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Distortion bounds for C
2+η unimodal mapsbyMike Todd (Surrey)

Abstra
t. We obtain estimates for derivative and 
ross-ratio distortion for C2+η (any
η > 0) unimodal maps with non-�at 
riti
al points. We do not require any �S
hwarzian-like� 
ondition.For two intervals J ⊂ T , the 
ross-ratio is de�ned as the value

B(T, J) :=
|T | |J |

|L| |R|where L, R are the left and right 
onne
ted 
omponents of T \ J respe
tively. For aninterval map g su
h that gT : T → R is a di�eomorphism, we 
onsider the 
ross-ratiodistortion to be
B(g, T, J) :=

B(g(T ), g(J))

B(T, J)
.We prove that for all 0 < K < 1 there exists some interval I0 around the 
riti
al pointsu
h that for any intervals J ⊂ T , if fn|T is a di�eomorphism and fn(T ) ⊂ I0 then

B(fn
, T, J) > K.Then the distortion of derivatives of fn|J 
an be estimated with the Koebe lemma in termsof K and B(fn(T ), fn(J)). This tool is 
ommonly used to study topologi
al, geometri
and ergodi
 properties of f . Our result extends one of Kozlovski.1. Introdu
tion. In order to understand the long term behaviour ofa smooth dynami
al system f : X → X we must 
onsider iterates of themap. It is useful to know how di�erently high iterates of the map fn a
t onnearby points. For example we 
an try to estimate how wild the derivativeof iterates of the map is: we 
an 
onsider the distortion Dfn(x)

Dfn(y) for x, y insome small interval J where fn|J is a di�eomorphism. For one-dimensionalmaps, the Koebe lemma is a tool we use to estimate this. Noti
e that thisdistortion 
an be rather wild when f has 
riti
al points.An important 
ondition we must assume in order to apply the Koebelemma is that the map fn must in
rease 
ross-ratios. The type of 
ross-ratio2000 Mathemati
s Subje
t Classi�
ation: Primary 37E05.Key words and phrases: unimodal map, 
ross-ratio distortion.[37℄



38 M. Toddwe use most is de�ned as follows. For two intervals J ⊂ T , the 
ross-ratio isde�ned as the value
B(T, J) :=

|T | |J |
|L| |R|where L,R are the left and right 
onne
ted 
omponents of T \J respe
tively.For an interval map g su
h that gT : T → R is a di�eomorphism, the mainmeasure of 
ross-ratio distortion we use is given by

B(g, T, J) :=
B(g(T ), g(J))

B(T, J)
.If we know that B(fn, T ∗, J∗) ≥ K > 0 for any J∗ ⊂ T ∗ ⊂ T then we haveuniform bounds on Dfn(x)

Dfn(y) for x, y ∈ J depending onK and B(fn(T ), fn(J)).So we are able to estimate the distortion of the derivative of fn using infor-mation on the distortion of the 
ross-ratios.A 
lassi
al way of gaining information about the dynami
s of an intervalmap f : [0, 1] → [0, 1] with a 
riti
al point is to take a �rst return map tosome well 
hosen interval I. If this map has some di�eomorphi
 bran
hes,we 
an estimate how well or how badly the derivatives behave on bran
hesusing the Koebe lemma as above. This method is often used to get informa-tion on the geometry and topology of the map and its iterates (see [MS℄).This type of approa
h is also applied when 
onsidering the ergodi
 prop-erties of one-dimensional maps. Often instead of �rst return maps, 
ertainindu
ing s
hemes are applied in these 
ases (see again [MS℄). The Koebelemma allows us to show that the indu
ing s
hemes are expansive, and theFolklore Theorem 
an then be used to derive ergodi
 absolutely 
ontinuous
f -invariant measures.In order to apply the Koebe lemma to fn|T we need a lower bound on
ross-ratio distortion of fn|T . In fa
t, a lower bound K = 1 is obtainedwhenever f is C3 and has negative S
hwarzian derivative, that is,

Sf :=
D3f

Df
− 3

2

(
D2f

Df

)2

is negative wherever it is well de�ned. For appli
ations it is not so importantthat f have negative S
hwarzian, just that some iterate of f has negativeS
hwarzian on some small intervals. Kozlovski showed [K2℄ that for any
C3 unimodal map with non-�at 
riti
al point (see the next se
tion), if Iis a small enough neighbourhood of the 
riti
al point and fn(x) ∈ I then
Sfn+1(x) < 0. Therefore, for most pra
ti
al purposes, for example where�rst return maps or indu
ing s
hemes are used to gain information about thedynami
s, it is unne
essary to �nd the sign of the S
hwarzian derivative aslong as the 
riti
al point is non-�at. Moreover, this result allowed Kozlovskito prove the following, a key tool in the proof of [K3℄.



Distortion bounds for C2+η unimodal maps 39Theorem 1.1. Suppose that f is a C3 unimodal map with non-�at 
rit-i
al point whose iterates do not 
onverge to a periodi
 attra
tor. Then forany 0 < K < 1, there is an interval V around the 
riti
al point su
h that if ,for an interval T and some n > 0,
• fn|T is monotone,
• ea
h interval from the orbit {T, f(T ), . . . , fn(T )} is 
ontained in thedomain of the �rst entry map to V ,then

B(fn, T, J) > Kwhere J is any subinterval of T .This means that the Koebe lemma 
an be applied to fn to get estimateson the distortion of derivatives whi
h only depend on B(fn(T ), fn(J)) (for�rst return maps or indu
ed maps this quantity is bounded whenever thebran
hes have a �uniform extension�). These results were extended to C3multimodal maps with non-�at 
riti
al points in [SV℄. Also, for C3 unimodalmaps with non-�at 
riti
al point, it is shown in [GSS℄ that an analyti
 
oor-dinate 
hange 
an 
reate a map whi
h has �rst return maps with negativeS
hwarzian.So how ne
essary is the negative S
hwarzian 
ondition to prove dynami
alresults in �reasonable� 
ases? Certainly it is useful in determining the typeof paraboli
 periodi
 points or bounding the number of attra
ting 
y
les (see[Si, MS℄). A natural question to ask, and the one we 
onsider in this paper,is: what happens for unimodal maps with non-�at 
riti
al points whi
h arenot C3? Certainly the usual negative S
hwarzian 
ondition is no use sin
eit is not even de�ned. (Note that there is a �S
hwarzian-like� 
ondition for
C1 maps, equivalent to the negative S
hwarzian 
ondition when the map is
C3, but that need not hold in our 
ase either; see [P, MS℄.) We show thatTheorem 1.1 extends to the 
ase of C2+η for any η > 0. So many resultson the geometri
 and statisti
al properties of unimodal maps with non-�at
riti
al point extend to maps whi
h are only C2+η.Sin
e we 
annot use the negative S
hwarzian property at all here, wemust look rather 
losely at the behaviour of the map on small s
ales. Weuse a result from [MS℄ to estimate the 
ross-ratio distortion in terms of sumsof lengths of intervals. We split up this sum into blo
ks using the domainsof �rst return maps to small intervals around the 
riti
al point. The pre
isebehaviour of the bran
h 
ontaining the 
riti
al point, the 
entral bran
h,determines how we 
hoose our blo
ks. Sin
e we have no negative S
hwarzianproperty, there are parti
ular di�
ulties when a blo
k of our sum 
ontainspoints whi
h spend a very long time in the 
entral bran
h (when there is aso-
alled �saddle node 
as
ade� or an �Ulam�Neumann 
as
ade�). The main



40 M. Toddtool we use here is the real bounds proved by [V, Sh1, SV℄. Roughly speaking,these results give us a sequen
e of �rst return maps where the di�eomorphi
bran
hes have a uniformly large extension. This gives bounded distortion ofthe derivative on these bran
hes whi
h allows us to estimate the sums oflengths of intervals.1.1. Statement of the main result. We explain the terminology in thefollowing de�nitions. Given an interval T , and a subinterval J ⊂ T , wede�ned the 
ross-ratio B(T, J) above. Note that if we again denote the left-hand and right-hand 
omponents of T \ J by L and R respe
tively, we haveanother measure of 
ross-ratio:
A(T, J) :=

|T | |J |
|L ∪ J | |J ∪R| ,(however, we fo
us mainly on B(T, J)).Suppose that g : T → R is a di�eomorphism. We de�ne B(g, T, J) asabove, but we also have

A(g, T, J) :=
A(g(T ), g(J))

A(T, J)
,another estimate of how the map distorts 
ross-ratios. Observe that for dif-feomorphisms g : T → g(T ) and h : g(T ) → h ◦ g(T ) we have

B(h ◦ g, T, J) = B(h, g(T ), g(J))B(g, T, J).Similarly for A(g, T, J).We say that T is a δ-s
aled neighbourhood of J if |L|
|J | ,

|R|
|J | > δ. We supposethroughout that our fun
tions map I := [0, 1] into itself, and ∂I into ∂I.We say that a unimodal Ck map g has non-�at 
riti
al point c if thereexists some neighbourhood U of c and a Ck di�eomorphism φ : U → I with

φ(c) = 0 su
h that g(x) = ±|φ(x)|α + g(c) for some α > 1. The value α isknown as the 
riti
al order for g. We denote the set of su
h maps by NFkand this neighbourhood by Uφ.Su
h maps have many good properties. For example, they have no wan-dering intervals (see for example Chapter IV of [MS℄). More importantly forus here is how su
h maps distort 
ross-ratios. In parti
ular, how iterates ofsu
h maps distort 
ross-ratios. Our main result is as follows.Theorem 1.2. For any η > 0, let f ∈ NF2+η be a unimodal map witha 
riti
al point whose iterates do not 
onverge to a periodi
 attra
tor. Thenfor any 0 < K < 1, there is an interval V around the 
riti
al point su
h thatif , for an interval T and some n > 0,
• fn|T is monotone,
• fn(T ) ⊂ V ,
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B(fn, T, J) > K, A(fn, T, J) > Kwhere J is any subinterval of T .This theorem is proved for C3 maps in [K2℄. Note that in fa
t weprove that if 0 < η ≤ 1 then for any 0 < η′ < η, there exists C > 0su
h that if J, T, V are as in the theorem then A(fn, T, J), B(fn, T, J) >

exp{−C(supj |Vj|)η′}.1.2. Strategy of the proof. Our setup will involve �rst return maps to aneighbourhood of c, as outlined below. For the 
ase where c is non-re
urrentsee [St℄. So we suppose throughout that c is re
urrent.An open interval V is ni
e for f if fn(∂V ) ∩ V = ∅ for n ≥ 1. (When itis 
lear what f is, we just refer to su
h an interval as ni
e.) It is easy to seethat we 
an �nd arbitrarily small ni
e intervals around c.Let I0 ∋ c be a ni
e interval. For every x ∈ I whose orbit interse
ts I0,let n(x) := min{k > 0 : fk(x) ∈ I0}. If additionally x ∈ I0, let Ij
0 ∋ x be themaximal neighbourhood su
h that fn(x)(Ij

0) ⊂ I0. We obtain the �rst returnmap F0 :
⋃

j I
j
0 → I0. We label the interval whi
h 
ontains c by I0

0 ; thisinterval is 
alled the 
entral domain. Observe that F0 is a di�eomorphism onall domains Ij
0 ex
ept when j = 0. Furthermore, F0 is unimodal on I0

0 . Notealso that I0
0 is again a ni
e interval. We will 
all it I1 for the next step in theindu
ing pro
ess; i.e. we de�ne F1 :

⋃
j I

j
1 → I1 to be the �rst return mapto I1 = I0

0 . It has 
entral domain I0
1 = I2. Continuing indu
tively, we obtainmaps Fi :

⋃
j I

j
i → Ii. The sequen
e I0 ⊃ I1 ⊃ · · · is 
alled the prin
ipalnest, and Fi|Ij

i
: Ij

i → Ii is a bran
h of Fi.If x /∈ Ii but n(x) is de�ned then there is a maximal interval U j
i ∋ xsu
h that fn(x) : U j

i → Ii is a di�eomorphism. So we may extend Fi, letting
Fi|Uj

i
: U j

i → Ii. Then letting ⋃
j U

j
i 
onsist of all su
h intervals added to

⋃
j I

j
i , we 
all Fi :

⋃
j U

j
i → Ii the �rst entry map to Ii. We will often swit
hbetween these two very similar types of map.For simpli
ity, ex
ept in the appendix, we will assume that Fi(c) is amaximum for Fi|Ii+1

. We say that Fi is low if Fi(c) lies to the left of c and
Fi is high if Fi(c) lies to the right of c. Finally, Fi is 
entral if Fi(c) is inside
Ii+1 (if this is not the 
ase, then Fi is non-
entral). Figure 1 shows Fi whi
his a high and 
entral return.Suppose that fn : T → fn(T ) is a di�eomorphism and fn(T ) ⊂ I0. It 
anbe shown (see Theorem 2.1) that we get a lower bound on B(fn, T, J) if we
an �nd some bound on ∑n−1

k=0 |fk(T )|. In fa
t, we 
onsider ∑n−1
k=0 |fk(T )|1+ξfor some 0 < ξ < η. We will split up this sum into blo
ks determined by
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Ii+1
IiFig. 1. Fi is high and 
entralthe prin
ipal nest introdu
ed above. Note that our proofs extend easily to

A(fn, T, J) (see [St℄).We �x n and T as in Theorem 1.2, and let n0 = n. For i > 0, supposethat some iterate f j(T ) enters Ii for 0 ≤ j ≤ n. Now we let ni be the lasttime that f j(T ) ⊂ Ii, i.e. fni(T ) ⊂ Ii and fni+j(T ) * Ii, 0 < j ≤ n − ni.If f j(T ) is never 
ontained in Ii for 0 ≤ j ≤ n then we let ni = ni−1. Forea
h i, we will be interested in estimating
ni−ni+1∑

k=1

|fk+ni+1(T )|1+ξ;we 
all this the sum for Fi. As we will see later, if Fi is non-
entral in�nitelyoften then Theorem 2.3 implies that as i → ∞ the intervals Ii shrink downto c. Thus we are able to bound ∑n−1
k=0 |fk(T )|1+ξ by bounding the sums forall Fi. We will use a slightly di�erent method when there exists a ni
e I0su
h that Fi is always 
entral.In order to prove the main theorem, we will 
onsider the following 
ases.Note that we only assume that f ∈ NF2 in the following three propositions.

