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Distortion bounds for C
2+η unimodal mapsbyMike Todd (Surrey)

Abstrat. We obtain estimates for derivative and ross-ratio distortion for C2+η (any
η > 0) unimodal maps with non-�at ritial points. We do not require any �Shwarzian-like� ondition.For two intervals J ⊂ T , the ross-ratio is de�ned as the value

B(T, J) :=
|T | |J |

|L| |R|where L, R are the left and right onneted omponents of T \ J respetively. For aninterval map g suh that gT : T → R is a di�eomorphism, we onsider the ross-ratiodistortion to be
B(g, T, J) :=

B(g(T ), g(J))

B(T, J)
.We prove that for all 0 < K < 1 there exists some interval I0 around the ritial pointsuh that for any intervals J ⊂ T , if fn|T is a di�eomorphism and fn(T ) ⊂ I0 then

B(fn
, T, J) > K.Then the distortion of derivatives of fn|J an be estimated with the Koebe lemma in termsof K and B(fn(T ), fn(J)). This tool is ommonly used to study topologial, geometriand ergodi properties of f . Our result extends one of Kozlovski.1. Introdution. In order to understand the long term behaviour ofa smooth dynamial system f : X → X we must onsider iterates of themap. It is useful to know how di�erently high iterates of the map fn at onnearby points. For example we an try to estimate how wild the derivativeof iterates of the map is: we an onsider the distortion Dfn(x)

Dfn(y) for x, y insome small interval J where fn|J is a di�eomorphism. For one-dimensionalmaps, the Koebe lemma is a tool we use to estimate this. Notie that thisdistortion an be rather wild when f has ritial points.An important ondition we must assume in order to apply the Koebelemma is that the map fn must inrease ross-ratios. The type of ross-ratio2000 Mathematis Subjet Classi�ation: Primary 37E05.Key words and phrases: unimodal map, ross-ratio distortion.[37℄



38 M. Toddwe use most is de�ned as follows. For two intervals J ⊂ T , the ross-ratio isde�ned as the value
B(T, J) :=

|T | |J |
|L| |R|where L,R are the left and right onneted omponents of T \J respetively.For an interval map g suh that gT : T → R is a di�eomorphism, the mainmeasure of ross-ratio distortion we use is given by

B(g, T, J) :=
B(g(T ), g(J))

B(T, J)
.If we know that B(fn, T ∗, J∗) ≥ K > 0 for any J∗ ⊂ T ∗ ⊂ T then we haveuniform bounds on Dfn(x)

Dfn(y) for x, y ∈ J depending onK and B(fn(T ), fn(J)).So we are able to estimate the distortion of the derivative of fn using infor-mation on the distortion of the ross-ratios.A lassial way of gaining information about the dynamis of an intervalmap f : [0, 1] → [0, 1] with a ritial point is to take a �rst return map tosome well hosen interval I. If this map has some di�eomorphi branhes,we an estimate how well or how badly the derivatives behave on branhesusing the Koebe lemma as above. This method is often used to get informa-tion on the geometry and topology of the map and its iterates (see [MS℄).This type of approah is also applied when onsidering the ergodi prop-erties of one-dimensional maps. Often instead of �rst return maps, ertaininduing shemes are applied in these ases (see again [MS℄). The Koebelemma allows us to show that the induing shemes are expansive, and theFolklore Theorem an then be used to derive ergodi absolutely ontinuous
f -invariant measures.In order to apply the Koebe lemma to fn|T we need a lower bound onross-ratio distortion of fn|T . In fat, a lower bound K = 1 is obtainedwhenever f is C3 and has negative Shwarzian derivative, that is,

Sf :=
D3f

Df
− 3

2

(
D2f

Df

)2

is negative wherever it is well de�ned. For appliations it is not so importantthat f have negative Shwarzian, just that some iterate of f has negativeShwarzian on some small intervals. Kozlovski showed [K2℄ that for any
C3 unimodal map with non-�at ritial point (see the next setion), if Iis a small enough neighbourhood of the ritial point and fn(x) ∈ I then
Sfn+1(x) < 0. Therefore, for most pratial purposes, for example where�rst return maps or induing shemes are used to gain information about thedynamis, it is unneessary to �nd the sign of the Shwarzian derivative aslong as the ritial point is non-�at. Moreover, this result allowed Kozlovskito prove the following, a key tool in the proof of [K3℄.



Distortion bounds for C2+η unimodal maps 39Theorem 1.1. Suppose that f is a C3 unimodal map with non-�at rit-ial point whose iterates do not onverge to a periodi attrator. Then forany 0 < K < 1, there is an interval V around the ritial point suh that if ,for an interval T and some n > 0,
• fn|T is monotone,
• eah interval from the orbit {T, f(T ), . . . , fn(T )} is ontained in thedomain of the �rst entry map to V ,then

B(fn, T, J) > Kwhere J is any subinterval of T .This means that the Koebe lemma an be applied to fn to get estimateson the distortion of derivatives whih only depend on B(fn(T ), fn(J)) (for�rst return maps or indued maps this quantity is bounded whenever thebranhes have a �uniform extension�). These results were extended to C3multimodal maps with non-�at ritial points in [SV℄. Also, for C3 unimodalmaps with non-�at ritial point, it is shown in [GSS℄ that an analyti oor-dinate hange an reate a map whih has �rst return maps with negativeShwarzian.So how neessary is the negative Shwarzian ondition to prove dynamialresults in �reasonable� ases? Certainly it is useful in determining the typeof paraboli periodi points or bounding the number of attrating yles (see[Si, MS℄). A natural question to ask, and the one we onsider in this paper,is: what happens for unimodal maps with non-�at ritial points whih arenot C3? Certainly the usual negative Shwarzian ondition is no use sineit is not even de�ned. (Note that there is a �Shwarzian-like� ondition for
C1 maps, equivalent to the negative Shwarzian ondition when the map is
C3, but that need not hold in our ase either; see [P, MS℄.) We show thatTheorem 1.1 extends to the ase of C2+η for any η > 0. So many resultson the geometri and statistial properties of unimodal maps with non-�atritial point extend to maps whih are only C2+η.Sine we annot use the negative Shwarzian property at all here, wemust look rather losely at the behaviour of the map on small sales. Weuse a result from [MS℄ to estimate the ross-ratio distortion in terms of sumsof lengths of intervals. We split up this sum into bloks using the domainsof �rst return maps to small intervals around the ritial point. The preisebehaviour of the branh ontaining the ritial point, the entral branh,determines how we hoose our bloks. Sine we have no negative Shwarzianproperty, there are partiular di�ulties when a blok of our sum ontainspoints whih spend a very long time in the entral branh (when there is aso-alled �saddle node asade� or an �Ulam�Neumann asade�). The main



40 M. Toddtool we use here is the real bounds proved by [V, Sh1, SV℄. Roughly speaking,these results give us a sequene of �rst return maps where the di�eomorphibranhes have a uniformly large extension. This gives bounded distortion ofthe derivative on these branhes whih allows us to estimate the sums oflengths of intervals.1.1. Statement of the main result. We explain the terminology in thefollowing de�nitions. Given an interval T , and a subinterval J ⊂ T , wede�ned the ross-ratio B(T, J) above. Note that if we again denote the left-hand and right-hand omponents of T \ J by L and R respetively, we haveanother measure of ross-ratio:
A(T, J) :=

|T | |J |
|L ∪ J | |J ∪R| ,(however, we fous mainly on B(T, J)).Suppose that g : T → R is a di�eomorphism. We de�ne B(g, T, J) asabove, but we also have

A(g, T, J) :=
A(g(T ), g(J))

A(T, J)
,another estimate of how the map distorts ross-ratios. Observe that for dif-feomorphisms g : T → g(T ) and h : g(T ) → h ◦ g(T ) we have

B(h ◦ g, T, J) = B(h, g(T ), g(J))B(g, T, J).Similarly for A(g, T, J).We say that T is a δ-saled neighbourhood of J if |L|
|J | ,

|R|
|J | > δ. We supposethroughout that our funtions map I := [0, 1] into itself, and ∂I into ∂I.We say that a unimodal Ck map g has non-�at ritial point c if thereexists some neighbourhood U of c and a Ck di�eomorphism φ : U → I with

φ(c) = 0 suh that g(x) = ±|φ(x)|α + g(c) for some α > 1. The value α isknown as the ritial order for g. We denote the set of suh maps by NFkand this neighbourhood by Uφ.Suh maps have many good properties. For example, they have no wan-dering intervals (see for example Chapter IV of [MS℄). More importantly forus here is how suh maps distort ross-ratios. In partiular, how iterates ofsuh maps distort ross-ratios. Our main result is as follows.Theorem 1.2. For any η > 0, let f ∈ NF2+η be a unimodal map witha ritial point whose iterates do not onverge to a periodi attrator. Thenfor any 0 < K < 1, there is an interval V around the ritial point suh thatif , for an interval T and some n > 0,
• fn|T is monotone,
• fn(T ) ⊂ V ,



Distortion bounds for C2+η unimodal maps 41then
B(fn, T, J) > K, A(fn, T, J) > Kwhere J is any subinterval of T .This theorem is proved for C3 maps in [K2℄. Note that in fat weprove that if 0 < η ≤ 1 then for any 0 < η′ < η, there exists C > 0suh that if J, T, V are as in the theorem then A(fn, T, J), B(fn, T, J) >

exp{−C(supj |Vj|)η′}.1.2. Strategy of the proof. Our setup will involve �rst return maps to aneighbourhood of c, as outlined below. For the ase where c is non-reurrentsee [St℄. So we suppose throughout that c is reurrent.An open interval V is nie for f if fn(∂V ) ∩ V = ∅ for n ≥ 1. (When itis lear what f is, we just refer to suh an interval as nie.) It is easy to seethat we an �nd arbitrarily small nie intervals around c.Let I0 ∋ c be a nie interval. For every x ∈ I whose orbit intersets I0,let n(x) := min{k > 0 : fk(x) ∈ I0}. If additionally x ∈ I0, let Ij
0 ∋ x be themaximal neighbourhood suh that fn(x)(Ij

0) ⊂ I0. We obtain the �rst returnmap F0 :
⋃

j I
j
0 → I0. We label the interval whih ontains c by I0

0 ; thisinterval is alled the entral domain. Observe that F0 is a di�eomorphism onall domains Ij
0 exept when j = 0. Furthermore, F0 is unimodal on I0

0 . Notealso that I0
0 is again a nie interval. We will all it I1 for the next step in theinduing proess; i.e. we de�ne F1 :

⋃
j I

j
1 → I1 to be the �rst return mapto I1 = I0

0 . It has entral domain I0
1 = I2. Continuing indutively, we obtainmaps Fi :

⋃
j I

j
i → Ii. The sequene I0 ⊃ I1 ⊃ · · · is alled the prinipalnest, and Fi|Ij

i
: Ij

i → Ii is a branh of Fi.If x /∈ Ii but n(x) is de�ned then there is a maximal interval U j
i ∋ xsuh that fn(x) : U j

i → Ii is a di�eomorphism. So we may extend Fi, letting
Fi|Uj

i
: U j

i → Ii. Then letting ⋃
j U

j
i onsist of all suh intervals added to

⋃
j I

j
i , we all Fi :

⋃
j U

j
i → Ii the �rst entry map to Ii. We will often swithbetween these two very similar types of map.For simpliity, exept in the appendix, we will assume that Fi(c) is amaximum for Fi|Ii+1

. We say that Fi is low if Fi(c) lies to the left of c and
Fi is high if Fi(c) lies to the right of c. Finally, Fi is entral if Fi(c) is inside
Ii+1 (if this is not the ase, then Fi is non-entral). Figure 1 shows Fi whihis a high and entral return.Suppose that fn : T → fn(T ) is a di�eomorphism and fn(T ) ⊂ I0. It anbe shown (see Theorem 2.1) that we get a lower bound on B(fn, T, J) if wean �nd some bound on ∑n−1

k=0 |fk(T )|. In fat, we onsider ∑n−1
k=0 |fk(T )|1+ξfor some 0 < ξ < η. We will split up this sum into bloks determined by
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Ii+1
IiFig. 1. Fi is high and entralthe prinipal nest introdued above. Note that our proofs extend easily to

A(fn, T, J) (see [St℄).We �x n and T as in Theorem 1.2, and let n0 = n. For i > 0, supposethat some iterate f j(T ) enters Ii for 0 ≤ j ≤ n. Now we let ni be the lasttime that f j(T ) ⊂ Ii, i.e. fni(T ) ⊂ Ii and fni+j(T ) * Ii, 0 < j ≤ n − ni.If f j(T ) is never ontained in Ii for 0 ≤ j ≤ n then we let ni = ni−1. Foreah i, we will be interested in estimating
ni−ni+1∑

k=1

|fk+ni+1(T )|1+ξ;we all this the sum for Fi. As we will see later, if Fi is non-entral in�nitelyoften then Theorem 2.3 implies that as i → ∞ the intervals Ii shrink downto c. Thus we are able to bound ∑n−1
k=0 |fk(T )|1+ξ by bounding the sums forall Fi. We will use a slightly di�erent method when there exists a nie I0suh that Fi is always entral.In order to prove the main theorem, we will onsider the following ases.Note that we only assume that f ∈ NF2 in the following three propositions.

