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MAD families with strong combinatorial properties

by

Jörg Brendle and Greg Piper (Kobe)

Abstract. In his paper in Fund. Math. 178 (2003), Miller presented two conjectures
regarding MAD families. The first is that CH implies the existence of a MAD family that
is also a σ-set. The second is that under CH, there is a MAD family concentrated on a
countable subset. These are proved in the present paper.

1. Introduction. Let [ω]ω denote the infinite subsets of the natural
numbers ω. Two sets a, b ∈ [ω]ω are almost disjoint if a∩b is finite. A family
A ⊆ [ω]ω is almost disjoint if all its members are pairwise almost disjoint,
and maximal almost disjoint (a MAD family, for short) if for all x ∈ [ω]ω,
a ∩ x is infinite for some a ∈ A. In our work we construct MAD families
with additional strong topological properties.

We think of MAD families as sets of reals and, accordingly, we identify
elements of [ω]ω with their characteristic functions, i.e., with elements of 2ω

which are not eventually 0. Conversely, we usually equate a ∈ 2ω with the
corresponding set {i ∈ ω : a(i) = 1}.

An uncountable set of reals X ⊆ 2ω is a Q-set if every subset of X
is a relative Gδ set, and a σ-set if every relative Borel subset is a relative
Gδ set, i.e., for all Borel B ⊆ 2ω there is a Gδ set G ⊆ 2ω such that
B ∩ X = G ∩ X. Every Q-set is a σ-set. Miller [8, Theorem 1] proved it is
consistent with ZFC that there is a MAD Q-set. Such a set necessarily has
size less than c = |2ω|. A modification of his argument showed it is consistent
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that there is a MAD σ-set of size c where c can be arbitrary [8, Theorem 3].
The existence of a MAD σ-set is a Σ2

1 sentence. Thus, by Woodin’s Σ2
1

absoluteness (see [3, Theorem 3.2.1]) which asserts that if κ is a measurable
Woodin cardinal, CH holds and P is a forcing notion of size less than κ then
any Σ2

1 sentence true in V P is also true in V , Miller deduced that there is a
MAD σ-set under CH + there is a measurable Woodin cardinal [8, Remark
on p. 279]. Accordingly he conjectured such a set could be constructed under
CH alone [8, Conjecture 4]. We prove this is indeed the case.

Theorem 1. CH implies there is a MAD σ-set.

Note that some assumption is necessary because there may be no σ-set
[5, Theorem 22].

A set of reals X ⊆ 2ω is concentrated on Y ⊆ 2ω if for any open U ⊇ Y ,
X \ U is at most countable. Miller [8, Theorem 5] also proved the generic
MAD family adjoined by Hechler’s standard forcing notion [1] is concen-
trated on a countable subset of itself. Using the same large cardinal consid-
erations, he conjectured such a MAD family existed under CH [8, Conjec-
ture 7]. We confirm this.

Theorem 2. CH implies that there exists an infinite MAD family which
is concentrated on a countable subset of itself.

Again, this is not true in ZFC alone because all concentrated sets may
be countable. (The latter holds, e.g., in Laver’s model for the Borel con-
jecture [4] because every set concentrated on a countable set has strong
measure zero [6, Theorem 3.1].)

We prove Theorem 2 in Section 2 by singling out one property of the
generic MAD family (of [1]) used to prove Theorem 5 of [8] and then setting
up a recursive construction which preserves this property along with creating
a MAD family and turning it into a concentrated set. The proof of Theorem 1
is much harder. We use a topological argument, successively creating the
members of the MAD family A as Cohen reals in an appropriate Polish
space, roughly, the space of reals almost disjoint from previous members of
A, equipped with a natural topology finer than the standard topology. This
approach has two advantages. First, we get maximality for free because for
each real x, the set Gx of reals which have infinite intersection with x is a
dense Gδ set, even in the finer topology. Second, we guarantee that the set
of reals Vα on which a given Borel set Bα and a generically adjoined Gδ set
Uα agree is also a dense Gδ set. Thus any later member of A will belong
either to both Bα and Uα or to neither, and Bα ∩ A = Uα ∩ A will follow.
See Section 3 for details. In Section 4, we briefly discuss generalizations of
our results under Martin’s Axiom MA.
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2. A MAD family concentrated on a countable subset. In this
section, we prove Theorem 2. Assuming CH, we define a suitable MAD
family inductively.

First choose an almost disjoint family 〈an : n < ω〉 with the following
property:

(⋆) ∀F ⊆ ω finite ∀s ∈ 2<ω ∃n < ω

(s ⊆ an and
⋃

{am : m ∈ F} ∩ an ⊆ |s|).

This technical property is a strengthening of denseness and is needed in the
inductive definition of the MAD family. It is easy to construct such a family.
In fact, the standard forcing for adding a countable almost disjoint family [1]
generically adds an satisfying (⋆).

We now proceed by induction to produce aα for ω ≤ α < ω1. Let 〈Uα :
α < ω1〉 list all the open subsets of 2ω that contain all of the an. That is,
{an : n < ω} ⊆ Uα for all α < ω1. Let 〈rα : ω ≤ α < ω1〉 list all the infinite
elements of 2ω.

We construct aα, α ≥ ω, satisfying the following conditions.

(1) ∀β < α (|aβ ∩ aα| < ℵ0).
(2) ∀β < α (aα ∈ Uβ).
(3) ∃β ≤ α (|rα ∩ aβ| = ℵ0).
(4) ∀F ⊆ α + 1 finite ∀s ∈ 2<ω ∃n < ω (s ⊆ an and

⋃

{aβ : β ∈ F} ∩ an

⊆ |s|).