• Fi−2 is non-
entral. We 
onsider the sum for Fi whenever f j(T ) ∩
∂Ii+1 = ∅ for all 0 ≤ j < ni, as follows.Proposition 1.3. Suppose that Fi−2 is non-
entral and f j(T ) ∩ ∂Ii+1

= ∅ for all 0 ≤ j < ni. Then there exists Cwb > 0 su
h that
ni−ni+1∑

k=1

|fk+ni+1(T )| < Cwbσi
|fni(T )|

|Ii|
,

where σi := sup
V ∈{Ij

i }j

∑n(V )
k=1 |fk(V )| (and n(V ) is de�ned as k where

Fi|V = fk).



Distortion bounds for C2+η unimodal maps 43We 
all this a well bounded 
ase. It is dealt with in Se
tion 3.
• Fi−2 is non-
entral and Fi, . . . , Fi+m−1 are 
entral. We 
onsider thesums for Fi, Fi+1, . . . , Fi+m whenever f j(T )∩∂Ii+m+1 = ∅ for all 0 ≤ j < ni,as follows.Proposition 1.4. Suppose that Fi−2 is non-
entral , Fi, . . . , Fi+m−1 are
entral and f j(T )∩∂Ii+m+1 = ∅ for all 0 ≤ j < ni. For all ξ > 0 there exists

Ccasc > 0 su
h that
ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m max
ni+m+1<k≤ni

|fk(T )|ξ

where σi,m is de�ned as follows. Let σi := sup
V ∈{Ij

i }j

∑n(V )
k=1 |fk(V )|. Let V̂ ⊂

Ii\Ii+1 be an interval su
h that f n̂(V̂ ) is one of the 
onne
ted 
omponents of
Ii \ Ii+1 for some n̂ > 0 and f j(V̂ ) is disjoint from both Ii \ Ii+1 and Im for
0 < j < n̂(V̂ ). Then σi,m is the supremum of all su
h sums ∑n̂(V̂ )

j=1 |f j(V̂ )|and σi.We 
all this the 
as
ade 
ase. It is dealt with in Se
tion 4.
• Fi−2 is 
entral and Fi−1 is high and non-
entral. We 
onsider the sumfor Fi whenever f j(T ) ∩ ∂Ii+1 = ∅ for all 0 ≤ j < ni, as follows.Proposition 1.5. Suppose that Fi−2 is 
entral , Fi−1 is high and non-
entral and f j(T )∩∂Ii+m+1 = ∅ for all 0 ≤ j < ni. Then there exist Cex > 0and ni+1 < ni,3 < ni,2 < ni su
h that fni,2(T ), fni,3(T ) ⊂ Ii and

ni−ni+1∑

k=1

|fk+ni+1(T )| < Cexσi

( |fni(T )|
|Ii|

+
|fni,2(T )|

|Ii|
+

|fni,3(T )|
|Ii|

)
.

(In some 
ases, the last two terms in the sum are not required.) We 
allthis the ex
eptional bran
hes 
ase. It is dealt with in Se
tion 5. We also notethere that if Fi−2 is 
entral and Fi−1 is low and non-
entral then we are inanother well bounded 
ase, and so the 
on
lusion of Proposition 1.3 holds.
• We have an interval I0 su
h that Fi are all 
entral for i = 0, 1, . . ..We 
all this the in�nite 
as
ade 
ase. We prove Theorem 1.2 for this 
ase inSe
tion 7.The proof of Theorem 1.2 for the non-in�nite 
as
ade 
ase is given inSe
tion 6.With these propositions, for 0 < η′ < η, we 
an de
ompose the sum∑n−1

k=0 |fk(T )|1+η′ into blo
ks of sums ∑ni−ni+1

k=1 |fk+ni+1(T )|1+η′. We then



44 M. Toddshow that ea
h of these is uniformly bounded. We will then prove that∑ni−ni+1

k=1 |fk+ni+1(T )|1+η de
ays in a uniform way with i.The �rst two 
ases use real bounds of Theorem 2.3. These bounds implythat B(Ij
i , Ii) are bounded above. This will also be true for all ex
ept possiblytwo domains of Fi in the third 
ase. The main tool here is Lemma 3.3, whi
hgives us some de
ay of 
ross-ratios when we have these real bounds. Notethat the 
onditions f j(T ) ∩ ∂Ii+1 = ∅ for all 0 ≤ j < ni in well boundedand ex
eptional 
ases, and f j(T ) ∩ ∂Ii+m+1 = ∅ for all 0 ≤ j < ni in the
as
ade 
ase, make the propositions simpler to prove. However, as we remarkin Se
tion 6, it is easy to see how to split up the intervals in the other 
asesin order to prove Theorem 1.2.The �nal 
ase, whi
h arises in the in�nitely renormalisable 
ase, is dif-ferent from the other three. We use a lemma of [K2℄ to �nd some uniformexpanding property whi
h helps bound the sums.In all 
ases ex
ept the in�nite 
as
ade 
ase we must ensure that we havesome initial interval whi
h has a �rst return map whi
h is well bounded. Todo this we 
an simply pi
k some ni
e interval to begin with and then indu
euntil we �nd a map whi
h is well bounded. This is always possible whenthere is not an in�nite 
as
ade.Note that we need extra smoothness to bound 
ross-ratios in the 
as-
ade 
ase. This ensures that we 
an deal with the 
ase when we have many
onse
utive low 
entral returns, a �saddle node 
as
ade�.In his proof for C3 maps Kozlovski was able to use the fa
t that thereexists some C > 0 depending only on f su
h that for intervals J ⊂ T wehave B(f, T, J) > exp{−C|T |2} and A(f, T, J) > exp{C|L| |R|}. See Se
tionIV.2 of [MS℄. In parti
ular this means that there exist su
h real bounds as inTheorem 2.3 for all i, not just those for whi
h Fi−1 is a non-
entral return.So the long 
entral 
as
ades we en
ounter in Se
tion 4 present mu
h lessof a problem in the C3 
ase. Indeed, the work done in Se
tion 5 is alsounne
essary in the C3 
ase.We will deal with the well bounded 
ase �rst. It is the simplest and givesus a good idea about how we may pro
eed in general. We will use J torefer to a general interval from here until Se
tion 6. This allows us to useless notation. When we use the 
onstant C > 0, we mean some 
onstantdepending only on f .A
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k, whi
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Distortion bounds for C2+η unimodal maps 452. Introdu
tory results. Without loss of generality, we supposethroughout that our maps have a maximum at the 
riti
al point. We alsosuppose that f is symmetri
 about c. That is, f(c − ε) = f(c + ε) forall ε. This assumption is useful for simplifying proofs (parti
ularly in Se
-tion 5, whi
h is already quite te
hni
al), but is not 
ru
ial sin
e on smalls
ales our maps will be essentially symmetri
 (in parti
ular, |Df(c− ε)| and
|Df(c+ ε)| are arbitrarily 
lose for small enough ε). We let C ≤ |g|U ≤ C ′mean supx∈U |g(x)| ≤ C ′ and infx∈U |g(x)| ≥ C.The following theorem is proved for a more general 
ase in Chapter IVof [MS℄. Here we will let wg be the modulus of 
ontinuity of a 
ontinuousmap g, i.e. wg(ε) := sup|x−y|<ε |g(x) − g(y)|.Theorem 2.1. For a unimodal map g : I → I, g ∈ NF2, if T is aninterval su
h that gn|T is a di�eomorphism and J ⊂ T is a subinterval , thenthere exists some C > 0 su
h that

B(gn, T, J) > exp
{
−C

n−1∑

i=0

wD2g(|gi(T )|)|gi(T )|
}
.This bound also holds for A(fn, T, J).In Se
tions 6 and 7 we will use the fa
t that when g ∈ NF2+η for some

η > 0, we 
an repla
e CwD2g(ε) by Cεη.The following lemma, a 
onsequen
e of the absen
e of wandering inter-vals, is Lemma 5.2 in [K2℄.Lemma 2.2. Suppose that g ∈ NF2, g : I → I. Then there exists afun
tion τ : [0, |I|] → [0,∞) su
h that limε→0 τ(ε) = 0 and for any interval Vfor whi
h gn|V is a di�eomorphism and gn(V ) is disjoint from the immediatebasins of periodi
 attra
tors, we have
max
0≤i≤n

|gi(V )| < τ(|gn(V )|).We may use this lemma and Theorem 2.1 to get(1) B(gn, T, J) > exp
{
−σ′(|gn−1(T )|)

n−1∑

i=0

|gi(T )|
}

whenever fn(T ) is disjoint from the immediate basins of periodi
 attra
tors,where(2) σ′(|gm(T )|) = Cwg ◦ τ(|gm(T )|).We will use the following result of [SV℄ throughout. (In fa
t it is statedthere in greater generality, as Theorem A.)Theorem 2.3. If g ∈ NF2 is a unimodal map with re
urrent 
riti
alpoint , then the following hold :



46 M. Todd(a) For all k ≥ 0 there exists ξ(k) > 0 su
h that if Gi−1 :
⋃

j I
j
i−1 → Ii−1is non-
entral , then Ii+k is a ξ(k)-s
aled neighbourhood of Ii+k+1.(b) For ea
h ξ > 0 there is some ξ̂ > 0 su
h that if Ii is a ξ-s
aledneighbourhood of Ii+1 then Ii+1 is a ξ̂-s
aled neighbourhood of anydomain of Gi+1.This result gives us real bounds for some of our �rst return maps. We let

χ := ξ(1) > 0 from the above theorem for our map f .The following theorem is an improvement of the 
lassi
al Koebe lemma.It is presented in more generality in [SV℄ as Proposition 2: �a Koebe prin
iplerequiring less disjointness�. Note that a
tually, for our purposes, the 
lassi
alKoebe lemma is enough.Theorem 2.4. Suppose that g ∈ NF2. Then there exists a fun
tion
ν : [0, |I|] → [0,∞) su
h that ν(ε) → 0 as ε → 0 with the following prop-erties. Suppose that for some intervals J ⊂ T and a positive integer n weknow that gn|T is a di�eomorphism. Suppose further that gn(T ) is a δ-s
aledneighbourhood of gn(J) for some δ > 0. Then:(a) for every x, y ∈ J ,

|Dgn(x)|
|Dgn(y)| < exp

{
ν(S(n, T ))

n−1∑

i=0

|gi(J)|
}[

1 + δ

δ

]2

=: C(δ)where S(n, T ) := max0≤k≤n−1 |fk(T )|.(b) T is a δ̃-s
aled neighbourhood of J whenever
δ̃ :=

1

2
exp{−θ}

[
1 + δ

δ

]2(−2θ + δ(1 − 2θ)

2 + δ

)

is positive, where θ := ν(S(n, T ))
∑n−1

i=0 |gi(J)|.Again we may use Lemma 2.2 to repla
e ν(S(n, T )) with ν ′(|fn(T )|)where we de�ne ν ′(|fm(V )|) := ν ◦ τ(|fm(V )|). We will use the result ofTheorem 2.3(b) extensively, but we use δ̃ when θ = ν ′(|I0|). Usually δ willbe related to the χ we obtained following Theorem 2.3.We will sometimes be in a situation where we wish to estimate the deriva-tive of a fun
tion in between two points at whi
h we know something aboutthe derivative. The following two well known results allow us to do this. The�rst is known as the Minimum Prin
iple; see, for example, Theorem IV.1.1of [MS℄.Theorem 2.5. Let T = [a, b] ⊂ I and g : T → g(T ) ⊂ I be a C1di�eomorphism. Let x ∈ (a, b). If for any J∗ ⊂ T ∗ ⊂ T ,
B(g, T ∗, J∗) > µg > 0then |Dg(x)| > µ3

g min(|Dg(a)|, |Dg(b)|).
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ond result see again [MS℄.Theorem 2.6. For g ∈ NF2 there exist n0 ∈ N and ̺g > 1 su
h that if
p is a periodi
 point of period n ≥ n0 then |Dgn(p)| > ̺g.We are now ready to begin the proof of Theorem 1.2.3. Well bounded 
ase. Here we deal with the 
ase where Fi−2 is non-
entral and f j(T ) ∩ ∂Ii+1 = ∅ for all 0 ≤ j < ni. In our estimates, we areprin
ipally interested in iterates of T landing in Ij

i for j 6= 0. By Theorem 2.3,the fa
t that Fi−2 is non-
entral implies that the �rst return domains Ij
i areall well inside Ii. This enables us to estimate the sum for Fi, and is the reasonwe 
all this 
ase well bounded.Let n′i > ni+1 be minimal su
h that fn′

i(T ) ⊂ Ii. We will initially assumethat we have some κ > 0 su
h that for the �return sum�,
ji∑

k=0

|F k
i (fn′

i(T ))| < κ|fni(T )|(3)where ji is su
h that F ji |
fn′

i(T )
= fni−n′

i |
fn′

i(T )
. We prove Proposition 1.3before bounding this return sum in order to give an idea why we need boundson return sums. Ex
ept for the proof of (3), this is similar to the proof ofLemma 5.3.4 of [K1℄. There, it is assumed that f ∈ C3 in order to boundthe sum ∑ji−1

k=0 |F k
i (fn′

i(T ))|. Those methods fail in the C2 
ase.Proof of Proposition 1.3 assuming (3). Let ni+1 = m0 < m1 < · · · <
mji

= ni be all the integers between ni+1 and ni su
h that fmj(T ) ⊂ Ii \
Ii+1 for j = 1, . . . , ji − 1 and let m0 = ni+1. Now let Fi :

⋃
j U

j
i → Iibe the �rst entry map to Ii. We will de
ompose ∑ni−ni+1

k=1 |fk+ni+1(T )| as∑ji−1
j=0

∑mj+1−mj

k=1 |fk+mj(T )|.For 1 ≤ j ≤ ji − 1 and 1 ≤ k < mj+1 −mj , let U l
i be the domain of �rstentry to Ii su
h that fmj+k(T ) ⊂ U l

i . Suppose that Fi|U l
i

= f il . Then thereexists an extension to V l
i ⊃ U l

i so that f il : V l
i → Ii−1 is a di�eomorphism.Then by the Koebe lemma we have the distortion bound

|fk+mj(T ))|
|U l

i |
≤ C(χ)

|fmj+1(T )|
|Ii|

,when
e
mj+1−mj∑

k=1

|fmj+k(T )| ≤ C(χ)

( |fmj+1(T )|
|Ii|

) mj+1−mj−1∑

k=0

|fk(U j
i )|

≤ C(χ)σi
|fmj+1(T )|

|Ii|
.



