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Ω-stability for maps with nonwandering critical points

by

J. Delgado (Niterói), N. Romero (Barquisimeto),
A. Rovella (Montevideo) and F. Vilamajó (Terrasa)

Abstract. Sufficient conditions for a map having nonwandering critical points to
be Ω-stable are introduced. It is not known if these conditions are necessary, but they
are easily verified for all known examples of Ω-stable maps. Their necessity is shown in
dimension two. Examples are given of Axiom A maps that have no cycles but are not
Ω-stable.

1. Introduction. Let Endr(M) denote the set of Cr self mappings of
a compact manifold M endowed with the Cr topology. Denote by S(f) =
{x : Dfx is noninvertible} the set of critical points of a mapping f . Hyper-
bolic sets are defined here as for diffeomorphisms but with an additional
condition: the restriction of f to the set is either expanding or one-to-one.
Other definitions are often used by different authors, but this one is better
adapted to the study of stability; see the next section for a more complete
discussion. An endomorphism f is Axiom A if the set Ω(f) of nonwandering
points is hyperbolic and the set of periodic points is dense in Ω(f). For an
Axiom A map there exists a spectral decomposition of Ω(f) into basic sets,
so the no cycles condition makes sense also for endomorphisms satisfying
Axiom A. The problem of stability of endomorphisms is still far from being
well understood.

For maps f with S(f)∩Ω(f) = ∅ the following result holds: f is Axiom A

with no cycles if and only if it is Ω-stable. The sufficiency of the conditions
was proved by Przytycki [P1] in 1976, while the converse is due to Aoki,
Moriyasu and Sumi [AMS] in 2001.

Allowing the presence of nonwandering critical points, Ikeda proved in [I]
that if f is Axiom A and satisfies the no cycles condition, then f is Ω-inverse
limit stable, a weaker form of stability. Mañé and Pugh [MP] gave an exam-
ple of an Ω-stable map satisfying Ω(f)∩S(f) 6= ∅ persistently. However, as
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will be shown in Section 3, one cannot expect Ω-stability for every Axiom A
map without cycles. In this article a condition will be presented which, when
imposed on those basic sets of Ω(f) that contain critical points, implies the
Ω-stability of f .

Definition 1. Let Λ be a compact invariant set for f ∈ Endr(M),
r ≥ 1. Say that f satisfies condition C in Λ if there exists a continuous
invariant splitting TΛM = Ess ⊕ Ec such that the following holds:

(1) There exist constants K > 0 and λ ∈ (0, 1) such that

‖Dfn
x (v)‖ ≤ Kλn and

‖Dfn
x (v)‖

‖Dfn
x (w)‖

≤ Kλn,

for every n > 0, x ∈ Λ and unit vectors v ∈ Ess and w ∈ Ec with
‖Dfn

x (w)‖ 6= 0.
(2) There exists ε > 0 such that Λ ∩ W ss

ε (x) = {x} for every x ∈ Λ.

Some comments are in order here. If the set Λ is hyperbolic for f , it
is known that a continuous splitting TΛM = Es ⊕ Eu already exists. The
first condition obviously implies that KerDfx ⊂ Ess

x ⊂ Es
x for every x ∈ Λ.

In this case, the central direction may contain part of Es, but Ess cannot
contain part of Eu by the first assertion of condition (1). Whenever the first
condition of the definition holds, the strong stable manifolds exist; these
were denoted W ss

ε (x) in the second condition. If the set Λ does not contain
critical points, then condition C is irrelevant to our purposes.

The main result of this paper is the following theorem, which will be
proved in Section 3:

Theorem 1. If f is Axiom A, satisfies the no cycle condition and each

basic set containing critical points satisfies condition C, then f is C1 Ω-

stable.

These hypotheses are satisfied by the Ω-stable maps given by Mañé and
Pugh in [MP]. It is still not known if these conditions are also necessary
for Ω-stability when the dimension of M is greater than two. In Section 2
we give some preliminary definitions and three examples: the first one is
taken from [P2], it serves to explain the definition of a hyperbolic set for
an endomorphism, and illustrates the theorems on Ω-inverse stability. The
second one is a sketch of the example given in [MP] and mentioned above.
The third one gives an Axiom A map without cycles that is not Ω-stable
due to the presence of critical points, answering negatively the following
question posed in [I]: does Axiom A and no cycles imply Ω-stability?

