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with a countably infinite collection of inhomogeneities
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Abstract. We examine the structure of countable closed invariant sets under a dy-
namical system on a compact metric space. We are motivated by a desire to understand
the possible structures of inhomogeneities in one-dimensional nonhyperbolic sets (inverse
limits of finite graphs), particularly when those inhomogeneities form a countable set.
Using tools from descriptive set theory we prove a surprising restriction on the topological
structure of these invariant sets if the map satisfies a weak repelling or attracting con-
dition. We show that for a family of conceptual models for the Hénon attractor, inverse
limits of tent maps, these restrictions characterize the structure of inhomogeneities. We
end with several results regarding the collection of parameters that generate such spaces.

1. Introduction. R. F. Williams showed that one-dimensional hyper-
bolic attractors can be realized as inverse limits of one-dimensional branched
manifolds [18]. He extended this result to higher dimensions in [19]. The
bonding maps used in his construction had a certain amount of regular-
ity that ensured the resulting space was a hyperbolic attractor. Namely in
Williams’ construction branch-points are mapped to other branch-points
and edges are mapped monotonically onto unions of edges. This forces the
space to be locally the product of a Cantor set and an arc.

These hyperbolic spaces, and their higher dimensional analogues, have
been the focus of much study in the last few years. Notably they have
arisen in the study of substitution tiling spaces (cf. [1] for n-dimensional
tilings and [5] for 1-dimensional tilings). Sadun and Williams have recently
shown that n-dimensional tiling spaces are indeed Cantor set fiber bundles
just like the hyperbolic attractors described above [17]. In 2001 M. Barge
and B. Diamond utilized a “pattern” that arose from the regular struc-
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ture inherent in Williams’ construction [18] to characterize one-dimensional
hyperbolic attractors that are orientable and one-dimensional substitution
tiling spaces [4]. I. Yi has also used Williams’ description to find topological
invariants for the nonorientable case [20].

Unlike the hyperbolic case in which each point has a neighborhood
homeomorphic to the product of a Cantor set and an open arc, in a one-
dimensional nonhyperbolic space there are many inhomogeneities, i.e. points
that have neighborhoods containing branch-points, endpoints, “folded up”
arcs or even small non-arclike pieces (cf. [15] and [16]).

In this paper we continue our investigation of one-dimensional invariant
sets that are nonhyperbolic [16]. We consider inverse limits of maps of finite
graphs. We do not impose the condition that branch-points are mapped
to branch-points or that edges are mapped onto a union of edges. Rather
the spaces under consideration possess the property of the Hénon attractor
discussed by Barge, Brucks and Diamond in [2]. Namely, neighborhoods of
points in these spaces appear at first glance to have a nice regular structure,
such as being the product of a Cantor set and an open arc, but upon closer
scrutiny, one sees that many neighborhoods contain collections of arcs that
are hopelessly folded up. Arc components do not travel “straight” around the
attractor, rather they turn around and fold in complicated ways throughout
the space (cf. [10, p. 268]).

In [16] we demonstrate that the points with neighborhoods that are not

homeomorphs of the product of a Cantor set and an open arc fall into three
categories:

(1) branch-points or limits of arbitrarily small non-arclike pieces,
(2) endpoints or limits of endpoints of some small arclike pieces,
(3) limits of “folded” arcs.

It follows quickly from the precise definitions of the preceding three classes of
points that each defining property is topological. Moreover, we showed that
points in these sets correspond to points that always project into certain
ω-limit sets. This implies that the topological structure of these inhomo-
geneities is closely related to the topological and dynamical structure of the
relevant ω-limit sets.

In the next section we discuss in more detail the precise structure of in-
homogeneities in nonhyperbolic invariant sets. Then, in §3, we prove one of
the main results of the paper. Specifically we prove the surprising restriction
that the limit type of the collection of inhomogeneities is necessarily 0, 1 or
α + 2 for some countable ordinal α (Corollary 3.6). The next few sections
of the paper are devoted to demonstrating that this restriction is sufficient
in the context of inverse limits of tent map cores. We give the important
preliminaries from descriptive set theory and dynamics in §4 and §5. Then
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in §6, given a countable ordinal α, we construct a tent map core with the
property that the inhomogeneities in its inverse limit space have limit type
α + 2, thus demonstrating the sufficiency of the restriction given in Corol-
lary 3.6. In §7 we define the folding spectrum, an ordered pair with first
coordinate a countable ordinal and second coordinate a positive integer, of
a nonhyperbolic invariant set, and we demonstrate that it is topological.
From this definition and the examples constructed in §6 we prove that there
are uncountably many (actually ω1 many) nonhomeomorphic inverse limits
induced by tent map cores (Theorem 7.9). Finally, in §8 we show that for a
given folding spectrum (α, n), there is a dense set of parameters of size c in
[
√

2, 2] that generate a tent map core with inverse limit space having folding
spectrum (α, n) (Theorems 8.1 & 8.2).

2. Inhomogeneities in nonhyperbolic invariant sets. We encour-
age the reader unfamiliar with techniques from the theory of inverse limit
spaces to see [11] or [12].

In this section we will mention many of the preliminary definitions and
results regarding inhomogeneities in one-dimensional nonhyperbolic invari-
ant sets. For a more detailed discussion see [15] or [16]. We consider a non-
hyperbolic invariant set to be an inverse limit on a finite graph. Let G be
a graph and let f : G → G be a map. We denote the inverse limit of f
on G by lim←−Gf , and we denote the nth projection map restricted to the
inverse limit space by simply πn. All one-dimensional compact connected
metric spaces are realizable as such spaces, although not necessarily with
one bonding map or factor space. However, the class of topological spaces
we are considering is quite large.

In order to guarantee that the action of the induced map on arcs in
the inverse limit space is expanding, we usually assume that f is locally

eventually onto, l.e.o., i.e. for every compact connected B ⊂ G there is a
positive integer n such that fn(B) = G.

If f is a function, U is a set, and U is a collection of sets, we will abuse
notation throughout the paper by using f(U) to mean the collection of
points {f(x) : x ∈ U} and f(U) = {f(U) : U ∈ U}. We define the mesh

of U , mesh(U), to be the largest diameter of its elements, provided such a
number exists. The ω-limit set of a point x is defined as

ω(x) =
⋂

n∈N

{fm(x) : m ≥ n},

and the ω-limit set of a set A as

ω(A) =
⋃

x∈A

ω(x).
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We denote the closure of a set A by A. We call a compact, connected,
metric space a continuum, and a compact connected subset of a continuum
a subcontinuum.

Let X be a topological space and x ∈ X. Let V be an open set contain-
ing x. Call a finite collection U = {U1, . . . , Un} of open subsets of V a linear

cover or simple chain provided U i∩U j 6= ∅ if, and only if, |i−j| < 2. We will
call the elements of such a linear cover links. If mesh(U) < ε then we call U a
linear ε-cover. Call a finite collection of linear covers of V , U = {U1, . . . ,Um}
where Ui = {U i

1, . . . , U
i
pi
}, a local chaining of V if

⋃
i≤m Ui covers V and

U i
j ∩ Uk

l 6= ∅ if, and only if, i = k and |j − l| < 2. Call each element Ui of a
local chaining U of V a strand of U . If each strand of U is a linear ε-cover,
call U a local ε-chaining of V .

Let C = {C1, . . . , Cn} and D = {D1, . . . , Dm} be linear covers such that
for each i ≤ m there is a j ≤ n such that Di ⊆ Cj . Then we say D refines

C and we write D ≤ C.
If U = {U1, . . . ,Un} and V = {V1, . . . ,Vm} are local chainings of V with

the property that

(1) every strand of V refines exactly one strand of U ,
(2) every strand of U is refined by some strand of V,

then we say V refines U and we write V ≤ U . The mesh of a local chaining
is the largest mesh of its strands.