48 M. ToddTherefore
ni−ni+1∑

k=1

|fk+ni+1(T )| ≤ C(χ)
σi

|Ii|

ji∑

j=1

|fmj (T )| = C(χ)
σi

|Ii|

ji−1∑

k=0

|F k
i (T̂ )|

where T̂ := fn′

i(T ). This is bounded above by κ|fni(T )| due to (3), so weare �nished.3.1. Bounding return sums. In this subse
tion we will introdu
e sometools whi
h we use extensively in the remainder of this paper. We then usethese tools to prove that (3) holds.The proof of the following simple lemma is left to the reader.Lemma 3.1. For all δ > 0 there exists ∆ = ∆(δ) > 0 su
h that ∆(δ) → 0as δ → ∞ with the following property. Suppose that U is an interval , J ⊂ Uis a subinterval and that the left and right 
omponents of U \ J are denotedby L and R respe
tively. Suppose further that |L|, |R| > δ|J |. Then
B(U, J) < ∆.Let D1 denote the set of non-
entral domains F−1

i (Ii), i.e. D1 =
⋃

j 6=0 I
j
i .Let D2 denote the set of domains F−1

i (D1) whi
h are disjoint from the
entral domain. Indu
tively, we let Dk denote the set of domains F−1
i (Dk−1)whi
h are disjoint from the 
entral domain. Then for any element Jk ∈ Dk,

F k
i : Jk → Ii is a di�eomorphism. We will bound ∑k−1

j=0 |F
j
i (Jk)| for any

Jk ∈ Dk by showing that there exists some λ < 1 independent of i su
h thatfor k > 1 we have B(Ii, Jk) ≤ λB(Ii, Fi(Jk)). We let(4) µ := exp{−σ′(|I0|)}where σ′ is given by (2). By (1), if J ′, f(J ′), . . . , fm(J ′) is a disjoint set ofintervals and J ⊃ J ′, we have B(fm, J ′, J) > µ. Therefore, if n(j) is thereturn time of Ij
i to Ii and J ⊂ Ij

i then B(fn(j), Ij
i , J) > µ.The following lemma is Lemma 2.3 of [GK℄.Lemma 3.2. For every δ > 0 there exists λ′ = λ′(δ) < 1 su
h that if

J ⊂ V ⊂ U are intervals and U is a δ-s
aled neighbourhood of V then
B(U, J) < λ′B(V, J).Furthermore, λ′ → 1 as δ → 0.We add this lemma to (1) as follows.Lemma 3.3. Given δ > 0, there exist 0 < λ = λ(δ) < 1 and ε > 0 su
hthat if |I0| < ε and Ii−1 is a δ-s
aled neighbourhood of Ii, then for any J ⊂ Ij

iwith j 6= 0,
B(Ii, J) < λB(Ii, Fi(J)).



Distortion bounds for C2+η unimodal maps 49Proof. From the previous lemma there exists some λ′ = λ′(δ) < 1 su
hthat
B(Ii, J) < λ′B(Ij

i , J).Now from (1) we obtain
B(Ii, J) < λ′

B(Ii, Fi(J))

µwhere µ is de�ned in (4). Sin
e µ→ 1 as |I0| → 0, if ε is 
hosen small enoughthen λ′/µ < 1. We let λ := λ′/µ. Thus B(Ii, J) < λB(Ii, Fi(J)).We will 
onsider λ = λ(χ̃) where χ̃ 
omes from Theorem 2.4(b) appliedto χ and χ 
omes from Theorem 2.3(a), i.e. χ̃ takes the role of δ in Lemma 3.3.In fa
t we shall adjust λ again in Se
tion 5, but it will remain independentof i and stri
tly less than 1.Proof of (3). For k ≥ 2, B(Ii, Jk) < λk−1B(Ii, F
k−1
i (Jk)). Supposethat F k−1

i (Jk) ⊂ Ij
i . Then by Lemma 3.1, using Theorems 2.3 and 2.4(b),

B(Ii, I
j
i ) < ∆ where ∆ = ∆(χ̃). Thus, it is easy to see that B(Ii, F

k−1
i (Jk))

< ∆|F k−1
i (Jk)|/|Ij

i |. Now |F k−1
i (Jk)| < C(χ)|F k

i (Jk)| |Ij
i |/|Ii| by the Koebelemma, so we know that B(Ii, F

k−1
i (Jk)) < C(χ)∆|F k

i (Jk)|/|Ii|. We applythese estimates to the sizes of Jk:
|Jk| <

|Ii|

1 +
2|Ii|

λk−1C(χ)∆|F k
i (Jk)|

.

Then |Jk| < Cλk−1|F k
i (Jk)|. So ∑k−1

j=0 |F
j
i (Jk)| < C|F k

i (Jk)|/1 − λ. Hen
e
k∑

j=0

|F j
i (Jk)| < |F k

i (Jk)|
(

1 +
C

1 − λ

)
.

This holds for any sum of returns whi
h never lands in the 
entral domain.It is independent of i. Letting κ = 1 + C/(1 − λ) we arrive at (3).4. Cas
ade 
ase. This se
tion is devoted to the proof of Proposition 1.4.Note that if there is a uniform upper bound on the length of sequen
es
Fi, Fi+1, . . . , Fi+m all having 
entral returns then Theorem 2.3 implies thatwe may prove Proposition 1.4 as a well bounded 
ase. However, there maybe arbitrarily long sequen
es of 
onse
utive 
entral returns.Proof of Proposition 1.4. We suppose that there i is su
h that
fni(T ) ⊂ Ii where Fi−2 has a non-
entral return and Fi+j all have 
en-tral returns for j = 0, . . . ,m − 1 and that Fi+m has a non-
entral return.



50 M. ToddFor ξ > 0 we will bound the sum
ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ.For our intial estimates, we may omit ξ, but later it will be ne
essary toin
lude it. Re
all that we always assume here that f j(T ) ∩ ∂Ii+m+1 = ∅ forall 0 ≤ j < ni.Let m0 = ni+m+1 and let m0 < m1 ≤ ni be the smallest integer su
hthat fm1(T ) ⊂ Ii \ Ii+1. Let m1 < m2 ≤ ni be the next integer for whi
h
fm2(T ) ⊂ Ii \ Ii+1 if su
h m2 exists. Pro
eeding in this manner, we obtaina sequen
e ni+m+1 < m1 < m2 < · · · < mN = ni. So

ni−ni+m+1∑

k=1

|fk+ni+m+1(T )| =

N−1∑

j=0

mj+1−mj∑

k=1

|fk+mj(T )|.

De�ne mN−1 < m′ ≤ ni to be minimal su
h that fm′

(T ) ⊂ Ii \ Ii+m+1.Assuming that Fi|I0
i

= f s, there exists 0 ≤ p ≤ m su
h that m′ + sp = mN

= ni. We 
an rewrite the sum above as
ni−ni+m+1∑

k=1

|fk+ni+m+1(T )| =
N−2∑

j=0

mj+1−mj∑

k=1

|fk+mj(T )| +
m′−mN−1∑

k=1

|fk+mN−1(T )|

+

p−1∑

r=0

s∑

k=1

|fk+rs+m′

(T )|.

Using the method from the proof of Proposition 1.3, we see that
m′∑

k=1

|fk+mN−1(T )| +
p−1∑

r=0

s∑

k=1

|fk+rs+m′

(T )| ≤ C(χ)
σi,m

|Ii|

p∑

r=0

|f rs+m′

(T )|.We will deal with the sum on the right-hand side later. We will �rst showthat ∑N−2
j=0

∑mj+1−mj

k=1 |fk+mj(T )| ≤ Cσi,m|fm′

(T )|/|Ii|.We denote the left and right 
omponents of Ij \ Ij+1 by Lj and Rj re-spe
tively. We know from Theorem 2.3(a) and (b) that |Li|/|Ii+1|, |Ri|/|Ii+1|
> χ̂.We de�ne F̂i :

⋃
j Î

j
i → Ii\Ii+1 to be the �rst return map to Ii\Ii+1 su
hthat F̂i(Î

j
i ) ∈ {Li, Ri}. As in the well bounded 
ase, for ea
h 1 ≤ j ≤ N − 2and 1 ≤ k < mj+1 −mj , there exists a �rst entry domain Û to Ii \ Ii+1 su
hthat fk+mj(T ) ⊂ Û . We may assume that fmj+1−mj−k(Û) = Li. Indeed, for

1 ≤ j ≤ N − 3 there exists Î l
i su
h that fmj+1(T ) ⊂ Î l

i ⊂ Li. We show that
Î l
i is well inside Li, whi
h will allow us to estimate |fk+mj(T )|/|Û |.
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i
= f il . Then there exists an extension to V l

i ⊃ Î l
i su
hthat f il : V l

i → Ii−1. Clearly V l
i ⊂ Li, otherwise ni
eness is 
ontradi
ted. ByTheorems 2.3(a) and 2.4(b), V l
i (and thus Li) is a χ̃-s
aled neighbourhoodof Î l

i .For 1 ≤ j ≤ N − 2, we have B(Li, f
mj+1(T )) > µB(Û , fk+mj (T )) where

µ is de�ned in (4). Therefore,
|fk+mj(T )| < |Û |

1 + µ/B(Li, fmj+1(T ))
.As in the well bounded 
ase, using a small adaptation of Lemma 3.3, repla
-ing Fi by F̂i, we 
an show that B(Li, f

mj (T )) < λN−1−jB(Li, f
mN−1(T )) for

0 ≤ j ≤ N−2. (Note that λ is still the λ(χ̃) dis
ussed following Lemma 3.3.)Therefore, it 
an be shown that
N−2∑

j=0

mj+1−mj∑

k=1

|fk+mj(T )| ≤ Cσi,m

1 − λ
B(Li, f

mN−1(T )).

But sin
e fmN−1(T ) ⊂ Ij′

i for some j′ 6= 0, we have
B(Li, f

mN−1(T )) < B(Li, I
j′

i )
|fmN−1(T )|

|Ij′

i |
.Noti
e that Fi(f

mN−1(T )) = fm′

(T ). So the Koebe lemma and Lemma 3.1give B(Li, f
mN−1(T )) < C(χ)∆|fm′

(T )|/|Ii|, when
e
N−2∑

j=0

mj+1−mj∑

k=1

|fk+mj(T )| ≤ Cσi,m
|fm′

(T )|
|Ii|

.

It remains to bound ∑p
r=0 |f rs+m′

(T )|1+ξ (as 
an be seen below, we onlyreally need ξ > 0 for our estimates in the low 
ase). We assume that fm′

(T )∩
∂Ii+j 6= ∅ for 1 ≤ j < m: otherwise ∑p

r=0 |f rs+m′

(T )|1+ξ < |Ii|1+ξ, and weare �nished.Let T̂ = fm′

(J). There exists some M ≥ 0 su
h that FM
i (T̂ ) = fni(T ).We will bound ∑M

k=0 |F k
i (T̂ )|1+ξ.If M were uniformly bounded then we would be able to �nd some boundon ∑M

k=0 |F k
i (T̂ )| easily. But M may be very large. We 
onsider this sum in

a0 a1 aM-1 aM
aM+t aM+1+t

am
c

T
F(T)

F

Fig. 2. When T̂ interse
ts the boundary points ∂Ij



52 M. Toddtwo 
ases: either Fi is high, or Fi is low (the high 
ase is the most straight-forward). For some ba
kground on this di
hotomy see [L℄. In both 
ases, werelabel Fi|Ii+1
as F and Ii as I0. Now let Ik = (ak, a

′
k). We are assumingthat F (c) is a maximum for F (see Figure 2).The high 
ase. We have two sub
ases to 
onsider. We �rst assume that Fjare high and 
entral for j = 0, . . . ,m. This is known as an Ulam�Neumann
as
ade.Lemma 4.1. In the high 
ase, ∑M

k=0 |F k(T̂ )| < C|I0|.Proof. We know that I0 is a χ̂-s
aled neighbourhood of I1. We will use theMinimum Prin
iple (Theorem 2.5) and Theorem 2.6 to estimate derivatives.The idea here is that either we have derivative uniformly greater than one in
(a1, am) and we 
an bound ∑M

k=0 |F k(T̂ )| as a geometri
 sum, or we have asmall derivative in some region, in whi
h 
ase we �nd a bound on the numberof ai that are in this region.Let γ > 1 satisfy γ/(γ − 1) > 1/2χ̂. Then we may �x some integer r ≥ 1su
h that 2χ̂
∑r

i=0 γ
−i > 1. Note that r only depends on χ̂. Observe thatthere is a �xed point p ∈ (a1, c). We 
an 
hoose I0 to be so small that thereturn time to it is greater than the n0 given in Theorem 2.6. Therefore,by that theorem, |DF (p)| > ̺f . If |DF (a1)| ≥ γ then from the MinimumPrin
iple, |DF |(a1,p) > γ′ where γ′ = µ3 min(γ, ̺f ) with µ de�ned in termsof |I0| in (4). We �x I0 to be small enough so that γ′ > 1. Therefore,