In Section 3 the proof of the theorem is given and in Section 4 it is shown
that if M has dimension 2, then the C1 Ω-stability of an Axiom A map f
implies that Λ ∩ S(f) = ∅ if Λ is a basic piece of Ω(f) with infinitely many
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points. The necessity of condition C for C1 Ω-stability follows trivially in
the case that M is two-dimensional.

We want to thank Mart́ın Sambarino for useful suggestions and com-
ments.

2. Preliminaries. The following is the definition of a hyperbolic set for
an endomorphism f ∈ Endr(M); it was introduced by Mañé in [M].

Definition 2. Let Λ be a compact set such that f(Λ) = Λ. Then Λ is
called hyperbolic for f if there exists a continuous splitting TΛM = Es ⊕Eu

such that:

(1) Df(Es) ⊂ Es and Df(Eu) = Eu.
(2) Df uniformly contracts vectors in Es and uniformly expands vectors

in Eu.
(3) If x, y ∈ Λ and f(x) = f(y) = z, then Es

z = {0}.

The first difference with the definition of a hyperbolic set for a diffeomor-
phism is that Dfx(Es

x) may be strictly contained in Es
f(x) (this will certainly

occur when x is a critical point). The main difference, however, is the third
condition. For example, for transitive Λ, it implies that either the map is
injective in Λ or Es

x = {0} for every x ∈ Λ. A hyperbolic set satisfying this
last condition is called quasi-expanding . The first example below will show
that a map satisfying items (1) and (2) of the above definition but not (3)
is not Ω-stable. The main reason why condition (3) was included becomes
clear from the work of Przytycki in [P1] and [P2]. The definition he gave
of a hyperbolic set does not contain condition (3), and then the unstable
direction of a point x could depend on the preorbits of the point. The defi-
nition of a hyperbolic set in [P1] is the following (as in [I], it will be called
P-hyperbolic here):

Definition 3. A set Λ is P-hyperbolic for f if it is compact, invariant,
and for every f -orbit {xn : n ∈ Z} ⊂ Λ there exists an invariant decompo-
sition of the tangent space at the point x0:

Tx0
M = Es

{xn}
⊕ Eu

{xn}

where Es
{xn}

is uniformly contracted, and Eu
{xn}

uniformly expanded.

Here the invariance of the decomposition means that

Dfx0
(Es,u

{xn}
) ⊂ Es,u

{f(xn)} ⊂ Tf(x0)M.

It is easily verified that if Λ is a transitive P-hyperbolic set that satisfies the
third condition in the definition of a hyperbolic set, then Λ is hyperbolic.

Przytycki also showed that this kind of hyperbolicity implies inverse
stability (under the assumption S(f) ∩ Ω(f) = ∅) and also the existence
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of invariant manifolds (the unstable manifold of a point x depends on the
preorbit).

Definition 4. A map f ∈ Endr(M) satisfies Axiom A if Ω(f) is hyper-
bolic and the set of periodic points of f is dense in Ω(f).

Basic sets and cycles can be defined as for the case of diffeomorphisms.
A hyperbolic set Λ is called a basic set of f provided it is transitive and
locally maximal (that is,

⋂
n∈Z

fn(U) = Λ for some neighborhood U of Λ).
The homoclinic classes are defined exactly as for the case of diffeomorphisms.
For Axiom A maps the nonwandering set is a finite union of basic sets, each
of which is the union of a homoclinic class and its future iterates (which are
finite in number because the set of homoclinic classes is finite). Also, as in
the case of diffeomorphisms, if a hyperbolic set (or P-hyperbolic set) Λ has
a dense subset of periodic points, then it has a local product structure; see
Section 2 in [I] and Proposition 3.9 in [P1].

For an invariant set Λ of a map f , the inverse limit set Λ̃f of Λ with
respect to f is defined as the set of sequences {xn}n∈Z ⊂ Λ such that

f(xn) = xn+1 for every n. If Λ̃f is given the product topology, the shift map

σf is a homeomorphism of Λ̃f , and the map {xn} 7→ x0 is a semiconjugacy
between σ and f . Finally, f is called Cr Ω-inverse stable if there exists a
neighborhood U of f such that σg restricted to the inverse limit set of Ω(g)
is conjugate to σf restricted to the inverse limit set of Ω(f).