X is locally chainable at x iff there is a neighborhood U of x and a
sequence {Ci}∞i=1 of local chainings of U such that

(1) mesh(Ci)→ 0 as i→∞,
(2) Ci ≤ Ci−1.

We will say that the neighborhood U is locally chainable in this case. The
notion of local chainability appeared earlier in [14].

Let U be a local chaining of some U ⊆ X. Let L = {L1, . . . , Lp} be a
linear cover that refines some strand Ui of U . Let L be a link of Ui. We
say that L turns in L provided there is a link M in Ui, adjacent to L, and
integers a and b with 1 ≤ a < b− 1 < b ≤ p such that

(1) La, Lb ⊆M ,
(2) Lj ⊆ L−M for some a < j < b,

(3)
⋃b

i=a Li ⊆ L ∪M .

We call L a local turnlink , or just a turnlink . If every local ε-chaining of U
that refines Ui has a turnlink in L then we call L a local essential turnlink,

or just an essential turnlink .
Let X be a metric space with a point x ∈ X such that X is locally

chainable at x. Let U be a neighborhood of x that is locally chainable. Call
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x a folding point of X if for every ε > 0 there is a local ε-chaining C of U
that contains x in an essential turnlink. Denote the set of folding points for
a space X by Fd(X).

Let G be a finite graph and let f : G → G be a continuous l.e.o. map
with finitely many turning points. Let XG = lim←−{G, f}. Let V be the set
of branch-points of G, and let C be the set of turning points for f . In [16,
Theorem 2.1 & Lemma 4.1] we showed that the set of folding points of XG

contains all of the points x ∈ XG that are locally chainable and do not have
neighborhoods homeomorphic to the product of a Cantor set and an arc. So
define the set

In(XG) = Fd(XG) ∪ {x ∈ XG : XG is not locally chainable at x}.
Thus if x ∈ XG \ In(XG) then x has a neighborhood homeomorphic to the
product of a Cantor set and an arc.

We also proved several theorems that connect the set In(XG) with the
ω-limit sets of the turning points for f and the branch-points of G. For
completeness we now state the relevant theorems.

Theorem 2.1 ([16, Theorem 3.6]). Let x ∈ XG be such that πn(x) =
xn 6∈ ω(V ) for all n ∈ N. Then XG is locally chainable at x.

Theorem 2.2 ([16, Theorem 3.7]). Let x ∈ XG be such that if πn(x) =
xn ∈ ω(V ) then the set Vn = {vj1 , . . . , vjr : xn ∈ ω(vji

)} has the property

that Vn ∩ ω(V ) = ∅. Then XG is locally chainable at x.

Theorem 2.3 ([16, Corollary 4.8(1)]). Let x ∈ XG be a point of local

chainability. Then x is a folding point for XG if , and only if , πn(x) = xn ∈
ω(C) for all n ∈ N.

In light of these theorems and the fact that f [ω(A)] = ω(A) for all sets A,
we see that to analyze the structure of the set In(XG) we need to analyze
the structure of ω(C) and ω(V ).

3. Restriction on scattered height. In this section we assume that
XG is an inverse limit on a finite graph G with bonding map f that is
l.e.o. and has finitely many turning points. We also assume that the set
of inhomogeneities is countably infinite. Since In(XG) is the collection of
points that do not have a neighborhood homeomorphic to the product of
a Cantor set and an open arc, the set In(XG) = Fd(XG) ∪ {x ∈ XG :
XG is not locally chainable at x} is the complement of a collection of open
neighborhoods and as such it is closed. In fact it is compact.

We begin this section with a brief discussion of the topological structure
of countable, compact Hausdorff spaces.
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The Cantor–Bendixson derivative A′ of a subset A of a space X is the set
of limit points of the set A, and the iterated Cantor–Bendixson derivatives

of the space X are defined inductively by

X(0) = X,

X(α+1) = (X(α))′,

X(λ) =
⋂

α<λ

X(α) if λ is a limit ordinal.

Clearly for some ordinal γ, X(γ) = X(γ+1), and X is said to be scattered

if this set is empty and X is nonempty. In this case, a point of X has a
well-defined rank , often called the scattered height or limit type of x, defined
by lt(x) = α if and only if x ∈ X(α) \ X(α+1). The αth level Lα of X (or,
more formally, LX

α ) is then the set of all points of limit type α. Clearly Lα is
the set of isolated points of X(α). The limit type (or scattered height) Lt(X)
of the space X itself is the least ordinal γ such that X(γ) = ∅. Notice that
Lt(X) is the Cantor–Bendixson rank of X (see [13, p. 33]). If X is a compact
scattered space, then Lt(X) is a successor ordinal α + 1 and the level Lα is
finite.

If an ordinal (regarded as the set of its own predecessors) is given its
natural order topology then it forms a scattered space, and it is a standard
topological fact that every countable, compact Hausdorff space is not only
scattered but homeomorphic to a countable successor ordinal. Moreover,
every successor (i.e. compact) ordinal α has a canonical decomposition, the

Cantor normal form, α =
∑k

i=1 ωδini, where ni is a positive integer and
δi+1 < δi. Hence every countable, compact Hausdorff space of given height
γ is homeomorphic to a finite number of disjoint copies of the least ordinal
space ωγ of limit type γ.

In this section we prove a surprising restriction on the possible limit type
of the set of inhomogeneities of XG assuming that In(XG) is countable. The
main result of this section, Corollary 3.6, states that if In(XG) is countable,
then Lt[In(XG)] is actually α+2 for some ordinal α. This shows, for instance,
that there is no space XG with Lt[In(XG)] = ω or with Lt[In(XG)] = ω +1.
We accomplish this by examining the possible limit types of periodic points
contained in In(XG). Since

h[In(XG)] = In(XG)

for every homeomorphism h : XG → XG, it is not hard to see that the
“top” level of In(XG) must be finite and consist of periodic points for h.
By showing that the only limit types available for periodic points in In(XG)
are successor ordinals, we show that Lt[In(XG)] is a successor of a succes-
sor.

We begin by considering the problem in a more general context.
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Lemma 3.1. Let X be a compact metric space, let f : X → X be a con-

tinuous finite-to-one map, and let A be a closed subset of X with f(A) = A.

Then f(LA
α ) ⊇ LA

α for all countable ordinals α.

Proof. Since f maps A onto itself, in particular f(LA
0 ) ⊇ LA

0 . Let α be a
countable ordinal and suppose that f(LA

α ) ⊇ LA
α . Let z ∈ LA

α+1. Then there

is a sequence (yn)n∈N of points in LA
α converging to z. For each n, let y′n be a

preimage of yn in LA
α . Let (y′ni

)i∈N be a convergent subsequence of (y′n)n∈N.

Let z′ = limi→∞ y′ni
. Then lt(z′) > α. Since f is continuous, f(z′) = z. Thus

lt(z′) ≤ α + 1. Hence lt(z′) = α + 1. This implies that f(LA
α+1) ⊇ LA

α+1.

Now suppose that α is a limit and the theorem is true for all β < α.
Then if z ∈ LA

α with yn ∈ LA
βn

and βn → α as n → ∞ the above argument

will provide a preimage z′ of z with lt(z′) > β for all β < α. So lt(z′) ≥ α,
but since f(z′) = z, lt(z′) = α. This completes the proof.

