If m is an integer and S = {S1, . . . , S2m+1} is a disjoint
family of sets, then {Ji = S2i−1⊔S2i : i = 1, . . . , 2m+1 (mod2m+1)} is an
m-chain. Such m-chains play an important role in this paper, and we give
them a special name.

Definition 2.15. An m-chain {J1, . . . , J2m+1} that arises from a dis-
joint family of 2m + 1 sets as in Example 2.14 is called a basic m-chain.

Lemma 2.16. If {A1, . . . , Ak} is an m-disjoint k-chain of sets from

A(X), (m, k) = 1, and µ is a set function satisfying

µ(Ai+1) + µ(Ai+2) + · · · + µ(Ai+m) = 1 for i = 1, . . . , k(1)

(indices mod k), then µ(Ai) = 1/m for all i = 1, . . . , k.

The proof of this lemma for m-chains first appeared in [5], where m-
chains were first used. Here we give for completeness a short elegant proof
shared with the author by J. Aarnes.

Proof. Let xi = µ(Ai). From (1) we get
∑m

j=1 xi+j = 1 and also∑m−1
j=0 xi+j = 1. Subtraction yields xi = xi+m, and hence xi = xi+pm,

p = 0, 1, . . . . In particular x1 = x1+pm for all p. Since (m, k) = 1, m is a
generator for the cyclic group Zk. Hence x1 = · · · = xk, and then (1) implies
that xi = 1/m for all i = 1, . . . , k.
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Definition 2.17. A finite set F is solidifiable in A if there exists C ∈
Cs(X) such that F ∩ A ⊆ C ⊆ A. A finite set is called solidifiable if it is
solidifiable in every open connected subset of X.

Example 2.18. Any finite set in R
n, Sn or the interior of Bn for n ≥ 2

and any finite set in Bn for n ≥ 3 is solidifiable. A finite set in B2 that
includes boundary points may not be solidifiable. For example, if X is the
unit square, x and y are two opposite corner points, and F is a finite set
containing points on opposite sides of X, then for the open connected set
U = X \ {x, y} there is no closed solid set C with F ⊆ C ⊆ U .

Definition 2.19. An m-chain C = {C1, . . . , C2m+1} is a solid extension

of an m-chain J = {J1, . . . , J2m+1} of finite sets if Ci ∈ Cs(X) and Ci ∩⋃
J = Ji for i = 1, . . . , 2m + 1.

Example 2.20. Suppose that X is a space for which any closed arc is a
closed solid set and for any finite ordered subset of X there exists a simple
closed curve that contains this finite set and preserves the order of its points.
Such spaces include Sn, R

n, and the interior of Bn for n ≥ 2. Suppose that
{J1, . . . , J2m+1} is a basic m-chain of finite sets in X, i.e. Ji = S2i−1⊔S2i for
some disjoint family {S1, . . . , S2m+1} of finite sets. Suppose that a simple
closed curve in X goes through the points of S1, . . . , S2m+1 in that order. For
i = 1, . . . , 2m+1 let Ci be the part of the curve which is an arc beginning at
the first point of S2i−1 and ending at the last point of S2i (indices are mod
2m + 1). Then {C1, . . . , C2m+1} is a solid extension of the basic m-chain
{J1, . . . , J2m+1}.

Proposition 2.21. Suppose X is a space for which there exists m ≥ 1
such that any basic m-chain of finite sets has a solid extension. Then X has

no cut points.

Proof. If {x} is a cut point and X \ {x} = V ⊔ W then any solid set
that contains points from both V and W must also contain x. It is easy to
give an example of a basic m-chain of finite sets that does not have a solid
extension.