The last condition is the analogue of (⋆) above. Notice that (1) and (4)
hold for α < ω by construction. (Properties (2) and (3) are irrelevant for
α < ω.)

We construct aα by recursively producing countably many of its initial
segments sj , j < ω, with |sj| ≥ j as well as finite sets Xj , j < ω, which will
identify the aβ that must be avoided when we extend sj . Let 〈βj : j < ω〉
enumerate α, and let 〈(tj, Fj) : j < ω〉 list all the pairs in 2<ω × [α]<ω in
such a way that |tj| ≤ j. As usual, [s] = {y ∈ 2ω : s ⊆ y} denotes the clopen
set defined by s ∈ 2<ω.

Stage 0. Let s0 ∈ 2<ω be such that [s0] ⊆ Uβ0
. Let X0 = {aβ0

}.

Stage k + 1. Assume that we have already defined sj and Xj for all
j ≤ k such that [sj ] ⊆ Uβj

and aβj
∈ Xj . We define sk+1 ⊇ s′k+1 ⊇ sk and

Xk+1 ⊇ Xk.

First we take care of property (2). Since Xk is finite, by the induc-
tive hypothesis (using (4)) we can find nk < ω such that sk ⊆ ank

and
⋃

Xk ∩ ank
⊆ |sk|. Now let jk ≥ max{k + 1, |sk|} be such that [ank

↾jk] ⊆
Uβk+1

. There must be such an jk since ank
∈ Uβk+1

. Let s′k+1 = ank
↾jk.
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Note that this will imply that once we have defined sj for all j < ω,
aα =

⋃

{sj : j < ω} ∈ Uβk+1
.

Next we ensure that (4) holds for finite sets containing α. By the induc-
tive hypothesis, we know that (4) holds for finite F ⊆ α. Let F ′

k = Fk∪{nk}.
Given tk and F ′

k, there is ik such that tk ⊆ aik and
⋃

{aβ : β ∈ F ′
k} ∩ aik ⊆

|tk|. To obtain
⋃

{aβ : β ∈ Fk ∪ {α}} ∩ aik ⊆ |tk| it suffices to ensure that
aα ∩ aik = ank

∩ aik . We achieve this simply by adding aik to Xk. Thus, let
Xk+1 = Xk ∪ {aβk+1

} ∪ {aik}.

If rα ∩ aβ is infinite for some β < α, let sk+1 = s′k+1. If not, we need to
guarantee condition (3) as well: let i ≥ |s′k+1| be minimal such that rα(i) = 1
but a(i) = 0 for all a ∈ Xk+1. There must be such an i since rα is infinite
and almost disjoint from all of the elements of Xk+1. Let sk+1 be a sequence
of length i + 1 extending s′k+1 and with sk+1(i) = 1 and sk+1(j) = 0 for
|s′k+1| ≤ j < i. Note that this will imply that aα =

⋃

{sj : j < ω} and rα

will have infinite intersection.

Once we have defined sj for all j < ω, we let aα =
⋃

{sj : j < ω}. We
must now check that each of the conditions (1)–(4) hold.

(1) By construction, for all k < ω, aβk
∩ aα ⊆ |sk| because aβk

∈ Xk and
Xk is the set of reals which are avoided when extending sk.

(2) and (3) are immediate as we observed during the induction.

(4) This follows from the fact that we put aik into Xk+1. Indeed, the latter
implies aα ∩ aik ⊆ |s′k+1|. Also aα↾jk = s′k+1 = ank

↾jk where jk ≥ k + 1, and
ank

∩ aik ⊆ |tk| ≤ k. Thus aα ∩ aik = ank
∩ aik and we remarked earlier this

was exactly what was needed to ensure (4).

This completes the recursive construction of the family 〈aα : α < ω1〉.
By (1), it is an almost disjoint family, by (3) it is maximal, and by (2)
it is concentrated on {an : n < ω} because for any α < ω1, {β < ω1 :
aβ /∈ Uα} ⊆ α + 1 \ ω, which is countable. This completes the proof of
Theorem 2.

3. CH implies there exists a MAD σ-set

3.1. The framework of the proof. Before going into the actual combina-
torial details, we describe the framework of the proof of Theorem 1.

Assume we have models 〈Mα : α < ω1〉 and 〈Nα : α < ω1〉 of ZFC such
that:

• Mα ⊆ Nα ⊆ Mα+1,
• Mα is countable in Nα,
• α is countable in Mα and all Nβ, β < α, are countable in Mα (so

〈Nβ : β < α〉 ∈ Mα is countable in Mα),
• 2ω ⊆

⋃

α<ω1
Mα =

⋃

α<ω1
Nα.
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We shall build perfect Polish spaces (Xα,Sα), (Yα, Tα) (where Sα, Tα denote
the respective topologies) such that:

• Xα+1 ⊆ Yα ⊆ Xα,
• Xα =

⋂

β<α Xβ =
⋂

β<α Yβ = Yα for limit α,
• the topology Tα refines the topology Sα (restricted to Yα),
• the topology Sα+1 refines the topology Tα (restricted to Xα),
• Tα =

⋃

β<α Tβ =
⋃

β<α Sβ = Sα for limit α,
• Yα ∈ Mα, Xα+1 ∈ Nα,
• X0 = Y0 = 2ω and S0 = T0 = the standard topology.