Thus, by the previous lemma, for every α we have

h[LIn(XG)
α ] = LIn(XG)

α

for every homeomorphism h : XG → XG. Hence if Lt[In(XG)] = γ + 1, then

L
In(XG)
γ is a finite set that is preserved by every homeomorphism of XG, so it

consists of finitely many periodic orbits for each such homeomorphism. Let
f̂ denote the induced homeomorphism on XG, i.e. the shift homeomorphism
induced by the bonding map f . By our assumptions about the bonding
map f , we know that f̂ stretches small arcs in XG.

Given a compact metric space X, a self-map f of X, a positive number
ε, a periodic point x of f of period r, and a set A ⊆ X, we say that x is
nearly ε-repelling with respect to A provided that if (zn)n∈N ⊆ A converges
to x then

(∗) there is a subsequence (zni
)i∈N such that for each i ∈ N, there is some

positive integer mi such that d(f rmi(zni
), x) ≥ ε.

The main result of this section relies on the fact that each point in the
top level of In(XG) is a periodic point that is nearly ε-repelling with respect

to In(XG) under either f̂ or f̂−1.

Lemma 3.2. Let X be a compact metric space, f a self-map of X, x a

periodic point of f of period r, and (zn)n∈N a sequence of points converging

to x. Suppose that for some k ∈ N, x is nearly 1/2k-repelling with respect

to (zn)n∈N. Let (zni
)i∈N be the subsequence of (zn)n∈N guaranteed by (∗).

Then, for each m ≥ k, either

(1) {f rj(zni
) : j, i ∈ N, d(f rj(zni

), x) < 1/2m ≤ d(f rj+1(zni
), x)} is a

finite set , or
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(2) there is a point ym such that

(a) 0 < d(ym, x) ≤ 1/2m for each m,
(b) ym is a limit point of {z′i : z′i = f ri(zni

) for some ri ∈ N},
(c) if , moreover , lt(zni

) ≥ αi for each i ∈ N, then

lt(ym) ≥ sup{αi + 1 : n ∈ N}.
Proof. By considering the map f r instead of f if necessary, without loss

of generality we may assume that r = 1 and x is a fixed point of f .
Since (zni

)i∈N converges to x and each zni
is eventually mapped farther

than 1/2k from x, for each k ≤ m, if d(zni
, x) < 1/2m, then there is some j

such that d(f j(zni
), x) < 1/2m ≤ d(f j+1(zni

), x). Since X is compact, the
set {f j(zni

) : j, i ∈ N, d(f j(zni
), x) < 1/2m ≤ d(f j+1(zni

), x)} is either finite
or has a limit point ym and d(ym, x) ≤ 1/2m. Since d(f jm,i+1(zni

), x) ≥ 1/2m

for each i ∈ N, d(f(ym), x) ≥ 1/2m and so ym 6= x.
If lt(zni

) ≥ αi, then lt(f j(zni
)) ≥ αi by continuity. Hence lt(y) ≥

sup{αi + 1 : n ∈ N}.
Given a compact metric space X, a continuous map f of X, and a count-

able closed subset A of X that is forward invariant with respect to f , we
now show that any periodic point in A that is nearly ε-repelling with respect
to A must have successor limit type with respect to A.

Theorem 3.3. Let X be a compact metric space, and f : X → X be

continuous. Let A ⊂ X be countable, closed and forward invariant with

respect to f . Let x be a periodic point of f of period r. If x is nearly

ε-repelling with respect to A and ltA(x) = α, then α is not a limit ordinal.

Proof. Again, we may assume that x is a fixed point of f .
Suppose that lt(x) = α is a limit ordinal. Then there is a sequence

(zn)n∈N of points in A converging to x such that lt(zn) = αn, where (αn)n∈N

is a strictly increasing sequence of ordinals converging to α. Choose a subse-
quence (zni

)i∈N that satisfies (∗) and notice that since (αn)n∈N is an increas-
ing sequence of ordinals, (αni

)i∈N is also an increasing sequence of ordinals
with the same limit α. So Lemma 3.2 applies. Since (αni

)i∈N is strictly
increasing with supremum α, for each m ≥ k, either the set {f j(zni

) :
j, i ∈ N, d(f j(zni

), x) < 1/2m ≤ d(f j+1(zni
), x)} is infinite or {lt(f j(zni

)) :
j, i ∈ N, d(f j(zni

), x) < 1/2m ≤ d(f j+1(zni
), x)} is a finite set contain-

ing some ordinal α′ ≥ α. In either case, there is a point ym such that
0 < d(ym, x) ≤ 1/2m and lt(ym) ≥ α. Since (ym)m∈N converges to x we have
a contradiction and the limit type of x is either 0 or a successor.

This immediately implies the following.

Corollary 3.4. Let X be a compact metric space and let f be a self-

map of X with repelling periodic point x. Then ltA(x) is not a limit ordinal

for any closed , forward invariant , countable set A.
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Proof. A repelling periodic point is easily seen to be nearly ε-repelling
with respect to any closed, forward invariant, countable set A.

In XG, however, points that are periodic under f̂ are not necessarily
repelling under f̂ . But they are nearly ε-repelling with respect to In(XG).
This gives us the main result of the section. We write lt(x) for ltIn(XG)(x).

Theorem 3.5. Let x ∈ In(XG) be a periodic point under the shift hom-

eomorphism f̂ . Then lt(x) is not a limit ordinal.

Proof. Without loss of generality assume that x is fixed under the shift
homeomorphism and x = (x, x, . . . ).

Suppose that lt(x) = α and that (zn)n∈N is a sequence from In(XG) con-
verging to x such that α = sup{lt(zn)+1 : n ∈ N}. We will show that for ei-

ther the shift homeomorphism f̂ [(x1, x2, . . . )] = (f(x1), x1 . . . ), or its inverse

f̃ [(x1, x2, . . . )] = (x2, x3, . . . ), there is a subsequence (zni
)i∈N of (zn)n∈N that

satisfies (∗) and has the property that α = sup{lt(zni
) + 1 : i ∈ N}. The re-

sult will follow.

Let λ > 0 be small enough so that |x−w| ≥ λ for each w ∈ f−1(x). Let
k ∈ N be large enough so that 1/2k+1 < λ and B1/2k+1(x) is contained in
the basin of repulsion for x (recall that f is l.e.o. so each point is a repellor).

We begin by assuming that there is a subsequence (zni
)i∈N of (zn)n∈N

with α = sup{lt(zni
) + 1 : i ∈ N} and π1(zni

) = x for each i ∈ N. Let mi

be the least integer j such that πj(zni
) 6= x. Clearly πmi

(zni
) ∈ f−1(x),

so |πmi
(zni

) − x| ≥ λ. Then d(f̃mi(zni
), x) ≥ λ/2 ≥ 1/2k. Hence (zni

)i∈N

satisfies (∗).
Now assume that there is no such subsequence. So either there is a tail

(zn)n≥M of (zn)n∈N such that α = sup{lt(zn) + 1 : n ≥M} and π1(zn) 6= x,
or α is not a limit ordinal. In the first case, consider zn. If π1(zn) 6∈ B1/2k+1(x)

then clearly there is an integer, namely mn = 0, such that d(f̂mn(zn), x) ≥
1/2k. On the other hand, if π1(zn) ∈ B1/2k+1(x) \ {x}, then clearly there is

an integer mn so that fmn [π1(zn)] 6∈ B1/2k+1(x). Either way d(f̂mn(zn), x)

≥ 1/2k and (zn)n≥M satisfies (∗).

Corollary 3.6. If In(XG) is countable, then Lt[In(XG)] is either 0, 1,
or α + 2 for some countable ordinal α.

Proof. Let Lt[In(XG)] = β + 1, where β is a countable ordinal. Then

L
In(XG)
β is a collection of periodic points under the map f̂ of scattered

height β. Let x be such a point with period n. By Theorem 3.5, β cannot be
a limit ordinal. Hence lt(z) = β = α + 1 for some α, and so β + 1 = α + 2.
This establishes the corollary.