M∑

k=0

|F k(T̂ )| < γ′

γ′ − 1
|FM

i (T̂ )|.Suppose now that there is some u ∈ (a1, c) su
h that |DF |(a1,u) < γ. Wewill show that this must mean that u ∈ (a1, ar) and thus we 
an uniformlybound the sum of times that T̂ lies in this region.Suppose that (a1, as) ⊂ (a1, u). Then we have |ai+1 − ai| > |ai − ai−1|/γfor all i ≤ s− 1. Therefore, if (a1, as) ⊂ U then
|c− a0| >

s−1∑

i=0

|ai+1 − ai| > |a1 − a0|
s∑

i=0

γ−i.We know that |a1 − a0| > 2χ̂|c − a0|. By the de�nition of γ we must have
s ≤ r. Moreover, |DF |(as,p) > γ′.This helps us bound ∑M

k=0 |F k(T̂ )| where F k(T̂ ) ⊂ I0 \ Im. We supposethat FM (T̂ ) = (a0, at) for t ≤ m. (See Figure 2.) Then
M∑

k=0

|F k(T̂ )| = |a1 − a0| + min(2,M − 1)|a2 − a1| + · · ·

+ min(i,M − (i− 1))|ai − at−i| + · · · + |aM+t − aM+t−1|.
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r|ar − a0| + |aN − aN+1|

∞∑

i=0

min(i,M − (i− 1))

γ′i
.The �rst summand is bounded by r|I0| and the se
ond summand is boundedabove by C|aN − aN+1| for some C > 0. So we get ∑M

k=0 |F k
i (T̂ )| < C|I0| asrequired.The low 
ase. We assume that we are in the same setting as above, butwith F0 
entral and low. This is known as a saddle node 
as
ade. Again wewould like to bound ∑M

k=0 |F k(T̂ )| de�ned as above. However, as we shallsee, we are only able to bound ∑M
k=0 |F k(T̂ )|1+ξ.Lemma 4.2. In the low 
ase, ∑M

k=0 |F k(T̂ )|1+ξ < C|I0|1+ξ.Proof. We will apply the following result, a form of the Yo

oz lemma(see for example [FM℄).Lemma 4.3. Suppose that f ∈ NF2. Then for all δ, δ′ > 0 there exists
C > 0 su
h that if I0 is a ni
e interval su
h that(1) I0 is a δ-s
aled neighbourhood of I1,(2) Fk is low and 
entral for k = 0, . . . ,m,(3) there is some 0 < k < m with |Ik|/|Ik+1| < 1 + δ′,then for 1 ≤ k < m,

1

C

1

min(k,m− k)2
<

|Ik−1 \ Ik|
|I0|

<
C

min(k,m− k)2
.This lemma was suggested by Weixiao Shen. For the proof, see the ap-pendix. (For 
omparison with other statements of the Yo

oz lemma, notethat we will prove that one 
onsequen
e of our 
onditions for the lemma isthat we have a lower bound on |Im \ Im+1|/|I0|.)Suppose that I0 satis�es all the 
onditions of Lemma 4.3. In parti
ularwe assume that for some �xed δ′ > 0, we have |Ik|/|Ik+1| < 1 + δ′ for some

0 < k < m. Then for any ξ > 0,
M∑

k=0

|F k(T̂ )|1+ξ

<

m∑

k=0

(
C|I0|

min(k + t,m− (k + t))2
+ · · · + C|I0|

min(k + 1,m− (k + 1))2

)1+ξ

< C|I0|1+ξ
m∑

k=0

(
1

k + 1
− 1

k + t

)1+ξ

.The sum above is bounded above for any ξ > 0.



54 M. ToddNext we suppose that the hypotheses of Lemma 4.3 do not hold. Inparti
ular, this means |Ik|/|Ik+1| ≥ 1 + δ′ for k = 0, . . . ,m. Note that |I0| ≥
(1 + δ′)|I1| ≥ (1 + δ′)2|I2| ≥ · · · ≥ (1 + δ′)M |IM |. Therefore

M∑

k=0

|F k(T̂ )| < 1

2

M∑

k=0

k|Ik| ≤
|I0|
2

M∑

k=0

k

(1 + δ′)k
< C|I0|.So Lemma 4.2 is proved.We have shown that in both low and high 
ases we have ∑M

k=0 |F k(T̂ )|1+ξ

< C|I0|1+ξ. We may apply the usual method to show that this means that∑ni−m′

k=1 |fk+m′

(T̂ )|1+ξ < Cσi,m maxm′<k≤ni
|fk(T )|ξ. So there is some Ccascsu
h that

ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m max
ni+m<k≤ni

|fk(T )|ξas required.5. Ex
eptional 
ase. In the last se
tion we dealt 
ompletely with thesaddle node 
as
ade. It is easily shown, for example by applying Lemma 5.1below to all bran
hes, that following a saddle node 
as
ade we have a wellbounded 
ase, and so the 
on
lusions of Proposition 1.3 hold. An Ulam�Neumann 
as
ade, however, is not always followed by a well bounded 
ase.We estimate the sum for Fi in this alternative 
ase here. Most of the sumis dealt with by using the methods for the well bounded 
ase, but we needsome new te
hniques to deal with two of the bran
hes of Fi.We 
onsider the sum for Fi where Fi−2 has a 
entral return and Fi−1has a high non-
entral return. The situation here is only slightly di�erentfrom the 
ase 
onsidered in Se
tion 3, sin
e we 
an prove that all domainsof Fi are well inside Ii, ex
ept possibly two. Both of these domains Ij
i have

Fi|Ij
i

= Fi−1|Ij
i
. We denote the left-hand su
h interval by IL

i and the right-hand one by IR
i (see Figure 3). These are the ex
eptional domains. If Ii−1is a χ̂-s
aled neighbourhood of Ii then by Theorem 2.3 we know that Ii is a

˜̂χ-s
aled neighbourhood of both IL
i and IR

i , and we may pro
eed as in thewell bounded 
ase. But this will not always be so if Ii−1 is at the end of along Ulam�Neumann 
as
ade. So we will assume that Ii−1 is not a ˜̂χ-s
aledneighbourhood of Ii. Without loss of generality, we suppose that Fi−1(c) isa maximum for Fi−1 : Ii → Ii−1.We are now ready to begin the proof of Proposition 1.5. The strategy isas follows:
• Show there is some upper bound on B(Ii, I

j
i ) for j 6= L,R.

• State our main result in the proof: Proposition 5.3. We suppose that wehave some interval J ⊂ Ij
i for j 6= L,R, 0; Fi(J), . . . , Fm

i (J) ⊂ IL
i ∪ IR

i ;
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Ii

L

Ii Ii-1

Ii

R
Ii+1

Fig. 3. The ex
eptional 
aseand Fm+1
i (J) ⊂ Ij′

i for j′ 6= L,R, 0. Then there exists some λ < 1su
h that B(Ii, J) < λB(Ii, F
m+1
i (J)). Furthermore, ∑m

k=1 |F k
i (J)| <

B(Ii, F
m+1
i (J))|Ii|. We are then able to prove Proposition 1.5. In therest of this se
tion we prove Proposition 5.3; essentially we need anupper bound on ∑m

k=1 |F k
i (J)|.

• In Lemma 5.4 we show that there exist an interval V ⊂ Ii and γ > 1su
h that
|DFi|(IL

i ∪IR
i )\V > γ.This allows us to bound parts of the sum ∑m

k=1 |F k
i (J)| whi
h lie in

(IL
i ∪ IR

i ) \ V .
• We next fo
us on V . We take �rst return maps to V and use de
ay of
ross-ratios again to estimate sums of intervals in V (see Lemma 5.6).We 
an then 
omplete the proof of Proposition 5.3.We �rst show in the following simple lemma that we have uniform boundson how deep the domains of Fi are in Ii for all domains ex
ept IL

i , I
R
i .Lemma 5.1. In the ex
eptional 
ase outlined above, if j 6= L, 0,R then Iiis a ˜̂χ-s
aled neighbourhood of Ij

i .In fa
t, a similar result also holds for the 
entral domain by Theorem 2.3,but this is not important for us here. This lemma proves that we 
an treatthe 
ase where Fi−2 is 
entral and Fi−1 is low and non-
entral as a wellbounded 
ase.As we shall see, the proof of this lemma is reminis
ent of the 
as
ade 
asesin
e we follow iterates of intervals along the 
entral bran
h of some Fi′ .Proof of Lemma 5.1. There exists some maximal i′ < i su
h that Fi′−2 isnon-
entral. Then by Theorem 2.3, Ii′ is a χ̂-s
aled neighbourhood of Ii′+1.



56 M. ToddFor j 6= L,R we will �nd Fi|Ij
i
as a 
omposition of some bran
hes of Fi′ inorder to �nd some extensions. Fi′ |Ii′+1

maps Ij
i out of Ii along the 
as
ade,through the sets Ii−1 \Ii, Ii−2 \Ii−1 and so on, until it maps to some intervalin Ii′+1 \ Ii′+2. Then this interval is mapped into some Ij′

i′ . This then mapsba
k into Ii′+1. The pro
ess may be repeated many times before Ij
i is �nallymapped ba
k to Ii.So we 
he
k that Fi|Ij

i
is a 
omposition of maps as follows. Let j1 6= 0 sat-isfy (F i−i′

i′ |Ii′+1
)(Ij

i ) ⊂ Ij1
i′ . Let k1 = i− i′. If Fi|Ij

i
= (Fi′ |Ij1

i′
)(F

(i−i′)
i′ |Ii′+1

)|
Ij
ithen we stop here; we say r = 1. Otherwise, let k2 ≥ 0 be minimal su
hthat F k1+1+k2

i′ (Ij
i ) ⊂ Ii′ \ Ii′+1. Let j2 6= 0 be su
h that F k1+1+k2

i′ (Ij
i ) ⊂ Ij2

i′ .If Fi|Ij
i

= F k1+1+k2+1
i′ |

Ij
i
then we stop here; we say r = 2. Otherwise, we
ontinue this pro
ess until we �nally return to Ii and obtain kr.Suppose that r = 1. That is,
Fi|Ij

i
= F

(i−i′)+1
i′ |

Ij
i
.Let U denote F (i−i′)

i′ (Ij
i ) and U ′ denote Ij1

i′ . Then Fi′(U) = Ii and Fi′(U
′)

= Ii′ . We know that Ii′ is a χ̂-s
aled neighbourhood of Ii. So if we 
anshow that, taking the appropriate bran
h, (F
−(i−i′)
i′ |Ii′+1

)(U ′) ⊂ Ii, we knowby Theorem 2.4(b) that Ii is a ˜̂χ-s
aled neighbourhood of Ij
i (sin
e all theintervals we are 
on
erned with are disjoint). It is easy to see that for thisbran
h, (F

−(i−i′)
i′ |Ii′+1

)(U ′) ⊂ Ii by the stru
ture of the saddle node 
as
adesin
e we have (F−1
i′ |Ii′+1

)(U ′) ⊂ Ii′+1 \ Ii′+2, (F−2
i′ |Ii′+1

)(U ′) ⊂ Ii′+2 \ Ii′+3and so on. So the lemma is proved when r = 1.In the more general 
ase, where r > 1 and
Fi|Ij

i
= F

∑r
l=1

(kl+1)
i′ |

Ij
i
,we may apply the same idea, again using the disjointness of the domains ofthe �rst return map, to prove that Ii is a ˜̂χ-s
aled neighbourhood of Ij

i .If ne
essary we adjust λ so that λ(˜̂χ) ≤ λ < 1.By the above, if Ii is a ˜̂χ-s
aled neighbourhood of IL
i and IR

i then we 
anpro
eed with the method in the well bounded 
ase to prove Proposition 1.5.But this is not generally the 
ase. So for our work here, we may assume that
Ii is not a ˜̂χ-s
aled neighbourhood of IL

i or IR
i , and that some iterate of Jenters IL

i ∪ IR
i .Remark 5.2. In the previous se
tions we had uniform upper bounds onthe 
ross-ratio B(Ii, I

j
i ) for all j and so we obtained estimates on the de
ayof 
ross-ratios dire
tly. This was used to estimate the sums of intervals. Theproblem we often en
ounter in this se
tion is that sometimes we only get
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ross-ratios de
ay and sometimes we only get goodestimates for the de
ay of the sizes of intervals. But these estimates aredi�
ult to marry together dire
tly, so we will have to split up su
h 
ases.The pro
ess is �rst des
ribed in the proof of Proposition 1.5 and again in theproof of Lemma 5.6. (As we will see later, this splitting s
heme deals withthe 
ases where we enter IL
i ∪ IR

i from Ii; V from IL
i ∪ IR

i ; and Λ from V .)The prin
ipal result in this se
tion is the following proposition.Proposition 5.3. If J, Fi(J), . . . , Fm
i (J) ⊂ IL

i ∪ IR
i then(1) there exists some 0 ≤ m̂ < m su
h that ∑m

k=0 |F k
i (J)| < C(|Fm

i (J)|+
|F m̂

i (J)|);(2) for some λ < 1 independent of i, if Fm+1
i (J) ⊂ Ij

i , j 6= L, 0,R, then(a) ∑m
k=0 |F k

i (J)| < CB(Ii, F
m+1
i (J))|Ii|;(b) letting J ′ be the element of F−1

i (J) inside some interval Ij′ for
j′ 6= L, 0,R, we have B(Ii, J

′) < λB(Ii, F
m+2
i (J ′)).See Figure 4 for a s
hemati
 representation of the situation of this propo-sition. If ne
essary we will adjust the λ < 1 we use throughout this paper sothat we may assume that the proposition above holds for that λ.