We now state some known theorems about sufficient conditions for Ω-
stability. The first one is taken from the work of Przytycki and the second
is due to Ikeda.

Theorem 2 (Przytycki [P1], [P2]). If Ω(f) is P-hyperbolic, the periodic

points of f are dense in Ω(f), f has no critical points and Ω(f) has no

cycles, then:

(a) f is Ω-inverse stable.

(b) f is Ω-stable if and only if Ω(f) is hyperbolic.

Theorem 3 (Ikeda [I]). If f is Axiom A and there are no cycles, then

f is Ω-inverse stable.

The theorem stated in the introduction is partially based on the proofs
of these results and generalizes both.

2.1. Examples

Example 1. Let f be the map defined in S1 × R by f(z, y) = (z2, ay),

where a ∈ R has absolute value less than 1. Then the set Λ = S1 × {0}
is compact, invariant, and satisfies the first and second conditions in the
definition of a hyperbolic set, but does not satisfy the third one (Λ is P-
hyperbolic but not hyperbolic). The reason why this set is not included in the
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definition of hyperbolic is that it is not stable under perturbations: indeed,
there exist maps arbitrarily close to f for which there is no continuous
splitting satisfying (1) and (2) in the definition above. In fact, if ε is small,
then for every g in a neighborhood of f we have g(A) ⊂ A, where A =
S1 × (−ε, ε). There exists g close to f and n > 0 such that for some z0,
the intersection {(z, y) : z = z0} ∩ gn(A) is not connected. For example, let
g(z, y) = (z2, h(z, y)), and suppose that h satisfies the following conditions:

1. |h(z, y)| ≤ ε0 < ε for every |y| < ε.

2. h(−1, y) < 0 for every |y| < ε.

3. h(1, y) > 0 for every |y| < ε.

If we let H0 = {(eiθ, y) ∈ A : 0 ≤ θ ≤ π} and H1 = {(eiθ, y) ∈ A :
π ≤ θ ≤ 2π}, then g(H0) and g(H1) are both homeomorphic to an annu-
lus and have intersection with nonempty interior; however, g(H0) ∩ g(H1)
∩ {z = 1} = ∅. This implies that the set Λ(g) =

⋂
k≥0 gk(A) is not a simple

closed curve; it is connected and its inverse limit is still a solenoid, as is the
case for f , according to Theorem 2 above. But the restriction of g to Λ(g)
is not injective. Therefore it is not possible to define a uniquely determined
unstable direction at each point; actually, there exists one unstable direction
for each distinct preorbit of a point. See the final part of the article of Przy-
tycki [P2] where this and other examples are studied. This kind of examples
appeared in recent articles, where the solenoidal attractors are considered
from the ergodic [T] and topological [BKR] viewpoints.

Example 2. Let M be the product of a torus T and a circle S1 and
define f in M by f(x, y) = (Ax, h(x, y)), where A is an Anosov diffeomor-
phism and hx(y) = h(x, y) satisfies the following conditions:

(1) For every x ∈ T , hx has an attracting fixed point at 1; there exist
x0, x1 ∈ T such that h′

x0
(1) > 0 and h′

x1
(1) < 0.

(2) For every x ∈ T , the point −1 is a repelling fixed point of hx.
(3) The derivative of hx at −1 is greater than any possible expansion of

A in T , and the derivative of hx at 1 is less than the contraction of
A in T .

(4) For any positive A-orbit xn in T and any y 6= −1 in S1 the sequence
zn defined by z0 = y and zn+1 = hxn

(zn) converges to 1.

It is clear that such a function h can be constructed of class C∞. Then the
following facts are true:

• Conditions (3) and (4) above imply that Ω(f) = ω−1 ∪ ω1, where
ωi = T × {i} are the basic sets of Ω(f).

• ω1 contains critical points of f , because property (1) of h implies that
there exists z ∈ T such that h′

z(1) = 0.
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• Condition C is satisfied because ω−1 does not contain critical points
of f . For every (x, y) ∈ ω1 the vector (0, 1), transverse to the sub-
manifold ω1, generates a subspace Ess

(x,y) as in Definition 1.