276 C. Good et al.

We also have the following restriction for ω-limit sets of continuous maps
of the interval:

Corollary 3.7. Let f be a map of [0, 1] such that every periodic point

of f is repelling. Let x ∈ [0, 1] and suppose that ω(x) is countably infinite.

If z ∈ ω(x) is a periodic point , then lt(z) is 0 or a successor. Moreover ,
Lt(ω(x)) is 0, 1 or α + 2 for some α ∈ ω1.

Proof. Since every periodic point of f is repelling, by Theorem 3.3 the
limit type of a periodic point z of ω(c) is not a limit ordinal. Since ω(c)

is a countable compact set, T = L
ω(c)
β is finite for some β ∈ ω1. Since

f(T ) = T , T consists of periodic points and β = α + 1 is a successor. Hence
Lt(ω(c)) = α + 2 for some α ∈ ω1.

It is an easy exercise to alter the previous proofs and use the inverse
of the map if we assume that the action of the map is nearly ε-attracting

rather than nearly ε-repelling on the invariant set.

4. Preliminaries from descriptive set theory. In the previous sec-
tion we showed that if the set In(XG) is countable then it must have scat-
tered height 0, 1 or α + 2 for some countable ordinal α. The next obvious
question is: “For each countable ordinal α, does there exist a nonhyperbolic
invariant set XG with the property that In(XG) has scattered height exactly
α + 2?” In the next few sections we answer this question in the affirmative.
We do this by considering simpler inverse limit spaces: inverse limits of uni-
modal maps of the interval [0, 1]. We showed in [16] that, given a unimodal
map f : [0, 1]→ [0, 1] with critical point c, the set In(lim←−{[0, 1], f}) coincides
exactly with the set of points in lim←−{[0, 1], f} that always project into ω(c).
So, in order to construct a space with inhomogeneities that have scattered
height α + 2, we will construct a unimodal map (actually a tent map) with
critical point c with the property that ω(c) has scattered height α + 2.

In this section we briefly describe for completeness the construction of a
well-founded tree of height α for each countable ordinal α. Such trees have
the remarkable property that they are countable with finite branches but
can have height α for any countable ordinal α. For more details we refer the
reader to [13, I.2].

Let A be a countably infinite set of symbols and let A<N be the set
of all finite sequences of elements of A. Given two elements s, t ∈ A<N

we say that t ⊳ s if s is an initial segment of t, i.e. t = (t1, . . . , tn) and
s = (t1, . . . , tm) for some m < n. If n = m + 1, then t extends s by one
symbol and we write t ⋖ s. If s = (s1, . . . , sm) and t = (t1, . . . , tn), then we
denote (s1, . . . , sm, t1, . . . , tn) by st.

A subset T of A<N is said to be a tree on A if it is closed under initial
segments, i.e. whenever t ∈ T and, for some s ∈ AN, t ⊳ s, then s ∈ T .
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Since the null sequence ( ) is an initial segment of any sequence, it is the top
element of every tree on A.

An infinite branch in T is an infinite sequence b = (b1, b2, b3, . . .) of
elements from A such that (b1, . . . , bn) ∈ T for all n ∈ N. If T has no
infinite branches, then the relation ⊳ is well-founded (i.e. has no infinite
descending chains) and T is said to be a well-founded tree.

We can inductively associate a well-defined ordinal height htT (s) to each
element s of a well-founded tree T by declaring

htT (s) = sup{htT (t) + 1 : t ∈ T and t ⊳ s},
and associate to each well-founded tree T a well-defined height Ht(T ) =
htT (( )). Clearly, if t ⊳ s, then htT (t) < htT (s), htT (( )) > htT (s) for any
( ) 6= s ∈ T , and if s ∈ T has maximal length, then htT (s) = 0.

Trees of height α can be defined recursively. Let sa be the singleton
sequence (a) for some a ∈ A. Obviously T0 = {∅} is a tree of height 0 on
A. So suppose that α = β + 1 and assume that there is a tree Tβ on A
of height β. Since A is infinite, there is, in fact, a countably infinite family
{Un : n ∈ N} of disjoint trees, each order isomorphic to Tβ. Define

Tα = {( )} ∪ {sat : t ∈ Un, n ∈ N}.
Clearly Tα is a well-founded tree on A. Moreover htTα(sat) = htUn(t) for
every t ∈ Un and n ∈ N, so Ht(Tα) = β + 1 = α.

Now suppose that α is a limit ordinal and that for every β < α there
is a tree Tβ of height β on A. Again, since A is countably infinite, we may
assume that Tβ and Tγ are disjoint whenever β 6= γ < α. Define

Tα = {( )} ∪ {sat : t ∈ Tβ , β < α}.
Again it is clear that Tα is a well-founded tree and that Ht(Tα) = α.

Notice that, as constructed, if t ∈ Tα = T for some α and htT (t) = γ
then if γ = β + 1, there are infinitely many s ∈ T such that htT (s) = β and
s ⋖ t, and if γ is a limit, then for each β < γ, there is some s ⋖ t such that
htT (s) = β.

5. Preliminaries from dynamics of maps of the interval. We now
provide the necessary definitions from dynamics for the examples that we
construct in §6. Let f : [0, 1]→ [0, 1] be a unimodal map with critical point c.
For any x ∈ [0, 1] we define the itinerary of x under f to be If (x) = t0t1t2 . . .
where ti ∈ {0, 1, C} and ti = 0 if f i(x) ∈ [0, c), ti = 1 if f i(x) ∈ (c, 1], and
ti = C if f i(x) = c. The kneading sequence for f , K(f), is If [f(c)]. We adopt
the standard convention of stopping an itinerary at the first occurrence of
the symbol C. In the rest of the paper if A is a finite word, B is a word, and
A is an initial segment of B we will write A ⊑ B.
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A sequence M in symbols 0 and 1 is primary provided it is not a ∗-
product, i.e. there is no finite word W and sequence (ui)i∈N of points from
{0, 1} with M = Wu1Wu2Wu3 . . . . The shift map σ on sequences is defined
by σ[t0t1 . . . ] = t1t2 . . . . We order sequences using the parity-lexicographic

ordering ≺. To define this order we first define 0 < C < 1. Let t = t0t1t2 . . .
and s = s0s1s2 . . . be sequences of zeroes and ones. Let n be the least j such
that tj 6= sj . Let m be the number of occurrences of the symbol 1 in the
string t0t1 . . . tm−1 = s0s1 . . . sm−1. If m is even then define t ≺ s if, and only
if, tm < sm. If m is odd then define t ≺ s if, and only if, tm > sm. It is easy
to show that if x < y then If (x) ≺ If (y). A sequence K is shift-maximal

provided that for all j ∈ N, σj(K) ≺ K or σj(K) = K.
Given q ∈ [1, 2], we define the tent map Tq by

Tq(x) =

{
qx if x ≤ 1/2,

q(1− x) if x ≥ 1/2.

We will restrict this map to its core, i.e. the interval [T 2
q (1/2), Tq(1/2)], which

is the only interval that contributes to the inverse limit space, and we will
rescale this restricted map Tq|[T 2

q (1/2),Tq(1/2)] to the entire interval. We will

call this rescaled map the tent map core and denote it by fq : [0, 1]→ [0, 1].
Notice that the critical point for fq is not 1/2, rather it is the point c =
1− 1/q. In order to ensure that fq is l.e.o. we also assume that q ∈ [

√
2, 2].

Due to renormalization of tent maps when q ∈ [1,
√

2] this is not a restriction
on the topology of the inverse limit space.