Ii

L

I
R

iI
j

i I
j’

i
Ii

0

F (J)i J F (J)
m+1

i
F  (J)

m

i
J’

Ii

cFig. 4. An illustration of Proposition 5.3
Proof of Proposition 1.5 assuming Proposition 5.3. As in the proof in thewell bounded 
ase, we �rst show that we are prin
ipally 
on
erned with theintervals inside Ii. Again, the proof of this fa
t is a slightly modi�ed versionof the proof in the well bounded 
ase.Let ni+1 < m1 < · · · < mji

= ni be all the integers between ni+1 and
ni su
h that fmj (T ) ⊂ Ii \ Ii+1 for j = 1, . . . , ji − 1 and let m0 = ni+1. Let
Fi :

⋃
i U

j
i → Ii be the �rst entry map to Ii. As before, we will de
omposethe sum ∑ni

i=ni+1+1 |f i(T )| as ∑ji−1
j=0

∑mj+1−mj

k=1 |fmj+k(T )|.Suppose that fmj+1(T ) ⊂ U j
i for some U j

i . Suppose further that Fi|Uj
i

= f ij . Then there exists an extension to V j
i ⊃ U j

i so that f ij : V j
i → Ii′−1is a di�eomorphism, where i′ is de�ned in the proof of Lemma 5.1. Then we
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|fk(fmj+1(T ))|

|fk(U j
i )|

≤ C(χ)
|fmj+1(T )|

|Ii|
.Thus,

mj+1−mj∑

k=1

|fmj+k(T )| < C(χ)σi
|fmj+1(T )|

|Ii|
.Therefore,

ni∑

j=ni+1+1

|f i(T )| < C(χ)
σi

|Ii|

ji∑

j=1

|fmi(T )|.

Hen
e we are prin
ipally interested in the sum ∑ji

j=1 |fmi(T )|, that is,
∑ji−1

k=0 |F k
i (T̂ )| where T̂ =fm1(T ). In fa
t, we fo
us on bounding ∑ji−2

k=0 |F k
i (T̂ )|.We split T̂ , Fi(T̂ ), . . . , F ji−2

i (T̂ ) into two groups: one for those intervalsoutside IL
i ∪ IR

i and one for those inside IL
i ∪ IR

i . Suppose that J is aninterval su
h that for some k ≥ 0, we have F k
i (J) ⊂ Ij

i for some j 6= L, 0, R;then F k+1
i (J), F k+2

i (J), . . . , F k′

i (J) ⊂ IL
i ∪ IR

i for some k′ > k; and �nally
F k′+1

i (J) ⊂ Ij′

i for some j′ 6= L, 0,R. From the last part of Proposition 5.3we have
B(Ii, F

k
i (J)) < λB(Ii, F

k′+1
i (J)).Therefore, we 
an bound the sums of intervals whi
h lie in the intervals

Ij
i for all j 6= L,R in a similar manner to that for the well bounded 
ase,independently of those intervals inside IL

i ∪ IR
i , as follows.Given k ≥ 0 su
h that F k

i (T̂ ) ⊂ Ij
i for some j 6= L, 0,R we wish toestimate |F k

i (T̂ )|. Let 0 ≤ k̂ ≤ ji − 2 be maximal su
h that F k̂
i (T̂ ) ⊂ Ij′

ifor some j′ 6= L,R. Then we apply Proposition 5.3 repeatedly to obtain
B(Ii, F

k
i (T̂ )) < λlB(Ii, F

k̂
i (T̂ )) for some l ≥ 0. The l 
ounts the number oftimes that F k+r

i (T̂ ) lies outside IL
i ∪ IR

i for 0 < r ≤ k̂. Then
|F k

i (T̂ )| < |Ii|
1 + 2/λlB(Ii, F k̂

i (T̂ ))
.

We have two 
ases. In the �rst 
ase k̂ = ji − 2. Then
B(Ii, F

ji−2
i (T̂ )) < B(Ii, I

j′

i )
|F ji−2

i (T̂ )|
|Ij′

i |
< ∆(˜̂χ)

|F ji−2
i (T̂ )|
|Ij′

i |
< ∆(˜̂χ)C(˜̂χ)|F ji−1

i (T̂ )|.Therefore, |F k
i (T̂ )| < Cλl|F ji−1

i (T̂ )|. This su�
es to prove an upper boundof the form C|F ji−1
i (T̂ )| for the Fi-iterates of T̂ outside IL

i ∪ IR
i in this 
ase.
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ond 
ase k̂ < ji − 2. We have
B(Ii, F

k̂
i (T̂ )) < B(Ii, I

j′

i )
|F k̂

i (T̂ )|
|Ij′

i |
<
∆|F k̂

i (T̂ )|
|Ij′

i |
,

sin
e |F k̂
i (T̂ )| < C(χ)|F k̂+1

i (T̂ )| |Ij′

i |/|Ii|. Therefore, in this 
ase we have abound of the form C|F k̂+1
i (T̂ )| for the iterates of T outside IL

i ∪ IR
i .Finally, we use the above information about sizes of intervals outside

IL
i ∪ IR

i to bound the sums of intervals inside IL
i ∪ IR

i as well. In the �rst
ase above, we have a bound of the form C|F ji−1
i (T̂ )| for the iterates of T in

IL
i ∪ IR

i . In the se
ond 
ase above, we have a bound of the form C(|F k̂
i (T̂ )|+

|F m̂
i (T̂ )| + |F ji−1

i (T̂ )|) for the iterates of T in IL
i ∪ IR

i .So in the worst 
ase we have the bound
Cexσi

( |fni(T )|
|Ii|

+
|fni,2(T )|

|Ii|
+

|fni,3(T )|
|Ii|

)

for the sum ∑ni

k=ni+1+1 |fk(T )|, as required.5.1. Proof of Proposition 5.3. Denote the smallest interval 
ontainingboth IL
i and IR

i by I ′i. Re
all that we are assuming that the 
riti
al pointis a maximum for Fi−1|I′i . (Re
all that Fi|IL
i ∪IR

i
= Fi−1|IL

i ∪IR
i
.) This meansthat there is some �xed point p of Fi in IR

i . Clearly, there also exists a point
p′ ∈ IL

i su
h that Fi(p
′) = p. Let V := (p′, p).We outline the proof of Proposition 5.3 as follows. We suppose that someiterate of J enters V . Let 0 ≤ s1 ≤ s2 ≤ s3 be de�ned as follows: F k

i (J) ⊂
I ′i \ V for 1 ≤ k ≤ s1; F s1+1

i (J) ⊂ V ∩ (IL
i ∪ IR

i ); and F s2+k
i (J) ⊂ I ′i \ V for

1 ≤ k ≤ s3 − s2. Any sum of the form ∑m
k=0 |F k

i (J)| 
an be broken up intoblo
ks 
onsisting of su
h sums.The s
heme for proving Proposition 5.3 is to �rst show that |DFi|I′i\Vis uniformly large. This is proved in Lemma 5.4 and helps to deal with thesums ∑s1

k=0 |F k
i (J)| and ∑s3−s2

k=1 |F s2+k
i (J)|. Then we have to prove that wehave bounds on the sums of intervals whi
h return to V . This, proved inLemma 5.6, helps to deal with ∑s2−s1

k=1 |F s1+k
i (J)|.Note that the proof of Proposition 5.3 is the only time in this paper thatwe use the symmetry of the map (and it is only a simplifying assumption).Lemma 5.4. There exists some γ > 1 independent of i su
h that

|DFi|I′i\V > γ.Proof. We start by observing as in the last se
tion that |DFi(p)| > ̺f .By symmetry, |DFi(p
′)| > ̺f as well. Observe that IL

i also 
ontains a �xedpoint q of Fi. We have |DFi(q)| > ̺f , too. Furthermore, there exists a point
q′ ∈ IR

i su
h that Fi(q
′) = q. From symmetry, |DFi(q

′)| > ̺f .



60 M. ToddWe 
an estimate |DFi|(p,q′) using the minimum prin
iple as follows. Weuse our µ given in (4) in pla
e of µg. Then |DFi|(p,q′) > µ3̺f . When I0 issmall enough, µ is 
lose to 1. Thus we may ensure that our intervals areso small that |DFi|(p,q′) > ̺ for some ̺ > 1. (To �x pre
isely how smallour intervals must be, we 
an, for example, 
hoose ̺ =
√
̺f .) By symmetry,

|DFi|(q,p′) > ̺.We deal with the remaining part of the proof of the lemma by showingthat Fi has large derivative when x ∈ I ′i and either x < q or x > q′. We usethe following 
onsequen
e of Theorem 2.3 and the minimum prin
iple.Claim. There exists some γ′ = γ′(χ) > 1 su
h that , writing IL
i =

(l−, l+) and IR
i = (r−, r+), if I0 is su�
iently small and B(Ii, I

L
i ), B(Ii, I

R
i )are su�
iently large then

|DFi|(l−,q), |DFi|(q′,r+) > γ′.Proof. Let θ := 1
2(|Ii′ |/|Ii′+1| − 1) > χ̂ where i′ is de�ned in the proofof Lemma 5.1. We suppose that |DFi′ |Ii′+1\Ii

≤ 1 + 2θ. Then we prove byindu
tion that |Ii′+k|/|Ii′+k+1| ≥ 1 + 2θ for 0 ≤ k < i− i′. By 
onstru
tionthis is true for k = 0. We assume that it is true for some 0 ≤ k < i− i′ − 1.Then
|Ii′+k+1|
|Ii′+k+2|

≥
|Ii′+k+2| + (supIi′+1\Ii

|DFi′ |)−1|Ii′+k \ Ii′+k+1|
|Ii′+k+2|

≥ 1 +
2θ

1 + 2θ

|Ii′+k+1|
|Ii′+k+2|

.Then it is easy to see that |Ii′+k+1|/|Ii′+k+2| ≥ 1 + 2θ as required.In parti
ular, we have proved that |DFi′ |Ii′+1\Ii
≤ 1+2θ implies that Ii isa θ̃-s
aled neighbourhood of both IL

i and IR
i , a 
ontradi
tion (sin
e θ̃ > ˜̂χ).So there must exist some x ∈ Ii′+1 \ Ii su
h that |DFi(x)| ≥ 1+2θ > 1+2χ̂.Therefore, by Theorem 2.5 and (1) we have

|DFi′ |(x0,p) > µ3 min(1 + 2χ̂, ̺f ).Choosing |I0| small we have some γ′ > 1 su
h that |DFi|(x0,q) > γ′. Inparti
ular |DFi|(l−,q) > γ′. Similarly we 
an show |DFi|(q′,r+) > γ′.Letting γ := min(̺, γ′) proves the lemma.By the above, we will be able to estimate the sizes of iterates of T inside
(IL

i ∪ IR
i ) \ V as a geometri
 sum.We will need some real bounds for V . The following lemma, whi
h 
on-trasts with Lemma 5.4, will later be used to obtain these bounds.



Distortion bounds for C2+η unimodal maps 61Lemma 5.5. There exists some Ĉ = Ĉ(χ, |I ′i|) > 0, where Ĉ(χ, |I ′i|) tendsto some 
onstant Ĉ(χ) as |I ′i| → 0, su
h that
|DFi|IL

i ∪IR
i
< Ĉ.Proof. We work with Fi′ : Ii′+1 → Ii′ where i′ is de�ned in the proof ofLemma 5.1. There exists some m ≥ 1 su
h that Fi′ |Ii′+1

= fm|Ii′+1
. We 
ande
ompose this map into two maps so that Fi′ = L ◦ g where g = f |Uφ

, i.e.
g(x) = f(c) − |φ(x)|α, and L = fm−1 : f(Ii′+1) → Ii′ .By Theorems 2.4(a) and 2.3(a) we have DL(x)

DL(y) < C(χ) for x, y ∈ f(Ii+1).So
|DL(x)| ≤ C(χ)

|Ii|
|f(Ii+1)|

= C(χ)
|Ii|

|φ(|Ii+1|/2)α|for x ∈ f(Ii+1). Also
|Dg(x)| = α|Dφ(x)| |φ(x)α−1| < α sup

x∈Ii′+1

|Dφ(x)| |φ(|Ii+1|/2)|α−1.

For Û ⊂ Uφ a small neighbourhood of c, let
Dist(φ, Û) := sup

x,y∈Û

|Dφ(x)|
|Dφ(y)| .Observe that as I ′i be
omes smaller, Dist(φ, I ′i) tends to 1. For x ∈ IL

i ∪ IR
i ,

|DFi(x)| < αC(χ)
supx∈Ii+1

|Dφ(x)| |Ii|
|φ( |Ii+1|

2 )|
< 2αC(χ) Dist(φ, I ′i)

|Ii|
|Ii+1|

.Sin
e we have assumed that |Ii|/|Ii+1| is bounded below, there is some 
on-stant C > 0 su
h that for all x ∈ I ′i,
|DFi(x)| < CC(χ) Dist(φ, I ′i).Letting Ĉ(χ, |I ′i|) := CC(χ) Dist(φ, I ′i) we have proved the lemma.We denote the �rst return map to V by F̂i :

⋃
j V

j → V . We �rst wishto �nd some 
ontrol on the sizes of the domains of F̂i. Let mV,j be su
h that
F̂i|V j = F

mV,j

i |V j . The following lemma is key to proving Proposition 5.3.Lemma 5.6. If F l1
i (J), . . . , F lm

i (J) ⊂ V ∩ (IL
i ∪ IR

i ) are all the iteratesof J up to lm whi
h lie in V ∩ (IL
i ∪ IR

i ), and all intermediate iterates F k
i (J)for k = 0, 1, . . . , lm lie in IL

i ∪ IR
i , then

lm∑

k=0

|F k
i (J)| < C|F lm

i (J)|.

