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Distortion bounds for C?™” unimodal maps
by

Mike Todd (Surrey)

Abstract. We obtain estimates for derivative and cross-ratio distortion for C**" (any
1 > 0) unimodal maps with non-flat critical points. We do not require any “Schwarzian-
like” condition.

For two intervals J C T, the cross-ratio is defined as the value

17111
B(T =
@D = 1R

where L, R are the left and right connected components of T\ J respectively. For an
interval map g such that gr : T — R is a diffeomorphism, we consider the cross-ratio
distortion to be ) 9
B(g(T), 9(J
B(g,T,J) .= ———>""—"-.
(9.T,J) B(T.J)
We prove that for all 0 < K < 1 there exists some interval Iy around the critical point
such that for any intervals J C T, if f"|r is a diffeomorphism and f"(7T) C Io then

B(f",T,J) > K.

Then the distortion of derivatives of f™|; can be estimated with the Koebe lemma in terms
of K and B(f"(T), f*(J)). This tool is commonly used to study topological, geometric
and ergodic properties of f. Our result extends one of Kozlovski.

1. Introduction. In order to understand the long term behaviour of
a smooth dynamical system f : X — X we must consider iterates of the
map. It is useful to know how differently high iterates of the map f™ act on
nearby points. For example we can try to estimate how wild the derivative

of iterates of the map is: we can consider the distortion gfczgg for z,y in

some small interval J where f™|; is a diffeomorphism. For one-dimensional
maps, the Koebe lemma is a tool we use to estimate this. Notice that this
distortion can be rather wild when f has critical points.

An important condition we must assume in order to apply the Koebe
lemma is that the map f” must increase cross-ratios. The type of cross-ratio
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we use most is defined as follows. For two intervals J C T, the cross-ratio is
defined as the value (1)

B(T,J): IR
where L, R are the left and right connected components of 7'\ J respectively.
For an interval map ¢ such that gr : T' — R is a diffeomorphism, the main
measure of cross-ratio distortion we use is given by

_ Bl(T).9(J))
B(g,T,J) := W
If we know that B(f",T*,J*) > K > 0 for any J* C T* C T then we have
uniform bounds on % for x,y € J depending on K and B(f"™(T), f"(J)).
So we are able to estimate the distortion of the derivative of f™ using infor-
mation on the distortion of the cross-ratios.

A classical way of gaining information about the dynamics of an interval
map f : [0,1] — [0,1] with a critical point is to take a first return map to
some well chosen interval I. If this map has some diffeomorphic branches,
we can estimate how well or how badly the derivatives behave on branches
using the Koebe lemma as above. This method is often used to get informa-
tion on the geometry and topology of the map and its iterates (see [MS]).
This type of approach is also applied when considering the ergodic prop-
erties of one-dimensional maps. Often instead of first return maps, certain
inducing schemes are applied in these cases (see again [MS]). The Koebe
lemma allows us to show that the inducing schemes are expansive, and the
Folklore Theorem can then be used to derive ergodic absolutely continuous
f-invariant measures.

In order to apply the Koebe lemma to f"|r we need a lower bound on
cross-ratio distortion of f"|7. In fact, a lower bound K = 1 is obtained
whenever f is C? and has negative Schwarzian derivative, that is,

D3f 3 <D2 f)2

SI=57 3\ br

is negative wherever it is well defined. For applications it is not so important
that f have negative Schwarzian, just that some iterate of f has negative
Schwarzian on some small intervals. Kozlovski showed [K2| that for any
C3 unimodal map with non-flat critical point (see the next section), if I
is a small enough neighbourhood of the critical point and f"(z) € I then
Sfntl(z) < 0. Therefore, for most practical purposes, for example where
first return maps or inducing schemes are used to gain information about the
dynamics, it is unnecessary to find the sign of the Schwarzian derivative as
long as the critical point is non-flat. Moreover, this result allowed Kozlovski
to prove the following, a key tool in the proof of [K3].
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THEOREM 1.1. Suppose that f is a C® unimodal map with non-flat crit-
ical point whose iterates do not converge to a periodic attractor. Then for
any 0 < K < 1, there is an interval V around the critical point such that if
for an interval T' and some n > 0,

e f™|r is monotone,
e cach interval from the orbit {T, f(T),..., f™(T)} is contained in the
domain of the first entry map to V,

then
B(f",T,J)> K

where J is any subinterval of T.