Theorem 5.1 ([7, Lemma III.1.6]). Let K be an infinite sequence of 0s
and 1s that is shift-maximal and primary. Then there is a parameter q in

[
√

2, 2] generating a tent map core fq with kneading sequence K.

Lemma 5.2 ([7, Theorem II.3.8]). Let f be a unimodal map of the in-

terval with an infinite postcritical orbit. Let J be an infinite sequence of 0s
and 1s. Then there is a point x in [0, 1] with If (x) = J if , and only if ,
σ[K(f)] � σj(J) � K(f) for all positive integers j.

For the next few lemmas we assume that f : [0, 1] → [0, 1] is a l.e.o.
unimodal map with critical point c. This implies that If is injective. The
following lemmas are immediate consequences of the definitions or the con-
tinuity of f and so we have omitted their proofs.

Lemma 5.3. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1]
be such that ω(x) is countable. For any point y ∈ ω(x) with lt(y) = α, there

is some countable ordinal β ≤ α such that if y′ ∈ ω(x) and fk(y′) = y, for

some k ∈ N, then lt(y′) ≥ β.

Now, let Σf be the set of allowable itineraries of f , i.e. Σf is the collection
of all sequences of 0s and 1s that are either infinite or finite and have last
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symbol C with the property that ζ ∈ Σf if, and only if, there is a y ∈ [0, 1]
such that If (y) = ζ. Let ζ ∈ Σf and let A be a finite word such that A ⊑ ζ.
Denote the set {x ∈ [0, 1] : A ⊑ If (x)} by WA.

Lemma 5.4. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let ζ ∈ Σf

and let A be a finite initial segment of ζ. Then WA is a closed interval with

precritical endpoints.

Lemma 5.5. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1]
be a point that is never mapped to the critical point. Let A be a finite word

such that A ⊑ If (x). Then x ∈W ◦
A. Moreover for any x ∈ [0, 1] and for all

ε > 0 there is a finite initial segment A′ ⊑ If (x) such that WA′ ⊆ Bε(x).

The following lemma will be applied throughout the rest of the paper
to use finite words from the itinerary of a point to determine if it is in the
ω-limit set of the critical point. It follows easily from the other lemmas.

Lemma 5.6. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1]
be a point that is never mapped to the critical point. Suppose that y ∈ [0, 1]
is also not precritical. Then y ∈ ω(x) if , and only if , for all finite words A
satisfying A ⊑ If (y) there is an infinite sequence (ki)i∈N of positive integers

such that A ⊑ σki [If (x)].

The following lemma is an immediate consequence of Lemma 5.6.

Lemma 5.7. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1]
and suppose that y ∈ ω(x). Then y is isolated in ω(x) if , and only if , for

every finite word W that is an initial segment of If (y) there is a positive

integer N and t ∈ {0, 1} such that if m > N and W is an initial segment

of σm[If (x)] then Wt is also an initial segment of σm[If (x)].

The last lemma of the section will be useful in connecting the various
levels of ω(c) with the levels of Fd(lim←−{[0, 1], f}).

Lemma 5.8. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1].

Suppose that ω(x) is countable. Then f(L
ω(x)
α ) ⊇ L

ω(x)
α for all countable

ordinals α.

Proof. Since f is continuous and f [ω(x)] = ω(x) the result follows from
Lemma 3.1.

6. Examples. In this section we construct a collection of tent map
cores, with critical point c, that have the property that, for every countable
ordinal α, Lt[ω(c)] = α + 2. We then demonstrate in the next section that
this implies that the set In(lim←−{[0, 1], f}) has limit type α + 2. In light of
Corollary 3.6 this is the richest collection of limit types possible.
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Let γ be a countable ordinal and T = Tγ be the well-founded γ tree
constructed via the process outlined in Section 4. Let (Ni)i∈N be an in-
creasing sequence of positive integers with infinite complement M . Let φ
be a bijection from M to T , and define Γ such that given a finite sequence
r = (r1, . . . , rn) of terms from M , r ∈ Γ if, and only if, φ(ri+1) ⋖ φ(ri) for
each 1 ≤ i ≤ n− 1. Clearly Γ is countable, so fix some enumeration (ri)i∈N

of Γ . For ri ∈ Γ write ri = (ri
1, . . . , r

i
mi

).
Starting with the words A = 1001 and B = 101, and given ri in Γ , define

the finite word

Ci = ABri
1ABri

2A . . . ABri
mi A,

where by Wn we mean Ŵ. . .̂W (n times), and by C0 we mean A. Define

s = AABN1C1B
N2C1B

N3C2B
N4C1B

N5C2B
N6C3B

N7C1 . . .

where the subscripts of the Ci follow the pattern

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, . . . .

Proposition 6.1. s is strictly shift-maximal , primary and (101)∞ ≺ s.
Thus there is a parameter q ∈ [

√
2, 2] such that fq is the core of a tent map

with kneading sequence s.

Proof. Clearly (101)∞ ≺ s, and because s starts with AA which does
not reoccur in s, s is primary. Let k ∈ N and consider σk(s). If the first
symbol of σk(s) is 0 then σk(s) ≺ s. Similarly if σk(s) starts with 11 or 101
then σk(s) ≺ s. Notice there is no string of 1000 in s. So suppose that σk(s)
begins with 1001 = A. Recall that s = AA . . . , and by definition there is not
another occurrence of AA in s. So σk(s) must start AB = 1001101. Clearly,
AB . . . ≺ AA . . . . Thus s is strictly shift-maximal. By Theorem 5.1 there is
a parameter q ∈ [

√
2, 2] such that the core of the tent map fq has kneading

sequence s.

Let q be the parameter guaranteed by the previous lemma and consider
the tent map core fq with kneading sequence s. We call tent map cores con-
structed via the well-founded tree construction outlined above well-founded

tent map cores. Let c be the critical point for this map and consider ω(c).
We will show that Lt[ω(c)] = γ +2. Given x ∈ [0, 1], we denote the itinerary
of x under fq by I(x).

Proposition 6.2. Let x ∈ [0, 1]. Then x ∈ ω(c) if , and only if ,

I(x) =

{
σj[BkCiB

∞] for some 0 ≤ j < 5, k ∈ N, i ∈ N ∪ {0},
σℓ[B∞] for 0 ≤ ℓ < 3.

Proof. We begin by considering the case of x ∈ [0, 1] such that I(x) =
σℓ[B∞] for some 0 ≤ ℓ < 3. Since for each n ∈ N there is an integer m such
that Np > n for all p > m, and since BNp occurs in I(c) for each p ∈ N,
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the point y ∈ [0, 1] with I(y) = B∞ is in ω(c). Recall that ω(c) is forward
invariant and x is clearly a forward image of y, hence x ∈ ω(c).

Consider the case of i = 0. Suppose x ∈ [0, 1] with I(x) = σj[BkAB∞].
We will show that the point y ∈ [0, 1] with I(y) = BkAB∞ is in ω(c). Let
(mi)i∈N be a sequence of positive integers such that rmi

= (rmi

1 ). There is

a subsequence (rmij
)j∈N such that r

mij

1 → ∞ as j → ∞. By definition Cij

occurs infinitely often in I(c) and, for sufficiently large j, BkA is the tail
of Cij . Hence BkA occurs infinitely often in I(c). Since

Cij = ABr
mij
1 A,

it follows that for any integer m, CijB
m occurs infinitely often in I(c).

Hence BkABm occurs infinitely often in I(c) for all m. Thus the point y is
an element of ω(c). Again, since ω(c) is forward invariant, x ∈ ω(c).