Furthermore, there exists λV < 1 su
h that |J | < Cλlm−m
V |F lm

i (J)|.



62 M. ToddProof. We split the sum as follows:
lm∑

k=0

|F k
i (J)| =

m−1∑

j=0

lj+1−lj∑

k=1

|F lj+k
i (J)|where we let l0 = −1. We know from Lemma 5.4 that |DFi|I′i\V > γ so

lj+1−lj∑

k=1

|F lj+k
i (J)| < |F lj+1

i (J)|
lj+1−lj−1∑

k=0

γ−k <
|F lj+1

i (J)|
1 − γ−1

.Hen
e,
lm∑

k=0

|F k
i (J)| < 1

1 − γ−1

m∑

j=0

|F lj
i (J)|.So we only need to bound the sum of returns to V .Denote the rightmost element of ⋃

j V
j by V 1 and the leftmost elementby V 2 (observe that F̂i|V 1 = F 2

i |V 1 and F̂i|V 2 = F 2
i |V 2). We get an estimateon how deep ea
h V j is inside V for j > 2 be
ause V 1 and V 2 have somede�nite size 
ompared to |V |, sin
e by Lemma 5.5 we know that |V 1|, |V 2|

> |V |/Ĉ2. Therefore, there exists some δ′0 depending only on f su
h that Vis a δ′0-s
aled neighbourhood of V j for all j > 2. So by Lemma 3.2, thereexists some λ′V < 1 depending on δ′0 su
h that for any interval J ′ ⊂ V j ,
B(V, J ′) < λ′VB(V j , J ′) for j > 2 (in fa
t this is also shown in the Claimbelow). As usual we 
an use Lemma 3.3 to 
on
lude that there exists some
λV < 1 su
h that B(V, J ′) < λVB(V, F̂i(J

′)). If we remain away from V 1and V 2, this fa
t and the usual argument would be su�
ient to obtain therequired bound on sums.We must deal with the 
ase where iterates enter V 1, V 2. The idea is tosplit the situation into the 
ase where intervals land in a region where |DF̂i|is large and the 
ase when the intervals land in a region where we do nothave good estimates on |DF̂i|.We �rst fo
us on V 2. We know from Theorem 2.6 that |DFi(p
′)| > ̺f andso |DF̂i(p

′)| > ̺2
f . There must also exist some �xed point r of F̂i in V 2 with

|DF̂i(r)| > ̺f . Letting Λ2 := (p′, r) and applying the Minimum Prin
iple asbefore, we obtain |DF̂i|Λ2
> ̺ for some ̺ > 1. Let r′ be the point in V 1 su
hthat F̂i(r

′) = r. Then adjusting ̺ > 1 if ne
essary, |DF̂i|(r′,p) > ̺. We de�ne
Λ1 to be the interval in V 1 whi
h has F̂i(Λ1) = V \ V 2. Clearly Λ1 ⊂ (r′, p),so |DF̂i|Λ1

> ̺. For 
onvenien
e later, we let Λ := Λ1 ∪ Λ2.We are now ready to deal with bounding ∑m−1
k=0 |F̂i

k
(J)|. Observe that

F̂i
m−1

(J) must be 
ontained in some V j . Suppose �rst that j > 2; we dealwith the 
ase where j = 1 or 2 later. Suppose further that J ⊂ V j′ and
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j′ > 2; here the other 
ase is similar. We will again split up the sum. Let
N ′

0 = 0. Let N1 be minimal su
h that F̂N1

i (J) ∩ Λ = ∅ and F̂N1+1
i (J) ⊂ Λ.Let N ′

1 > N1 be minimal su
h that F̂N ′

1

i (J) ⊂ Λ and F̂N ′

1
+1

i (J) ∩ Λ = ∅. Inthis way we obtain N ′
0 < N1 < N ′

1 < · · · < NM−1 < N ′
M−1 so that

m−1∑

k=0

|F̂ k
i (J)| =

M−1∑

j=0

(Nj+1−N ′

j∑

k=1

|F̂i
N ′

j+k(J)| +
N ′

j+1
−Nj+1∑

k=1

|F̂Nj+1+k
i (J)|

)

+

NM−N ′

M−1∑

k=1

|F̂N ′

M−1
+k

i (J)|where NM = m − 1. Observe that the �rst sum in the bra
kets 
on
ernsintervals whi
h land inside Λ and the se
ond sum in the bra
kets 
on
ernsintervals in V \ Λ. Then
N ′

j+1
−Nj+1∑

k=1

|F̂Nj+1+k
i (J)| < |F̂N ′

j+1

i (J)|
Nj+1−N ′

j+1
−1∑

k=0

̺−k <
C

1 − ̺−1
|F̂N ′

j+1

i (J)|for some C.Now we 
onsider ∑Nj+1−N ′

j

k=1 |F̂N ′

j+k

i (J)|. In fa
t we learn most from es-timating the sum ∑NM−N ′

M−1

k=1 |F̂N ′

M−1
+k

i (J)|. If ne
essary we make λV < 1smaller so that for J ⊂ V j\Λj for j = 1, 2 we have B(V, J) < λVB(V, Fi(J)).Then for 1 ≤ k < Nm −N ′
M−1,

B(V, F̂
N ′

M−1
+k

i (J)) < λ
NM−N ′

M−1
−k

V B(V, F̂NM

i (J)).Re
alling that M=m− 1 we get B(V, F̂m−1
i (J))<B(V, V j)|F̂m−1

i (J)|/|V j |.Letting BV := max{supj>2B(V, V j), B(V, V 1\Λ1), B(V, V 2\Λ2)}, we obtain
|F̂N ′

M−1
+k

i (J)| < |V |

1 +
2|V j |

λ
NM−N ′

M−1
−k

V BV |F̂m−1
i (J)|

.

Letting B̂V := BV /(BV + 2) we have
|F̂N ′

M−1
+k

i (J)| < B̂V λ
NM−N ′

M−1
+k

V

|V |
|V j | |F̂

m−1
i (J)|.Hen
e

Nj+1−N ′

j∑

k=1

|F̂N ′

j+k

i (J)| < C|F̂m−1
i (J)|.We now estimate the other sums 
on
erning intervals outside Λ as follows.Let µ′ := exp{−σ′(I0)|I0|/(1 − ̺−1)}. Suppose that FNM−2

i (J) ⊂ V j . Then



64 M. Toddtaking the appropriate bran
h, we have F̂NM−2−N ′

M−1
−1

i (V ) ⊂ V j and
B(V, F̂

NM−2

i (J)) < λ′VB(F̂
NM−2−N ′

M−1
−1

i (V ), F̂
NM−2

i (J))

<
λ′V
µ′

B(F̂−1
i (V ), F̂

N ′

M−1

i (J)) <
λ′V
µµ′

B(V, F̂
N ′

M−1
+1

i (J)).Shrinking I0 if ne
essary, as usual, so that λ′V /µµ′ =: λV < 1, we obtain
B(V, F̂

NM−2

i (J)) < λVB(V, F̂
N ′

M−1
+1

i (J)).Clearly then we 
an pro
eed in bounding the sum, applying the usualmethod of de
aying 
ross-ratios. So we 
an bound ∑m−1
k=0 |F̂ k

i (J)| above by
C|F̂m−1

i (J)| for this 
ase.To 
omplete this 
ase, we will bound |F̂m−1
i (J)| in terms of |F̂m

i (J)|.We do this by 
onstru
ting an extension. Let the left-hand and right-handmembers of F−1
i (p′) be denoted by b and b′ respe
tively. Denote (b, b′) by V ′.By Lemma 5.5, V ′ is a δV ′-s
aled neighbourhood of V where δV ′ dependsonly on f .Claim. For all domains V j , j > 2, there exists an extension to some in-terval U j ⊃ V j su
h that U j ⊂ V and FmV,j

i : U j → V ′ is a di�eomorphism.Proof. For j > 2 the return maps are a 
omposition of Fi|V followed by
Fi|IR

i
and then some number of iterates of Fi|IL

i
. So F̂−1

i must pull V ′ ba
kinto IL
i . Observe that this element of F−1

i (V ′) is below p′ (and 
learly awayfrom Fi(c)). Any further pullba
ks in IL
i remain below p′ as well. Thereforewhen some element F−k

i (V ′) is �nally pulled ba
k into IR
i , it is mapped above

p and remains away from Fi(c). Therefore we have elements of F−k−2
i (V ′)mapping inside V whi
h do not 
ontain c.By the above Claim and Theorem 2.4 we have some C > 0 dependingonly on f su
h that if j > 2, then

1

C

|V |
|V j | ≤ |DF̂i|V j ≤ C

|V |
|V j | .(Re
all that we are assuming that Fm−1

i (V ) ∩ Λ = ∅.) Therefore,
NM−N ′

M−1∑

k=1

|F̂N ′

M−1
+k

i (J)| < C|F̂m
i (J)|.There remains a further 
ase to 
onsider. Above we assumed F̂m−1

i (J)
⊂ V j where j > 2. But if j ∈ {1, 2} we have two 
ases. We �rst note thatif F lm

i (J) ∩ {r, r′} = ∅ then the intervals we are 
on
erned with are either
ompletely inside Λ2, Λ1 or 
ompletely inside V \ (Λ2 ∪ Λ1). Then we maypro
eed as above. But if F k
i (J) 
ontains r or r′ then we split F k

i (J) into two
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 point at their interse
tion. We may then applythe pro
edure above to estimate the size of ea
h interval. We need only applythis splitting argument on
e sin
e if we interse
t a periodi
 point of F̂i on
e,we must stay there for all time under iteration by F̂i. Thus we need onlyalter our 
onstants by a fa
tor of 2 to deal with this 
ase. Note that we onlyhave one sum where this problem 
ould o

ur: ∑N ′

M−NM

k=1 |F̂NM+k
i (J)| where

N ′
M = m. This is be
ause r is a �xed point for F̂i.Clearly, we 
an use the 
ross-ratio argument as usual to obtain the esti-mate |F l1

i (J)| < λm−1
V C|F lm

i (J)|, so |J | < λm−1
V C|F lm

i (J)|.We may adjust our usual λ so that λV ≤ λ < 1.Proof of Proposition 5.3. Suppose �rst that Fm+1
i (J) ⊂ Ij

i for j 6= L,R.Then, in parti
ular, we 
an be sure that Fm
i (J) does not 
ontain p or p′.Then we also know that none of F k

i (J) 
ontain p or p′ for 0 ≤ k ≤ m − 1.This means that we 
an be sure that all the intervals we 
onsider are either
ontained in V or disjoint from V .Re
all that 0 ≤ s1 < s2 ≤ s3 = m are de�ned as follows (we suppose thatsome iterate of J enters V ; otherwise the proof is simpler): F k
i (J) ⊂ I ′i \ Vfor 1 ≤ k ≤ s1; F s1+1

i (J) ⊂ V ∩ (IL
i ∪ IR

i ); and F s2

i (J) ⊂ V ∩ (IL
i ∪ IR

i ),
F s2+k

i (J) ⊂ I ′i \ V for 1 ≤ k ≤ s3 − s2.Then if s3 > s2,
s3−s2∑

k=1

|F s2+k
i (J)| < |F s3

i (J)|
s3−s2−1∑

k=0

γ−k < C|F s3

i (J)|,by Lemma 5.4.From Lemma 5.6,
s2−s1∑

k=1

|F s1+k
i (J)| < C|F s2

i (J)|and |F s1+1
i (J)| < C|F s2

i (J)|.Also s1∑

k=0

|F k
i (J)| < γ−1|F s1+1

i (J)|
s1∑

k=0

γ−k < C|F s2

i (J)|.Therefore,
s2∑

k=0

|F k
i (J)| < C|F s2

i (J)|.If s3 > s2 then
s3∑

k=0

|F k
i (J)| < C(|F s3

i (J)| + |F s2

i (J)|).Therefore, the �rst part of the proposition is proved.