• Fi−2 is non-entral. We onsider the sum for Fi whenever f j(T ) ∩
∂Ii+1 = ∅ for all 0 ≤ j < ni, as follows.Proposition 1.3. Suppose that Fi−2 is non-entral and f j(T ) ∩ ∂Ii+1

= ∅ for all 0 ≤ j < ni. Then there exists Cwb > 0 suh that
ni−ni+1∑

k=1

|fk+ni+1(T )| < Cwbσi
|fni(T )|

|Ii|
,

where σi := sup
V ∈{Ij

i }j

∑n(V )
k=1 |fk(V )| (and n(V ) is de�ned as k where

Fi|V = fk).



Distortion bounds for C2+η unimodal maps 43We all this a well bounded ase. It is dealt with in Setion 3.
• Fi−2 is non-entral and Fi, . . . , Fi+m−1 are entral. We onsider thesums for Fi, Fi+1, . . . , Fi+m whenever f j(T )∩∂Ii+m+1 = ∅ for all 0 ≤ j < ni,as follows.Proposition 1.4. Suppose that Fi−2 is non-entral , Fi, . . . , Fi+m−1 areentral and f j(T )∩∂Ii+m+1 = ∅ for all 0 ≤ j < ni. For all ξ > 0 there exists

Ccasc > 0 suh that
ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m max
ni+m+1<k≤ni

|fk(T )|ξ

where σi,m is de�ned as follows. Let σi := sup
V ∈{Ij

i }j

∑n(V )
k=1 |fk(V )|. Let V̂ ⊂

Ii\Ii+1 be an interval suh that f n̂(V̂ ) is one of the onneted omponents of
Ii \ Ii+1 for some n̂ > 0 and f j(V̂ ) is disjoint from both Ii \ Ii+1 and Im for
0 < j < n̂(V̂ ). Then σi,m is the supremum of all suh sums ∑n̂(V̂ )

j=1 |f j(V̂ )|and σi.We all this the asade ase. It is dealt with in Setion 4.
• Fi−2 is entral and Fi−1 is high and non-entral. We onsider the sumfor Fi whenever f j(T ) ∩ ∂Ii+1 = ∅ for all 0 ≤ j < ni, as follows.Proposition 1.5. Suppose that Fi−2 is entral , Fi−1 is high and non-entral and f j(T )∩∂Ii+m+1 = ∅ for all 0 ≤ j < ni. Then there exist Cex > 0and ni+1 < ni,3 < ni,2 < ni suh that fni,2(T ), fni,3(T ) ⊂ Ii and

ni−ni+1∑

k=1

|fk+ni+1(T )| < Cexσi

( |fni(T )|
|Ii|

+
|fni,2(T )|

|Ii|
+

|fni,3(T )|
|Ii|

)
.

(In some ases, the last two terms in the sum are not required.) We allthis the exeptional branhes ase. It is dealt with in Setion 5. We also notethere that if Fi−2 is entral and Fi−1 is low and non-entral then we are inanother well bounded ase, and so the onlusion of Proposition 1.3 holds.
• We have an interval I0 suh that Fi are all entral for i = 0, 1, . . ..We all this the in�nite asade ase. We prove Theorem 1.2 for this ase inSetion 7.The proof of Theorem 1.2 for the non-in�nite asade ase is given inSetion 6.With these propositions, for 0 < η′ < η, we an deompose the sum∑n−1

k=0 |fk(T )|1+η′ into bloks of sums ∑ni−ni+1

k=1 |fk+ni+1(T )|1+η′. We then



44 M. Toddshow that eah of these is uniformly bounded. We will then prove that∑ni−ni+1

k=1 |fk+ni+1(T )|1+η deays in a uniform way with i.The �rst two ases use real bounds of Theorem 2.3. These bounds implythat B(Ij
i , Ii) are bounded above. This will also be true for all exept possiblytwo domains of Fi in the third ase. The main tool here is Lemma 3.3, whihgives us some deay of ross-ratios when we have these real bounds. Notethat the onditions f j(T ) ∩ ∂Ii+1 = ∅ for all 0 ≤ j < ni in well boundedand exeptional ases, and f j(T ) ∩ ∂Ii+m+1 = ∅ for all 0 ≤ j < ni in theasade ase, make the propositions simpler to prove. However, as we remarkin Setion 6, it is easy to see how to split up the intervals in the other asesin order to prove Theorem 1.2.The �nal ase, whih arises in the in�nitely renormalisable ase, is dif-ferent from the other three. We use a lemma of [K2℄ to �nd some uniformexpanding property whih helps bound the sums.In all ases exept the in�nite asade ase we must ensure that we havesome initial interval whih has a �rst return map whih is well bounded. Todo this we an simply pik some nie interval to begin with and then indueuntil we �nd a map whih is well bounded. This is always possible whenthere is not an in�nite asade.Note that we need extra smoothness to bound ross-ratios in the as-ade ase. This ensures that we an deal with the ase when we have manyonseutive low entral returns, a �saddle node asade�.In his proof for C3 maps Kozlovski was able to use the fat that thereexists some C > 0 depending only on f suh that for intervals J ⊂ T wehave B(f, T, J) > exp{−C|T |2} and A(f, T, J) > exp{C|L| |R|}. See SetionIV.2 of [MS℄. In partiular this means that there exist suh real bounds as inTheorem 2.3 for all i, not just those for whih Fi−1 is a non-entral return.So the long entral asades we enounter in Setion 4 present muh lessof a problem in the C3 ase. Indeed, the work done in Setion 5 is alsounneessary in the C3 ase.We will deal with the well bounded ase �rst. It is the simplest and givesus a good idea about how we may proeed in general. We will use J torefer to a general interval from here until Setion 6. This allows us to useless notation. When we use the onstant C > 0, we mean some onstantdepending only on f .Aknowledgements. This work was undertaken as part of my thesis atthe University of Warwik, whih was funded by the EPSRC. I would liketo thank my supervisor Oleg Kozlovski for his support. I would also like tothank the dynamial systems group at Warwik, in partiular Weixiao Shenwhose suggestions, support and enthusiasm were invaluable. Further thanksto Sebastian van Strien, Henk Bruin and to the referee for useful omments.



Distortion bounds for C2+η unimodal maps 452. Introdutory results. Without loss of generality, we supposethroughout that our maps have a maximum at the ritial point. We alsosuppose that f is symmetri about c. That is, f(c − ε) = f(c + ε) forall ε. This assumption is useful for simplifying proofs (partiularly in Se-tion 5, whih is already quite tehnial), but is not ruial sine on smallsales our maps will be essentially symmetri (in partiular, |Df(c− ε)| and
|Df(c+ ε)| are arbitrarily lose for small enough ε). We let C ≤ |g|U ≤ C ′mean supx∈U |g(x)| ≤ C ′ and infx∈U |g(x)| ≥ C.The following theorem is proved for a more general ase in Chapter IVof [MS℄. Here we will let wg be the modulus of ontinuity of a ontinuousmap g, i.e. wg(ε) := sup|x−y|<ε |g(x) − g(y)|.Theorem 2.1. For a unimodal map g : I → I, g ∈ NF2, if T is aninterval suh that gn|T is a di�eomorphism and J ⊂ T is a subinterval , thenthere exists some C > 0 suh that

B(gn, T, J) > exp
{
−C

n−1∑

i=0

wD2g(|gi(T )|)|gi(T )|
}
.This bound also holds for A(fn, T, J).In Setions 6 and 7 we will use the fat that when g ∈ NF2+η for some

η > 0, we an replae CwD2g(ε) by Cεη.The following lemma, a onsequene of the absene of wandering inter-vals, is Lemma 5.2 in [K2℄.Lemma 2.2. Suppose that g ∈ NF2, g : I → I. Then there exists afuntion τ : [0, |I|] → [0,∞) suh that limε→0 τ(ε) = 0 and for any interval Vfor whih gn|V is a di�eomorphism and gn(V ) is disjoint from the immediatebasins of periodi attrators, we have
max
0≤i≤n

|gi(V )| < τ(|gn(V )|).We may use this lemma and Theorem 2.1 to get(1) B(gn, T, J) > exp
{
−σ′(|gn−1(T )|)

n−1∑

i=0

|gi(T )|
}

whenever fn(T ) is disjoint from the immediate basins of periodi attrators,where(2) σ′(|gm(T )|) = Cwg ◦ τ(|gm(T )|).We will use the following result of [SV℄ throughout. (In fat it is statedthere in greater generality, as Theorem A.)Theorem 2.3. If g ∈ NF2 is a unimodal map with reurrent ritialpoint , then the following hold :



46 M. Todd(a) For all k ≥ 0 there exists ξ(k) > 0 suh that if Gi−1 :
⋃

j I
j
i−1 → Ii−1is non-entral , then Ii+k is a ξ(k)-saled neighbourhood of Ii+k+1.(b) For eah ξ > 0 there is some ξ̂ > 0 suh that if Ii is a ξ-saledneighbourhood of Ii+1 then Ii+1 is a ξ̂-saled neighbourhood of anydomain of Gi+1.This result gives us real bounds for some of our �rst return maps. We let

χ := ξ(1) > 0 from the above theorem for our map f .The following theorem is an improvement of the lassial Koebe lemma.It is presented in more generality in [SV℄ as Proposition 2: �a Koebe priniplerequiring less disjointness�. Note that atually, for our purposes, the lassialKoebe lemma is enough.Theorem 2.4. Suppose that g ∈ NF2. Then there exists a funtion
ν : [0, |I|] → [0,∞) suh that ν(ε) → 0 as ε → 0 with the following prop-erties. Suppose that for some intervals J ⊂ T and a positive integer n weknow that gn|T is a di�eomorphism. Suppose further that gn(T ) is a δ-saledneighbourhood of gn(J) for some δ > 0. Then:(a) for every x, y ∈ J ,

|Dgn(x)|
|Dgn(y)| < exp

{
ν(S(n, T ))

n−1∑

i=0

|gi(J)|
}[

1 + δ

δ

]2

=: C(δ)where S(n, T ) := max0≤k≤n−1 |fk(T )|.(b) T is a δ̃-saled neighbourhood of J whenever
δ̃ :=

1

2
exp{−θ}

[
1 + δ

δ

]2(−2θ + δ(1 − 2θ)

2 + δ

)

is positive, where θ := ν(S(n, T ))
∑n−1

i=0 |gi(J)|.Again we may use Lemma 2.2 to replae ν(S(n, T )) with ν ′(|fn(T )|)where we de�ne ν ′(|fm(V )|) := ν ◦ τ(|fm(V )|). We will use the result ofTheorem 2.3(b) extensively, but we use δ̃ when θ = ν ′(|I0|). Usually δ willbe related to the χ we obtained following Theorem 2.3.We will sometimes be in a situation where we wish to estimate the deriva-tive of a funtion in between two points at whih we know something aboutthe derivative. The following two well known results allow us to do this. The�rst is known as the Minimum Priniple; see, for example, Theorem IV.1.1of [MS℄.Theorem 2.5. Let T = [a, b] ⊂ I and g : T → g(T ) ⊂ I be a C1di�eomorphism. Let x ∈ (a, b). If for any J∗ ⊂ T ∗ ⊂ T ,
B(g, T ∗, J∗) > µg > 0then |Dg(x)| > µ3

g min(|Dg(a)|, |Dg(b)|).



Distortion bounds for C2+η unimodal maps 47For a proof of the seond result see again [MS℄.Theorem 2.6. For g ∈ NF2 there exist n0 ∈ N and ̺g > 1 suh that if
p is a periodi point of period n ≥ n0 then |Dgn(p)| > ̺g.We are now ready to begin the proof of Theorem 1.2.3. Well bounded ase. Here we deal with the ase where Fi−2 is non-entral and f j(T ) ∩ ∂Ii+1 = ∅ for all 0 ≤ j < ni. In our estimates, we areprinipally interested in iterates of T landing in Ij

i for j 6= 0. By Theorem 2.3,the fat that Fi−2 is non-entral implies that the �rst return domains Ij
i areall well inside Ii. This enables us to estimate the sum for Fi, and is the reasonwe all this ase well bounded.Let n′i > ni+1 be minimal suh that fn′

i(T ) ⊂ Ii. We will initially assumethat we have some κ > 0 suh that for the �return sum�,
ji∑

k=0

|F k
i (fn′

i(T ))| < κ|fni(T )|(3)where ji is suh that F ji |
fn′

i(T )
= fni−n′

i |
fn′

i(T )
. We prove Proposition 1.3before bounding this return sum in order to give an idea why we need boundson return sums. Exept for the proof of (3), this is similar to the proof ofLemma 5.3.4 of [K1℄. There, it is assumed that f ∈ C3 in order to boundthe sum ∑ji−1

k=0 |F k
i (fn′

i(T ))|. Those methods fail in the C2 ase.Proof of Proposition 1.3 assuming (3). Let ni+1 = m0 < m1 < · · · <
mji

= ni be all the integers between ni+1 and ni suh that fmj(T ) ⊂ Ii \
Ii+1 for j = 1, . . . , ji − 1 and let m0 = ni+1. Now let Fi :

⋃
j U

j
i → Iibe the �rst entry map to Ii. We will deompose ∑ni−ni+1

k=1 |fk+ni+1(T )| as∑ji−1
j=0

∑mj+1−mj

k=1 |fk+mj(T )|.For 1 ≤ j ≤ ji − 1 and 1 ≤ k < mj+1 −mj , let U l
i be the domain of �rstentry to Ii suh that fmj+k(T ) ⊂ U l

i . Suppose that Fi|U l
i

= f il . Then thereexists an extension to V l
i ⊃ U l

i so that f il : V l
i → Ii−1 is a di�eomorphism.Then by the Koebe lemma we have the distortion bound

|fk+mj(T ))|
|U l

i |
≤ C(χ)

|fmj+1(T )|
|Ii|

,whene
mj+1−mj∑

k=1

|fmj+k(T )| ≤ C(χ)

( |fmj+1(T )|
|Ii|

) mj+1−mj−1∑

k=0

|fk(U j
i )|

≤ C(χ)σi
|fmj+1(T )|

|Ii|
.