Therefore Theorem 1 implies that f is Ω-stable. A direct proof is also
very simple (see [MP]). Moreover, if g is a small perturbation of f , then
there exists a submanifold N close to ω1 that is a basic set of g and contains
critical points: indeed, the vector (0, 1) is transverse to N , and the coordinate
of Dgz(0, 1) in the direction of (0, 1) is sometimes positive and sometimes
negative. This is the example given in [MP]. It follows that S(f)∩Ω(f) 6= ∅
persistently.

Example 3. In this example we construct a horseshoe with singular-
ities. A usual horseshoe can be defined in the square Q = [0, 1]2, having the
form (x/3, 3y) if y ≤ 1/3, (1 − x/3, 3(1 − y)) if 2/3 ≤ y ≤ 1 and such that
the image of 1/3 ≤ y ≤ 2/3 is disjoint from Q.

Define f as above but instead of x/3 put a function h(x) = x2/3 for y ≤
1/3 and 1− x2/3 for 2/3 ≤ y ≤ 1. Then the map is extended to the sphere,
in such a way that the set of critical points is a line containing the segment
{(x, y) : x = 0, 0 ≤ y ≤ 1}. As for the case of the usual horseshoe, the
nonwandering set is a Cantor set Λ (the horseshoe) contained in Q, plus two
fixed points, one of them attracting and the other one repelling (observe that
the points in Ω have preimages outside Q, but these are wandering points).
Now perturb f in such a way that the new map g is equal to f outside a
neighborhood of the origin and has the form ga(x, y) = (ha(x), 3y) where
ha(x) = x2/3 − ax with a > 0 in a small neighborhood of 0. The origin 0 is
still a fixed point of ga and it is clear that the local invariant manifolds at 0
remain unchanged. Therefore the point (1, 0) is still homoclinic for every
perturbation: it belongs to the stable and unstable manifolds of the origin.
Let xn(a) be such that gn

a (1, 0) = (xn(a), 0) for every n > 0, where xn(a)
converges to 0 (uniformly in a) as n → ∞. Finally, given a small, choose n
so that xn(a) < 3a and then fix n and diminish a to obtain xn(a) = 3a. It
follows that (3a, 0) ∈ Ω(ga), and ga(3a, 0) = (0, 0), so the restriction of ga to
this basic piece is not injective, therefore ga and f cannot be Ω-conjugate.
The reason why this map f works as an example of an Axiom A map without
cycles that is not Ω-stable is that the kernel of the differential of f at the
critical point at the origin cannot be made disjoint from the directions X−Y
for X and Y in Ω(f). This is exactly what condition C persistently avoids.

3. Proof of the theorem. Begin with a mapping f that satisfies the
hypothesis of the theorem. As f is Axiom A, there exists a spectral decom-
position of Ω(f) into a finite number of basic sets, say Ω(f) =

⋃
Λj . An

important fact that will be used in the proof is that there exists a C1 neigh-
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borhood U of f such that every Λj has a continuation in U . This is proved
as for the case of diffeomorphisms. In addition, the no cycles condition im-
plies that the union of these sets constitutes the whole nonwandering set of
the perturbation. Still more important is the fact that every continuation is
P-hyperbolic. This was proved by Ikeda (cf. [I, Theorem 2.2]). The precise
formulation is the following:

Proposition 1. Given an Axiom A map f ∈ Endr(M) with spectral

decomposition Ω(f) =
⋃

Λj , there exist a neighborhood U of f in Endr(M)
and , for every j, a continuous mapping ϕj : U → C0(Λj , M) such that :

(1) ϕj(f) is the inclusion.

(2) If Λj(g) = ϕj(g)(Λj), then gϕj(g) = ϕj(g)f on Λj , so ϕj(g) is a

semiconjugacy from Λj onto Λj(g).
(3) The C0 distance from ϕj(g) to the inclusion goes to zero as g con-

verges to f in the C0 topology.

(4) The nonwandering set of g is the union of the sets Λj(g).
(5) For each j, the set Λj(g) is P-hyperbolic for g.