66 M. ToddNow if Fm+1
i (J) ⊂ Ij

i for j 6= L,R, 0 then re
alling that s3 = m we willobtain an estimate for |F s2

i (J)| in terms of B(Ii, F
m+1
i (J)):

B(Ii, F
s2

i (J)) < B(F−s3+s2

i (Ii), F
s2

i (J)) <
B(Ii, F

m
i (J))

µ

<
B(Ii, F

m+1
i (J))

µ2
.We are allowed to use µ here sin
e all intermediate intervals must be disjoint(otherwise we would have to pass through V again). Therefore

|F s2

i (J)| < |Ii|
1 + 2µ2/B(Ii, F

m+1
i (J))

< C|Ii|B(Ii, F
m+1
i (J)).Similarly we 
an show that |Fm

i (J)| < C|Ii|B(Ii, F
m+1
i (J)). Therefore

s3∑

k=0

|F k
i (J)| < C|Ii|B(Ii, F

m+1
i (J)) < C1|Ii|for some C1 > 0.We now prove the �nal part of the proposition. Clearly for any runof intervals Fi(J), . . . , F k

i (J) ⊂ IL
i ∪ IR

i , 
onsidering the bran
h of F−k
iwhi
h follows the iterates of J , we have B(F k

i , F
−k
i (Ii), J) > µ′′ where

µ′′ := exp{−C1σ
′(|I0|)|I0|}. We 
onsider the bran
h of F−m−2

i whi
h fol-lows the ba
kward orbit of Fm+1
i (J). Clearly, F−m−2

i (Ii) is stri
tly inside Ij
i .Thus,

B(Ii, J
′) < λ′B(Ij

i , J
′) < λ′B(F−m−2

i (Ii), J
′) <

λ′

µ′′
B(F−1

i (Ii), F
m+1
i (J ′))

<
λ′

µ′′µ
B(Ii, F

m+2
i (J ′)).For |I0| small enough, we 
an alter the usual λ slightly so that λ′/µ′′µ ≤ λand still ensure that λ < 1. Thus, B(Ii, J

′) < λB(Ii, F
m+2
i (J ′)) as required.When we do not es
ape IL

i ∪IR
i then we may have some interse
tion with

p or p′. In this 
ase, we split our interval in two and estimate the size of ea
hpie
e as above. We need only apply this idea on
e, so we 
an 
hange our
onstants to 
ater for this 
ase too. In this 
ase, part (2) of the propositiondoes not o

ur.6. Proof of the main theorem in the non-in�nitely renormalis-able 
ase. We re
all that B(fn, T, J) > exp{−C∑n−1
k=0 |fk(T )|1+η} when

f ∈ C2+η. We will �nd a bound on the sum ∑n−1
k=0 |fk(T )|1+η by using themain propositions above and also �nding some de
ay property for the size ofthe domains of Fi for some values of i. We assume that fk(T )∩∂Ij 6= ∅ onlywithin a 
as
ade 
ase (i.e. when there exist i,m su
h that Fi is in a 
as
ade
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ase and fk(T ) ⊂ Ii \ Ii+m). It is easy to see how to extend the proof whenthis is not true.Let Fi :
⋃

j U
j
i → Ii be the �rst entry map to Ii (we in
lude the bran
hesof the �rst return map in this 
ase too). For i < j and an interval V , wede�ne S(i, j, V ) to be the maximum of |f i+1(V )|, |f i+2(V )|, . . . , |f j(V )|. Wewill 
onsider S(ni+1, ni, T ). Let n(i, j) be su
h that Fi|Uj

i
= fn(i,j)|

Uj
i
. Nowlet U s(i)

i be the interval for whi
h S(0, n(i, j), U j
i ) is maximal. Let n̂(i) =

n(i, s(i)). Clearly,
S(ni+1, ni, T ) ≤ S(0, n̂(i), U

s(i)
i ).We would like to show that for 
ertain i, this quantity de
ays with i in a
ontrolled way.We start by assuming that Fi−1 is in a well bounded 
ase. We havetwo sub
ases. Firstly, suppose that U s(i)

i ⊂ Ii. Then sin
e Fi−1 is in a wellbounded 
ase, we have |U s(i)
i | < |Ii−1|/(1 + 2χ). Sin
e Ii is a domain of the�rst return map to Ii−1 we have

|U s(i)
i | < S(0, n̂(i− 1), U

s(i−1)
i−1 )

1 + 2χ
.Now assume that U s(i)

i ∩ Ii = ∅. Then there exists some extension Vi ⊃
U

s(i)
i su
h that fn(s(i)) : Vi → Ii−1 is a di�eomorphism. We will show that

U
s(i)
i is uniformly smaller than Vi. By (1) we know that B(Vi, U

s(i)
i ) <

B(Ii−1, Ii)/µ for µ as in (4). Thus, by Lemma 3.1, |U s(i)
i |< |Vi|/(1+2µ/∆(χ)).Sin
e Vi is a �rst return domain to Ii−1 we have

|U s(i)
i | < S(0, n̂(i− 1), U

s(i−1)
i−1 )

1 + 2µ/∆(χ)
.Let γ := max(1/(1 + 2χ), 1/(1 + 2µ/∆(χ))). Clearly γ < 1. So

S(0, n̂(i), U
s(i)
i ) < γS(0, n̂(i− 1), U

s(i−1)
i−1 ).We let Call = max(Cwb, Ccasc, 3Cex). Note that by disjointness, all

σi, σi,m < 1. If f ∈ NF2+η and Fi−1 is well bounded, we have
B(fni−ni+1 , fni+1+1(T ), fni+1+1(J))

≥ exp
{
−C(S(ni+1, ni, T ))η

ni−ni+1∑

k=1

|fk+ni+1(T )|
}

> exp{−C(S(0, n̂(i), U
s(i)
i ))ηCall}

> exp{−C(γS(0, n̂(i− 1), U
s(i−1)
i−1 ))ηCall}.



68 M. ToddIf we are not in the in�nite 
as
ade 
ase then the sums for Fi, Fi+1, . . .
an be broken into blo
ks 
onsisting of a 
as
ade; possibly followed by anex
eptional 
ase; followed by one or more well bounded 
ases. So supposethat Fi is well bounded, Fi, Fi+1, . . . , Fi+m−1 have 
entral returns, Fi+m hasa non-
entral return and Fi+m+1 is an ex
eptional 
ase. So note that, inparti
ular, Fi+m+2 must be well bounded. Then
S(0, n̂(i+m+ 3), U

s(i+m+3)
i+m+3 ) < γS(0, n̂(i+m+ 2), U

s(i+m+2)
i+m+2 )...

γS(0, n̂(i+ 1), U
s(i+1)
i+1 ) < γ2S(0, n̂(i), U

s(i)
i ).Therefore, we have

B(fn, T, J) > exp
{
−C

n−1∑

k=0

|fk(T )|1+η
}

> exp
{
−CCall(S(0, n̂(0), U

s(0)
0 ))η

∞∑

k=0

γkη
}

> exp

{
−CCall

(σ′(|I0|))η

1 − γη

}
.Hen
e it is easy to see that for any 0 < K < 1, if I0 is the 
entral domainof a �rst return map to some I−1, and I0 is su�
iently small and F−1 isnon-
entral, then we may bound B(fn, T, J) below by K.Note that we 
an always start with a well bounded 
ase when we do nothave an in�nite 
as
ade. We simply indu
e on a ni
e interval �nitely manytimes until we obtain a non-
entral return and thus obtain a suitable I−1.We 
onsider the in�nite 
as
ade 
ase in the next se
tion.The se
ond part of Theorem 1.2, 
on
erning A(fn, T, J), is proved in thesame way.7. In�nite 
as
ade 
ase. Here we 
onsider the 
ase where we havesome I0 su
h that Fi are 
entral for i = 0, 1, . . . . In this 
ase we will �ndthat |Ii+1|/|Ii| gets very 
lose to 1. See Figure 5 for an example of su
h amap. In parti
ular, Ii will not shrink down to a point (the 
riti
al point c)as i in
reases so we 
annot use the method above to bound sums of intervalswhi
h land very 
lose to c. The prin
ipal tool here is an extension given by aresult of [K2℄. We will not supply all the details of our proof of Theorem 1.2in this 
ase sin
e the te
hniques are mostly the same as those applied in theprevious se
tions.We start by letting I0 be any ni
e interval about c. We assume that wehave some in�nite 
as
ade. This means that for a ni
e interval I0 ∋ c, Fi is
entral (and high) for all i, where Fi is de�ned in the usual way. The main
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Ii

Ii+1
Ii+2

Ii+3Fig. 5. An in�nite 
as
adeidea here is that we 
an still �nd good bounds on some interval I0,0 andthen apply the methods of Se
tion 4 to it. Then we need to �nd anotherinterval I1,0 around c whi
h is smaller than all I0,i, also has good boundsand is uniformly smaller than I0,0. In su
h a way, we obtain a sequen
e ofintervals Ii,0 whi
h 
an ea
h be treated as in the high 
as
ade 
ase above,and whi
h shrink uniformly to the 
riti
al point. Clearly Fi,j will always be
entral and high for all i, j ≥ 0.Proposition 7.1. For f ∈ NF2 and ξ > 0 there exists some Cinf > 0su
h that for any small I0,0 de�ned as above, T ⊂ I0,0 implies
n−1∑

k=0

|fk(T )|1+ξ < Cinf .Clearly this 
ompletes the proof of Theorem 1.2 in this 
ase.Proof. We will prove this with a series of lemmas.For all i the 
entral bran
h of Fi has two �xed points, q0 and p0 to the leftand right of c respe
tively (as usual, we assume that Fi(c) is a maximum for
Fi|Ii+1

). We let q′0 be the point in Ii+1 not equal to q0 whi
h maps by Fi to q0.We de�ne p′0 similarly. We de�ne I0,0 to be (p′0, p0). Let F0,0 :
⋃

j I
j
0,0 → I0,0be the �rst return map to I0,0 (where I0

0,0 is the 
entral domain). We havethe following lemma.Lemma 7.2. There exists some χ̂ > 0 depending only on f su
h that I0,0is a χ̂-s
aled neighbourhood of every domain Ij
0,0 whi
h has ∂Ij

0,0 ∩∂I0,0 = ∅.Proof. Clearly, Ii tends to (q0, q
′
0). So we denote (q0, q

′
0) by I∞. We will�rst show that I∞ is uniformly larger than I0,0, and then show that all ex
ept



70 M. Toddtwo non-
entral domains of the �rst entry map to I0,0 have an extension to
I∞ and show what this means for Ij

0,0. These two domains are the ones witheither p0 or p′0 in the 
losure.In a similar manner to the ex
eptional 
ase, we will �nd an upper boundfor |DFi|Ii+1
. This will allow us to get good bounds for the �rst return mapto I0,0.For large i, the ratio Ii has |Ii+1|/|Ii| 
lose to 1. The following lemma,an adaptation of Lemma 7.2 of [K2℄, allows us to bound |DFi|Ii+1

.Lemma 7.3. If f ∈ NF2 then there exist 
onstants 0 < τ2 < 1 and τ3 > 0with the following property. If T is any su�
iently small ni
e interval aroundthe 
riti
al point , RT is the �rst entry map to T and its 
entral domain Jis su�
iently large, i.e. |J |/|T | > τ2, then there is an interval W whi
h is a
τ3-s
aled neighbourhood of T su
h that if c ∈ RT (J) then the range of anybran
h of RT : V → T 
an be extended to W provided that V is not J .This lemma is only needed as a C3 result in [K2℄, but it easily extendsto our C2 
ase.It is straightforward to see that the above lemma is su�
ient to provea version of Lemma 5.5 in our 
ase. That is, for large i, there exists some
Ĉ ′ su
h that |DFi|Ii+1

< Ĉ ′. This implies that there exists some 0 < θ < 1depending only on f su
h that |I0,0| < θ|I∞| and, equivalently, some δ > 0su
h that I∞ is a δ-s
aled neighbourhood of I0,0.Now, for the moment we let F0,0 also denote the �rst entry map and⋃
j I

j
0,0 also in
lude the �rst entry domains. We will show that many of thebran
hes have an extension to a uniformly larger domain. Suppose that thereexists a domain Ij

0,0 with I0,0 ∩ Ij
0,0 = ∅ su
h that F0,0 : Ij

0,0 → I0,0 does nothave an extension to I∞. That is, supposing F0,0|Ij
0,0

= fn(j)|
Ij
0,0
, there isno interval V ⊃ Ij

0,0 su
h that fn(j) : V → I∞ is a di�eomorphism. Let
0 ≤ k ≤ n(j) − 1 be maximal su
h that fn(j)−k : fk(Ij

0,0) → I0,0 has noextension to I∞. Clearly, if I0,0 is small, f : fn(j)−1(Ij
0,0) → I0,0 always hasan extension, so k < n(j)−1. Then there exists some intervalW ⊃ fk+1(Ij

0,0)su
h that fn(j)−k−1 : W → I∞ is a di�eomorphism and the element W ′ of
f−1(V ) 
ontaining fk(Ij

0,0) 
ontains c.Sin
e I∞ is a ni
e interval, W ′ ⊂ I∞. We also know that fk(Ij
0,0) ⊂

I∞\I0,0. ThereforeW ′ 
ontains either p0 or p′0. But then either fn(j)−k−1(p0)or fn(j)−k−1(p′0) is 
ontained in I∞ \ I0,0, whi
h is not possible.Consider Ij
0,0 for some j 6= 0 where Ij

0,0 ⊂ I0,0 is a domain of the �rstreturn map. We will show that this domain is uniformly deep inside I0,0.There exists some V ⊃ f(Ij
0,0), where fn(j) : V → I∞ is a di�eomorphism
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aled neighbourhood of f(Ij
0,0). Let V ′ be the maximal intervalaround Ij

0,0 su
h that f(V ′) = V . We show that V ′ ⊂ I0,0. Let V (f(c))denote the maximal interval around f(c) whi
h pulls ba
k by f−1 to I0,0. If
V is not 
ontained in V (f(c)) then either p0 or p′0 is 
ontained in V ′. Thus,
fn(j)(p0) or fn(j)(p′0) lies in I∞ \ I0,0, a 
ontradi
tion. So V ′ ⊂ I0,0 and I0,0is a δ′-s
aled neighbourhood of Ij

0,0 where δ′ = min(δ̃, 1/2). The 
ase of the
entral bran
h follows in the usual manner.So we are in a type of high 
as
ade 
ase for F0,0. Note that the bran
heswith p0 or p′0 in their 
losure 
an be dealt with in the same way as thedomains V 1, V 2 were dealt with in the ex
eptional 
ase.We may assume that F0,0 has an in�nite 
as
ade and is high as well. Let
F0,1 be the �rst return map to I0,0 and so on, so we obtain I0,i. We sum for
F0,0, F0,1, . . . as in the high 
as
ade 
ase. We let q1, q′1, p1, p

′
1 be de�ned asabove for the �xed points of F0,0|I0,1

. We let I0,∞ denote (q1, q
′
1). We mayapply the same ideas as above to �nd some new interval I1,0 := (p1, p