48 M. ToddTherefore
ni−ni+1∑

k=1

|fk+ni+1(T )| ≤ C(χ)
σi

|Ii|

ji∑

j=1

|fmj (T )| = C(χ)
σi

|Ii|

ji−1∑

k=0

|F k
i (T̂ )|

where T̂ := fn′

i(T ). This is bounded above by κ|fni(T )| due to (3), so weare �nished.3.1. Bounding return sums. In this subsetion we will introdue sometools whih we use extensively in the remainder of this paper. We then usethese tools to prove that (3) holds.The proof of the following simple lemma is left to the reader.Lemma 3.1. For all δ > 0 there exists ∆ = ∆(δ) > 0 suh that ∆(δ) → 0as δ → ∞ with the following property. Suppose that U is an interval , J ⊂ Uis a subinterval and that the left and right omponents of U \ J are denotedby L and R respetively. Suppose further that |L|, |R| > δ|J |. Then
B(U, J) < ∆.Let D1 denote the set of non-entral domains F−1

i (Ii), i.e. D1 =
⋃

j 6=0 I
j
i .Let D2 denote the set of domains F−1

i (D1) whih are disjoint from theentral domain. Indutively, we let Dk denote the set of domains F−1
i (Dk−1)whih are disjoint from the entral domain. Then for any element Jk ∈ Dk,

F k
i : Jk → Ii is a di�eomorphism. We will bound ∑k−1

j=0 |F
j
i (Jk)| for any

Jk ∈ Dk by showing that there exists some λ < 1 independent of i suh thatfor k > 1 we have B(Ii, Jk) ≤ λB(Ii, Fi(Jk)). We let(4) µ := exp{−σ′(|I0|)}where σ′ is given by (2). By (1), if J ′, f(J ′), . . . , fm(J ′) is a disjoint set ofintervals and J ⊃ J ′, we have B(fm, J ′, J) > µ. Therefore, if n(j) is thereturn time of Ij
i to Ii and J ⊂ Ij

i then B(fn(j), Ij
i , J) > µ.The following lemma is Lemma 2.3 of [GK℄.Lemma 3.2. For every δ > 0 there exists λ′ = λ′(δ) < 1 suh that if

J ⊂ V ⊂ U are intervals and U is a δ-saled neighbourhood of V then
B(U, J) < λ′B(V, J).Furthermore, λ′ → 1 as δ → 0.We add this lemma to (1) as follows.Lemma 3.3. Given δ > 0, there exist 0 < λ = λ(δ) < 1 and ε > 0 suhthat if |I0| < ε and Ii−1 is a δ-saled neighbourhood of Ii, then for any J ⊂ Ij

iwith j 6= 0,
B(Ii, J) < λB(Ii, Fi(J)).



Distortion bounds for C2+η unimodal maps 49Proof. From the previous lemma there exists some λ′ = λ′(δ) < 1 suhthat
B(Ii, J) < λ′B(Ij

i , J).Now from (1) we obtain
B(Ii, J) < λ′

B(Ii, Fi(J))

µwhere µ is de�ned in (4). Sine µ→ 1 as |I0| → 0, if ε is hosen small enoughthen λ′/µ < 1. We let λ := λ′/µ. Thus B(Ii, J) < λB(Ii, Fi(J)).We will onsider λ = λ(χ̃) where χ̃ omes from Theorem 2.4(b) appliedto χ and χ omes from Theorem 2.3(a), i.e. χ̃ takes the role of δ in Lemma 3.3.In fat we shall adjust λ again in Setion 5, but it will remain independentof i and stritly less than 1.Proof of (3). For k ≥ 2, B(Ii, Jk) < λk−1B(Ii, F
k−1
i (Jk)). Supposethat F k−1

i (Jk) ⊂ Ij
i . Then by Lemma 3.1, using Theorems 2.3 and 2.4(b),

B(Ii, I
j
i ) < ∆ where ∆ = ∆(χ̃). Thus, it is easy to see that B(Ii, F

k−1
i (Jk))

< ∆|F k−1
i (Jk)|/|Ij

i |. Now |F k−1
i (Jk)| < C(χ)|F k

i (Jk)| |Ij
i |/|Ii| by the Koebelemma, so we know that B(Ii, F

k−1
i (Jk)) < C(χ)∆|F k

i (Jk)|/|Ii|. We applythese estimates to the sizes of Jk:
|Jk| <

|Ii|

1 +
2|Ii|

λk−1C(χ)∆|F k
i (Jk)|

.

Then |Jk| < Cλk−1|F k
i (Jk)|. So ∑k−1

j=0 |F
j
i (Jk)| < C|F k

i (Jk)|/1 − λ. Hene
k∑

j=0

|F j
i (Jk)| < |F k

i (Jk)|
(

1 +
C

1 − λ

)
.

This holds for any sum of returns whih never lands in the entral domain.It is independent of i. Letting κ = 1 + C/(1 − λ) we arrive at (3).4. Casade ase. This setion is devoted to the proof of Proposition 1.4.Note that if there is a uniform upper bound on the length of sequenes
Fi, Fi+1, . . . , Fi+m all having entral returns then Theorem 2.3 implies thatwe may prove Proposition 1.4 as a well bounded ase. However, there maybe arbitrarily long sequenes of onseutive entral returns.Proof of Proposition 1.4. We suppose that there i is suh that
fni(T ) ⊂ Ii where Fi−2 has a non-entral return and Fi+j all have en-tral returns for j = 0, . . . ,m − 1 and that Fi+m has a non-entral return.



50 M. ToddFor ξ > 0 we will bound the sum
ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ.For our intial estimates, we may omit ξ, but later it will be neessary toinlude it. Reall that we always assume here that f j(T ) ∩ ∂Ii+m+1 = ∅ forall 0 ≤ j < ni.Let m0 = ni+m+1 and let m0 < m1 ≤ ni be the smallest integer suhthat fm1(T ) ⊂ Ii \ Ii+1. Let m1 < m2 ≤ ni be the next integer for whih
fm2(T ) ⊂ Ii \ Ii+1 if suh m2 exists. Proeeding in this manner, we obtaina sequene ni+m+1 < m1 < m2 < · · · < mN = ni. So

ni−ni+m+1∑

k=1

|fk+ni+m+1(T )| =

N−1∑

j=0

mj+1−mj∑

k=1

|fk+mj(T )|.

De�ne mN−1 < m′ ≤ ni to be minimal suh that fm′

(T ) ⊂ Ii \ Ii+m+1.Assuming that Fi|I0
i

= f s, there exists 0 ≤ p ≤ m suh that m′ + sp = mN

= ni. We an rewrite the sum above as
ni−ni+m+1∑

k=1

|fk+ni+m+1(T )| =
N−2∑

j=0

mj+1−mj∑

k=1

|fk+mj(T )| +
m′−mN−1∑

k=1

|fk+mN−1(T )|

+

p−1∑

r=0

s∑

k=1

|fk+rs+m′

(T )|.

Using the method from the proof of Proposition 1.3, we see that
m′∑

k=1

|fk+mN−1(T )| +
p−1∑

r=0

s∑

k=1

|fk+rs+m′

(T )| ≤ C(χ)
σi,m

|Ii|

p∑

r=0

|f rs+m′

(T )|.We will deal with the sum on the right-hand side later. We will �rst showthat ∑N−2
j=0

∑mj+1−mj

k=1 |fk+mj(T )| ≤ Cσi,m|fm′

(T )|/|Ii|.We denote the left and right omponents of Ij \ Ij+1 by Lj and Rj re-spetively. We know from Theorem 2.3(a) and (b) that |Li|/|Ii+1|, |Ri|/|Ii+1|
> χ̂.We de�ne F̂i :

⋃
j Î

j
i → Ii\Ii+1 to be the �rst return map to Ii\Ii+1 suhthat F̂i(Î

j
i ) ∈ {Li, Ri}. As in the well bounded ase, for eah 1 ≤ j ≤ N − 2and 1 ≤ k < mj+1 −mj , there exists a �rst entry domain Û to Ii \ Ii+1 suhthat fk+mj(T ) ⊂ Û . We may assume that fmj+1−mj−k(Û) = Li. Indeed, for

1 ≤ j ≤ N − 3 there exists Î l
i suh that fmj+1(T ) ⊂ Î l

i ⊂ Li. We show that
Î l
i is well inside Li, whih will allow us to estimate |fk+mj(T )|/|Û |.
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i
= f il . Then there exists an extension to V l

i ⊃ Î l
i suhthat f il : V l

i → Ii−1. Clearly V l
i ⊂ Li, otherwise nieness is ontradited. ByTheorems 2.3(a) and 2.4(b), V l
i (and thus Li) is a χ̃-saled neighbourhoodof Î l

i .For 1 ≤ j ≤ N − 2, we have B(Li, f
mj+1(T )) > µB(Û , fk+mj (T )) where

µ is de�ned in (4). Therefore,
|fk+mj(T )| < |Û |

1 + µ/B(Li, fmj+1(T ))
.As in the well bounded ase, using a small adaptation of Lemma 3.3, repla-ing Fi by F̂i, we an show that B(Li, f

mj (T )) < λN−1−jB(Li, f
mN−1(T )) for

0 ≤ j ≤ N−2. (Note that λ is still the λ(χ̃) disussed following Lemma 3.3.)Therefore, it an be shown that
N−2∑

j=0

mj+1−mj∑

k=1

|fk+mj(T )| ≤ Cσi,m

1 − λ
B(Li, f

mN−1(T )).

But sine fmN−1(T ) ⊂ Ij′

i for some j′ 6= 0, we have
B(Li, f

mN−1(T )) < B(Li, I
j′

i )
|fmN−1(T )|

|Ij′

i |
.Notie that Fi(f

mN−1(T )) = fm′

(T ). So the Koebe lemma and Lemma 3.1give B(Li, f
mN−1(T )) < C(χ)∆|fm′

(T )|/|Ii|, whene
N−2∑

j=0

mj+1−mj∑

k=1

|fk+mj(T )| ≤ Cσi,m
|fm′

(T )|
|Ii|

.

It remains to bound ∑p
r=0 |f rs+m′

(T )|1+ξ (as an be seen below, we onlyreally need ξ > 0 for our estimates in the low ase). We assume that fm′

(T )∩
∂Ii+j 6= ∅ for 1 ≤ j < m: otherwise ∑p

r=0 |f rs+m′

(T )|1+ξ < |Ii|1+ξ, and weare �nished.Let T̂ = fm′

(J). There exists some M ≥ 0 suh that FM
i (T̂ ) = fni(T ).We will bound ∑M

k=0 |F k
i (T̂ )|1+ξ.If M were uniformly bounded then we would be able to �nd some boundon ∑M

k=0 |F k
i (T̂ )| easily. But M may be very large. We onsider this sum in

a0 a1 aM-1 aM
aM+t aM+1+t

am
c

T
F(T)

F

Fig. 2. When T̂ intersets the boundary points ∂Ij



52 M. Toddtwo ases: either Fi is high, or Fi is low (the high ase is the most straight-forward). For some bakground on this dihotomy see [L℄. In both ases, werelabel Fi|Ii+1
as F and Ii as I0. Now let Ik = (ak, a

′
k). We are assumingthat F (c) is a maximum for F (see Figure 2).The high ase. We have two subases to onsider. We �rst assume that Fjare high and entral for j = 0, . . . ,m. This is known as an Ulam�Neumannasade.Lemma 4.1. In the high ase, ∑M

k=0 |F k(T̂ )| < C|I0|.Proof. We know that I0 is a χ̂-saled neighbourhood of I1. We will use theMinimum Priniple (Theorem 2.5) and Theorem 2.6 to estimate derivatives.The idea here is that either we have derivative uniformly greater than one in
(a1, am) and we an bound ∑M

k=0 |F k(T̂ )| as a geometri sum, or we have asmall derivative in some region, in whih ase we �nd a bound on the numberof ai that are in this region.Let γ > 1 satisfy γ/(γ − 1) > 1/2χ̂. Then we may �x some integer r ≥ 1suh that 2χ̂
∑r

i=0 γ
−i > 1. Note that r only depends on χ̂. Observe thatthere is a �xed point p ∈ (a1, c). We an hoose I0 to be so small that thereturn time to it is greater than the n0 given in Theorem 2.6. Therefore,by that theorem, |DF (p)| > ̺f . If |DF (a1)| ≥ γ then from the MinimumPriniple, |DF |(a1,p) > γ′ where γ′ = µ3 min(γ, ̺f ) with µ de�ned in termsof |I0| in (4). We �x I0 to be small enough so that γ′ > 1. Therefore,