Notice that for limit α, we indeed have Yα =
⋂

β<α Xβ ∈ Mα because
〈Nβ : β < α〉 ∈ Mα. While we are mainly interested in (Xα,Sα) and (Yα, Tα),
we shall often think of Sα and Tα as refining the standard topology on 2ω.

More explicitly, there will be sets F s
α, Fα, Hn

α , Hα ⊆ 2ω (s ∈ 2<ω, n ∈ ω)
such that:

• all F s
α, Hn

α are closed in the standard topology,
• Fα =

⋃

s∈2<ω F s
α and Hα =

⋃

n∈ω Hn
α are Fσ sets,

• Xα+1 = Yα ∩ Fα,
• the topology Sα+1 (on Xα+1) is generated by (the restriction of) Tα ∪

{F s
α : s ∈ 2<ω} (so all the sets F s

α are made clopen).

The description of the space Yα+1 and its topology Tα+1 is somewhat more
difficult. There are closed Pα ⊆ Xα+1 and open Oα ⊆ Xα+1 (in the topology
Sα+1) such that:

• Pα ∪ Oα = Xα+1,
• Pα ∩ Oα = ∅,
• Yα+1 = Pα ∪ (Xα+1 ∩ Hα) = Pα ∪ (Oα ∩ Hα),
• the topology Tα+1 (on Yα+1) is generated by (the restriction of) Sα+1

as well as sets of the form F ∩ Hn
α where F ∩ Xα+1 ⊆ Oα and F is

open in Sα+1 and n ∈ ω.

The latter stipulation means that the family Fα+1 of sets F ∈ Sα+1 with
F∩Xα+1 ⊆ Pα and of sets F∩

⋂

j<m H
nj
α with F∩Xα+1 ⊆ Oα and F ∈ Sα+1

is dense in the topology Tα+1. That is, Fα+1 ⊆ Tα+1 and every F ∈ Tα+1

contains a member of Fα+1.

Also notice that, more generally, the topology Sα is generated by the
standard clopen sets together with F s

β (s ∈ 2<ω, β < α) and certain (not
all!) intersections of the latter sets with sets of the form Hn

β (n ∈ ω, β <
α− 1), where for limit α we set α− 1 = α. Similarly Tα is generated by the
standard clopen sets together with F s

β (s ∈ 2<ω, β < α) and some (not all!)
intersections of the latter with Hn

β (n ∈ ω, β < α).
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Observation 3.1. The spaces (Xα,Sα) and (Yα, Tα) are indeed Polish.

Proof. By the characterization of Sα directly preceding 3.1, all basic
open sets of Sα are closed in the standard topology S0. This means that
by [2, Lemmata 13.2 and 13.3], (X0,Sα) is Polish. Similarly for the Tα. We
prove by induction on β ≤ α that all (Zβ,Uα) are Polish as well where
Z ∈ {X, Y } and U ∈ {S, T } (and (Yβ,Sα) is only considered for β ≤ α−1).

If β = γ + 1 is successor, (Xβ,Uα) is Polish because Xβ = Yγ ∩ Fγ is
open in (Yγ ,Uα). Similarly, Pγ is closed and Oγ ∩Hγ is open in (Xβ,Uα). So
Yβ is Gδ in (Xβ,Uα) and thus Polish [2, Theorem 3.11] (here U = T in case
β = α).

Let β be a limit ordinal. Since all (Xγ ,Uα), γ < β, are Polish, the Xγ

form a decreasing sequence of Gδ subsets of (X0,Uα), their intersection Xβ =
⋂

γ<β Xγ is still such a Gδ, and thus (Xβ,Uα) is Polish [2, Theorem 3.11].

We shall see below (Lemma 3.5) that all (Xα,Sα) and (Yα, Tα) are also
perfect.

Let in = 2n and put I = {in : n ∈ ω}. (In fact, the exact nature of the
in is irrelevant; what we need is that the sequence of in is increasing very
fast.) Clearly I ∈ M0. We will have sets Un

α ⊆ 2ω (n ∈ ω) and Uα such that:

• Un
α = 2ω \ Hn

α is open,
• Uα = 2ω \ Hα, i.e. Uα =

⋂

n∈ω Un
α is Gδ,

• each Un
α is a union of basic clopen sets [sn,j

α ], j ∈ ω, such that:

– |sn,j
α | ∈ I, |sn,j

α | ≥ in+j,

– for each k ∈ ω, there is at most one sn,j
α such that |sn,j

α | = ik (so
k ≥ n + j),

– if |sn,j
α | = ik then there is l ∈ (ik−1, ik) such that sn,j

α (l) = 1.

3.2. The MAD family A = {aα : α < ω1} (construction of the space
Xα+1). We come now to the details of the construction. We begin with the
construction of the space Xα+1 and associated objects.

For each α let aα be a Cohen-generic real belonging to the space Yα over
the model Mα in the model Nα (i.e. Mα[aα] ⊆ Nα). Such an aα clearly exists
because Mα is countable in Nα.

We let F s
α = {y : s ⊆ y and (∀l ≥ |s|) (aα(l) = 1 ⇒ y(l) = 0)}, the set

of reals y which contain s as an initial segment and which are disjoint from
Aα beyond |s|. This is clearly closed, as required. Note also that F s

α ⊆ [s].

Let Fα =
⋃

s∈2<ω F s
α, the set of reals almost disjoint from aα. Define

Xα+1 and Sα+1 as stipulated earlier.

Lemma 3.2. {aα : α < ω1} is an almost disjoint family.
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Proof. For β < α, Fβ is the set of reals almost disjoint from aβ. Since
Yα ⊆ Xα ⊆ Fβ by construction, Yα only contains reals almost disjoint from
aβ. Thus aα is almost disjoint from aβ.