Assume that x ∈ [0, 1] with I(x) = σj [BkCiB
∞] and i 6= 0. Since 0 ≤

j < 5 and k ≥ 1 we deduce that I(x) begins with one of

(1) BkABri
1A = (101)k1001(101)ri

11001 if k ≥ 1,

(2) σ[BkABri
1A] = 01(101)k−11001(101)ri

11001 if k > 1,

(3) σ2[BkABri
1A] = 1(101)k−11001(101)ri

11001 if k > 1,

(4) σ3[BkABri
1A] = (101)k−11001(101)ri

11001 if k > 1,

(5) σ4[BkABri
1A] = 01(101)k−21001(101)ri

11001 if k > 2,

(6) σ[BABri
1A] = 011001(101)ri

11001 = σ4[B2ABri
1A],

(7) σ2[BABri
1A] = 11001(101)ri

11001,

(8) σ3[BABri
1A] = 1001(101)ri

11001,

(9) σ4[BABri
1A] = 001(101)ri

11001,

Hence ri
1 is well-defined. Since the tail of I(x) is B∞, and ri

1 is well-defined,
Ci is also well-defined. Assume that I(x) begins with BkA. Notice that
each Ci occurs infinitely often in I(c), and each occurrence of Ci in I(c) is
preceded by B. Also notice that there is an infinite subsequence (Nui

)i∈N

of A such that infinitely many occurrences of Ci are followed by BNui , and
for each m there is an occurrence of the string CiB

Nm in I(c). Hence every
initial segment of I(x) occurs infinitely often in I(c) and we have shown
that x ∈ ω(c). The other cases are forward images of this case, and ω(c) is
forward invariant. This establishes one direction of the proposition.

Suppose that x ∈ ω(c). Then either I(x) contains a string of the form
A = 1001, or σ(A) = 001, or it does not. In the latter case I(x) = σℓ(B∞)
for some 0 ≤ ℓ < 3, and we are finished. So suppose that I(x) contains A
as a subword. If it contains exactly one occurrence of A or σ(A) then there
are k ∈ N and j < 5 such that I(x) = σj [BkAB∞] and we are finished.
Suppose that I(x) contains more than one occurrence of A. The word AA



282 C. Good et al.

never reoccurs in I(c), so I(x) = σj[BkABv1A . . .] with 0 ≤ j < 5 and
k ∈ N. Since x ∈ ω(c), the word ABv1A or σ[ABv1A] occurs infinitely often
in I(c), so v1 = ri

1 for some, not necessarily unique, i. Continuing we can

write I(x) = σj [BkABv1ABv2 . . . ABvn . . .]. By the construction of I(c) and
the fact that x ∈ ω(c), the sequence (v1, v2, . . . ) must be in Γ . Since T is
well-founded, this sequence must be finite. Hence there is some mi such that
ri = (v1, . . . , vmi

). The only possible tail for I(x) is B∞, since every time the
word A occurs in I(x) it does not occur more than twice. This establishes
the proposition.

Proposition 6.3. Let x ∈ ω(c) with I(x) = σj[BkCiB
∞] for some

0 ≤ j < 5 and k, i ∈ N. Then lt(x) = htT [φ(ri
mi

)].

Proof. Let x ∈ ω(c) with I(x) = σj[BkCiB
∞] for some 0 ≤ j < 5 and

k, n ∈ N. Assume that htT [φ(ri
mi

)] = 0. Then there is no ℓ such that rℓ

contains ri
mi

as anything but the last entry. Hence for every N , there is an

integer M such that if Ci ⊑ σn[I(c)] then CiB
M ⊑ σn[I(c)] for all n > N .

Thus by Lemma 5.7, x is isolated in ω(c) and lt(x) = 0.

Let ζ < γ and assume the assertion is true for all β < ζ. Also assume
that htT [φ(ri

mi
)] = ζ. We first consider the case of ζ a limit ordinal. Let

(ζq)q∈N be a sequence of ordinals converging to ζ, and for a fixed q and

for each positive integer v, let rjq,v be such that htT [φ(r
jq,v
mjq,v

)] = ζq and

r
jq,v

mjq,v−1 = ri
mi

. By the construction of T , such an rjq,v can be defined for

each q, v ∈ N. We also know, by the construction of T , that r
jq,v
mjq,v

→∞ as

v → ∞. Hence the points yq,v ∈ ω(c) with I(yq,v) = σj [BkCjq,vB
∞] have

lt(yq,v) = ζq, and since r
jq,v
mjq,v

→ ∞ we see that yq,v → x as v → ∞. Thus
lt(x) > ζq. Since this is true for each q, lt(x) ≥ ζ. A similar argument shows
that lt(x) ≥ ζ in the case that ζ is a successor ordinal.

To prove that lt(x) = ζ, let z ∈ ω(c), z 6= x, be such that I(z) =
σt[BuCvB

∞] where t < 5, u, v ∈ N and htT [φ(rv
mv

)] = ζ. Then lt(z) ≥ ζ.
Clearly there exists a positive number δ1 so that if Cv has a different number
of occurrences of A than Ci does, then z 6∈ Bδ0(x). So assume that Cv has the
same number of occurrences of A that Ci has. This is the same as assuming
that rv has the same number of terms as ri. Let δ1 be small enough so that
if y ∈ Bδ1(x) then I(y) agrees with I(x) past the occurrence of Ci in I(x).
This implies that z 6∈ Bδ(x) where δ = min{δ0, δ1}. Since this is true for
any z 6= x with lt(z) ≥ ζ, we infer that x is not the limit of points of limit
type ζ. Thus lt(x) ≤ ζ, and combining this with the previous we see that
lt(x) = ζ.

Proposition 6.4. Let x ∈ ω(c) with I(x) = σj [BkAB∞] with 0 ≤ j < 5
and k ∈ N. Then lt(x) = γ.
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Proof. Let x ∈ ω(c) be such that I(x) = σj[BkAB∞] for some 0 ≤ j < 5
and k ∈ N. Let β < γ. We will show that lt(x) > β. Let (ri)i∈N be a sequence
such that htT [φ(ri

mi
)] = β for all i ∈ N and ri

1 6= rℓ
1 for all ℓ, i ∈ N. The

existence of such a sequence is guaranteed by the construction of T , and it
is easy to see that rℓ

1 →∞ as ℓ→∞. Let yi ∈ ω(c) be the point such that
I(yi) = σj[BkCiB

∞] for the same j and k specified earlier. Then lt(yi) = β
for all i and yi → x as i→∞. Thus lt(x) > β for all β < γ. Hence lt(x) ≥ γ.

Since each point y ∈ ω(c) with I(y) = σt[BuCvB
∞] for 0 ≤ t < 5,

u, v ∈ N has lt(y) < γ, the only points in ω(c) with limit type greater than
or equal to γ are points z ∈ ω(c) with I(z) = σt[BuAB∞] or I(z) = σℓ[B∞]
where 0 ≤ t < 5, u ∈ N and 0 ≤ ℓ < 3. Clearly there is a positive number
ε such that no such z 6= x is in Bε(x). Hence x is not a limit of points
with limit type γ, so lt(x) ≤ γ. Combining this with the previous yields
lt(x) = γ.

Proposition 6.5. Let xℓ ∈ ω(c) with I(xℓ) = σℓ[B∞] with 0 ≤ ℓ < 3.
Then lt(xℓ) = γ + 1.

Proof. Let xℓ ∈ ω(c) with I(xℓ) = σℓ[B∞] for ℓ < 3. Let (ki)i∈N be
an increasing sequence of integers. Let zi ∈ ω(c) be such that I(zi) =
σℓ[BkiAB∞]. By Proposition 6.4, lt(zi) = γ and clearly zi → xℓ as i → ∞.
Thus lt(xℓ) ≥ γ + 1. There are only three possible points, x0, x1, x2, with
limit type greater than γ + 1. Hence there are no points in ω(c) with limit
type γ + 2. Thus lt(xℓ) = γ + 1.