Lemma 2.22. Let X be a q-space with no cut points. Suppose E is a finite

set , {F1, . . . , Fk} is a disjoint family of subsets of E, and A is any open

solid set containing
⊔k

i=1 Fi. Assume E is solidifiable. Then there exists

a disjoint family {C1, . . . , Ck} of closed solid sets such that Ci ⊆ A and

Ci∩E = Fi. Any disjoint family {C1, . . . , Cn} of closed solid sets, 1 ≤ n < k,
such that Ci ⊆ A and Ci ∩ E = Fi for i = 1, . . . , n extends to a disjoint

family {C1, . . . , Ck} of closed solid sets with Ci ⊆ A and Ci ∩ E = Fi for

i = 1, . . . , k.
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Proof. We construct the desired sets Ci by induction. Let F̃i = E \ Fi

for each i, C0 = ∅, and Ac = X \ A. For each i the set A \
⊔i−1

j=0 Cj is

open connected by Proposition 2.5. Then (A \
⊔i−1

j=0 Cj) \ F̃i is also open
connected by Proposition 2.5 and contains Fi, so there exists Ci ∈ Cs(X)

such that Fi ⊆ Ci ⊆ (A \
⊔i−1

j=0 Cj) \ F̃i. Notice that Ci ∩ E = Fi.

In the previous lemma the condition that X has no cut points can be
weakened. We use only the fact that none of the points of E is a cut point.

Remark 2.23. If X has a cut point then the extreme topological mea-
sures are not dense in the set of all topological measures on X. If x is a
cut point of X then by [13] each extreme topological measure is supported
on the union of {x} with one of the components of X \ {x}. Any topologi-
cal measure whose support contains more than one component of X \ {x}
cannot be approximated by extreme topological measures.

3. Main theorem. The proof of the main theorem is based on a series
of lemmas.

Lemma 3.1. Let W be a finite family of sets and b : W → [0, 1] be a

function such that
∑

U∈D b(U) < 1 for every disjoint collection D ∈ DC(W).
Then there exist m ∈ N and a function n : W → N such that

(i) 2[n(U)/2] ≥ (2m + 1)b(U) for each U ∈ W ,
(ii)

∑
U∈D n(U) ≤ 2m + 1 for every D ∈ DC(W),

(iii) for each U ∈ W there exists D ∈ MDC(W) with
∑

V ∈D n(V ) =
2m + 1 and U ∈ D.

Proof. Since we get a basis for the topology on TM(X) by considering
functions b with values in a dense subset of [0, 1], we may without loss of
generality assume that there are integers m(U) and an integer m such that
for all U ∈ W ,

b(U) =
2m(U)

2m + 1
.

One way to prove the lemma is by providing an algorithm for obtaining the
function n. Set initially n(U) = 2m(U) for each U ∈ W and W ′ = W .

Let U ∈ W ′ ⊆ W . Then U belongs to a maximal disjoint collection
C ∈ MDC(W). Let D ∈ MDC(W) be the maximal disjoint collection which
minimizes the quantity

2m + 1 −
∑

V ∈C, V 6=U

n(V )

over all maximal disjoint collections C containing U . Let

n(U) = 2m + 1 −
∑

V ∈D, V 6=U

n(V )
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It is clear that
∑

U∈D n(U) = 2m + 1 and that for each U ∈ W we have
n(U) ≥ 2m(U) = (2m + 1)b(U), i.e. 2[n(U)/2] ≥ (2m + 1)b(U).

Now let W ′ \
⋃
{C : C ∈ MDC(W) with

∑
U∈C n(U) = 2m + 1} (where

one such maximal disjoint collection is D) be the new W ′. Repeat the al-
gorithm for the new W ′. When W ′ = ∅ the desired function n is produced.
Notice that for any V ∈ W such that {V } ∈ MDC(W) (these are sets
V with the property that V intersects every set in W) we have n(V ) =
2m + 1.

An alternative proof of the lemma runs as follows. The set N of all
functions n satisfying the first two conditions of the lemma is not empty
(for example, it includes n defined by n(U) = 2m(U)). The reasoning in the
above algorithm shows that the last condition of the lemma is satisfied if we
chose n ∈ N to be maximal.

Lemma 3.2. Let W be a finite family of open subsets of X and n : W →
N be a function. Then there is a function R : W → P(P(X)) such that :

(a) the members of R(U) are nonempty finite disjoint subsets of U ,
(b) |R(U)| = n(U) for each U ∈ W ,
(c) if U 6= V and U∩V 6= ∅ then S∩T 6= ∅ for any pair of sets S ∈ R(U),

T ∈ R(V ),
(d) the cardinality of the set E =

⋃
U∈W(

⋃
R(U)) is odd ,

(e) if R is a function satisfying (a), (b) and (c), S ∈ R(U), T ∈ R(V ),
and n(V ) ≥ 2 then S ⊆ T implies U = V and S = T .