Observation 3.3. A typical basic open set of (Xα,Sα) is of the form
⋂

j<m0
F s

βj
∩

⋂

j<m1
H

nj
γj 6= ∅ (s ∈ 2<ω, nj ∈ ω, βj < α, γj < α−1). Similarly

for (Yα, Tα).

Proof. Since F s
β ⊆ [s], there is no need to consider basic clopen sets of

the standard topology, and a typical basic clopen set is of the form F =
⋂

j<m0
F

sj

βj
∩

⋂

j<m1
H

nj
γj 6= ∅. For j, j′ < m0 we must have sj ⊆ sj′ or

sj′ ⊆ sj . Put s =
⋃

j<m0
sj . Clearly F ⊆ [s]. Since F

sj

βj
∩[s] 6= ∅, we must have

F s
βj

⊆ F
sj

βj
. In fact, F s

βj
∩F = F

sj

βj
∩F . Thus F =

⋂

j<m0
F s

βj
∩

⋂

j<m1
H

nj
γj .

The following is crucial for several subsequent results (see Lemmata 3.5
and 3.6).

Lemma 3.4. Given any m, βj < ω1 (j < m), n and k, there is l ≥ k
such that |(il, il+1) \

⋃

j<m aβj
| ≥ n.

Proof. This is a standard Cohen-genericity argument, using the fact that
I ∈ M0. Fix n. We proceed by induction on m. Let βj , j < m, be given
such that β0 < β1 < · · · < βm−1. Assume the statement is true for m − 1
for all k. Put α = βm−1. Then aβj

∈ Mα for j < m − 1 and aα = aβm−1

is Cohen-generic over Mα in Yα. By 3.3, a typical basic open set of the
topology Tα (equivalently, condition in the Cohen forcing) is of the form
p =

⋂

j<m0
F s

γj
∩

⋂

j<m1
H

nj

δj
6= ∅. Without loss of generality, we assume

|s| ∈ I. Apply the induction hypothesis with k replaced by max{|s|, k} and
find l ≥ max{|s|, k} with |(il, il+1)\

⋃

j<m−1 aβj
| ≥ n. Notice that |s| ≤ l < il.

Thus, we may strengthen the condition, replacing s by t ⊇ s such that
|t| = il+1 and t(i) = 0 for i ∈ [|s|, il+1), to get q =

⋂

j<m0
F t

γj
∩

⋂

j<m1
H

nj

δj
.

To see that this works, notice that by the definition of the F s
γj

and H
nj

δj
, we

must indeed have [t] ∩
⋂

j<m0
F s

γj
∩

⋂

j<m1
H

nj

δj
6= ∅. The stronger condition

q clearly forces |(il, il+1) \ (
⋃

j<m−1 aβj
∪ ȧα)| ≥ n so we are done.

Lemma 3.5. All spaces (Xα,Sα) and (Yα, Tα) are perfect Polish spaces.

Proof. We already observed that Sα and Tα were Polish. So it suffices
to show Xα and Yα are perfect. Consider Xα, and let {βj : j ∈ ω} = α,
{γj : j ∈ ω} = α − 1. Recursively construct ℓj , nj ∈ ω and sj(τ) ∈ 2<ω

(τ ∈ 2j) such that

• ℓj < ℓj′ for j < j′,
• |sj(τ)| = iℓj

,
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• if j ≤ j′ and τ ⊆ τ ′, τ ∈ 2j , τ ′ ∈ 2j′ , then sj(τ) ⊆ sj′(τ
′), sj′(τ

′) ∈

F
sj(τ)
βj

and sj′(τ
′) ∈ H

nj
γj .

Here, s ∈ F
sj(τ)
βj

(s ∈ H
nj
γj , respectively) means that s belongs to the tree

defining the closed set F
sj(τ)
βj

(H
nj
γj , resp.).

For j = 0, let ℓ0 = 0, choose s0(〈〉) of length i0 = 20 = 1 arbitrary and
let n0 be such that s0(〈〉) ∈ Hn0

γ0
.

Suppose ℓj , nj , and sj(τ) have been defined. By Lemma 3.4, we can
choose ℓj+1 > ℓj such that |(iℓj+1−1, iℓj+1

) \
⋃

j′≤j aβj′
| ≥ j + 2. Set A =

(iℓj+1−1, iℓj+1
) \

⋃

j′≤j aβj′
. Fix τ ∈ 2j . Let Tτ = {s : sj(τ) ⊆ s, |s| = iℓj+1

and ∀i ∈ |s|\(|sj(τ)|∪A) (s(i) = 0)}. Clearly |Tτ | ≥ 2j+2 and s ∈ F
sj′ (τ

′)

βj′
for

all j′ ≤ j, τ ′ ⊆ τ and all s ∈ Tτ . For each j′ ≤ j, at most one s ∈ Tτ does not
belong to H

nj′

γj′
. Since 2j+2 ≥ j + 3, we can find sj+1(τ ⌢ 0), sj+1(τ ⌢ 1) ∈

Tτ ∩
⋂

j′≤j H
nj′

γj′
, as required. Finally, let nj+1 be such that sj+1(τ) ∈ H

nj+1

γj+1

for all τ ∈ 2j+1. This completes the construction.