M∑

k=0

|F k(T̂ )| < γ′

γ′ − 1
|FM

i (T̂ )|.Suppose now that there is some u ∈ (a1, c) suh that |DF |(a1,u) < γ. Wewill show that this must mean that u ∈ (a1, ar) and thus we an uniformlybound the sum of times that T̂ lies in this region.Suppose that (a1, as) ⊂ (a1, u). Then we have |ai+1 − ai| > |ai − ai−1|/γfor all i ≤ s− 1. Therefore, if (a1, as) ⊂ U then
|c− a0| >

s−1∑

i=0

|ai+1 − ai| > |a1 − a0|
s∑

i=0

γ−i.We know that |a1 − a0| > 2χ̂|c − a0|. By the de�nition of γ we must have
s ≤ r. Moreover, |DF |(as,p) > γ′.This helps us bound ∑M

k=0 |F k(T̂ )| where F k(T̂ ) ⊂ I0 \ Im. We supposethat FM (T̂ ) = (a0, at) for t ≤ m. (See Figure 2.) Then
M∑

k=0

|F k(T̂ )| = |a1 − a0| + min(2,M − 1)|a2 − a1| + · · ·

+ min(i,M − (i− 1))|ai − at−i| + · · · + |aM+t − aM+t−1|.
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r|ar − a0| + |aN − aN+1|

∞∑

i=0

min(i,M − (i− 1))

γ′i
.The �rst summand is bounded by r|I0| and the seond summand is boundedabove by C|aN − aN+1| for some C > 0. So we get ∑M

k=0 |F k
i (T̂ )| < C|I0| asrequired.The low ase. We assume that we are in the same setting as above, butwith F0 entral and low. This is known as a saddle node asade. Again wewould like to bound ∑M

k=0 |F k(T̂ )| de�ned as above. However, as we shallsee, we are only able to bound ∑M
k=0 |F k(T̂ )|1+ξ.Lemma 4.2. In the low ase, ∑M

k=0 |F k(T̂ )|1+ξ < C|I0|1+ξ.Proof. We will apply the following result, a form of the Yooz lemma(see for example [FM℄).Lemma 4.3. Suppose that f ∈ NF2. Then for all δ, δ′ > 0 there exists
C > 0 suh that if I0 is a nie interval suh that(1) I0 is a δ-saled neighbourhood of I1,(2) Fk is low and entral for k = 0, . . . ,m,(3) there is some 0 < k < m with |Ik|/|Ik+1| < 1 + δ′,then for 1 ≤ k < m,

1

C

1

min(k,m− k)2
<

|Ik−1 \ Ik|
|I0|

<
C

min(k,m− k)2
.This lemma was suggested by Weixiao Shen. For the proof, see the ap-pendix. (For omparison with other statements of the Yooz lemma, notethat we will prove that one onsequene of our onditions for the lemma isthat we have a lower bound on |Im \ Im+1|/|I0|.)Suppose that I0 satis�es all the onditions of Lemma 4.3. In partiularwe assume that for some �xed δ′ > 0, we have |Ik|/|Ik+1| < 1 + δ′ for some

0 < k < m. Then for any ξ > 0,
M∑

k=0

|F k(T̂ )|1+ξ

<

m∑

k=0

(
C|I0|

min(k + t,m− (k + t))2
+ · · · + C|I0|

min(k + 1,m− (k + 1))2

)1+ξ

< C|I0|1+ξ
m∑

k=0

(
1

k + 1
− 1

k + t

)1+ξ

.The sum above is bounded above for any ξ > 0.



54 M. ToddNext we suppose that the hypotheses of Lemma 4.3 do not hold. Inpartiular, this means |Ik|/|Ik+1| ≥ 1 + δ′ for k = 0, . . . ,m. Note that |I0| ≥
(1 + δ′)|I1| ≥ (1 + δ′)2|I2| ≥ · · · ≥ (1 + δ′)M |IM |. Therefore

M∑

k=0

|F k(T̂ )| < 1

2

M∑

k=0

k|Ik| ≤
|I0|
2

M∑

k=0

k

(1 + δ′)k
< C|I0|.So Lemma 4.2 is proved.We have shown that in both low and high ases we have ∑M

k=0 |F k(T̂ )|1+ξ

< C|I0|1+ξ. We may apply the usual method to show that this means that∑ni−m′

k=1 |fk+m′

(T̂ )|1+ξ < Cσi,m maxm′<k≤ni
|fk(T )|ξ. So there is some Ccascsuh that

ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m max
ni+m<k≤ni

|fk(T )|ξas required.5. Exeptional ase. In the last setion we dealt ompletely with thesaddle node asade. It is easily shown, for example by applying Lemma 5.1below to all branhes, that following a saddle node asade we have a wellbounded ase, and so the onlusions of Proposition 1.3 hold. An Ulam�Neumann asade, however, is not always followed by a well bounded ase.We estimate the sum for Fi in this alternative ase here. Most of the sumis dealt with by using the methods for the well bounded ase, but we needsome new tehniques to deal with two of the branhes of Fi.We onsider the sum for Fi where Fi−2 has a entral return and Fi−1has a high non-entral return. The situation here is only slightly di�erentfrom the ase onsidered in Setion 3, sine we an prove that all domainsof Fi are well inside Ii, exept possibly two. Both of these domains Ij
i have

Fi|Ij
i

= Fi−1|Ij
i
. We denote the left-hand suh interval by IL

i and the right-hand one by IR
i (see Figure 3). These are the exeptional domains. If Ii−1is a χ̂-saled neighbourhood of Ii then by Theorem 2.3 we know that Ii is a

˜̂χ-saled neighbourhood of both IL
i and IR

i , and we may proeed as in thewell bounded ase. But this will not always be so if Ii−1 is at the end of along Ulam�Neumann asade. So we will assume that Ii−1 is not a ˜̂χ-saledneighbourhood of Ii. Without loss of generality, we suppose that Fi−1(c) isa maximum for Fi−1 : Ii → Ii−1.We are now ready to begin the proof of Proposition 1.5. The strategy isas follows:
• Show there is some upper bound on B(Ii, I

j
i ) for j 6= L,R.

• State our main result in the proof: Proposition 5.3. We suppose that wehave some interval J ⊂ Ij
i for j 6= L,R, 0; Fi(J), . . . , Fm

i (J) ⊂ IL
i ∪ IR

i ;
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Ii

L

Ii Ii-1

Ii

R
Ii+1

Fig. 3. The exeptional aseand Fm+1
i (J) ⊂ Ij′

i for j′ 6= L,R, 0. Then there exists some λ < 1suh that B(Ii, J) < λB(Ii, F
m+1
i (J)). Furthermore, ∑m

k=1 |F k
i (J)| <

B(Ii, F
m+1
i (J))|Ii|. We are then able to prove Proposition 1.5. In therest of this setion we prove Proposition 5.3; essentially we need anupper bound on ∑m

k=1 |F k
i (J)|.

• In Lemma 5.4 we show that there exist an interval V ⊂ Ii and γ > 1suh that
|DFi|(IL

i ∪IR
i )\V > γ.This allows us to bound parts of the sum ∑m

k=1 |F k
i (J)| whih lie in

(IL
i ∪ IR

i ) \ V .
• We next fous on V . We take �rst return maps to V and use deay ofross-ratios again to estimate sums of intervals in V (see Lemma 5.6).We an then omplete the proof of Proposition 5.3.We �rst show in the following simple lemma that we have uniform boundson how deep the domains of Fi are in Ii for all domains exept IL

i , I
R
i .Lemma 5.1. In the exeptional ase outlined above, if j 6= L, 0,R then Iiis a ˜̂χ-saled neighbourhood of Ij

i .In fat, a similar result also holds for the entral domain by Theorem 2.3,but this is not important for us here. This lemma proves that we an treatthe ase where Fi−2 is entral and Fi−1 is low and non-entral as a wellbounded ase.As we shall see, the proof of this lemma is reminisent of the asade asesine we follow iterates of intervals along the entral branh of some Fi′ .Proof of Lemma 5.1. There exists some maximal i′ < i suh that Fi′−2 isnon-entral. Then by Theorem 2.3, Ii′ is a χ̂-saled neighbourhood of Ii′+1.



56 M. ToddFor j 6= L,R we will �nd Fi|Ij
i
as a omposition of some branhes of Fi′ inorder to �nd some extensions. Fi′ |Ii′+1

maps Ij
i out of Ii along the asade,through the sets Ii−1 \Ii, Ii−2 \Ii−1 and so on, until it maps to some intervalin Ii′+1 \ Ii′+2. Then this interval is mapped into some Ij′

i′ . This then mapsbak into Ii′+1. The proess may be repeated many times before Ij
i is �nallymapped bak to Ii.So we hek that Fi|Ij

i
is a omposition of maps as follows. Let j1 6= 0 sat-isfy (F i−i′

i′ |Ii′+1
)(Ij

i ) ⊂ Ij1
i′ . Let k1 = i− i′. If Fi|Ij

i
= (Fi′ |Ij1

i′
)(F

(i−i′)
i′ |Ii′+1

)|
Ij
ithen we stop here; we say r = 1. Otherwise, let k2 ≥ 0 be minimal suhthat F k1+1+k2

i′ (Ij
i ) ⊂ Ii′ \ Ii′+1. Let j2 6= 0 be suh that F k1+1+k2

i′ (Ij
i ) ⊂ Ij2

i′ .If Fi|Ij
i

= F k1+1+k2+1
i′ |

Ij
i
then we stop here; we say r = 2. Otherwise, weontinue this proess until we �nally return to Ii and obtain kr.Suppose that r = 1. That is,
Fi|Ij

i
= F

(i−i′)+1
i′ |

Ij
i
.Let U denote F (i−i′)

i′ (Ij
i ) and U ′ denote Ij1

i′ . Then Fi′(U) = Ii and Fi′(U
′)

= Ii′ . We know that Ii′ is a χ̂-saled neighbourhood of Ii. So if we anshow that, taking the appropriate branh, (F
−(i−i′)
i′ |Ii′+1

)(U ′) ⊂ Ii, we knowby Theorem 2.4(b) that Ii is a ˜̂χ-saled neighbourhood of Ij
i (sine all theintervals we are onerned with are disjoint). It is easy to see that for thisbranh, (F

−(i−i′)
i′ |Ii′+1

)(U ′) ⊂ Ii by the struture of the saddle node asadesine we have (F−1
i′ |Ii′+1

)(U ′) ⊂ Ii′+1 \ Ii′+2, (F−2
i′ |Ii′+1

)(U ′) ⊂ Ii′+2 \ Ii′+3and so on. So the lemma is proved when r = 1.In the more general ase, where r > 1 and
Fi|Ij

i
= F

∑r
l=1

(kl+1)
i′ |

Ij
i
,we may apply the same idea, again using the disjointness of the domains ofthe �rst return map, to prove that Ii is a ˜̂χ-saled neighbourhood of Ij

i .If neessary we adjust λ so that λ(˜̂χ) ≤ λ < 1.By the above, if Ii is a ˜̂χ-saled neighbourhood of IL
i and IR

i then we anproeed with the method in the well bounded ase to prove Proposition 1.5.But this is not generally the ase. So for our work here, we may assume that
Ii is not a ˜̂χ-saled neighbourhood of IL

i or IR
i , and that some iterate of Jenters IL

i ∪ IR
i .Remark 5.2. In the previous setions we had uniform upper bounds onthe ross-ratio B(Ii, I

j
i ) for all j and so we obtained estimates on the deayof ross-ratios diretly. This was used to estimate the sums of intervals. Theproblem we often enounter in this setion is that sometimes we only get



Distortion bounds for C2+η unimodal maps 57good estimates on how ross-ratios deay and sometimes we only get goodestimates for the deay of the sizes of intervals. But these estimates aredi�ult to marry together diretly, so we will have to split up suh ases.The proess is �rst desribed in the proof of Proposition 1.5 and again in theproof of Lemma 5.6. (As we will see later, this splitting sheme deals withthe ases where we enter IL
i ∪ IR

i from Ii; V from IL
i ∪ IR

i ; and Λ from V .)The prinipal result in this setion is the following proposition.Proposition 5.3. If J, Fi(J), . . . , Fm
i (J) ⊂ IL

i ∪ IR
i then(1) there exists some 0 ≤ m̂ < m suh that ∑m

k=0 |F k
i (J)| < C(|Fm

i (J)|+
|F m̂

i (J)|);(2) for some λ < 1 independent of i, if Fm+1
i (J) ⊂ Ij

i , j 6= L, 0,R, then(a) ∑m
k=0 |F k

i (J)| < CB(Ii, F
m+1
i (J))|Ii|;(b) letting J ′ be the element of F−1

i (J) inside some interval Ij′ for
j′ 6= L, 0,R, we have B(Ii, J

′) < λB(Ii, F
m+2
i (J ′)).See Figure 4 for a shemati representation of the situation of this propo-sition. If neessary we will adjust the λ < 1 we use throughout this paper sothat we may assume that the proposition above holds for that λ.