The main difference with the case of diffeomorphisms is that in the latter
case ϕj(g) is one-to-one and Λj(g) is hyperbolic for g. This is not the case for
endomorphisms as Example 3 of the previous section shows. For diffeomor-
phisms the ϕj establish the conjugacy realizing the Ω-stability of f . Ikeda
used these semiconjugacies to obtain true conjugacies between the maps
induced by f and g in the respective inverse limit sets of Λj and Λj(g).

As already explained, if f is Axiom A, either every basic set Λ is quasi
expanding or the restriction of f to Λ is injective. In the first case it is clear
that Λ does not contain critical points and that the restriction of f to Λ is
conjugate to the restriction of g to Λ(g). So assume from now on that the
restriction of f to Λ is injective and that f satisfies condition C on Λ. The
next, fundamental step in the proof of the theorem is the following:

Proposition 2. If Λ is a basic set for f and satisfies condition C , then

there exists a C1 neighborhood of f such that every g in that neighborhood

is injective in Λ(g).

Using these two propositions it is easy to prove Theorem 1:

Proof of Theorem 1. If g is a small C1 perturbation of f then by Propo-
sition 1, Ω(g) =

⋃
Λj(g). If Λj = Λj(f) is expanding, then f |Λj is conjugate

to g|Λj(g). If Λj is not expanding then by Proposition 2, g is injective in

Λj(g). So the inverse limit of g in Λ̃j(g) is trivially conjugate to g|Λj(g).
From a theorem of Ikeda (Theorem 3 in Section 2) it follows that the in-
verse limits of f and g in Λj(f) and Λj(g) are conjugate. Thus f |Λj(f) is
conjugate to g|Λj(g).
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It remains to prove Proposition 2. The following sequence of results is
needed to prove the local injectivity of g on Λ(g), which will be finally
achieved in Lemma 4 below; using this, it is easily shown that g is injective
in Λ(g).

The first result is a generalization of the inverse function theorem in the
neighborhood of a critical point x. The question is: for which pairs of points
y and z close to x is it true that F (y) = F (z)?

Definition 5. A subset C of R
n is a cone if tv ∈ C for every v ∈ C

and t ∈ R. The interior of a cone is defined as the union of its topological
interior and the origin, so that the interior of a cone is also a cone. Denote
by int(C) the interior of the cone C.

Lemma 1. Let F : R
n → R

n be a C1 map having a critical point at 0.
Given a closed cone C containing the kernel of DF at 0 in its interior , there

exists some δ0 > 0 such that :

(a) For points y, z in the ball of center 0 and radius δ0, the condition

F (y) = F (z) implies that y − z ∈ C.

(b) If , in addition, the closure of DF−1
0 (C) is contained in int(C) and

F (0) = 0, then δ0 can be chosen to satisfy also

F−1(C) ∩ B(0; δ0) ⊂ int(C).

Proof. Observe first that given C there exists α > 0 such that

(1) ‖DF0(v)‖ ≥ α‖v‖ whenever v /∈ C.

Next, since F is of class C1 there exists a number δ0 > 0 such that, for
every y, z ∈ B(0; δ0),

(2) ‖F (y) − F (z) − DFz(y − z)‖ ≤
α

4
‖y − z‖,

and for any vector v,

(3) ‖DFy(v) − DFz(v)‖ ≤
α

4
‖v‖.

Now let y, z ∈ B(0; δ0); from (2) and (3) it follows that

‖F (y) − F (z) − DF0(y − z)‖ ≤ ‖F (y) − F (z) − DFz(y − z)‖

+ ‖DFz(y − z) − DF0(y − z)‖

≤
α

2
‖y − z‖.

This together with (1) implies that if y − z /∈ C, then

‖F (y)−F (z)‖ ≥ ‖DF0(y − z)‖− ‖F (y)−F (z)−DF0(y − z)‖ ≥
α

2
‖y − z‖,

which clearly implies F (y) 6= F (z).
To prove part (b) observe that if a C1 curve α in R

n such that α(0) = 0
satisfies α′(t) /∈ C for every t > 0, then α(t) /∈ C for every t > 0. Suppose
that V /∈ int(C) has small norm ‖V ‖ < δ0. Observe that by hypothesis



Ω-stability for maps with nonwandering critical points 31

DF0(V ) /∈ C; moreover, the distance from DF0(V )/‖DF0(V )‖ to the cone
is greater than a positive constant ̺0 independent of V . The lemma will be
proved if we show that F (V ) /∈ int(C).