For x ∈ 2ω, define y = yx by y↾iℓj
= sj(x↾j) for all j. Then y ∈

⋂

j F
sj(x↾j)
βj

∩
⋂

j H
nj
γj ⊆

⋂

j Fβj
∩

⋂

j Hγj
. Thus {yx : x ∈ 2ω} ⊆

⋂

j Fβj
∩

⋂

j Hγj
⊆ Xα is a perfect set. Since Xα+1 ⊆ Yα, Yα is perfect as well.

In fact, a straightforward generalization shows that if F ⊆ Xα is a non-
empty basic clopen set, then F contains a perfect subset. Similarly for Yα.

For x ∈ 2ω infinite (i.e. x ∈ [ω]ω), let

Gx = {y : there are infinitely many l such that y(l) = x(l) = 1}.

This is the set of all y which have infinite intersection with x. Clearly, Gx

is a Gδ set. More explicitly, Gx =
⋂

n∈ω Gn
x, where

Gn
x = {y : ∃l0, . . . , ln−1 distinct such that y(lj) = x(lj) = 1 for j < n}.

This is the set of all y whose intersection with x is of size at least n. Clearly,
each Gn

x is dense open in the standard topology of 2ω. So Gx is dense Gδ.

Lemma 3.6. Assume x does not belong to the ideal generated by aβ,
β < α. (That is, x is not almost contained in a finite union of aβ , β < α.)
Then Gn

x is dense open in the space (Yα, Tα).

Proof. This is similar to the proof of Lemma 3.5. By 3.3, basic open
sets of the topology Tα are finite intersections of the form

⋂

j<m0
F s

βj
∩

⋂

j<m1
H

nj
γj 6= ∅, where s ∈ 2<ω and βj , γj < α. By extending s if necessary,

we may assume |s| ∈ I and, by Lemma 3.4, if we let ik = |s| then |(ik, ik+1)\
⋃

j<m0
aβj

| ≥ (n + 1)m1. Next choose l0, . . . , ln−1 ∈ x \
⋃

j<m0
aβj

and l >
k + 1 with ik+1 ≤ l0 < l1 < · · · < ln−1 < il. Consider the set T of all
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t ⊇ s with |t| = il, t(lj) = 1 for all j < n and t(i) = 0 for all i such that
i 6= lj (j < n) and i /∈ (ik, ik+1) \

⋃

j<m0
aβj

.

Clearly, |T | ≥ 2(n+1)m1. Also, [t] ∩
⋂

j<m0
F s

βj
6= ∅ for all t ∈ T . By the

definition of H
nj
γj , it is easily seen that at most n + 1 many t ∈ T do not

belong to the tree defining H
nj
γj . Hence for at most (n+1)m1 such t ∈ T , we

may have [t]∩
⋂

j<m0
F s

βj
∩

⋂

j<m1
H

nj
γj = ∅. Since 2(n+1)m1 > (n + 1)m1, we

can find t ∈ T such that [t]∩
⋂

j<m0
F s

βj
∩

⋂

j<m1
H

nj
γj 6= ∅. Clearly, [t] ⊆ Gn

x.

Thus,
⋂

j<m0
F t

βj
∩

⋂

j<m1
H

nj
γj ⊆ Gn

x and we are done.

Corollary 3.7. A = {aα : α < ω1} is a MAD family.

Proof. Let x ∈ 2ω. We need to show that there is an α < ω1 such that
|x ∩ aα| = ℵ0. Without loss of generality, we may assume that x does not
belong to the ideal generated by the aα. (Otherwise, the proof is trivial.)
Find α such that x ∈ Mα. By the previous lemma, Gn

x is dense open in
(Yα, Tα) for all n ∈ ω. Since aα ∈ Yα is Cohen-generic over Mα, it follows
immediately that aα ∈ Gn

x for all n ∈ ω. Thus, aα ∈
⋂

n∈ω Gn
x = Gx. Hence,

|aα ∩ x| = ℵ0.

3.3. The Gδ sets Uα witnessing that A is a σ-set (construction of Yα+1).
We now consider the second part of the construction: the construction of
the space Yα+1 and its associated objects.

Assume we have a list 〈Bα : α < ω1〉 of all Borel sets such that Bα ∈ Nα.
In Nα, Bα ∩ Xα+1 has the property of Baire (because it is Borel) in the
space (Xα+1,Sα+1). Therefore there are disjoint sets Pα and Oα with Pα

closed and Oα open, such that Pα ∪ Oα = Xα+1 and Bα ∩ Pα is comeager,
while Bα∩Oα is meager. Let Pn

α , On
α be decreasing sequences of open sets in

(Xα+1,Sα+1) such that P 0
α = int(Pα), O0

α = Oα, Pn
α ⊆ P 0

α is dense, On
α ⊆ Oα

is dense,
⋂

n∈ω Pn
α ⊆ Bα, and

⋂

n∈ω On
α ∩ Bα = ∅.

The forcing P consists of finite consistent sets p of conditions of the form:

• (n, aβ) where β ≤ α and aβ /∈ Bα,
• (n, s) where s ∈ 2<ω and |s| ∈ I,
• (n, F ) where F is a typical basic clopen subset of Sα+1 (see Observa-

tion 3.3),

such that:

• if (n, s) ∈ p and |s| = il ∈ I then there is i ∈ (il−1, il) such that
s(i) = 1,

• for each i ∈ I and n ∈ ω there is at most one s with (n, s) ∈ p and
|s| = i,

• if (n, s) ∈ p and |s| = il ∈ I then l ≥ n,
• if (n, aβ) ∈ p then (n, aβ↾m) /∈ p for all m,
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• if (n, F ) ∈ p then F ∩ Xα+1 ⊆ Pn
α ,

• if (n, F ) ∈ p then there is s such that F ⊆ [s] and (n, s) ∈ p.