This means that the Koebe lemma can be applied to f™ to get estimates
on the distortion of derivatives which only depend on B(f"(T), f*(J)) (for
first return maps or induced maps this quantity is bounded whenever the
branches have a “uniform extension”). These results were extended to C3
multimodal maps with non-flat critical points in [SV]. Also, for C® unimodal
maps with non-flat critical point, it is shown in [GSS] that an analytic coor-
dinate change can create a map which has first return maps with negative
Schwarzian.

So how necessary is the negative Schwarzian condition to prove dynamical
results in “reasonable” cases? Certainly it is useful in determining the type
of parabolic periodic points or bounding the number of attracting cycles (see
[Si, MS]). A natural question to ask, and the one we consider in this paper,
is: what happens for unimodal maps with non-flat critical points which are
not C3? Certainly the usual negative Schwarzian condition is no use since
it is not even defined. (Note that there is a “Schwarzian-like” condition for
C' maps, equivalent to the negative Schwarzian condition when the map is
C3, but that need not hold in our case either; see [P, MS].) We show that
Theorem 1.1 extends to the case of C?T" for any n > 0. So many results
on the geometric and statistical properties of unimodal maps with non-flat
critical point extend to maps which are only C?+7.

Since we cannot use the negative Schwarzian property at all here, we
must look rather closely at the behaviour of the map on small scales. We
use a result from [MS] to estimate the cross-ratio distortion in terms of sums
of lengths of intervals. We split up this sum into blocks using the domains
of first return maps to small intervals around the critical point. The precise
behaviour of the branch containing the critical point, the central branch,
determines how we choose our blocks. Since we have no negative Schwarzian
property, there are particular difficulties when a block of our sum contains
points which spend a very long time in the central branch (when there is a
so-called “saddle node cascade” or an “Ulam-Neumann cascade”). The main
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tool we use here is the real bounds proved by [V, Shl, SV]. Roughly speaking,
these results give us a sequence of first return maps where the diffeomorphic
branches have a uniformly large extension. This gives bounded distortion of
the derivative on these branches which allows us to estimate the sums of
lengths of intervals.

1.1. Statement of the main result. We explain the terminology in the
following definitions. Given an interval T, and a subinterval J C T, we
defined the cross-ratio B(T, J) above. Note that if we again denote the left-
hand and right-hand components of 7'\ J by L and R respectively, we have
another measure of cross-ratio:

71]J]
AT, J) = —————,
( ) |LUJ||JUR)|
(however, we focus mainly on B(T, J)).

Suppose that g : T — R is a diffeomorphism. We define B(g,T,J) as

above, but we also have

Ag(T),9(J))
Alg, T, J) = ————2~,
another estimate of how the map distorts cross-ratios. Observe that for dif-
feomorphisms ¢ : T'— ¢(T") and h : g(T) — h o g(T') we have
B(hog,T,J) = B(h,g(T),9(J))B(g, T, J).
Similarly for A(g,T,J).

We say that T is a d-scaled neighbourhood of J if %, % > §. We suppose
throughout that our functions map I := [0, 1] into itself, and OI into OI.

We say that a unimodal C* map ¢ has non-flat critical point ¢ if there
exists some neighbourhood U of ¢ and a C* diffeomorphism ¢ : U — I with
¢(c) = 0 such that g(x) = £[¢(x)|* + g(c) for some a > 1. The value « is
known as the critical order for g. We denote the set of such maps by NF*
and this neighbourhood by Uy.

Such maps have many good properties. For example, they have no wan-
dering intervals (see for example Chapter IV of [MS]). More importantly for
us here is how such maps distort cross-ratios. In particular, how iterates of
such maps distort cross-ratios. Our main result is as follows.

THEOREM 1.2. For any n > 0, let f € NF**" be a unimodal map with
a critical point whose iterates do not converge to a periodic attractor. Then
for any 0 < K < 1, there is an interval V around the critical point such that
if , for an interval T and some n > 0,

e f™| is monotone,

o fM(T)CV,
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then
B(f",T,J)> K, A(f",T,J)>K

where J is any subinterval of T.