Ii

L

I
R

iI
j

i I
j’

i
Ii

0

F (J)i J F (J)
m+1

i
F  (J)

m

i
J’

Ii

cFig. 4. An illustration of Proposition 5.3
Proof of Proposition 1.5 assuming Proposition 5.3. As in the proof in thewell bounded ase, we �rst show that we are prinipally onerned with theintervals inside Ii. Again, the proof of this fat is a slightly modi�ed versionof the proof in the well bounded ase.Let ni+1 < m1 < · · · < mji

= ni be all the integers between ni+1 and
ni suh that fmj (T ) ⊂ Ii \ Ii+1 for j = 1, . . . , ji − 1 and let m0 = ni+1. Let
Fi :

⋃
i U

j
i → Ii be the �rst entry map to Ii. As before, we will deomposethe sum ∑ni

i=ni+1+1 |f i(T )| as ∑ji−1
j=0

∑mj+1−mj

k=1 |fmj+k(T )|.Suppose that fmj+1(T ) ⊂ U j
i for some U j

i . Suppose further that Fi|Uj
i

= f ij . Then there exists an extension to V j
i ⊃ U j

i so that f ij : V j
i → Ii′−1is a di�eomorphism, where i′ is de�ned in the proof of Lemma 5.1. Then we



58 M. Toddhave distortion bounds as usual:
|fk(fmj+1(T ))|

|fk(U j
i )|

≤ C(χ)
|fmj+1(T )|

|Ii|
.Thus,

mj+1−mj∑

k=1

|fmj+k(T )| < C(χ)σi
|fmj+1(T )|

|Ii|
.Therefore,

ni∑

j=ni+1+1

|f i(T )| < C(χ)
σi

|Ii|

ji∑

j=1

|fmi(T )|.

Hene we are prinipally interested in the sum ∑ji

j=1 |fmi(T )|, that is,
∑ji−1

k=0 |F k
i (T̂ )| where T̂ =fm1(T ). In fat, we fous on bounding ∑ji−2

k=0 |F k
i (T̂ )|.We split T̂ , Fi(T̂ ), . . . , F ji−2

i (T̂ ) into two groups: one for those intervalsoutside IL
i ∪ IR

i and one for those inside IL
i ∪ IR

i . Suppose that J is aninterval suh that for some k ≥ 0, we have F k
i (J) ⊂ Ij

i for some j 6= L, 0, R;then F k+1
i (J), F k+2

i (J), . . . , F k′

i (J) ⊂ IL
i ∪ IR

i for some k′ > k; and �nally
F k′+1

i (J) ⊂ Ij′

i for some j′ 6= L, 0,R. From the last part of Proposition 5.3we have
B(Ii, F

k
i (J)) < λB(Ii, F

k′+1
i (J)).Therefore, we an bound the sums of intervals whih lie in the intervals

Ij
i for all j 6= L,R in a similar manner to that for the well bounded ase,independently of those intervals inside IL

i ∪ IR
i , as follows.Given k ≥ 0 suh that F k

i (T̂ ) ⊂ Ij
i for some j 6= L, 0,R we wish toestimate |F k

i (T̂ )|. Let 0 ≤ k̂ ≤ ji − 2 be maximal suh that F k̂
i (T̂ ) ⊂ Ij′

ifor some j′ 6= L,R. Then we apply Proposition 5.3 repeatedly to obtain
B(Ii, F

k
i (T̂ )) < λlB(Ii, F

k̂
i (T̂ )) for some l ≥ 0. The l ounts the number oftimes that F k+r

i (T̂ ) lies outside IL
i ∪ IR

i for 0 < r ≤ k̂. Then
|F k

i (T̂ )| < |Ii|
1 + 2/λlB(Ii, F k̂

i (T̂ ))
.

We have two ases. In the �rst ase k̂ = ji − 2. Then
B(Ii, F

ji−2
i (T̂ )) < B(Ii, I

j′

i )
|F ji−2

i (T̂ )|
|Ij′

i |
< ∆(˜̂χ)

|F ji−2
i (T̂ )|
|Ij′

i |
< ∆(˜̂χ)C(˜̂χ)|F ji−1

i (T̂ )|.Therefore, |F k
i (T̂ )| < Cλl|F ji−1

i (T̂ )|. This su�es to prove an upper boundof the form C|F ji−1
i (T̂ )| for the Fi-iterates of T̂ outside IL

i ∪ IR
i in this ase.
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B(Ii, F

k̂
i (T̂ )) < B(Ii, I

j′

i )
|F k̂

i (T̂ )|
|Ij′

i |
<
∆|F k̂

i (T̂ )|
|Ij′

i |
,

sine |F k̂
i (T̂ )| < C(χ)|F k̂+1

i (T̂ )| |Ij′

i |/|Ii|. Therefore, in this ase we have abound of the form C|F k̂+1
i (T̂ )| for the iterates of T outside IL

i ∪ IR
i .Finally, we use the above information about sizes of intervals outside

IL
i ∪ IR

i to bound the sums of intervals inside IL
i ∪ IR

i as well. In the �rstase above, we have a bound of the form C|F ji−1
i (T̂ )| for the iterates of T in

IL
i ∪ IR

i . In the seond ase above, we have a bound of the form C(|F k̂
i (T̂ )|+

|F m̂
i (T̂ )| + |F ji−1

i (T̂ )|) for the iterates of T in IL
i ∪ IR

i .So in the worst ase we have the bound
Cexσi

( |fni(T )|
|Ii|

+
|fni,2(T )|

|Ii|
+

|fni,3(T )|
|Ii|

)

for the sum ∑ni

k=ni+1+1 |fk(T )|, as required.5.1. Proof of Proposition 5.3. Denote the smallest interval ontainingboth IL
i and IR

i by I ′i. Reall that we are assuming that the ritial pointis a maximum for Fi−1|I′i . (Reall that Fi|IL
i ∪IR

i
= Fi−1|IL

i ∪IR
i
.) This meansthat there is some �xed point p of Fi in IR

i . Clearly, there also exists a point
p′ ∈ IL

i suh that Fi(p
′) = p. Let V := (p′, p).We outline the proof of Proposition 5.3 as follows. We suppose that someiterate of J enters V . Let 0 ≤ s1 ≤ s2 ≤ s3 be de�ned as follows: F k

i (J) ⊂
I ′i \ V for 1 ≤ k ≤ s1; F s1+1

i (J) ⊂ V ∩ (IL
i ∪ IR

i ); and F s2+k
i (J) ⊂ I ′i \ V for

1 ≤ k ≤ s3 − s2. Any sum of the form ∑m
k=0 |F k

i (J)| an be broken up intobloks onsisting of suh sums.The sheme for proving Proposition 5.3 is to �rst show that |DFi|I′i\Vis uniformly large. This is proved in Lemma 5.4 and helps to deal with thesums ∑s1

k=0 |F k
i (J)| and ∑s3−s2

k=1 |F s2+k
i (J)|. Then we have to prove that wehave bounds on the sums of intervals whih return to V . This, proved inLemma 5.6, helps to deal with ∑s2−s1

k=1 |F s1+k
i (J)|.Note that the proof of Proposition 5.3 is the only time in this paper thatwe use the symmetry of the map (and it is only a simplifying assumption).Lemma 5.4. There exists some γ > 1 independent of i suh that

|DFi|I′i\V > γ.Proof. We start by observing as in the last setion that |DFi(p)| > ̺f .By symmetry, |DFi(p
′)| > ̺f as well. Observe that IL

i also ontains a �xedpoint q of Fi. We have |DFi(q)| > ̺f , too. Furthermore, there exists a point
q′ ∈ IR

i suh that Fi(q
′) = q. From symmetry, |DFi(q

′)| > ̺f .



60 M. ToddWe an estimate |DFi|(p,q′) using the minimum priniple as follows. Weuse our µ given in (4) in plae of µg. Then |DFi|(p,q′) > µ3̺f . When I0 issmall enough, µ is lose to 1. Thus we may ensure that our intervals areso small that |DFi|(p,q′) > ̺ for some ̺ > 1. (To �x preisely how smallour intervals must be, we an, for example, hoose ̺ =
√
̺f .) By symmetry,

|DFi|(q,p′) > ̺.We deal with the remaining part of the proof of the lemma by showingthat Fi has large derivative when x ∈ I ′i and either x < q or x > q′. We usethe following onsequene of Theorem 2.3 and the minimum priniple.Claim. There exists some γ′ = γ′(χ) > 1 suh that , writing IL
i =

(l−, l+) and IR
i = (r−, r+), if I0 is su�iently small and B(Ii, I

L
i ), B(Ii, I

R
i )are su�iently large then

|DFi|(l−,q), |DFi|(q′,r+) > γ′.Proof. Let θ := 1
2(|Ii′ |/|Ii′+1| − 1) > χ̂ where i′ is de�ned in the proofof Lemma 5.1. We suppose that |DFi′ |Ii′+1\Ii

≤ 1 + 2θ. Then we prove byindution that |Ii′+k|/|Ii′+k+1| ≥ 1 + 2θ for 0 ≤ k < i− i′. By onstrutionthis is true for k = 0. We assume that it is true for some 0 ≤ k < i− i′ − 1.Then
|Ii′+k+1|
|Ii′+k+2|

≥
|Ii′+k+2| + (supIi′+1\Ii

|DFi′ |)−1|Ii′+k \ Ii′+k+1|
|Ii′+k+2|

≥ 1 +
2θ

1 + 2θ

|Ii′+k+1|
|Ii′+k+2|

.Then it is easy to see that |Ii′+k+1|/|Ii′+k+2| ≥ 1 + 2θ as required.In partiular, we have proved that |DFi′ |Ii′+1\Ii
≤ 1+2θ implies that Ii isa θ̃-saled neighbourhood of both IL

i and IR
i , a ontradition (sine θ̃ > ˜̂χ).So there must exist some x ∈ Ii′+1 \ Ii suh that |DFi(x)| ≥ 1+2θ > 1+2χ̂.Therefore, by Theorem 2.5 and (1) we have

|DFi′ |(x0,p) > µ3 min(1 + 2χ̂, ̺f ).Choosing |I0| small we have some γ′ > 1 suh that |DFi|(x0,q) > γ′. Inpartiular |DFi|(l−,q) > γ′. Similarly we an show |DFi|(q′,r+) > γ′.Letting γ := min(̺, γ′) proves the lemma.By the above, we will be able to estimate the sizes of iterates of T inside
(IL

i ∪ IR
i ) \ V as a geometri sum.We will need some real bounds for V . The following lemma, whih on-trasts with Lemma 5.4, will later be used to obtain these bounds.



Distortion bounds for C2+η unimodal maps 61Lemma 5.5. There exists some Ĉ = Ĉ(χ, |I ′i|) > 0, where Ĉ(χ, |I ′i|) tendsto some onstant Ĉ(χ) as |I ′i| → 0, suh that
|DFi|IL

i ∪IR
i
< Ĉ.Proof. We work with Fi′ : Ii′+1 → Ii′ where i′ is de�ned in the proof ofLemma 5.1. There exists some m ≥ 1 suh that Fi′ |Ii′+1

= fm|Ii′+1
. We andeompose this map into two maps so that Fi′ = L ◦ g where g = f |Uφ

, i.e.
g(x) = f(c) − |φ(x)|α, and L = fm−1 : f(Ii′+1) → Ii′ .By Theorems 2.4(a) and 2.3(a) we have DL(x)

DL(y) < C(χ) for x, y ∈ f(Ii+1).So
|DL(x)| ≤ C(χ)

|Ii|
|f(Ii+1)|

= C(χ)
|Ii|

|φ(|Ii+1|/2)α|for x ∈ f(Ii+1). Also
|Dg(x)| = α|Dφ(x)| |φ(x)α−1| < α sup

x∈Ii′+1

|Dφ(x)| |φ(|Ii+1|/2)|α−1.

For Û ⊂ Uφ a small neighbourhood of c, let
Dist(φ, Û) := sup

x,y∈Û

|Dφ(x)|
|Dφ(y)| .Observe that as I ′i beomes smaller, Dist(φ, I ′i) tends to 1. For x ∈ IL

i ∪ IR
i ,

|DFi(x)| < αC(χ)
supx∈Ii+1

|Dφ(x)| |Ii|
|φ( |Ii+1|

2 )|
< 2αC(χ) Dist(φ, I ′i)

|Ii|
|Ii+1|

.Sine we have assumed that |Ii|/|Ii+1| is bounded below, there is some on-stant C > 0 suh that for all x ∈ I ′i,
|DFi(x)| < CC(χ) Dist(φ, I ′i).Letting Ĉ(χ, |I ′i|) := CC(χ) Dist(φ, I ′i) we have proved the lemma.We denote the �rst return map to V by F̂i :

⋃
j V

j → V . We �rst wishto �nd some ontrol on the sizes of the domains of F̂i. Let mV,j be suh that
F̂i|V j = F

mV,j

i |V j . The following lemma is key to proving Proposition 5.3.Lemma 5.6. If F l1
i (J), . . . , F lm

i (J) ⊂ V ∩ (IL
i ∪ IR

i ) are all the iteratesof J up to lm whih lie in V ∩ (IL
i ∪ IR

i ), and all intermediate iterates F k
i (J)for k = 0, 1, . . . , lm lie in IL

i ∪ IR
i , then

lm∑

k=0

|F k
i (J)| < C|F lm

i (J)|.