The ordering ≤ is by extension. That is, q ≤ p ⇔ q ⊇ p. This is a modifica-
tion of Silver’s standard forcing notion for turning a given set into a relative
Gδ (see [7, Section 5], see also [8]).

P is a countable forcing notion in Nα. (Recall that Mα is countable in
Nα and so is Mα[aα], which contains Xα+1 etc.)

Let us first check that we can always extend conditions appropriately.

Lemma 3.8. Assume aβ /∈ Bα and p ∈ P. Then there are n ∈ ω and
q ≤ p such that (n, aβ) ∈ q.

Proof. Choose n sufficiently large that no (n, s) appears in p and let
q = p ∪ {(n, aβ)}.

Lemma 3.9. Assume aβ ∈ Bα, p ∈ P and n ∈ ω. Then there are m ∈ ω
and q ≤ p such that (n, aβ↾m) ∈ q.

Proof. First choose m0 sufficiently large that:

• aβ↾m0 6= aγ↾m0 for all γ such that (n, aγ) ∈ p,
• m0 ≥ |s| for all s with (n, s) ∈ p,
• m0 ≥ in.

Then find il−1 < i < il with m0 ≤ il−1 such that aβ(i) = 1. (This is possible
because I ∈ M0 and such i /∈ I must exist by Cohen-genericity.) Let m = il
and q = p ∪ {(n, aβ↾m)}. Clearly, all the requirements are satisfied.

Lemma 3.10. Assume F ∩ Xα+1 ⊆ Pn
α is non-empty open (in the sense

of (Xα+1,Sα+1)) and p ∈ P. Then there are ∅ 6= H ⊆ F and q ≤ p such that
(n, H) ∈ q.

Proof. Shrinking F if necessary, we may assume without loss that aβ /∈ F
for all β with (n, aβ) ∈ p. Again choose m0 such that

• [aβ↾m0] ∩ F = ∅ for all β such that (n, aβ) ∈ p,
• m0 ≥ |s| for all s with (n, s) ∈ p,
• m0 ≥ in.

Then find il−1 < i < il with m0 ≤ il−1 and t ∈ 2<ω with t(i) = 1, |t| = il
and F ∩ [t] 6= ∅ (in Xα+1). The argument showing there is such a t is
similar to, but easier than, the proof of Lemma 3.6. Let H = F ∩ [t] and
let q = p ∪ {(n, t), (n, H)}. It is easy to see that q is indeed a condition and
that q ≤ p.

Let G be P-generic over Nα with G ∈ Mα+1 (so Nα[G] ⊆ Mα+1). Such a
G clearly exists because Nα is countable in Mα+1.

Set
Un

α =
⋃

{[s] : ∃p ∈ G ((n, s) ∈ p)}, Hn
α = 2ω \ Un

α .
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Clearly, Un
α is open in 2ω and Hn

α is closed in 2ω. Also, Uα =
⋂

n∈ω Un
α is

a Gδ set and Hα =
⋃

n∈ω Hn
α is an Fσ set (in the standard topology). It is

immediate from the definition of the partial order P that the Un
α and Hn

α

satisfy all the stipulations required earlier.
Also set

V n
α =

(

⋃

{F : ∃p ∈ G ((n, F ) ∈ p)} ∩ Xα+1

)

∪ (On
α ∩ Hα)

and let Vα =
⋂

n V n
α .

Finally, as stipulated earlier,

Yα+1 = Pα ∪ (Xα+1 ∩ Hα) = Pα ∪ (Oα ∩ Hα)

and Tα+1 is the topology generated by Sα+1 and by sets of the form F ∩Hn
α

where F ∩ Xα+1 ⊆ Oα, F ∈ Sα+1.

Corollary 3.11. ∀β ≤ α (aβ ∈ Uα ⇔ aβ ∈ Bα).

Proof. (⇒) This follows by Lemma 3.8.
(⇐) This follows by Lemma 3.9.

Lemma 3.12. All V n
α are dense open in (Yα+1, Tα+1). Consequently , Vα

is dense Gδ in (Yα+1, Tα+1).

Proof. For (n, F ) ∈ p with p ∈ G, F ∩Xα+1 is open in Sα+1 and thus in
Tα+1. Also all On

α ∩Hm
α , m ∈ ω, are open in Tα+1. Hence V n

α is indeed open
in Yα+1.

Therefore it suffices to show that the V n
α are dense. Let F ∈ Tα+1 be

non-empty. We need to show V n
α ∩ F 6= ∅. Without loss of generality, we

may assume F ∩ Xα+1 ⊆ Pα or F ∩ Xα+1 ⊆ Oα. In the first case, we must
have F ∈ Sα+1, by definition of Tα+1. By further shrinking F if necessary,
we may assume F ∩ Xα+1 ⊆ Pn

α . By Lemma 3.10 and genericity, there is a
non-empty H ⊆ F , H ∈ Sα+1, such that H ∩Xα+1 ⊆ V n

α . Thus V n
α ∩F 6= ∅.

Therefore we may assume F ∩ Xα+1 ⊆ Oα. Then F = F ′ ∩
⋂

j<m H
nj
α

where F ′ ∈ Sα+1 with F ′ ∩ Xα+1 ⊆ Oα.
Work in the model Nα, and assume p ∈ P forces F ′ ∩

⋂

j<m Ḣ
nj
α 6= ∅.