Consider the curve α(t) = F (tV ). Observe that given ̺ > 0 there exists
δ0 such that

(4) ‖DFz(W ) − DF0(W )‖ ≤ ̺‖W‖

for z ∈ B(0; δ0) and any vector W . For every vector w 6= 0 we denote by
n(w) the unit vector w/‖w‖. An easy calculation using (1), (3) and (4) shows
that

‖n(DF0(V )) − n(DFtV (V ))‖ ≤
8̺

3α2
.

So take ̺ < 3α2̺0/8 and the corresponding δ0 to obtain α′(t) = DFtV (V ) /∈
C for every t > 0, which implies that F (V ) = α(1) /∈ C, as claimed.

The next step in the proof of Proposition 2 is to show that every C1

small perturbation g of f also satisfies condition C when restricted to Λ(g).
Note that the existence of strong stable directions is an open C1 condition;
this implies that g|Λ(g) satisfies the domination condition.

The construction of invariant manifolds can be done by small changes
of the techniques used for the case of diffeomorphisms (see for example [P1,
Section 2] or [I, Section 2.3]). However, just for further reference, we will
now describe one of the possible constructions of the strong stable mani-
folds. Consider a P-hyperbolic set Λ(g) of g such that the first condition of
Definition 1 is satisfied on Λ (that is, there exists a dominating strong stable
direction). The local strong stable set of a point x ∈ Λ(g) is defined as the
set of points y in an ε-neighborhood of x such that the distance between
the iterates of x and y decreases exponentially with a rate very close to the
λ of the strong contraction condition in Definition 1.

Denote by expx the exponential map from TxM to M . There exists some
ε0 > 0 such that, for every x ∈ M , the map expx is a diffeomorphism from
the ball B(0; ε0) in TxM to B(x; ε0) in M .

Let {Cx ⊂ TxM : x ∈ Λ} be a continuous field of closed cones such that
each Cx contains Ess

x in its interior and Cx ∩ Ec
x = {0}. Define

C̃x = expx(Cx) and int(C̃x) = expx(int(Cx)).

For x in Λ define

(5) C̃0
x(ε0) = expx(Cx ∩ B(0; ε0)) ⊂ B(x; ε0)

and for m > 0, by induction,

(6) C̃m
x (ε0) = g−1(C̃m−1

g(x) (ε0)) ∩ B(x; ε0).

It is clear that the domination condition (together with the fact that Λ(g)
is compact) implies that there exists an m0 such that Dg−m

x (Cgm(x)) is con-
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tained in the interior of Cx for every m ≥ m0 and x ∈ Λ(g) (and converges to
Ess

x as m → ∞). Therefore the same property holds in the ambient manifold;
indeed, part (b) of Lemma 1 implies that for m = m0,

(7) C̃m
x (ε0) ⊂ int(C̃x).

Then (7) holds for every m = km0, k > 0, and also for every m ≥ k0m0 for

some positive k0, by equicontinuity of Dgj
x, j ∈ {1, . . . , m0 − 1}, x ∈ Λ. The

intersection of these sets gives the local strong stable set of x:

(8)
⋂

m≥0

C̃m
x (ε0) = W ss

ε0
(x) ∩ B(x; ε0),

and it can be shown that the local strong stable set is a manifold tangent
to Ess

x at x.
Note also that by the construction of an adapted Riemannian metric,

one can suppose without loss of generality that m0 = 1.

Remark 1. For ε0 defined above, note that by item (3) of Proposition 1,
there exists some positive constant δ such that d(x, y) ≥ ε0 implies that
d(g(x), g(y)) ≥ δ, whenever x and y are in Λ(g). This is clear since the same
holds for f . When Λ(g) is a P-hyperbolic set of g, the restriction of g to
Λ(g) is expansive, in the sense that there exists some positive constant δ0

such that for any two whole orbits {xn} and {yn} of g in Λ(g), there exists
some n such that d(xn, yn) > δ0. Obviously one can take δ = δ0. See [P1]
and [I]. Such a δ is called a constant of expansivity .