Proof. Suppose first that W = {U}. Let l be an odd number exceed-
ing n(U). Choose l different points in U and form n(U) finite disjoint sets,
which will constitute R(U). Then (a)–(d) are satisfied. It is easy to see how
(d) can be satisfied in general, and we will prove (a)–(c) by induction on |W|.
Assume that (a)–(c) hold for any W with |W| ≤ k. Let |W| = k +1, and let
U ∈ W . Then (a)–(c) hold for W ′ = W \ {U}. Using the argument at the
beginning of the proof we can choose R(U) so that (a) and (b) hold for W .
Now suppose that V ∈ W ′, U ∩ V 6= ∅. Let R(U) = {S1, . . . , Sn(U)} and
R(V ) = {T1, . . . , Tn(V )}. In the nonempty open set U ∩ V pick n(U)n(V )
different points pij , i = 1, . . . , n(U), j = 1, . . . , n(V ). Modify each set Si

by adding points pij , j = 1, . . . , n(V ), and each set Tj by adding points
pij , i = 1, . . . , n(U). The result of this modification is that while all sets Si

are disjoint, and all sets Tj are disjoint, we have pij ∈ Si ∩ Tj 6= ∅ for every
i = 1, . . . , n(U) and every j = 1, . . . , n(V ). Hence, (c) is satisfied for W .
To prove (e), suppose that n(V ) ≥ 2 and take disjoint sets T, T ′ ∈ R(V ).
If U 6= V then S ⊆ T implies U ∩ V 6= ∅ and then by (c) we also have
S ∩T ′ 6= ∅, which makes S ⊆ T impossible. Therefore, we must have U = V
and S = T .
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Lemma 3.3. Let the function R : W → P(P(X)) and the set E be as

in the previous lemma. Consider families (of subsets of E) E = {S : S ∈
R(U), U ∈ W} and Fm = {S ⊔ T : S ∈ R(U), T ∈ R(V ), U, V ∈ D, D ∈
MDC(W) with

∑
U∈D n(U) = 2m + 1} (note that U = V is allowed). Let

F = Fm ∪ {E}. Then:

(a) the family E has order 2m + 1,
(b) each set in Fm belongs to a basic m-chain,
(c) the families F ,Fm both have order m and contain an m-chain.

Proof. (a) Suppose S is a disjoint subfamily of E . Let D = {U : S ∈
R(U), S ∈ S}. From part (c) in Lemma 3.2 we see that D ∈ DC(W). Then
by (ii) in Lemma 3.1,

|S| ≤
∑

U∈D

n(U) ≤ 2m + 1.

If C ∈ MDC(W) is any maximal disjoint collection with
∑

U∈C n(U) = 2m+1
then by Lemmas 3.1 and 3.2, S ′ = {S : S ∈ R(U), U ∈ C} is a disjoint
subfamily of E with exactly 2m+1 sets. Therefore, the order of E is 2m+1.

(b) Let S⊔T be an element of Fm. Here S ∈ R(U), T ∈ R(V ), U, V ∈ C,
where C is a maximal disjoint collection with

∑
U∈C n(U) = 2m + 1. Let S ′

be as above. Example 2.14 applied to S ′ shows that S⊔T belongs to a basic
m-chain.

(c) Clearly, both F and Fm contain an m-chain. If the family Fm were
to contain m + 1 disjoint sets, that would imply that E has 2m + 2 disjoint
sets, which contradicts (a). Thus, the order of Fm is m, and the same is true
for F , since the set E intersects every set in Fm.

Lemma 3.4. Let W be a finite family of open subsets of X, and let the

set E and families F and Fm be as in Lemma 3.3. Let α : F → [0, 1]
be the function which takes the value 1/m on Fm and the value 1 on E.

Then α is a pre-supermeasure. The corresponding supermeasure ν (given by

Theorem 2.11) is such that ν(J) = 1/m for every J ∈ Fm.