By 3.3, F ′ =
⋂

j<m0
F s

βj
∩

⋂

j<m1
H

kj
γj with βj < α + 1 and γj < α. Without

loss of generality |s| ∈ I. Since F ′ ⊆ [s], we must have (nj , s
′) /∈ q for any

j < m, s′ ⊆ s and q ≤ p. (This means that for each such (nj , s
′) with

|s′| = iℓ ∈ I, either ℓ < nj or (nj , t) ∈ p for some t 6= s′ with |t| = iℓ
or s′↾(iℓ−1, iℓ) = 0 or (nj, aβ) ∈ p for some β with s′ ⊆ aβ . Otherwise
q = p ∪ {(nj, s

′)} ≤ p, a contradiction.)
Let s0 ⊇ s, |s0| ∈ I, be such that s0(i) = 0 for all i with |s| ≤ i < |s0|

and |s0| ≥ |s′| for all s′ with (nj , s
′) ∈ p for some j. By the definition of P,

p still forces [s0] ∩ F ′ ∩
⋂

j<m Ḣ
nj
α 6= ∅. (The point here is that no (nj, s

′)

with s′ ⊆ s0 and |s| < |s′| ≤ |s0| can belong to any q ≤ p.)
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Since On
α ⊆ Oα is open dense (in the topology Sα+1), we may find ∅ 6=

H ′ =
⋂

j<m2
F s1

βj
∩

⋂

j<m3
H

kj
γj ⊆ [s0] ∩ F ′ with H ′ ∩ Xα+1 ⊆ On

α where

m2 ≥ m0, m3 ≥ m1, and s0 ⊆ s1. Without loss of generality |s1| ∈ I. Now
strengthen p to q by adding appropriate conditions of the form (nj , s

′) with
s′ 6⊆ s1, |s

′| ∈ I, |s0| < |s′| ≤ |s1| so as to guarantee that (nj , s
′) /∈ r for any

j < m, s′ ⊆ s1 and r ≤ q. This means that q forces H ′ ∩
⋂

j<m Ḣ
nj
α 6= ∅.

So, in the generic extension, we have ∅ 6= H ′ ∩
⋂

j<m H
nj
α ∩ Yα+1 ⊆

F ∩ On
α ∩ Hα = F ∩ V n

α . This completes the proof of Lemma 3.12.

Corollary 3.13. Vα ∩ Pα ⊆ Uα ∩ Bα.

Proof. Clearly V n
α ∩Pα ⊆ Pn

α by definition of the forcing. Since
⋂

n∈ω Pn
α

⊆ Bα, it follows that Vα ∩Pα =
⋂

n∈ω(V n
α ∩Pα) ⊆ Bα. The definition of the

forcing also gives V n
α ∩ Pα ⊆ Un

α . Thus, Vα ∩ Pα ⊆ Uα.

Corollary 3.14. (Vα ∩ Oα) ∩ (Bα ∪ Uα) = ∅.

Proof. It is immediate from the definition that Vα ∩ Oα = (
⋂

n∈ω On
α) ∩

Hα ⊆ Hα. Since Uα = 2ω \ Hα, it follows that (Vα ∩ Oα) ∩ Uα = ∅. Also,
⋂

n∈ω On
α ∩ Bα = ∅ so (Vα ∩ Oα) ∩ Bα = ∅.

Corollary 3.15. Vα is dense Gδ in (Yα+1, Tα+1) such that for all x ∈
Vα, x ∈ Uα ⇔ x ∈ Bα.

Proof. This is immediate from Lemma 3.12 and Corollaries 3.13
and 3.14.

The point for having this result is that if we add x to Yα+1 by Cohen
forcing (e.g. if we add aα+1) then x belongs to Uα if and only if it belongs to
Bα. So we can hope that Corollary 3.11 also holds for β > α. However, for
this we need that the denseness of Vα is preserved along the construction.

Lemma 3.16. For all n ∈ ω, β < α, V n
β ∩ Yα is dense open in (Yα, Tα)

and V n
β ∩ Xα+1 is dense open in (Xα+1,Sα+1).

Proof. Fix β and n. The proof is by induction on α.

Basic step: α = β + 1. Then V n
β ∩ Yα = V n

β and the claim for Yα follows
from Lemma 3.12.

For Xα+1, argue as follows. Let s ∈ 2<ω and let F =
⋂

j<m0
F s

γj
∩

⋂

j<m1
H

nj

δj
6= ∅ be a basic clopen set in (Yα, Tα) where γj , δj < α (see 3.3).

Assume |s| ∈ I. We need to show that F ∩ F s
α ∩ V n

β ∩ Xα+1 6= ∅.

Work in the model Mα. Let p =
⋂

j<k0
F t

ǫj
∩

⋂

j<k1
H

lj
ζj

6= ∅ be a condition

in the Cohen forcing in the space (Yα, Tα). Assume |t| ∈ I. We need to find
a stronger condition q ≤ p forcing that F ∩ Ḟ s

α ∩ V n
β ∩ Ẋα+1 6= ∅.

If |s| ≥ |t| then let s0 = s. Otherwise, define s0 as follows. Extend s to
s0 with |s0| = |t| and s0(i) = 0 for all i with |s| ≤ i < |s0|. Notice that by
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definition of the F s
γj

and H
nj

δj
, we must have [s0] ∩

⋂

j<m0
F s

γj
∩

⋂

j<m1
H

nj

δj

6= ∅. That is,
⋂

j<m0
F s0

γj
∩

⋂

j<m1
H

nj

δj
is still basic open in (Yα, Tα).