This theorem is proved for C® maps in [K2]. Note that in fact we
prove that if 0 < 7 < 1 then for any 0 < 1’ < 7, there exists C' > 0
such that if J, T,V are as in the theorem then A(f™,T,J),B(f™,T,J) >

exp{~C(sup, |Vi])"'}.

1.2. Strategy of the proof. Our setup will involve first return maps to a
neighbourhood of ¢, as outlined below. For the case where ¢ is non-recurrent
see [St]. So we suppose throughout that ¢ is recurrent.

An open interval V is nice for f if f*(OV)NV =0 for n > 1. (When it
is clear what f is, we just refer to such an interval as nice.) It is easy to see
that we can find arbitrarily small nice intervals around c.

Let Ip > ¢ be a nice interval. For every x € I whose orbit intersects Iy,
let n(z) := min{k > 0: f*(z) € Ip}. If additionally x € I, let I} > x be the
maximal neighbourhood such that f”(“)(Ig) C Ip. We obtain the first return
map Fp : Uj I(j) — Iy. We label the interval which contains ¢ by I3; this
interval is called the central domain. Observe that Fp is a diffeomorphism on
all domains I(j) except when j = 0. Furthermore, Fp is unimodal on Ig. Note
also that ]8 is again a nice interval. We will call it I; for the next step in the
inducing process; i.e. we define F} : Uj I — I to be the first return map
toI; = Ig. It has central domain I? = [,. Continuing inductively, we obtain
maps F; : Uj Iij — I;. The sequence Iy D I} D --- is called the principal

nest, and Fy|; : Il-j — I; is a branch of F;.

If & ¢ I; but n(z) is defined then there is a maximal interval U/ 3

such that f™®) . U/ — I is a diffeomorphism. So we may extend Fj, letting
E|U_j : U] — I,. Then letting Uj U/ consist of all such intervals added to

U, I, we call F; : U, Ul — I, the first entry map to I;. We will often switch
between these two very similar types of map.

For simplicity, except in the appendix, we will assume that Fj(c) is a
maximum for Fj|r,,,. We say that I} is low if Fi(c) lies to the left of ¢ and
F; is high if Fj(c) lies to the right of c. Finally, F; is central if F;(c) is inside
I;+1 (if this is not the case, then F; is non-central). Figure 1 shows F; which
is a high and central return.

Suppose that f™: T — f™(T) is a diffeomorphism and f™(T) C Iy. It can
be shown (see Theorem 2.1) that we get a lower bound on B(f", T, J) if we
can find some bound on 377, | f%(T)|. In fact, we consider Y_7— | f*(T)|'+¢
for some 0 < ¢ < n. We will split up this sum into blocks determined by
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I, i

Fig. 1. Fj is high and central

the principal nest introduced above. Note that our proofs extend easily to
A(f™,T,J) (see [St]).

We fix n and T as in Theorem 1.2, and let ng = n. For ¢ > 0, suppose
that some iterate f7(7T) enters I; for 0 < j < n. Now we let n; be the last
time that f/(T) C I, i.e. f"(T) C I; and f"Y(T) € I;, 0 < j <n—n,.
If f7(T) is never contained in I; for 0 < j < n then we let n; = n;_;. For
each i, we will be interested in estimating

N —MNi41

()

k=1
we call this the sum for F;. As we will see later, if F; is non-central infinitely
often then Theorem 2.3 implies that as ¢ — oo the intervals I; shrink down
to c¢. Thus we are able to bound EZ;& | f*(T)|'*€ by bounding the sums for
all F;. We will use a slightly different method when there exists a nice Iy
such that F; is always central.

In order to prove the main theorem, we will consider the following cases.
Note that we only assume that f € NF? in the following three propositions.

e F;_5 is non-central. We consider the sum for F; whenever fj(T) N
0I;+1 =0 for all 0 < j < n;, as follows.