Proof. First, recall that the set E intersects every set in the family F .
To show that α is a pre-supermeasure, we need to check condition (∗) from
Definition 2.10 with H being a disjoint subfamily of F . If B = E then (∗)
holds because the order of F is m. Let B ∈ Fm, i.e. B = S ⊔ T , where
S ∈ R(U), T ∈ R(V ), U, V ∈ C and C is a maximal disjoint collection with∑

U∈C n(U) = 2m + 1. As in the proof of Lemma 3.3, using the maximal
disjoint collection C we get a disjoint subfamily of E with exactly 2m+1 sets.
This subfamily of E contains 2m − 1 disjoint sets other than S, T . Notice
that none of the sets in H is E. The assumption that |H| ≥ 2 would imply
that there were at least 2m + 3 disjoint sets in E , which is impossible by
Lemma 3.3. Therefore, |H| = 1, and (∗) is satisfied.
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If J1, . . . , Jm are disjoint sets in Fm then, by Theorem 2.11,

1 =

m∑

i=1

α(Ji) ≤
m∑

i=1

ν(Ji) ≤ ν(J1 ⊔ · · · ⊔ Jm) ≤ 1

and so ν(Ji) = 1/m, since ν(Ji) ≥ α(Ji) = 1/m for each i. Hence, ν(J) =
1/m for every J ∈ Fm because by Lemma 3.3 each set J ∈ Fm belongs to
an m-chain.

Lemma 3.5. Let the supermeasure ν and the finite set E be as in Lem-

ma 3.4, and i : E → X be the inclusion. Suppose E is solidifiable and X
is a q-space with no cut points in which every basic m-chain of subsets of

E has a solid extension. Then the topological measure µ = i∗ν (given by

Proposition 2.9) is extreme.

Proof. Let µ = i∗ν be given by Proposition 2.9. Assume µ = 1
2µ1 + 1

2µ2,
i.e.

µ(A) = 1
2µ1(A) + 1

2µ2(A)(2)

for all A ∈ A(X). We need to show that µ = µ1 = µ2, i.e. µ(A) = µ1(A) =
µ2(A) for all A ∈ A(X). It is enough to check this for A ∈ As(X). Notice
that for any open or closed set A with µ(A) = 1 or 0 from (2) it follows that
also µ1(A) = 1 or 0.

First we show that for K ∈ Cs(X) with K ∩E = J (for any set J ∈ Fm),

µ(K) = µ1(K) = µ2(K) = 1/m = ν(J).(3)

Let C1 = K. By Lemma 3.3, J is an element of a basic m-chain J =
{J1, . . . , J2m+1} in Fm, which has a solid extension, a chain {C1, . . . , C2m+1}
of closed solid sets in X such that Ci ∩

⋃
J = Ji for i = 1, . . . , 2m + 1.

Here
⋃

J ⊆ E. By Lemma 3.4, µ(Ci) = ν(Ci∩E) ≥ ν(Ji) = 1/m for all i =
1, . . . , 2m + 1. The sets Ci+1, . . . , Ci+m are disjoint for all i = 1, . . . , 2m + 1
(indices are mod 2m + 1), so we have

µ(Ci+1 ⊔ · · · ⊔ Ci+m) = µ(Ci+1) + · · · + µ(Ci+m) = 1.

The closed set C = Ci+1⊔· · ·⊔Ci+m has µ(C) = 1 so we also have µ1(C) = 1,
i.e.

µ1(Ci+1 ⊔ · · · ⊔ Ci+m) = µ1(Ci+1) + · · · + µ1(Ci+m) = 1

for all i = 1, . . . , 2m + 1 (indices are mod 2m + 1). Then Lemma 2.16
tells us that µ1(Ci) = 1/m for all i = 1, . . . , 2m + 1. Therefore, µ1(Ci) =
1/m = µ(Ci) for all i = 1, . . . , 2m + 1. Since µ = 1

2µ1 + 1
2µ2 we have

µ1(Ci) = µ2(Ci) = µ(Ci) = 1/m for all i = 1, . . . , 2m + 1. In particular,
µ(K) = µ1(K) = µ2(K) = 1/m = ν(J).

Let A be a solid set and let J ′ = A ∩ E, so µ(A) = ν(J ′). Suppose
first that |J ′| < |E|/2. By the construction of ν in [4], we may assume that
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ν(J ′) =
∑

J∈H α(J) for some disjoint subfamily H of F with
⊔

H ⊆ J ′. By
the regularity of topological measures we may assume that A is open solid,
and then by Lemma 2.22 we may find disjoint closed solid sets KJ ⊆ A,
J ∈ H such that J = KJ ∩ E. Then using (3) we have

µ(A) = ν(J ′) =
∑

J∈H

α(J) =
∑

J∈H

µ(KJ) =
∑

J∈H

µ1(KJ) ≤ µ1(A).