Now observe that for any two whole orbits as above such that y0 ∈
W s

ε0
(x0; g), there exists a nonpositive integer n such that d(xn, yn) ∈ (δ, ε0).

Indeed, if d(x0, y0) < δ, then the same holds for future iterates, so there
exists a first negative index n such that d(xn, yn) > δ. Hence d(xn+1, yn+1) ≤
δ, which implies that d(xn, yn) < ε0, as claimed.

Lemma 2. Suppose that f satisfies condition C in Λ. Then there exists

a C1 neighborhood U of f such that for every g ∈ U , the continuation Λ(g)
of Λ has a well defined strong contracting direction Ess

x (g). The local strong

stable manifold of any point x ∈ Λ(g) intersects Λ(g) only at {x}. In other

words, g satisfies condition C in Λ(g).

Proof. It remains to prove the last assertion of the lemma; suppose by
contradiction that there exist a number δ > 0 sequences {xn}, {yn} of points
and {gn} of maps such that xn, yn ∈ Λ(gn) for every n > 0, yn ∈ W ss

ε (xn; gn),
gn approaches f and d(xn, yn) ≥ δ for every n. Passing to subsequences,
one can suppose that xn → x, yn → y and gn → f , thus arriving at a
contradiction because y must belong to W ss

ε (x; f) ∩ Λ and x 6= y.

Adapting the results of Przytycki ([P1, Section 2]), the local stable mani-
folds are defined and unique in Λ(g). Let x, y ∈ Λ(g) be such that x ∈ W s

ε (y).
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Then d(gn(x), gn(y)) decreases exponentially; moreover, it decreases more
in the strong stable direction than in the central one. This will be precisely
stated below.

Let there be given a continuous family {Cx : x ∈ Λ(g)} of closed cones,
each containing Ess

x in its interior and intersecting Ec
x only at the origin.

Lemma 3. There exists some δ1 > 0 such that if x, y ∈ Λ(g) and

d(x, y) < δ1, then y /∈ C̃0
x(ε0).

Proof. On the contrary, assume that there exist sequences {xn} and

{yn} in Λ(g) such that yn ∈ C̃0
xn

(ε0) for every n > 0 and d(xn, yn) → 0.
By the local product structure it can also be assumed that yn ∈ W s

ε (xn).
Moreover, taking suitable preimages as in Remark 1, it follows that there
exist sequences of positive integers mn annd points xmn

n and ymn

n such that

gmn(xmn

n ) = xn, gmn(ymn

n ) = yn, δ ≤ d(xmn

n , ymn

n ) ≤ ε,

where mn is minimal with this property.
Observe that ymn

n ∈ W s
ε (xmn

n ). Moreover, the assumption yn ∈ C̃0
xn

(ε0)
implies that

(9) ymn

n ∈ C̃mn

x
mn

n

(ε0) ⊂ C̃0
x

mn

n

(ε0).

Let x (resp. y) be a limit point of the sequence xmn

n (resp. ymn

n ).

If y /∈ C̃k
x(ε0) for some k > 0, then ymn

n /∈ C̃k
x

mn

n

(ε0), which contradicts (9)

if mn > k. Consequently, y ∈ C̃k
x(ε0) for every k > 0, which implies, by (8),

that y ∈ W ss
ε (x) ∩ B(x; ε0), and this contradicts condition C.

Finally, we obtain the local injectivity of g restricted to Λ(g) at x:

Lemma 4. Let g be a C1 perturbation of f as above. If x ∈ Λ(g), then

there exists a neighborhood U of x such that the restriction of g to Λ(g)∩U
is injective.

Proof. By taking local charts, assume that U is a subset of R
n and x = 0.

Then there exists a cone C such that C − {y} ⊂ C̃y for every y ∈ U ∩ Λ(g).
By Lemma 3, x − y /∈ C if x, y ∈ Λ(g) and d(x, y) < δ1. Hence if U is small,
then Lemma 1(a) implies that g(x) 6= g(y).