Corollary 6.6. Lt[ω(c)] = γ + 2.

Proof. This follows immediately from the previous propositions.

As a result of this construction we have the following theorem.

Theorem 6.7. Let γ be a countable ordinal and let n ∈ N. Then there

is a tent map core, f : [0, 1]→ [0, 1], with critical point c such that

(1) Lt[ω(c)] = γ + 2,

(2) |Lω(c)
γ+1| = n.

Proof. By the examples constructed earlier in this section, for any count-
able ordinal γ, there is a tent map core, f , such that Lt[ω(c)] = γ + 2.
Moreover, given n ∈ N, we could have chosen a different finite word B,
corresponding to a period n orbit, and also a word A = 10j1 that would
guarantee that the sequence built is primary and shift-maximal.

7. Folding points in inverse limit spaces. In this section we use
the collection of examples constructed in the previous section to show that
there is a nonhyperbolic invariant set X with a countable collection of inho-
mogeneities of X, In(X), displaying any topological structure not precluded
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by Corollary 3.6. The spaces we build are just the inverse limits of the var-
ious tent map cores fq constructed in the previous section. We will denote
the inverse limit of f by Xf and the inverse limit of fq by Xq. Since these
spaces are inverse limits of continuous maps on intervals, they are chainable
continua, and so In(Xq) = Fd(Xq). In [16] we prove the following theorem:

Theorem 7.1. Let f : [0, 1] → [0, 1] be unimodal with critical point c.
Let x∈Xf . Then x∈ Fd(Xf ) if , and only if , for every n∈N, πn(x)∈ω(c).

We extend that theorem to the following corollary that allows us to

analyze the structure of the sets L
In(Xf )
α = L

Fd(Xf )
α .

Corollary 7.2. Let f : [0, 1] → [0, 1] be unimodal with critical point

c such that f is l.e.o. Let x ∈ Xf . If α is the least ordinal such that

πn(x) ∈ L
ω(c)
α for infinitely many n ∈ N, then lt(x) ≥ α.

Proof. Let x ∈ Fd(Xf ). For each n, let βn be an ordinal such that

πn(x) = xn ∈ L
ω(c)
βn

. Then (βn)n∈N is a nonincreasing sequence of ordinals.
Hence it only contains finitely many ordinals. Let γ be the least. Since the
sequence is nonincreasing, there exists an integer m such that βi = γ for
all i ≥ m. So the ordinal mentioned in the statement of the corollary is
well-defined for any point in Fd(Xf ). Moreover, if α is the least ordinal β

such that xn ∈ L
ω(c)
β for infinitely many n, then in fact α is the only ordinal

β such that xn ∈ L
ω(c)
β for infinitely many n.

The case of α = 0 is obvious. We proceed inductively. Let α > 0 be
an ordinal and assume the corollary is true for all β < α. Let x ∈ Xf

with x ∈ Fd(Xf ) be such that α is the ordinal such that for all n > M

we have xn ∈ L
ω(c)
α for some m ∈ N. Then clearly for any β < α any

neighborhood containing x will contain points y with the property that

yn ∈ L
ω(c)
β for infinitely many n. Hence any neighborhood of x will contain

points y with lt(y) ≥ β. Thus x ∈ Fd(Xf )(ζ), the ζth iterated Cantor–
Bendixson derivative of Fd(Xf ), for some ζ ≥ α. Hence lt(x) ≥ α.

In order to strengthen the statement of Corollary 7.2, we will use the
precise structure of the well-founded tent map cores to show that for the
point x mentioned in Corollary 7.2 we have lt(x) = α. To that end we prove
the following lemmas.

Lemma 7.3. Let f be a well-founded tent map core with critical point c.
Let q ∈ M . There is a finite sequence of allowable words ri ∈ Γ such that

ri
mi

= q. Moreover , for any pair r, s of such allowable words, either r is a

tail of s or s is a tail of r.

Proof. Recall that a word v = (v1, . . . , vm) is allowable provided that
φ(vi) ⋖ φ(vi−1). By the construction of T , given any d ∈ N

′ there is exactly
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one d−1 ∈ N
′ such that φ(d)⋖φ(d−1). This fact combined with the fact that

T is well-founded proves the lemma.

Let x0 ∈ ω(c). Call an infinite sequence (x0, x−1, x−2, . . . ) permitted pro-
vided f(x−i) = x−(i−1) and x−i ∈ ω(c) for each i ∈ N. Assume that α < ω1

and x0 ∈ L
ω(c)
α . Call a permitted sequence (x0, x−1, x−2, . . . ) α-permitted

provided that x−i ∈ L
ω(c)
α for all i ∈ N.

Lemma 7.4. Let x0 ∈ ω(c), and let (x0, x−1, x−2, . . .) be a permitted

sequence. There is an ordinal α < ω1 and a positive integer j such that the

sequence (x−j, x−(j+1), . . .) is α-permitted.

Proof. There is no infinite decreasing sequence of ordinals and lt(x) ≤
lt(f(x)).

Lemma 7.5. Let α < ω1, and let z ∈ L
ω(c)
α . There is at least one and

no more than finitely many α-permitted sequences (x0, x−1, x−2, . . .) with

x0 = z.

Proof. Since f(L
ω(c)
α ) ⊇ L

ω(c)
α , given such a point z there is an α-

permitted sequence (x0, x−1, x−2, . . . ) with x0 = z. Let (y0, y−1, y−2, . . . )
be some α-permitted sequence.

By Proposition 6.2,

I(z) =

{
σj [BkCiB

∞] for some 0 ≤ j < 5, k ∈ N, i ∈ N ∪ {0},
σℓ[B∞] for 0 ≤ ℓ < 3.

We handle the first case first. Assume that I(z) = σj [BkCiB
∞] for some

0 ≤ j < 5 and k, i ∈ N. Then α = lt(z) = htT [φ(ri
mi

)], by Proposition 6.3. By
Lemma 7.3 there are only finitely many possible words Cu with ru

mu
= ri

mi
.

For each of these strings Cu longer than Ci, there is a point y ∈ L
ω(c)
α such

that fn(y) = z for some n ∈ N with I(y) = σs[BtCuB∞] for some 0 ≤ s < 5

and t ∈ N. Also, if w ∈ L
ω(c)
α is such that fn(w) = z for some n ∈ N, then

I(w) = σs[BtCuB∞] for some 0 ≤ s < 5, t ∈ N, and for one of the finitely
many u’s. Thus for each of the finitely many u’s there is a single α-permitted
sequence (y0, y−1, y−2, . . . ) with y0 = z, and for some fixed positive integer
Mu and all m ≥ Mu have I(y−m) = σs[BtCuB∞]. This proves the lemma
for this first case.

If instead I(z) = σℓ[B∞] for some 0 ≤ ℓ < 3, then lt(z) = γ + 2 and
there are exactly three (or n if we constructed the kneading sequence of f
with a different word B) points with that limit type. So there are only three
(γ + 2)-permitted sequences.
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Lemma 7.6. Let x ∈ lim←−{[0, 1], f} have πn(x) = xn ∈ ω(c) for all n ∈ N.

Let α < ω1 be such that xj ∈ L
ω(c)
α for all j ≥ J . Then there are finitely

many points z ∈ lim←−{[0, 1], f} such that zn ∈ ω(c) for all n ∈ N and zJ = xJ

and zj ∈ L
ω(c)
α for all j ≥ J .

Proof. This follows from the fact that each such z corresponds to an
α-permitted sequence (y0, y−1, y−2, . . . ) with zJ = y0 = xJ . Since there
are only finitely many such sequences, there are only finitely many points
z ∈ lim←−{[0, 1], f}.