PROPOSITION 1.3. Suppose that F;_ is non-central and f(T) N 0I;11
=0 for all 0 < j < n;. Then there exists Cy1, > 0 such that

Ti—Ti41 i
S I ()] < G T
k=1 ‘

where o; = supVe{Ij}.ZZ(:‘?\fk(V)\ (and n(V) is defined as k where
147
Fily = f*).
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We call this a well bounded case. It is dealt with in Section 3.

e F; o is non-central and F;,..., Fj{,,—1 are central. We consider the
sums for Fj, Fj11, ..., Fiym whenever f7(T)NOLiymy1 = 0 forall 0 < j < ny,
as follows.

PROPOSITION 1.4. Suppose that F;_o is non-central, F;, ..., Fiym—1 are
central and f7(T)NOLiymi1 =0 for all0 < j < n;. For all £ > 0 there exists
Cease > 0 such that

Ni—Ni+m+1

Z | fEEmem (T < CoascOim max [ f5(T)[0

1 Nitm41<k<n;
where 0y, is defined as follows. Let o; := SUPy ¢ (17, ZZ(:‘? |fE(V)|. Let VC
I\ Iix1 be an interval such that fﬁ(‘?) is one of the connected components of
I;\ Ii+1 for somen >0 and fj(‘//\') is disjoint from both I; \ I;11 and I, for
0<j<n(V). Then Oim s the supremum of all such sums Zjlg) 1AV
and o;.

We call this the cascade case. It is dealt with in Section 4.

o F;_5is central and F;_1 is high and non-central. We consider the sum
for F; whenever f7(T)N0I;11 =0 for all 0 < j < n;, as follows.

PROPOSITION 1.5. Suppose that F;_o is central, F;_1 is high and non-
central and f7(T)NOL;ymy1 =0 for all 0 < j < n;. Then there exist Cox > 0
and ni41 < N3 < Nni2 <Ny such that f™2 (T), fres (T) c I; and

IS b ) < o i(\f”%T)! () \fﬂm(Tﬂ).
Z |f (T)] < Cexor 17| + |1 + | I;]|

k=1

(In some cases, the last two terms in the sum are not required.) We call
this the exceptional branches case. It is dealt with in Section 5. We also note
there that if F;_o is central and F;_q is low and non-central then we are in
another well bounded case, and so the conclusion of Proposition 1.3 holds.

e We have an interval Iy such that F; are all central for ¢ = 0,1,....
We call this the infinite cascade case. We prove Theorem 1.2 for this case in
Section 7.

The proof of Theorem 1.2 for the non-infinite cascade case is given in
Section 6.

With these propositions, for 0 < 1’ < 7, we can decompose the sum
ST IFE(M)[H into blocks of sums 3" | Rt ()14 We then
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show that each of these is uniformly bounded. We will then prove that
Sl | fR i (T) |1 decays in a uniform way with i

The first two cases use real bounds of Theorem 2.3. These bounds imply
that B(I}, I;) are bounded above. This will also be true for all except possibly
two domains of F; in the third case. The main tool here is Lemma 3.3, which
gives us some decay of cross-ratios when we have these real bounds. Note
that the conditions f7/(T) N A1 = @ for all 0 < j < n; in well bounded
and exceptional cases, and f/(T) N Ol mi1 = O for all 0 < j < n; in the
cascade case, make the propositions simpler to prove. However, as we remark
in Section 6, it is easy to see how to split up the intervals in the other cases
in order to prove Theorem 1.2.

The final case, which arises in the infinitely renormalisable case, is dif-
ferent from the other three. We use a lemma of [K2] to find some uniform
expanding property which helps bound the sums.

In all cases except the infinite cascade case we must ensure that we have
some initial interval which has a first return map which is well bounded. To
do this we can simply pick some nice interval to begin with and then induce
until we find a map which is well bounded. This is always possible when
there is not an infinite cascade.

Note that we need extra smoothness to bound cross-ratios in the cas-
cade case. This ensures that we can deal with the case when we have many
consecutive low central returns, a “saddle node cascade”.

In his proof for C* maps Kozlovski was able to use the fact that there
exists some C > 0 depending only on f such that for intervals J C T we
have B(f,T,J) > exp{—C|T|*} and A(f,T,J) > exp{C|L| | R|}. See Section
IV.2 of [MS]. In particular this means that there exist such real bounds as in
Theorem 2.3 for all 4, not just those for which F;_; is a non-central return.
So the long central cascades we encounter in Section 4 present much less
of a problem in the C? case. Indeed, the work done in Section 5 is also
unnecessary in the C? case.