′
1) whi
hhas |I1,0| < θ|I0,∞|. We may de�ne Ii,j for i ≥ 2 and 0 ≤ j ≤ ∞ in a similarway.Let fNi(T ) be the last iterate of T whi
h lies inside Ii,0. Let N ′
i be themaximal integer Ni ≥ N ′

i > Ni+1 su
h that fN ′

i (T ) is not in Ii,0 \ Ii,∞. Thenthese arguments prove the following lemma.Lemma 7.4. There exists some C > 0 su
h that
Ni−N ′

i∑

k=1

|fk+N ′

i (T )| < Cσ̂i

where σ̂i is de�ned as follows. Let σi := supV ∈dom Fi,0

∑n(V )
j=1 |f j(V )| (and

n(V ) is de�ned as k where Fi,0|V = fk). Let V̂ ⊂ Ii,0 \ Ii,1 be an intervalsu
h that f n̂(V̂ ) is one of the 
onne
ted 
omponents of Ii,0 \ Ii,1 and f j(V̂ )is disjoint from both Ii,0 \ Ii,1 and Ii+1,0 for 0 < j < n̂(V̂ ). Then σ̂i is thesupremum of all su
h sums ∑n̂(V̂ )
j=1 |f j(V̂ )| and σi.Now we 
onsider ∑N ′

i−Ni+1

k=1 |fk+Ni+1(T )|. If none of these intervals
ontain pi, qi then we are in Ii,∞ \ Ii+1,0. By the Minimum Prin
iple,
|DFi|Ii,∞\Ii+1,0

is uniformly greater than 1. So we 
an easily bound our sum.If none of our intervals 
ontains pi, but some fk+Ni+1(T ) 
ontains q0, q′0 we
an split fk+Ni+1(T ) at q0 or q′0 into two intervals. It is easy to see thatthere is some C > 0 su
h that ∑N ′

i−Ni+1

k=1 |fk+Ni+1(T )| < Cσ̂i. If p0, p
′
0 is
ontained in some |fk+Ni+1(T )| then we must split the interval at p0 or p′0.Note that we may have to split the interval |fk+Ni+1(T )| at arbitrarily many
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pi, q

′
i or p′i, qi. Therefore,

N ′

i−Ni+1∑

k=1

|fk+Ni+1(T )|1+ξ < C
∞∑

k=i

(k − i)S(Nk, n̂(k), T )ξσ̂kwhere S and n̂ are de�ned analogously to Se
tion 6. As before, there is some
onstant 0 < θ′ < 1, here depending on θ rather than γ, su
h that θ′ governsthe de
ay of S(Ni, n̂(i), T ). Hen
e, we 
an put this estimate together withLemma 7.4 to get
Ni−Ni+1∑

k=1

|fk+Ni+1(T )|1+ξ < CS(Ni, n̂(i), T )ξ
∞∑

k=0

kθ′kξ.Similarly to what was done before, we 
an 
on
lude that there exists some
Cinf > 0 su
h that

n∑

k=0

|fk(T )|1+ξ < Cinf .

A. Proof of the Yo

oz lemma. We re
all the lemma.
Lemma 4.3. Suppose that f ∈ NF2. Then for all δ, δ′ > 0 there exists

C > 0 su
h that if I0 is a ni
e interval su
h that(1) I0 is a δ-s
aled neighbourhood of I1,(2) Fi is low and 
entral for i = 0, . . . ,m,(3) there is some 0 < i < m with |Ii|/|Ii+1| < 1 + δ′,then for 1 ≤ k < m,

1

C

1

min(k,m− k)2
<

|Ii+k−1 \ Ii+k|
|Ii|

<
C

min(k,m− k)2
.For similar statements see [FM℄ and [Sh2℄.Proof. We �rst point out the following 
laim.Claim 1. For f as in the lemma, there exists some C(f, δ, δ′) > 0 su
hthat

|Im|
|I0|

> C(f, δ, δ′).This is proved in Se
tion 5 of [Sh2℄. One 
onsequen
e of this is that
|Im \ Im+1|/|I0| is uniformly bounded below. This is one of the assumptionsin the statement of the Yo

oz lemma in [FM℄.Our proof now involves using a result of [ST℄, the bound δ and the smallsize of I0, to �nd a nearby map in the Epstein 
lass. The stru
ture of su
hmaps, parti
ularly at paraboli
 �xed points, along with some new 
oordi-nates, give us estimates for |Ii+k−1 \ Ii+k|/|Ii|.



Distortion bounds for C2+η unimodal maps 73We suppose that s > 0 is su
h that F0|I1 = f s|I1 . We observe that f s−1has uniformly bounded distortion depending on δ. We will denote F0|I1 by F .Letting ψ : [am, a1] → [0, 1] be an a�ne di�eomorphism we will work withthe map ψ ◦F ◦ψ−1. For the rest of the appendix we will abuse the notationand denote this map by F too.Previously we assumed that F |I1 had a maximum at c. It will be 
on-venient to suppose now for this se
tion that c is a minimum for F |I1 . Alsowe let Ii = (a′i, ai). So in parti
ular, F (ai+1) = ai. We �rstly de�ne a pointwhi
h allows us to partition [am, a1] in another way.Let x0 ∈ [am, a1] be so that |F (x0) − x0| = minam≤x≤a0
|F (x) − x|.It is easy to show that DF (x0) = 1. We suppose throughout that

|F (x0)−x0| shrinks to zero as |I0| → 0; otherwise the proof is mu
h simpler.We 
an estimate the shape of F near x0 using the following de�nition andlemma.Let κ > 0. We say that the real-analyti
 map f : [0, 1] → [0, 1] is in theEpstein 
lass Eκ if f(x) = ϕQψ where Q is the quadrati
 map Q(z) = z2,
ψ is an a�ne map and ϕ : [0, 1] → [0, 1] is a di�eomorphism whose inversehas a holomorphi
 extension whi
h is univalent in the domain C(−κ,1+κ) :=
C \ ((−∞,−κ]∪ [1+κ,∞)). For more details on maps in this 
lass see [MS℄.The following lemma is proved in [ST℄.Lemma A.1. Let f ∈ NF2. Suppose that I is a ni
e interval around cand J is a �rst entry domain whi
h is disjoint from I and with entry time s.Suppose that δ > 0 is some 
onstant su
h that there exists some Ĵ ⊃ J su
hthat f s : Ĵ → I ′ is a di�eomorphism where I ′ is a κ-s
aled neighbourhoodof I and ∑ |f j(Ĵ)| ≤ 1. Let τ0 : J → [0, 1] and τs : I → [0, 1] be a�nedi�eomorphisms. Then for all ε > 0 there exists δ > 0 su
h that |I| < δimplies that there exists some fun
tion G : I → I in the Epstein 
lass Eκ/2su
h that ‖τs ◦ f s ◦ τ−1

0 −G‖C2 < ε.We use this to prove the following 
laim.Claim 2. There exists some 0 < A < B su
h that , for I0 su�
ientlysmall ,
F (x0) + (x− x0) +A(x− x0)

2 ≤ F (x) ≤ F (x0) + (x− x0) +B(x− x0)
2.Proof. We know that f s : I2 → I1 has the following property. The map

f s−1 : f(I2) → I1 has an extension to I0. Furthermore, sin
e I0 is a δ-s
aledneighbourhood of I1 we use Lemma A.1 to obtain a map G∞ in the Epstein
lass whi
h is C2-
lose to f s.In fa
t we 
an 
hoose di�erent starting intervals In with the same realbounds whi
h are smaller and smaller and whi
h are then res
aled to maps
Fn that map from the unit interval to itself. For ea
h su
h map we obtain thenearby map Gn in the Epstein 
lass where ‖Fn −Gn‖C2 → 0 as n→ ∞. For
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Fn we let xn

0 denote a point whi
h is equivalent to x0 for F . Sin
e we assumethat |Fn(xn
0 )−xn

0 | goes to zero, our limit map G∞ has a paraboli
 �xed point
x∞0 . Also D2G∞(x∞0 ) > 0. Thus, there exist 0 < A < B depending only on
f su
h that for all x ∈ [0, 1] we have
G∞(x∞0 ) + (x− x∞0 ) +A(x− x∞0 )2 ≤ G∞(x)

≤ G∞(x∞0 ) + (x− x∞0 ) +B(x− x∞0 )2.Clearly, for large n, we have the same 
ondition for Gn. Therefore, if we take
I0 small enough, we may assume that it holds for F too.We de�ne ε := F (x0) − x0. Then we have

ε+A(x− x0)
2 ≤ F (x) − x ≤ ε+B(x− x0)

2.We suppose that N is su
h that x0 ∈ [aN , aN+1). Then for 0 ≤ i ≤ N −1 welet xi := F i(x0). We will use this equation to �nd estimates for aj − aj+1.Throughout we will let C,C ′ denote some 
onstants depending only on δ, δ′.Claim 3.
N ≍ 1/

√
ε.Proof. Let N ′ = max{1 ≤ j ≤ N − 1 : xj − x0 ≤ √

ε}. We will �rst showthat N ′ satis�es the 
laim. For j ≤ N ′, we have
ε ≤ xj+1 − x0 ≤ ε(B + 1).Therefore,

N ′ε ≤
N ′−1∑

j=0

xj+1 − xj ≤ N ′ε(B + 1).

Sin
e ∑N ′−1
j=0 xj+1 − xj = xN ′ − x0 ≤ √

ε we have N ′ ≤ 1/
√
ε. Furthermore,

xj+1 − x0 >
√
ε so ε(N ′(B+ 1) + 1) >

√
ε and N ′ > 1/(B + 1)

√
ε− 1. Thatis, N ′ ≍ 1/

√
ε.Next we �nd estimates for N − N ′. For N ′ < j ≤ N we again 
onsiderthe estimates
ε+A(xj − x0)

2 ≤ xj+1 − xj ≤ ε+B(xj − x0)
2.But note that here B(xj − x0)

2 > ε so we 
an write instead
A(xj − x0)

2 ≤ xj+1 − xj ≤ 2B(xj − x0)
2.We make a 
hange of 
oordinates. We let yj := 1/(xj − x0). Then

yj − yj+1 =
xj+1 − xj

(xj − x0)(xj+1 − x0)
.By the above bounds we have

A(xj − x0)

xj+1 − x0
< yj − yj+1 <

2B(xj − x0)

xj+1 − x0
< 2B.
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yj −yj+1 >

A(xj − x0)

(xj+1 − xj) + (xj − x0)
>

A(xj − x0)

2B(xj − x0)2 + (xj − x0)
>

A

2B + 1
.Observe that xN ∈ (a1, a0) and |a0 − a1| > δ. So sin
e |xN − xN−1| isapproximately |a0 − a1| and sin
e we �xed δ, we know that yN = O(1). Alsonote that yN ′ = O(1/

√
ε) and so yN ′ − yN = O(1/

√
ε). Summing we obtain

C√
ε
< yN ′ − yN =

N ′∑

j=N−1

yj − yj+1 < 2B(N −N ′),

C ′

√
ε
> yN ′ − yN =

N ′∑

j=N−1

yj − yj+1 >
A(N −N ′)

2B + 1
.

So N − N ′ ≍ 1/
√
ε too. Adding this to the estimates for N ′ proves the
laim.To prove the Yo

oz lemma, we will use Claims 1 and 3 together, alongwith bounded distortion, whi
h means that aj −aj+1 is like xN−j −xN−j−1.Firstly we will use the above 
oordinate 
hange again. For j > N ′ wehave

yj > yj − yN =

j∑

j=N−1

yi − yi+1 >
A(N − j)

2B + 1and so
1

xj − x0
>
A(N − j)

2B + 1
and xj+1 − xj < 2B

(
2B + 1

A(N − j)

)2

.We have proved that if 0 ≤ j ≤ N ′ then(5) ε < xj+1 − xj < C ′εand if N ′ < j ≤ N then(6) ε < xj+1 − xj <
C ′

(N − j)2
.Similarly we 
an de�ne xj = F j(x0) for negative j where 0 ≤ |j| < m−N .Now we will show that Claim 3 follows for this situation too and we getequivalents to (5) and (6). We de�ne some M ′ analogously to the de�nitionfor N ′ and so if |j| ≤M ′ then

ε < xj+1 − xj < C ′ε.And if M ′ < |j| ≤ m−N then
C

(m−N + j)2
< xj+1 − xj <

C ′

(m−N + j)2
.



76 M. Todd(In the step of the proof where estimates on yN−m are required, we useClaim 1 to get |am−1 − am| uniformly bounded below and the fa
t that
|x−m−1 − xm| is approximately |am−1 − am|.) Note also that we 
an showthat m−M ′ ≍ 1/

√
ε.Observe that aj − aj+1 is essentially the same as xN−j − xN−j−1. So if

N ≥ j ≥ N −N ′, we have
Cε < aj − aj+1 < C ′ε.Observe that 1/(N−N ′) ≥ 1/j ≥ 1/N . Sin
e ε ≍ 1/N2 and ε ≍ 1/(N−N ′)2this implies that we have

C/j2 < aj − aj+1 < C ′/j2.Now if N −N ′ ≥ j ≥ O(1) then 
learly we have aj −aj+1 < C ′/j2. Also,
xN−j − xN−j−1 > A(xN−j−1 − x0)

2 = A
( N−1∑

k=j−1

(xN−k − xN−k−1)
)2

≥ A
( N ′∑

k=1

(xk − xk−1)
)2

≥ A(N ′√ε)2.Now sin
e √
ε ≍ 1/N ′, we have xN−j − xN−j−1 & 1. Thus

C/j2 < aj − aj+1 < C ′/j2.If N ≤ j ≤ m−M ′ then again we have
Cε < aj − aj+1 < C ′ε.Note that we also have m−N ≥ m−j ≥ m−M ′. Sin
e m−N,m−M ′ ≍

1/
√
ε we have

C

(m− j)2
< aj − aj+1 <

C ′

(m− j)2
.If m−M ′ ≤ j ≤ m− 1 we have

C

(m− j)2
< aj − aj+1 <

C ′

(m− j)2where the lower bound follows as above.To 
on
lude, if 1 ≤ j ≤ N then we have some 
onstant C su
h that
j ≤ C(m − j) and aj − aj+1 ≍ 1/j2. If N ≤ j ≤ m − 1 then we have some
onstant C ′ su
h that m− j ≤ C ′j and aj − aj+1 ≍ 1/(m− j)2. So in either
ase we have

aj − aj+1 ≍ 1

(min(j,m− j))2as required.
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