Theorem 7.7. Let x ∈ lim←−{[0, 1], f} have πn(x) = xn ∈ ω(c) for all

n ∈ N. Let α < ω1 be such that xj ∈ L
ω(c)
α for all j ≥ J . Then x ∈

L
Fd(lim←−{[0,1],f})
α .

Proof. By Proposition 7.2 we know that lt(x) ≥ α. By Lemma 7.6, there

are only finitely many points z with zJ = xJ and zj ∈ L
ω(c)
α for all j ≥ J .

Thus lt(x) = α.

Proposition 7.8. Let f : [0, 1]→ [0, 1] be a well-founded tent map core

with critical point c. Assume that Lt[ω(c)] = γ + 2 for some ordinal γ, and

let |Lω(c)
γ+1| = n. Then

(1) Lt[Fd(Xf )] = γ + 2,

(2) |LFd(Xf )
γ+1 | = n,

(3) |LFd(Xf )
β | = ℵ0 for all β < γ + 1.

Proof. By Lemma 5.8, f(L
ω(c)
β ) ⊇ L

ω(c)
β for all β < γ + 2. Hence for

each x0 in L
ω(c)
β , we can build a sequence (xi)i∈N of preimages such that

f(xi+1) = xi and xi ∈ L
ω(c)
β for all i. Thus x = (x0, x1, x2 . . . ) ∈ Xf , and by

Proposition 7.7, x ∈ L
Fd(Xf )
β because x always projects into L

ω(c)
β .

Since the top level of ω(c) in the Cantor–Bendixson decomposition par-
titions into finitely many periodic orbits, it follows that for any well-founded
tent map there are a finite number of periodic points that generate the points
in the inverse limit space that have the most topologically “complicated”
neighborhoods.

Let X be a chainable continuum with Fd(X) countable. We define the
folding spectrum of X, FS(X), to be the ordered pair (α, n), where α =

Lt[Fd(X)] and n = |LFd(X)
α−1 |. Note that FS(X) is topological. This obser-

vation together with the examples of the well-founded tent map cores con-
structed in the previous section leads to the following theorem.
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Theorem 7.9. There are uncountably many nonhomeomorphic tent map

inverse limit spaces.

In fact, we have shown that there are ω1 nonhomeomorphic tent map in-
verse limits. This theorem should be contrasted with [3, Corollary 2] in which
Barge and Diamond demonstrate that there are uncountably many, in fact c

many, nonhomeomorphic inverse limits spaces of unimodal maps. However,
the maps they consider are infinitely renormalizable unimodal maps, such as
logistic maps. The maps we consider here are not infinitely renormalizable,
being locally eventually onto. Also Brucks and Bruin have shown in [6] that
there are uncountably many tent map inverse limits. However, in their pa-
per they consider spaces with a Cantor set of folding points and complicated
subcontinua (at least more complicated than simply arcs). In our case we
have only countably many folding points and every proper subcontinuum is
an arc. In a forthcoming paper [9], we prove that there are nonhomeomor-
phic tent map inverse limits, each with a Cantor set of folding points and
with every proper subcontinuum being an arc.

8. Counting parameters. In this section we demonstrate that, al-
though the construction in §6 is quite delicate and particular, given a pos-
sible folding spectrum (α, n), the collection of parameters s corresponding to
a well-founded tent map core fs that generates an inverse limit with folding
spectrum precisely (α, n) is a dense subset of [

√
2, 2] and it has cardinality c.

We use two well-known facts regarding tent maps (cf. [7] and [8, pp. 235
& 238]). The first fact is that the parameters q ∈ [

√
2, 2] that generate tent

map cores fq with periodic, preperiodic, or prefixed critical points are dense

in [
√

2, 2]. We also use the fact that if ε > 0 and q ∈ [
√

2, 2] then there is a
finite word W < Kfq

such that if r ∈ [
√

2, 2] and Kfr
is a kneading sequence

such that W < Kfr
then r ∈ (q − ε, q + ε) ∩ [

√
2, 2].

Theorem 8.1. Let q ∈ [
√

2, 2] be such that fq is a well-founded tent

map core with FS(lim←−{[0, 1], fq}) = (α, n) for some countable ordinal α and

positive integer n. The set {r ∈ [
√

2, 2] : FS(lim←−{[0, 1], fr}) = (α, n)} has

cardinality c.

Proof. Let q ∈ [
√

2, 2] be such that fq is a well-founded tent map core
with FS(lim←−{[0, 1], fq}) = (α, n) for some countable ordinal α and positive
integer n. Let K denote the kneading sequence of fq, and let c denote the
critical point of fq. Since ω(c) is countable, it contains a periodic point and
its orbit {x0, x1, . . . , xn−1}. Let B be a finite word made up of symbols from
{0, 1} such that Ifq

(x0) = B∞. Since every initial segment of Ifq
occurs

infinitely often in K, we have an increasing sequence (ni)i∈N of positive
integers such that BniWi is an initial segment of σki(K) for some positive
integer ki and word Wi that does not have B as an initial segment. The
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words Wi can be chosen in such a way that we can write K as

K = W0B
n1W1B

n2W3B
n4 . . . .

Let τ = (ti)i∈N be a sequence such that ti ∈ {0, 1} for all i ∈ N. Define Kτ

by
Kτ = W0B

n1+t1W1B
n2+t2W2B

n3+t3 . . . .

Clearly if we choose W0 to be long enough, Kτ will be primary and shift-
maximal. So there is a number r ∈ [

√
2, 2] such that fr has kneading se-

quence Kτ . It is easy to see that since ni → ∞ as i → ∞ the critical
ω-limit set for fr is homeomorphic to the critical ω-limit set for fq and
fr is a well-founded tent map core. By Proposition 7.8 we conclude that
FS(lim←−{[0, 1], fq}) = FS(lim←−{[0, 1], fr}). Notice that there are c possible
choices for τ , each resulting in a different Kτ and hence a different pa-
rameter r. This establishes the theorem.

Theorem 8.2. Let q ∈ [
√

2, 2] be such that fq is a well-founded tent

map core with FS(lim←−{[0, 1], fq}) = (α, n) for some countable ordinal α and

positive integer n. The set {r ∈ [
√

2, 2] : FS(lim←−{[0, 1], fr}) = (α, n)} is

dense in [
√

2, 2].

Proof. Write α = β + 2. Let z ∈ [
√

2, 2], and let ε > 0. It is well-known
that the set of parameters that give rise to tent maps with a preperiodic

critical point that gets mapped to a period n orbit is dense in [
√

2, 2] (see
[8, Lemma 7.3]). Let q0 be such a parameter in Bε/2(z). Let B0 be a word of
length n in symbols 0, 1 such that the kneading sequence of the map fq0

is
Kfq0

= 10j1WB∞
0 where j is a positive integer and W is a finite (or empty)

word in 0, 1. We can choose a finite word V such that 10j1W ⊑ V < Kfq0

and if r ∈ [
√

2, 2] with V < Kfr
then r ∈ Bε/2(q0) ⊆ Bε(z).

We can construct a sequence K in the manner described in Section 6
using a well-founded α−2 = β-tree, the word B0 in place of B, 10j1 as A, but
with K beginning with V instead of AA . . . . Since Kq0

is shift-maximal and
primary, we can ensure that K is also shift-maximal and primary. Then there
is an r ∈ Bε/2(q0) ⊂ Bε(z) such that Kfr

= K. Denote the critical point

of fr by cr. Then by our construction Lt[ω(cr)] = α, |Lω(cr)
α−1 | = n and fr is

a well-founded tent map core. Hence, by Proposition 7.8, FS(lim←−{[0, 1], fr})
= (α, n).
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