Furthermore, there exists λV < 1 suh that |J | < Cλlm−m
V |F lm

i (J)|.



62 M. ToddProof. We split the sum as follows:
lm∑

k=0

|F k
i (J)| =

m−1∑

j=0

lj+1−lj∑

k=1

|F lj+k
i (J)|where we let l0 = −1. We know from Lemma 5.4 that |DFi|I′i\V > γ so

lj+1−lj∑

k=1

|F lj+k
i (J)| < |F lj+1

i (J)|
lj+1−lj−1∑

k=0

γ−k <
|F lj+1

i (J)|
1 − γ−1

.Hene,
lm∑

k=0

|F k
i (J)| < 1

1 − γ−1

m∑

j=0

|F lj
i (J)|.So we only need to bound the sum of returns to V .Denote the rightmost element of ⋃

j V
j by V 1 and the leftmost elementby V 2 (observe that F̂i|V 1 = F 2

i |V 1 and F̂i|V 2 = F 2
i |V 2). We get an estimateon how deep eah V j is inside V for j > 2 beause V 1 and V 2 have somede�nite size ompared to |V |, sine by Lemma 5.5 we know that |V 1|, |V 2|

> |V |/Ĉ2. Therefore, there exists some δ′0 depending only on f suh that Vis a δ′0-saled neighbourhood of V j for all j > 2. So by Lemma 3.2, thereexists some λ′V < 1 depending on δ′0 suh that for any interval J ′ ⊂ V j ,
B(V, J ′) < λ′VB(V j , J ′) for j > 2 (in fat this is also shown in the Claimbelow). As usual we an use Lemma 3.3 to onlude that there exists some
λV < 1 suh that B(V, J ′) < λVB(V, F̂i(J

′)). If we remain away from V 1and V 2, this fat and the usual argument would be su�ient to obtain therequired bound on sums.We must deal with the ase where iterates enter V 1, V 2. The idea is tosplit the situation into the ase where intervals land in a region where |DF̂i|is large and the ase when the intervals land in a region where we do nothave good estimates on |DF̂i|.We �rst fous on V 2. We know from Theorem 2.6 that |DFi(p
′)| > ̺f andso |DF̂i(p

′)| > ̺2
f . There must also exist some �xed point r of F̂i in V 2 with

|DF̂i(r)| > ̺f . Letting Λ2 := (p′, r) and applying the Minimum Priniple asbefore, we obtain |DF̂i|Λ2
> ̺ for some ̺ > 1. Let r′ be the point in V 1 suhthat F̂i(r

′) = r. Then adjusting ̺ > 1 if neessary, |DF̂i|(r′,p) > ̺. We de�ne
Λ1 to be the interval in V 1 whih has F̂i(Λ1) = V \ V 2. Clearly Λ1 ⊂ (r′, p),so |DF̂i|Λ1

> ̺. For onveniene later, we let Λ := Λ1 ∪ Λ2.We are now ready to deal with bounding ∑m−1
k=0 |F̂i

k
(J)|. Observe that

F̂i
m−1

(J) must be ontained in some V j . Suppose �rst that j > 2; we dealwith the ase where j = 1 or 2 later. Suppose further that J ⊂ V j′ and
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j′ > 2; here the other ase is similar. We will again split up the sum. Let
N ′

0 = 0. Let N1 be minimal suh that F̂N1

i (J) ∩ Λ = ∅ and F̂N1+1
i (J) ⊂ Λ.Let N ′

1 > N1 be minimal suh that F̂N ′

1

i (J) ⊂ Λ and F̂N ′

1
+1

i (J) ∩ Λ = ∅. Inthis way we obtain N ′
0 < N1 < N ′

1 < · · · < NM−1 < N ′
M−1 so that

m−1∑

k=0

|F̂ k
i (J)| =

M−1∑

j=0

(Nj+1−N ′

j∑

k=1

|F̂i
N ′

j+k(J)| +
N ′

j+1
−Nj+1∑

k=1

|F̂Nj+1+k
i (J)|

)

+

NM−N ′

M−1∑

k=1

|F̂N ′

M−1
+k

i (J)|where NM = m − 1. Observe that the �rst sum in the brakets onernsintervals whih land inside Λ and the seond sum in the brakets onernsintervals in V \ Λ. Then
N ′

j+1
−Nj+1∑

k=1

|F̂Nj+1+k
i (J)| < |F̂N ′

j+1

i (J)|
Nj+1−N ′

j+1
−1∑

k=0

̺−k <
C

1 − ̺−1
|F̂N ′

j+1

i (J)|for some C.Now we onsider ∑Nj+1−N ′

j

k=1 |F̂N ′

j+k

i (J)|. In fat we learn most from es-timating the sum ∑NM−N ′

M−1

k=1 |F̂N ′

M−1
+k

i (J)|. If neessary we make λV < 1smaller so that for J ⊂ V j\Λj for j = 1, 2 we have B(V, J) < λVB(V, Fi(J)).Then for 1 ≤ k < Nm −N ′
M−1,

B(V, F̂
N ′

M−1
+k

i (J)) < λ
NM−N ′

M−1
−k

V B(V, F̂NM

i (J)).Realling that M=m− 1 we get B(V, F̂m−1
i (J))<B(V, V j)|F̂m−1

i (J)|/|V j |.Letting BV := max{supj>2B(V, V j), B(V, V 1\Λ1), B(V, V 2\Λ2)}, we obtain
|F̂N ′

M−1
+k

i (J)| < |V |

1 +
2|V j |

λ
NM−N ′

M−1
−k

V BV |F̂m−1
i (J)|

.

Letting B̂V := BV /(BV + 2) we have
|F̂N ′

M−1
+k

i (J)| < B̂V λ
NM−N ′

M−1
+k

V

|V |
|V j | |F̂

m−1
i (J)|.Hene

Nj+1−N ′

j∑

k=1

|F̂N ′

j+k

i (J)| < C|F̂m−1
i (J)|.We now estimate the other sums onerning intervals outside Λ as follows.Let µ′ := exp{−σ′(I0)|I0|/(1 − ̺−1)}. Suppose that FNM−2

i (J) ⊂ V j . Then



64 M. Toddtaking the appropriate branh, we have F̂NM−2−N ′

M−1
−1

i (V ) ⊂ V j and
B(V, F̂

NM−2

i (J)) < λ′VB(F̂
NM−2−N ′

M−1
−1

i (V ), F̂
NM−2

i (J))

<
λ′V
µ′

B(F̂−1
i (V ), F̂

N ′

M−1

i (J)) <
λ′V
µµ′

B(V, F̂
N ′

M−1
+1

i (J)).Shrinking I0 if neessary, as usual, so that λ′V /µµ′ =: λV < 1, we obtain
B(V, F̂

NM−2

i (J)) < λVB(V, F̂
N ′

M−1
+1

i (J)).Clearly then we an proeed in bounding the sum, applying the usualmethod of deaying ross-ratios. So we an bound ∑m−1
k=0 |F̂ k

i (J)| above by
C|F̂m−1

i (J)| for this ase.To omplete this ase, we will bound |F̂m−1
i (J)| in terms of |F̂m

i (J)|.We do this by onstruting an extension. Let the left-hand and right-handmembers of F−1
i (p′) be denoted by b and b′ respetively. Denote (b, b′) by V ′.By Lemma 5.5, V ′ is a δV ′-saled neighbourhood of V where δV ′ dependsonly on f .Claim. For all domains V j , j > 2, there exists an extension to some in-terval U j ⊃ V j suh that U j ⊂ V and FmV,j

i : U j → V ′ is a di�eomorphism.Proof. For j > 2 the return maps are a omposition of Fi|V followed by
Fi|IR

i
and then some number of iterates of Fi|IL

i
. So F̂−1

i must pull V ′ bakinto IL
i . Observe that this element of F−1

i (V ′) is below p′ (and learly awayfrom Fi(c)). Any further pullbaks in IL
i remain below p′ as well. Thereforewhen some element F−k

i (V ′) is �nally pulled bak into IR
i , it is mapped above

p and remains away from Fi(c). Therefore we have elements of F−k−2
i (V ′)mapping inside V whih do not ontain c.By the above Claim and Theorem 2.4 we have some C > 0 dependingonly on f suh that if j > 2, then

1

C

|V |
|V j | ≤ |DF̂i|V j ≤ C

|V |
|V j | .(Reall that we are assuming that Fm−1

i (V ) ∩ Λ = ∅.) Therefore,
NM−N ′

M−1∑

k=1

|F̂N ′

M−1
+k

i (J)| < C|F̂m
i (J)|.There remains a further ase to onsider. Above we assumed F̂m−1

i (J)
⊂ V j where j > 2. But if j ∈ {1, 2} we have two ases. We �rst note thatif F lm

i (J) ∩ {r, r′} = ∅ then the intervals we are onerned with are eitherompletely inside Λ2, Λ1 or ompletely inside V \ (Λ2 ∪ Λ1). Then we mayproeed as above. But if F k
i (J) ontains r or r′ then we split F k

i (J) into two



Distortion bounds for C2+η unimodal maps 65intervals, with this periodi point at their intersetion. We may then applythe proedure above to estimate the size of eah interval. We need only applythis splitting argument one sine if we interset a periodi point of F̂i one,we must stay there for all time under iteration by F̂i. Thus we need onlyalter our onstants by a fator of 2 to deal with this ase. Note that we onlyhave one sum where this problem ould our: ∑N ′

M−NM

k=1 |F̂NM+k
i (J)| where

N ′
M = m. This is beause r is a �xed point for F̂i.Clearly, we an use the ross-ratio argument as usual to obtain the esti-mate |F l1

i (J)| < λm−1
V C|F lm

i (J)|, so |J | < λm−1
V C|F lm

i (J)|.We may adjust our usual λ so that λV ≤ λ < 1.Proof of Proposition 5.3. Suppose �rst that Fm+1
i (J) ⊂ Ij

i for j 6= L,R.Then, in partiular, we an be sure that Fm
i (J) does not ontain p or p′.Then we also know that none of F k

i (J) ontain p or p′ for 0 ≤ k ≤ m − 1.This means that we an be sure that all the intervals we onsider are eitherontained in V or disjoint from V .Reall that 0 ≤ s1 < s2 ≤ s3 = m are de�ned as follows (we suppose thatsome iterate of J enters V ; otherwise the proof is simpler): F k
i (J) ⊂ I ′i \ Vfor 1 ≤ k ≤ s1; F s1+1

i (J) ⊂ V ∩ (IL
i ∪ IR

i ); and F s2

i (J) ⊂ V ∩ (IL
i ∪ IR

i ),
F s2+k

i (J) ⊂ I ′i \ V for 1 ≤ k ≤ s3 − s2.Then if s3 > s2,
s3−s2∑

k=1

|F s2+k
i (J)| < |F s3

i (J)|
s3−s2−1∑

k=0

γ−k < C|F s3

i (J)|,by Lemma 5.4.From Lemma 5.6,
s2−s1∑

k=1

|F s1+k
i (J)| < C|F s2

i (J)|and |F s1+1
i (J)| < C|F s2

i (J)|.Also s1∑

k=0

|F k
i (J)| < γ−1|F s1+1

i (J)|
s1∑

k=0

γ−k < C|F s2

i (J)|.Therefore,
s2∑

k=0

|F k
i (J)| < C|F s2

i (J)|.If s3 > s2 then
s3∑

k=0

|F k
i (J)| < C(|F s3

i (J)| + |F s2

i (J)|).Therefore, the �rst part of the proposition is proved.