Proof of Proposition 2. Since g restricted to Λ(g) is locally injective,
and since g is a C1 perturbation (indeed C0 is sufficient) of an injective
map in the compact set Λ, it follows that g is injective in Λ(g). This proves
Proposition 2 and Theorem 1.

4. Dimension two. This section is devoted to proving the following:

Theorem 4. If M is two-dimensional , and f ∈ Endr(M) (r ≥ 1) is

an Axiom A map with no cycles, then f is C1Ω-stable if and only if any

infinite basic piece of Ω is critical point free.
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Observe that condition C is trivially necessary for C1 Ω-stability in di-
mension two. If a C1 Ω-stable map f has critical nonwandering points, then
these points are isolated in Ω(f) and hence all of them are periodic points.

Proof of Theorem 4. The sufficiency is a consequence of Theorem 1.
Beginning the proof of the other direction, assume that Λ is a hyperbolic
basic set with infinitely many points for an Axiom A map f and there
exists a critical point z0 ∈ Λ. Since z0 is a critical point, Λ cannot be
quasi-expanding, so the restriction of f to Λ is injective. On the other hand,
as Λ is infinite, the dimensions of Es and Eu are both 1. The proof of the
theorem will be completed if a small perturbation g of f can be found with
the property that the restriction of g to Λ(g) is not injective: this implies
that f is not C1 Ω-stable. So fix U , a C1 neighborhood of f .

We claim that there exists g ∈ U having a critical periodic point. This
is a very particular case of Franks’ lemma (see [F]). Let ε > 0 be such that
every g that is ε-C1 close to f belongs to U . The periodic points of f are
dense in Λ, so there exists a periodic point p of f , close enough to z0, such
that ‖Dfp(e)‖ < ε for some unit vector e. Without changing the orbit of p
one can produce an ε-C1 perturbation g of f such that Dgp(e) = 0.

Indeed, let V be a neighborhood of p disjoint from the future orbit of p.
Choose coordinates z = (x, y) in V such that p = 0, V = B(0; δ), e = ∂/∂x
and define g(z) = f(z) − ̺(x)Df0(e), where ̺ : R → R is a C1 function
satisfying ̺′(0) = 1, ̺(0) = 0, |̺′(x)| ≤ 1 for every (x, y) ∈ V , and ̺(x) = 0
for every |x| ≥ δ. Then g(0) = f(0), g(x) = f(x) outside V , Dg0(e) = 0,
and g is ε-C1 close to f in V . This implies the claim.

Therefore it is no loss of generality to begin with an f having a critical
periodic point p in Λ. The stable manifold W s(p) is dense in Λ. Since Λ is
an infinite set and f is injective in Λ, it follows that W s(p) must intersect Λ
in some other points (other than p). Therefore there exist ε > 0 such that
W s

ε (p) contains points homoclinic to p. This cannot be destroyed by small
perturbations. The conditions used in Example 3 of Section 2 are present in
this general case:

1. The restriction of f to the local stable manifold of p is non-injective
(or can be a made non-injective by a small perturbation).

2. The intersection of this local stable manifold with Λ contains more
than the point p, and this is persistent.

To apply the reasoning of Example 3, first consider an iterate of f such
that p is its fixed point; this does not represent any extra assumption since
the following perturbations have arbitrarily small support. Take local coor-
dinates such that p = 0, assume that the local stable manifold of 0 is the
axis y = 0 and that the horizontal foliation is f -invariant; it follows that
f(x, y) = (f1(x), f2(x, y)). Only f1 will be perturbed. Clearly f ′

1(0) = 0;
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perturb first f1 so that f ′
1 is injective in a small neighborhood of 0. This

implies that f1 is not injective near 0. Assume for example that f ′
1 is in-

creasing there. Now let ha(x) = f1(x) − ax, a > 0. Note that ha(0) = f1(0)
for every a and let ca be the critical point of ha. It is easy to see that ca is
well defined, positive and depends continuously on a. As h′

a is injective close
to 0, there exists, for every a, a point xa such that ha(xa) = ha(0). As in
Example 3, there exists some value of a such that a homoclinic point of the
map ga(x, y) = (ha(x), f2(x, y)) has the same image as 0. This shows that
ga cannot be conjugate to f , and finishes the proof of the theorem.
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