Similarly, µ(A) ≤ µ2(A). Then µ(A) = µ1(A) = µ2(A). We see that the
same equality holds for A ∈ As(X) with |A ∩ E| > |E|/2 by taking the
complement of A. Hence, µ is extreme.

Remark 3.6. The technique for showing that µ is extreme is a reworking
of a technique that first appeared in [5].

Theorem 3.7. Let X be a q-space in which any finite set is solidifiable

and any basic m-chain of finite sets has a solid extension. Then extreme

topological measures are dense in the set of all topological measures on X.

Proof. Let Û(W , b) be a nonempty basic open set. Here W is a nonempty
finite collection of open solid subsets of X and b : W → [0, 1] is a function.

Our goal is to find an extreme topological measure µ in Û(W , b). We may
assume that none of the sets U ∈ W is empty. We may also assume that
X ∈ W . (See Lemma 3.2 in [4].) Since our basic open set is nonempty,
it follows that

∑
U∈D b(U) < 1 for every disjoint collection D ∈ DC(W),

and in particular, each b(U) < 1. Indeed, consider a topological measure

λ ∈ Û(W , b). If
∑

U∈D b(U) ≥ 1 for a disjoint collection D ∈ DC(W) then
we would have

λ(X) ≥
∑

U∈D

λ(U) >
∑

U∈D

b(U) ≥ 1,

which contradicts the normalization of λ.
Now we may apply Lemma 3.1 to get a function n : W → N. Apply

Lemma 3.2 for W and n. Let families E and Fm be as in Lemma 3.3 and
the set E be as in Lemma 3.2. By Proposition 2.21, X has no cut points,
so we apply Lemma 3.5 to obtain an extreme topological measure µ. It
only remains to show that µ is in the basic open set Û(W , b). Let U ∈ W
be in a maximal disjoint collection D. By Lemma 3.2, the set U contains
n(U) disjoint members of R(U), so U ∩ E contains [n(U)/2] disjoint sets
from Fm, each of which by Lemma 3.4 has ν measure 1/m. According to
Proposition 2.9, µ(U) = ν(U ∩ E). Using (i) from Lemma 3.1 we get

µ(U) = ν(U ∩ E) ≥

[
n(U)

2

]
1

m
>

[
n(U)

2

]
2

2m + 1
≥ b(U).

Remark 3.8. Suppose that a nonempty basic open set Û(W , b) is such
that MDC(W) = {{U} : U ∈ W}, i.e. the family W has the pairwise
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nonempty intersection property: U ∩ V 6= ∅ for any U, V ∈ W . In this case
there is a simple topological measure in Û(W , b) (see [12]).

Theorem 3.7 can be improved, as D. Grubb pointed out to the author.

Theorem 3.9. Let X be a q-space and Y be a dense open subset of X
such that any finite subset of Y is solidifiable and any basic m-chain of

finite subsets of Y has a solid extension. Then extreme topological measures

are dense in the set of all topological measures on X.

This theorem holds because one may choose the sets R(U) in Lemma 3.2
as subsets of Y .

Example 3.10. Theorems 3.7 and 3.9 and Examples 2.18 and 2.20 show
that among the spaces on which extreme topological measures are dense in
the collection of all topological measures are the spheres Sn, balls Bn, and
projective planes RPn for n ≥ 2.

The extreme topological measure µ constructed in Theorem 3.7 is finitely
defined. Hence, we get the following corollary, which implies Theorem 3.4 in
[4] under the assumptions of Theorem 3.9.

Corollary 3.11. Let X be a q-space and Y be a dense open subset of X
such that any finite subset of Y is solidifiable and any basic m-chain of finite

subsets of Y has a solid extension. Then extreme finitely defined topological

measures are dense in the set of all topological measures on X.

Note that the families of finitely defined topological measures and ex-
treme topological measures intersect without one containing the other. The
topological measure in Example 2.3 is extreme but not finitely defined, and
from Proposition 3.16 in [6] it is easy to get finitely defined topological
measures that are not extreme.
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