66 M. ToddNow if Fm+1
i (J) ⊂ Ij

i for j 6= L,R, 0 then realling that s3 = m we willobtain an estimate for |F s2

i (J)| in terms of B(Ii, F
m+1
i (J)):

B(Ii, F
s2

i (J)) < B(F−s3+s2

i (Ii), F
s2

i (J)) <
B(Ii, F

m
i (J))

µ

<
B(Ii, F

m+1
i (J))

µ2
.We are allowed to use µ here sine all intermediate intervals must be disjoint(otherwise we would have to pass through V again). Therefore

|F s2

i (J)| < |Ii|
1 + 2µ2/B(Ii, F

m+1
i (J))

< C|Ii|B(Ii, F
m+1
i (J)).Similarly we an show that |Fm

i (J)| < C|Ii|B(Ii, F
m+1
i (J)). Therefore

s3∑

k=0

|F k
i (J)| < C|Ii|B(Ii, F

m+1
i (J)) < C1|Ii|for some C1 > 0.We now prove the �nal part of the proposition. Clearly for any runof intervals Fi(J), . . . , F k

i (J) ⊂ IL
i ∪ IR

i , onsidering the branh of F−k
iwhih follows the iterates of J , we have B(F k

i , F
−k
i (Ii), J) > µ′′ where

µ′′ := exp{−C1σ
′(|I0|)|I0|}. We onsider the branh of F−m−2

i whih fol-lows the bakward orbit of Fm+1
i (J). Clearly, F−m−2

i (Ii) is stritly inside Ij
i .Thus,

B(Ii, J
′) < λ′B(Ij

i , J
′) < λ′B(F−m−2

i (Ii), J
′) <

λ′

µ′′
B(F−1

i (Ii), F
m+1
i (J ′))

<
λ′

µ′′µ
B(Ii, F

m+2
i (J ′)).For |I0| small enough, we an alter the usual λ slightly so that λ′/µ′′µ ≤ λand still ensure that λ < 1. Thus, B(Ii, J

′) < λB(Ii, F
m+2
i (J ′)) as required.When we do not esape IL

i ∪IR
i then we may have some intersetion with

p or p′. In this ase, we split our interval in two and estimate the size of eahpiee as above. We need only apply this idea one, so we an hange ouronstants to ater for this ase too. In this ase, part (2) of the propositiondoes not our.6. Proof of the main theorem in the non-in�nitely renormalis-able ase. We reall that B(fn, T, J) > exp{−C∑n−1
k=0 |fk(T )|1+η} when

f ∈ C2+η. We will �nd a bound on the sum ∑n−1
k=0 |fk(T )|1+η by using themain propositions above and also �nding some deay property for the size ofthe domains of Fi for some values of i. We assume that fk(T )∩∂Ij 6= ∅ onlywithin a asade ase (i.e. when there exist i,m suh that Fi is in a asade



Distortion bounds for C2+η unimodal maps 67ase and fk(T ) ⊂ Ii \ Ii+m). It is easy to see how to extend the proof whenthis is not true.Let Fi :
⋃

j U
j
i → Ii be the �rst entry map to Ii (we inlude the branhesof the �rst return map in this ase too). For i < j and an interval V , wede�ne S(i, j, V ) to be the maximum of |f i+1(V )|, |f i+2(V )|, . . . , |f j(V )|. Wewill onsider S(ni+1, ni, T ). Let n(i, j) be suh that Fi|Uj

i
= fn(i,j)|

Uj
i
. Nowlet U s(i)

i be the interval for whih S(0, n(i, j), U j
i ) is maximal. Let n̂(i) =

n(i, s(i)). Clearly,
S(ni+1, ni, T ) ≤ S(0, n̂(i), U

s(i)
i ).We would like to show that for ertain i, this quantity deays with i in aontrolled way.We start by assuming that Fi−1 is in a well bounded ase. We havetwo subases. Firstly, suppose that U s(i)

i ⊂ Ii. Then sine Fi−1 is in a wellbounded ase, we have |U s(i)
i | < |Ii−1|/(1 + 2χ). Sine Ii is a domain of the�rst return map to Ii−1 we have

|U s(i)
i | < S(0, n̂(i− 1), U

s(i−1)
i−1 )

1 + 2χ
.Now assume that U s(i)

i ∩ Ii = ∅. Then there exists some extension Vi ⊃
U

s(i)
i suh that fn(s(i)) : Vi → Ii−1 is a di�eomorphism. We will show that

U
s(i)
i is uniformly smaller than Vi. By (1) we know that B(Vi, U

s(i)
i ) <

B(Ii−1, Ii)/µ for µ as in (4). Thus, by Lemma 3.1, |U s(i)
i |< |Vi|/(1+2µ/∆(χ)).Sine Vi is a �rst return domain to Ii−1 we have

|U s(i)
i | < S(0, n̂(i− 1), U

s(i−1)
i−1 )

1 + 2µ/∆(χ)
.Let γ := max(1/(1 + 2χ), 1/(1 + 2µ/∆(χ))). Clearly γ < 1. So

S(0, n̂(i), U
s(i)
i ) < γS(0, n̂(i− 1), U

s(i−1)
i−1 ).We let Call = max(Cwb, Ccasc, 3Cex). Note that by disjointness, all

σi, σi,m < 1. If f ∈ NF2+η and Fi−1 is well bounded, we have
B(fni−ni+1 , fni+1+1(T ), fni+1+1(J))

≥ exp
{
−C(S(ni+1, ni, T ))η

ni−ni+1∑

k=1

|fk+ni+1(T )|
}

> exp{−C(S(0, n̂(i), U
s(i)
i ))ηCall}

> exp{−C(γS(0, n̂(i− 1), U
s(i−1)
i−1 ))ηCall}.



68 M. ToddIf we are not in the in�nite asade ase then the sums for Fi, Fi+1, . . .an be broken into bloks onsisting of a asade; possibly followed by anexeptional ase; followed by one or more well bounded ases. So supposethat Fi is well bounded, Fi, Fi+1, . . . , Fi+m−1 have entral returns, Fi+m hasa non-entral return and Fi+m+1 is an exeptional ase. So note that, inpartiular, Fi+m+2 must be well bounded. Then
S(0, n̂(i+m+ 3), U

s(i+m+3)
i+m+3 ) < γS(0, n̂(i+m+ 2), U

s(i+m+2)
i+m+2 )...

γS(0, n̂(i+ 1), U
s(i+1)
i+1 ) < γ2S(0, n̂(i), U

s(i)
i ).Therefore, we have

B(fn, T, J) > exp
{
−C

n−1∑

k=0

|fk(T )|1+η
}

> exp
{
−CCall(S(0, n̂(0), U

s(0)
0 ))η

∞∑

k=0

γkη
}

> exp

{
−CCall

(σ′(|I0|))η

1 − γη

}
.Hene it is easy to see that for any 0 < K < 1, if I0 is the entral domainof a �rst return map to some I−1, and I0 is su�iently small and F−1 isnon-entral, then we may bound B(fn, T, J) below by K.Note that we an always start with a well bounded ase when we do nothave an in�nite asade. We simply indue on a nie interval �nitely manytimes until we obtain a non-entral return and thus obtain a suitable I−1.We onsider the in�nite asade ase in the next setion.The seond part of Theorem 1.2, onerning A(fn, T, J), is proved in thesame way.7. In�nite asade ase. Here we onsider the ase where we havesome I0 suh that Fi are entral for i = 0, 1, . . . . In this ase we will �ndthat |Ii+1|/|Ii| gets very lose to 1. See Figure 5 for an example of suh amap. In partiular, Ii will not shrink down to a point (the ritial point c)as i inreases so we annot use the method above to bound sums of intervalswhih land very lose to c. The prinipal tool here is an extension given by aresult of [K2℄. We will not supply all the details of our proof of Theorem 1.2in this ase sine the tehniques are mostly the same as those applied in theprevious setions.We start by letting I0 be any nie interval about c. We assume that wehave some in�nite asade. This means that for a nie interval I0 ∋ c, Fi isentral (and high) for all i, where Fi is de�ned in the usual way. The main
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Ii

Ii+1
Ii+2

Ii+3Fig. 5. An in�nite asadeidea here is that we an still �nd good bounds on some interval I0,0 andthen apply the methods of Setion 4 to it. Then we need to �nd anotherinterval I1,0 around c whih is smaller than all I0,i, also has good boundsand is uniformly smaller than I0,0. In suh a way, we obtain a sequene ofintervals Ii,0 whih an eah be treated as in the high asade ase above,and whih shrink uniformly to the ritial point. Clearly Fi,j will always beentral and high for all i, j ≥ 0.Proposition 7.1. For f ∈ NF2 and ξ > 0 there exists some Cinf > 0suh that for any small I0,0 de�ned as above, T ⊂ I0,0 implies
n−1∑

k=0

|fk(T )|1+ξ < Cinf .Clearly this ompletes the proof of Theorem 1.2 in this ase.Proof. We will prove this with a series of lemmas.For all i the entral branh of Fi has two �xed points, q0 and p0 to the leftand right of c respetively (as usual, we assume that Fi(c) is a maximum for
Fi|Ii+1

). We let q′0 be the point in Ii+1 not equal to q0 whih maps by Fi to q0.We de�ne p′0 similarly. We de�ne I0,0 to be (p′0, p0). Let F0,0 :
⋃

j I
j
0,0 → I0,0be the �rst return map to I0,0 (where I0

0,0 is the entral domain). We havethe following lemma.Lemma 7.2. There exists some χ̂ > 0 depending only on f suh that I0,0is a χ̂-saled neighbourhood of every domain Ij
0,0 whih has ∂Ij

0,0 ∩∂I0,0 = ∅.Proof. Clearly, Ii tends to (q0, q
′
0). So we denote (q0, q

′
0) by I∞. We will�rst show that I∞ is uniformly larger than I0,0, and then show that all exept



70 M. Toddtwo non-entral domains of the �rst entry map to I0,0 have an extension to
I∞ and show what this means for Ij

0,0. These two domains are the ones witheither p0 or p′0 in the losure.In a similar manner to the exeptional ase, we will �nd an upper boundfor |DFi|Ii+1
. This will allow us to get good bounds for the �rst return mapto I0,0.For large i, the ratio Ii has |Ii+1|/|Ii| lose to 1. The following lemma,an adaptation of Lemma 7.2 of [K2℄, allows us to bound |DFi|Ii+1

.Lemma 7.3. If f ∈ NF2 then there exist onstants 0 < τ2 < 1 and τ3 > 0with the following property. If T is any su�iently small nie interval aroundthe ritial point , RT is the �rst entry map to T and its entral domain Jis su�iently large, i.e. |J |/|T | > τ2, then there is an interval W whih is a
τ3-saled neighbourhood of T suh that if c ∈ RT (J) then the range of anybranh of RT : V → T an be extended to W provided that V is not J .This lemma is only needed as a C3 result in [K2℄, but it easily extendsto our C2 ase.It is straightforward to see that the above lemma is su�ient to provea version of Lemma 5.5 in our ase. That is, for large i, there exists some
Ĉ ′ suh that |DFi|Ii+1

< Ĉ ′. This implies that there exists some 0 < θ < 1depending only on f suh that |I0,0| < θ|I∞| and, equivalently, some δ > 0suh that I∞ is a δ-saled neighbourhood of I0,0.Now, for the moment we let F0,0 also denote the �rst entry map and⋃
j I

j
0,0 also inlude the �rst entry domains. We will show that many of thebranhes have an extension to a uniformly larger domain. Suppose that thereexists a domain Ij

0,0 with I0,0 ∩ Ij
0,0 = ∅ suh that F0,0 : Ij

0,0 → I0,0 does nothave an extension to I∞. That is, supposing F0,0|Ij
0,0

= fn(j)|
Ij
0,0
, there isno interval V ⊃ Ij

0,0 suh that fn(j) : V → I∞ is a di�eomorphism. Let
0 ≤ k ≤ n(j) − 1 be maximal suh that fn(j)−k : fk(Ij

0,0) → I0,0 has noextension to I∞. Clearly, if I0,0 is small, f : fn(j)−1(Ij
0,0) → I0,0 always hasan extension, so k < n(j)−1. Then there exists some intervalW ⊃ fk+1(Ij

0,0)suh that fn(j)−k−1 : W → I∞ is a di�eomorphism and the element W ′ of
f−1(V ) ontaining fk(Ij

0,0) ontains c.Sine I∞ is a nie interval, W ′ ⊂ I∞. We also know that fk(Ij
0,0) ⊂

I∞\I0,0. ThereforeW ′ ontains either p0 or p′0. But then either fn(j)−k−1(p0)or fn(j)−k−1(p′0) is ontained in I∞ \ I0,0, whih is not possible.Consider Ij
0,0 for some j 6= 0 where Ij

0,0 ⊂ I0,0 is a domain of the �rstreturn map. We will show that this domain is uniformly deep inside I0,0.There exists some V ⊃ f(Ij
0,0), where fn(j) : V → I∞ is a di�eomorphism



Distortion bounds for C2+η unimodal maps 71and V is a δ̃-saled neighbourhood of f(Ij
0,0). Let V ′ be the maximal intervalaround Ij

0,0 suh that f(V ′) = V . We show that V ′ ⊂ I0,0. Let V (f(c))denote the maximal interval around f(c) whih pulls bak by f−1 to I0,0. If
V is not ontained in V (f(c)) then either p0 or p′0 is ontained in V ′. Thus,
fn(j)(p0) or fn(j)(p′0) lies in I∞ \ I0,0, a ontradition. So V ′ ⊂ I0,0 and I0,0is a δ′-saled neighbourhood of Ij

0,0 where δ′ = min(δ̃, 1/2). The ase of theentral branh follows in the usual manner.So we are in a type of high asade ase for F0,0. Note that the branheswith p0 or p′0 in their losure an be dealt with in the same way as thedomains V 1, V 2 were dealt with in the exeptional ase.We may assume that F0,0 has an in�nite asade and is high as well. Let
F0,1 be the �rst return map to I0,0 and so on, so we obtain I0,i. We sum for
F0,0, F0,1, . . . as in the high asade ase. We let q1, q′1, p1, p

′
1 be de�ned asabove for the �xed points of F0,0|I0,1

. We let I0,∞ denote (q1, q
′
1). We mayapply the same ideas as above to �nd some new interval I1,0 := (p1, p