We will deal with the well bounded case first. It is the simplest and gives
us a good idea about how we may proceed in general. We will use J to
refer to a general interval from here until Section 6. This allows us to use
less notation. When we use the constant C' > 0, we mean some constant
depending only on f.
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2. Introductory results. Without loss of generality, we suppose
throughout that our maps have a maximum at the critical point. We also
suppose that f is symmetric about c¢. That is, f(c —¢) = f(c+ ¢) for
all e. This assumption is useful for simplifying proofs (particularly in Sec-
tion 5, which is already quite technical), but is not crucial since on small
scales our maps will be essentially symmetric (in particular, |D f(c—¢)| and
|Df(c+ ¢)| are arbitrarily close for small enough ¢). We let C < |g|y < '
mean sup,cy |9(x)| < C’ and inf,ep [g(x)] > C.

The following theorem is proved for a more general case in Chapter IV
of [MS]. Here we will let w, be the modulus of continuity of a continuous
map g, i.e. wy(€) 1= sup|y_y <. [9() — g(y)|.

THEOREM 2.1. For a unimodal map g : I — I, g € NF2, if T is an
interval such that g"|r is a diffeomorphism and J C T is a subinterval, then
there exists some C > 0 such that

B(g",T >exp{ Czwm (Ig"(T)])lg"(T )!}-

This bound also holds for A(f",T, J).

In Sections 6 and 7 we will use the fact that when g € NF?*" for some
n > 0, we can replace Cwpz,(c) by Ce”.

The following lemma, a consequence of the absence of wandering inter-
vals, is Lemma 5.2 in [K2]|.

LEMMA 2.2. Suppose that g € NF2 g : I — I. Then there ezxists a
function T : [0, |I|] — [0, 00) such thatlim._.o7(¢) = 0 and for any interval V
for which g"|v is a diffeomorphism and g"(V') is disjoint from the immediate
basins of periodic attractors, we have

max lg' (V) < 7(g"(V)]).

We may use this lemma and Theorem 2.1 to get

n—1
1) B(g", T, J) > exp{ =o' (19" (D)) D 19" (T)|}
=0

whenever f"(T) is disjoint from the immediate basins of periodic attractors,
where

(2) o'(lg™(T)]) = Cwg o 7(lg™(T)]).
We will use the following result of [SV] throughout. (In fact it is stated
there in greater generality, as Theorem A.)

THEOREM 2.3. If g € NF? is a unimodal map with recurrent critical
point, then the following hold:
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(a) For all k > 0 there exists (k) > 0 such that if G;_1 : U] =i
is non-central, then I; .y is a £(k)-scaled neighbourhood of I;yj11.
(b) For each & > 0 there is some & > 0 such that if I; is a &-scaled

neighbourhood of I;11 then Ijy1 is a g—scaled neighbourhood of any
domain of Giy1.

This result gives us real bounds for some of our first return maps. We let
X :=&(1) > 0 from the above theorem for our map f.

The following theorem is an improvement of the classical Koebe lemma.
It is presented in more generality in [SV] as Proposition 2: “a Koebe principle
requiring less disjointness”. Note that actually, for our purposes, the classical
Koebe lemma is enough.

THEOREM 2.4. Suppose that g € NF2. Then there exists a function
v :[0,]I]] — [0,00) such that v(e) — 0 as € — 0 with the following prop-
erties. Suppose that for some intervals J C T and a positive integer n we
know that " |1 is a diffeomorphism. Suppose further that g"(T') is a §-scaled
neighbourhood of g"(J) for some 6 > 0. Then:

(a) for every x,y € J,

2 compesnr S5

where S(n, T) := maxo<p<n-—1 | f* ( )]
(b) T is a 0-scaled neighbourhood of J whenever

o= Lol e}[”‘ﬂ ()

2490
is positive, where 0 := v(S(n,T)) Z?:_ol 19t (J)]-

Again we may use Lemma 2.2 to replace v(S(n,T)) with v/(|f"(T)]|)
where we define V/(|f™(V)|) := v o 7(|f™(V)]). We will use the result of
Theorem 2.3(b) extensively, but we use § when 6 = /(|]|). Usually ¢ will
be related to the x we obtained following Theorem 2.3.