Since V n
β ∩ Yα is dense open in Yα (Lemma 3.12), we may find ∅ 6= H =

⋂

j<m2
F s1

γj
∩

⋂

j<m3
H

nj

δj
⊆ [s0]∩F with H ∩Yα ⊆ V n

β ∩Yα where m2 ≥ m0,

m3 ≥ m1 and s0 ⊆ s1. Assume |s1| ∈ I.

Extend t to t1 with |t1|=|s1| such that t1(i) = 0 for all i with |t| ≤ i < |t1|.

Again by the definition of the F t
ǫj

and H
lj
ζj

, q = [t1] ∩ p =
⋂

j<k0
F t1

ǫj
∩

⋂

j<k1
H

lj
ζj

6= ∅ is a condition strengthening p. Clearly, q forces H ∩ Ḟ s1
α 6= ∅.

Since t1(i) = 0 for |t| ≤ i < |t1|, q also forces Ḟ s1
α ⊆ Ḟ s0

α . Furthermore, since
s0(i) = 0 for |s| ≤ i < |s0|, q forces Ḟ s0

α ⊆ Ḟ s
α.

So, in the generic extension, we have ∅ 6= H ∩ F s1
α ∩ Xα+1 ⊆ F ∩ F s

α ∩
V n

β ∩ Xα+1. This completes the basic step.

Induction step (successor): α = α0 + 1. First deal with Yα = Yα0+1. We
assume V n

β ∩ Xα is dense open in (Xα,Sα). Let F = F ′ ∩
⋂

j<m H
nj
α0

where

F ′ ∈ Sα. Work in the model Nα0
and repeat the second part of the argument

of the proof of Lemma 3.12 with On
α replaced by V n

β .

We leave the details to the reader.

The induction step for Xα+1 = Xα0+2 is like the basic step.

Induction step (limit): α is a limit ordinal. Then Xα = Yα =
⋂

γ<α Xγ =
⋂

γ<α Yγ . If F is a basic clopen in (Xα,Sα) then by construction there is
γ < α such that F is basic clopen in (Xγ ,Sγ). Thus, there is a basic clopen
H ⊆ F with ∅ 6= H ∩ Xγ ⊆ F ∩ V n

β ∩ Xγ by the induction hypothesis. Now
simply notice that H ∩ Xα 6= ∅ (see Lemma 3.5 and the comment after its
proof), so we are done.

This completes the proof of Lemma 3.16.

Corollary 3.17. ∀α, β < ω1 (aβ ∈ Uα ⇔ aβ ∈ Bα).

Proof. For β ≤ α this is simply Corollary 3.11. So assume β > α. Fix n.
By Lemma 3.16, V n

α ∩ Yβ is dense open in Yβ. Since aβ is Cohen-generic in
Yβ over Mβ , aβ ∈ V n

α follows. Thus, aβ ∈
⋂

n∈ω V n
α = Vα. By Corollary 3.15,

aβ ∈ Uα ⇔ aβ ∈ Bα.

Corollary 3.18. A = {aα : α < ω1} is a σ-set.

Proof. By Corollary 3.17, A ∩ Bα = A ∩ Uα for all α < ω1. Since for
every α < ω1, Uα is a Gδ set, we conclude that every Borel set is a relative
Gδ and we are done.

4. Generalizations. Theorem 2 can be generalized under the assump-
tion that a large enough fragment of Martin’s axiom MA holds. Say a set of
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reals X ⊆ 2ω is c-concentrated on Y ⊆ 2ω if for any open U ⊇ Y , we have
|X \ U | < c (see [6]).

Theorem 4.1. Assume MA(σ-centered). Then there is an infinite MAD
family which is c-concentrated on a countable subset of itself.

Sketch of proof. This is like the proof of Theorem 2 in Section 2, but we
need to replace the recursive construction of the aα by a forcing argument.

As before, we assume (⋆) for 〈an : n ∈ ω〉 and construct aα, α ≥ ω,
satisfying conditions (1) through (4). At stage α, we consider the p.o. R

which consists of pairs 〈s, X〉 where s ∈ 2<ω and X ⊆ {aβ : β < α} is finite,
ordered by 〈t, Y 〉 ≤ 〈s, X〉 if t ⊇ s, Y ⊇ X, and t(i) = 0 for all |s| ≤ i < |t|
with i ∈

⋃

X. This is the standard σ-centered forcing notion for adding a set
almost disjoint from all aβ , β < α. The arguments in the proof of Theorem 2
now translate to density arguments which show that, if the generic aα meets
all relevant dense sets, then it will satisfy conditions (1) through (4). Thus,
using MA(σ-centered), the construction can be carried out.

We do not know whether Theorem 1 can be generalized as well.

Conjecture 4.2. Assume MA(σ-centered). Then there is a MAD σ-
set.

The approach taken in Section 3 does not seem to generalize easily: if
α ≥ ω1, the spaces (Xα,Sα) and (Yα, Tα) would not be second-countable
(and thus not Polish) anymore, and while this does not affect much Sub-
sections 3.1 and 3.2 (Cohen forcing would have to be replaced by the σ-
centered partial order Q consisting of conditions of the form p =

⋂

j<m0
F s

βj
∩

⋂

j<m1
H

nj
γj 6= ∅, of course), it does affect the argument at the beginning of

Subsection 3.3: there we used the fact that Bα ∩ Xα+1 has the property of
Baire in the Polish space (Xα+1,Sα+1).

Also we do not know to what extent the assumption MA(σ-centered)
can be weakened in Theorem 4.1.
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