′
1) whihhas |I1,0| < θ|I0,∞|. We may de�ne Ii,j for i ≥ 2 and 0 ≤ j ≤ ∞ in a similarway.Let fNi(T ) be the last iterate of T whih lies inside Ii,0. Let N ′
i be themaximal integer Ni ≥ N ′

i > Ni+1 suh that fN ′

i (T ) is not in Ii,0 \ Ii,∞. Thenthese arguments prove the following lemma.Lemma 7.4. There exists some C > 0 suh that
Ni−N ′

i∑

k=1

|fk+N ′

i (T )| < Cσ̂i

where σ̂i is de�ned as follows. Let σi := supV ∈dom Fi,0

∑n(V )
j=1 |f j(V )| (and

n(V ) is de�ned as k where Fi,0|V = fk). Let V̂ ⊂ Ii,0 \ Ii,1 be an intervalsuh that f n̂(V̂ ) is one of the onneted omponents of Ii,0 \ Ii,1 and f j(V̂ )is disjoint from both Ii,0 \ Ii,1 and Ii+1,0 for 0 < j < n̂(V̂ ). Then σ̂i is thesupremum of all suh sums ∑n̂(V̂ )
j=1 |f j(V̂ )| and σi.Now we onsider ∑N ′

i−Ni+1

k=1 |fk+Ni+1(T )|. If none of these intervalsontain pi, qi then we are in Ii,∞ \ Ii+1,0. By the Minimum Priniple,
|DFi|Ii,∞\Ii+1,0

is uniformly greater than 1. So we an easily bound our sum.If none of our intervals ontains pi, but some fk+Ni+1(T ) ontains q0, q′0 wean split fk+Ni+1(T ) at q0 or q′0 into two intervals. It is easy to see thatthere is some C > 0 suh that ∑N ′

i−Ni+1

k=1 |fk+Ni+1(T )| < Cσ̂i. If p0, p
′
0 isontained in some |fk+Ni+1(T )| then we must split the interval at p0 or p′0.Note that we may have to split the interval |fk+Ni+1(T )| at arbitrarily many
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pi, q

′
i or p′i, qi. Therefore,

N ′

i−Ni+1∑

k=1

|fk+Ni+1(T )|1+ξ < C
∞∑

k=i

(k − i)S(Nk, n̂(k), T )ξσ̂kwhere S and n̂ are de�ned analogously to Setion 6. As before, there is someonstant 0 < θ′ < 1, here depending on θ rather than γ, suh that θ′ governsthe deay of S(Ni, n̂(i), T ). Hene, we an put this estimate together withLemma 7.4 to get
Ni−Ni+1∑

k=1

|fk+Ni+1(T )|1+ξ < CS(Ni, n̂(i), T )ξ
∞∑

k=0

kθ′kξ.Similarly to what was done before, we an onlude that there exists some
Cinf > 0 suh that

n∑

k=0

|fk(T )|1+ξ < Cinf .

A. Proof of the Yooz lemma. We reall the lemma.
Lemma 4.3. Suppose that f ∈ NF2. Then for all δ, δ′ > 0 there exists

C > 0 suh that if I0 is a nie interval suh that(1) I0 is a δ-saled neighbourhood of I1,(2) Fi is low and entral for i = 0, . . . ,m,(3) there is some 0 < i < m with |Ii|/|Ii+1| < 1 + δ′,then for 1 ≤ k < m,

1

C

1

min(k,m− k)2
<

|Ii+k−1 \ Ii+k|
|Ii|

<
C

min(k,m− k)2
.For similar statements see [FM℄ and [Sh2℄.Proof. We �rst point out the following laim.Claim 1. For f as in the lemma, there exists some C(f, δ, δ′) > 0 suhthat

|Im|
|I0|

> C(f, δ, δ′).This is proved in Setion 5 of [Sh2℄. One onsequene of this is that
|Im \ Im+1|/|I0| is uniformly bounded below. This is one of the assumptionsin the statement of the Yooz lemma in [FM℄.Our proof now involves using a result of [ST℄, the bound δ and the smallsize of I0, to �nd a nearby map in the Epstein lass. The struture of suhmaps, partiularly at paraboli �xed points, along with some new oordi-nates, give us estimates for |Ii+k−1 \ Ii+k|/|Ii|.



Distortion bounds for C2+η unimodal maps 73We suppose that s > 0 is suh that F0|I1 = f s|I1 . We observe that f s−1has uniformly bounded distortion depending on δ. We will denote F0|I1 by F .Letting ψ : [am, a1] → [0, 1] be an a�ne di�eomorphism we will work withthe map ψ ◦F ◦ψ−1. For the rest of the appendix we will abuse the notationand denote this map by F too.Previously we assumed that F |I1 had a maximum at c. It will be on-venient to suppose now for this setion that c is a minimum for F |I1 . Alsowe let Ii = (a′i, ai). So in partiular, F (ai+1) = ai. We �rstly de�ne a pointwhih allows us to partition [am, a1] in another way.Let x0 ∈ [am, a1] be so that |F (x0) − x0| = minam≤x≤a0
|F (x) − x|.It is easy to show that DF (x0) = 1. We suppose throughout that

|F (x0)−x0| shrinks to zero as |I0| → 0; otherwise the proof is muh simpler.We an estimate the shape of F near x0 using the following de�nition andlemma.Let κ > 0. We say that the real-analyti map f : [0, 1] → [0, 1] is in theEpstein lass Eκ if f(x) = ϕQψ where Q is the quadrati map Q(z) = z2,
ψ is an a�ne map and ϕ : [0, 1] → [0, 1] is a di�eomorphism whose inversehas a holomorphi extension whih is univalent in the domain C(−κ,1+κ) :=
C \ ((−∞,−κ]∪ [1+κ,∞)). For more details on maps in this lass see [MS℄.The following lemma is proved in [ST℄.Lemma A.1. Let f ∈ NF2. Suppose that I is a nie interval around cand J is a �rst entry domain whih is disjoint from I and with entry time s.Suppose that δ > 0 is some onstant suh that there exists some Ĵ ⊃ J suhthat f s : Ĵ → I ′ is a di�eomorphism where I ′ is a κ-saled neighbourhoodof I and ∑ |f j(Ĵ)| ≤ 1. Let τ0 : J → [0, 1] and τs : I → [0, 1] be a�nedi�eomorphisms. Then for all ε > 0 there exists δ > 0 suh that |I| < δimplies that there exists some funtion G : I → I in the Epstein lass Eκ/2suh that ‖τs ◦ f s ◦ τ−1

0 −G‖C2 < ε.We use this to prove the following laim.Claim 2. There exists some 0 < A < B suh that , for I0 su�ientlysmall ,
F (x0) + (x− x0) +A(x− x0)

2 ≤ F (x) ≤ F (x0) + (x− x0) +B(x− x0)
2.Proof. We know that f s : I2 → I1 has the following property. The map

f s−1 : f(I2) → I1 has an extension to I0. Furthermore, sine I0 is a δ-saledneighbourhood of I1 we use Lemma A.1 to obtain a map G∞ in the Epsteinlass whih is C2-lose to f s.In fat we an hoose di�erent starting intervals In with the same realbounds whih are smaller and smaller and whih are then resaled to maps
Fn that map from the unit interval to itself. For eah suh map we obtain thenearby map Gn in the Epstein lass where ‖Fn −Gn‖C2 → 0 as n→ ∞. For
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Fn we let xn

0 denote a point whih is equivalent to x0 for F . Sine we assumethat |Fn(xn
0 )−xn

0 | goes to zero, our limit map G∞ has a paraboli �xed point
x∞0 . Also D2G∞(x∞0 ) > 0. Thus, there exist 0 < A < B depending only on
f suh that for all x ∈ [0, 1] we have
G∞(x∞0 ) + (x− x∞0 ) +A(x− x∞0 )2 ≤ G∞(x)

≤ G∞(x∞0 ) + (x− x∞0 ) +B(x− x∞0 )2.Clearly, for large n, we have the same ondition for Gn. Therefore, if we take
I0 small enough, we may assume that it holds for F too.We de�ne ε := F (x0) − x0. Then we have

ε+A(x− x0)
2 ≤ F (x) − x ≤ ε+B(x− x0)

2.We suppose that N is suh that x0 ∈ [aN , aN+1). Then for 0 ≤ i ≤ N −1 welet xi := F i(x0). We will use this equation to �nd estimates for aj − aj+1.Throughout we will let C,C ′ denote some onstants depending only on δ, δ′.Claim 3.
N ≍ 1/

√
ε.Proof. Let N ′ = max{1 ≤ j ≤ N − 1 : xj − x0 ≤ √

ε}. We will �rst showthat N ′ satis�es the laim. For j ≤ N ′, we have
ε ≤ xj+1 − x0 ≤ ε(B + 1).Therefore,

N ′ε ≤
N ′−1∑

j=0

xj+1 − xj ≤ N ′ε(B + 1).

Sine ∑N ′−1
j=0 xj+1 − xj = xN ′ − x0 ≤ √

ε we have N ′ ≤ 1/
√
ε. Furthermore,

xj+1 − x0 >
√
ε so ε(N ′(B+ 1) + 1) >

√
ε and N ′ > 1/(B + 1)

√
ε− 1. Thatis, N ′ ≍ 1/

√
ε.Next we �nd estimates for N − N ′. For N ′ < j ≤ N we again onsiderthe estimates
ε+A(xj − x0)

2 ≤ xj+1 − xj ≤ ε+B(xj − x0)
2.But note that here B(xj − x0)

2 > ε so we an write instead
A(xj − x0)

2 ≤ xj+1 − xj ≤ 2B(xj − x0)
2.We make a hange of oordinates. We let yj := 1/(xj − x0). Then

yj − yj+1 =
xj+1 − xj

(xj − x0)(xj+1 − x0)
.By the above bounds we have

A(xj − x0)

xj+1 − x0
< yj − yj+1 <

2B(xj − x0)

xj+1 − x0
< 2B.
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yj −yj+1 >

A(xj − x0)

(xj+1 − xj) + (xj − x0)
>

A(xj − x0)

2B(xj − x0)2 + (xj − x0)
>

A

2B + 1
.Observe that xN ∈ (a1, a0) and |a0 − a1| > δ. So sine |xN − xN−1| isapproximately |a0 − a1| and sine we �xed δ, we know that yN = O(1). Alsonote that yN ′ = O(1/

√
ε) and so yN ′ − yN = O(1/

√
ε). Summing we obtain

C√
ε
< yN ′ − yN =

N ′∑

j=N−1

yj − yj+1 < 2B(N −N ′),

C ′

√
ε
> yN ′ − yN =

N ′∑

j=N−1

yj − yj+1 >
A(N −N ′)

2B + 1
.

So N − N ′ ≍ 1/
√
ε too. Adding this to the estimates for N ′ proves thelaim.To prove the Yooz lemma, we will use Claims 1 and 3 together, alongwith bounded distortion, whih means that aj −aj+1 is like xN−j −xN−j−1.Firstly we will use the above oordinate hange again. For j > N ′ wehave

yj > yj − yN =

j∑

j=N−1

yi − yi+1 >
A(N − j)

2B + 1and so
1

xj − x0
>
A(N − j)

2B + 1
and xj+1 − xj < 2B

(
2B + 1

A(N − j)

)2

.We have proved that if 0 ≤ j ≤ N ′ then(5) ε < xj+1 − xj < C ′εand if N ′ < j ≤ N then(6) ε < xj+1 − xj <
C ′

(N − j)2
.Similarly we an de�ne xj = F j(x0) for negative j where 0 ≤ |j| < m−N .Now we will show that Claim 3 follows for this situation too and we getequivalents to (5) and (6). We de�ne some M ′ analogously to the de�nitionfor N ′ and so if |j| ≤M ′ then

ε < xj+1 − xj < C ′ε.And if M ′ < |j| ≤ m−N then
C

(m−N + j)2
< xj+1 − xj <

C ′

(m−N + j)2
.



76 M. Todd(In the step of the proof where estimates on yN−m are required, we useClaim 1 to get |am−1 − am| uniformly bounded below and the fat that
|x−m−1 − xm| is approximately |am−1 − am|.) Note also that we an showthat m−M ′ ≍ 1/

√
ε.Observe that aj − aj+1 is essentially the same as xN−j − xN−j−1. So if

N ≥ j ≥ N −N ′, we have
Cε < aj − aj+1 < C ′ε.Observe that 1/(N−N ′) ≥ 1/j ≥ 1/N . Sine ε ≍ 1/N2 and ε ≍ 1/(N−N ′)2this implies that we have

C/j2 < aj − aj+1 < C ′/j2.Now if N −N ′ ≥ j ≥ O(1) then learly we have aj −aj+1 < C ′/j2. Also,
xN−j − xN−j−1 > A(xN−j−1 − x0)

2 = A
( N−1∑

k=j−1

(xN−k − xN−k−1)
)2

≥ A
( N ′∑

k=1

(xk − xk−1)
)2

≥ A(N ′√ε)2.Now sine √
ε ≍ 1/N ′, we have xN−j − xN−j−1 & 1. Thus

C/j2 < aj − aj+1 < C ′/j2.If N ≤ j ≤ m−M ′ then again we have
Cε < aj − aj+1 < C ′ε.Note that we also have m−N ≥ m−j ≥ m−M ′. Sine m−N,m−M ′ ≍

1/
√
ε we have

C

(m− j)2
< aj − aj+1 <

C ′

(m− j)2
.If m−M ′ ≤ j ≤ m− 1 we have

C

(m− j)2
< aj − aj+1 <

C ′

(m− j)2where the lower bound follows as above.To onlude, if 1 ≤ j ≤ N then we have some onstant C suh that
j ≤ C(m − j) and aj − aj+1 ≍ 1/j2. If N ≤ j ≤ m − 1 then we have someonstant C ′ suh that m− j ≤ C ′j and aj − aj+1 ≍ 1/(m− j)2. So in eitherase we have

aj − aj+1 ≍ 1

(min(j,m− j))2as required.
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