We will sometimes be in a situation where we wish to estimate the deriva-
tive of a function in between two points at which we know something about
the derivative. The following two well known results allow us to do this. The
first is known as the Minimum Principle; see, for example, Theorem IV.1.1
of [MS].

THEOREM 2.5. Let T = [a,b] C I and g : T — g(T) C I be a C*
diffeomorphism. Let x € (a,b). If for any J* C T* C T,

B(gvT*aJ*) > :Ug >0
then |Dg(x)| > jigmin(|Dg(a)|, [Dg(b)]).
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For a proof of the second result see again [MS].

THEOREM 2.6. For g € NF? there exist ng € N and 0g > 1 such that if
p is a periodic point of period n > ng then |Dg™(p)| > o4.

We are now ready to begin the proof of Theorem 1.2.

3. Well bounded case. Here we deal with the case where F;_5 is non-
central and f/(T) N dl;41 = () for all 0 < j < n;. In our estimates, we are
principally interested in iterates of T landing in I7 for j # 0. By Theorem 2.3,
the fact that F;_o is non-central implies that the first return domains Ig are
all well inside I;. This enables us to estimate the sum for Fj, and is the reason
we call this case well bounded.

Let ) > n;1 be minimal such that ™ (T) C I;. We will initially assume
that we have some x > 0 such that for the “return sum”,

(3) ZIF’“ (f"(T))| < sl f"(T)

where j; is such that FY i|f"§(T) = fni_n”f"é(T)' We prove Proposition 1.3
before bounding this return sum in order to give an idea why we need bounds
on return sums. Except for the proof of (3), this is similar to the proof of
Lemma 5.3.4 of [K1]. There, it is assumed that f € C2 in order to bound
the sum Zh_l |EF(f™(T))|. Those methods fail in the C? case.
Proof of Proposition 1.3 assuming (3). Let njy; = mg < my < -+ <
mj, = n; be all the integers between n; 1 and n; such that ™ (T) C I; \
Liyq for j = 1,...,j5;, — 1 and let mg = n;+1. Now let F; : U Ul — I,
be the first entry map to I;. We will decompose Y, "' \f’””lﬂ (T)| as
Zmyﬂ mj ’fk+mj (T)|
For 1<j<gji—land 1 <k <mji1 —myj,let U,L»l be the domain of first
entry to I; such that f™i+*(T) C U!. Suppose that Fj|;: = f%. Then there
exists an extension to Vil ) Ul-l so that fu : V;-l — I;_1 is a diffeomorphism.
Then by the Koebe lemma we have the distortion bound
[fErm (@) _ () [fm (1)
lzz 1Ll
whence

Mj41—m; mj+1—mj—1

3 umﬂwnwm(%) S I

k=1 k=0
mi+1
< coa L
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Therefore
Ni—Nit1 o Ji o; = =
Z ’fk+ni+1 (T)’ < C(X) |71’ Z |fmj (T)’ = C(X) |TZ’ Z |Flk(T)’
k=1 Tt " k=0

where T := f™(T). This is bounded above by «|f"(T)| due to (3), so we
are finished.

3.1. Bounding return sums. In this subsection we will introduce some
tools which we use extensively in the remainder of this paper. We then use
these tools to prove that (3) holds.

The proof of the following simple lemma is left to the reader.

LEMMA 3.1. For all 6 > 0 there exists A = A(d) > 0 such that A(§) — 0
as § — oo with the following property. Suppose that U is an interval, J C U
is a subinterval and that the left and right components of U \ J are denoted
by L and R respectively. Suppose further that |L|,|R| > §|J|. Then

B(U,J) < A.
Let D; denote the set of non-central domains F; *(I;), i.e. D1 = Uj 20 r

7
Let Do denote the set of domains F; '(D;) which are disjoint from the
central domain. Inductively, we let Dy denote the set of domains Fi_l(Dk_l)
which are disjoint from the central domain. Then for any element Jj, € Dy,
FF : Jp — I is a diffeomorphism. We will bound Z?;S |FY (Jy)| for any
Ji € Dy by showing that there exists some A\ < 1 independent of ¢ such that
for k > 1 we have B(I;, Ji) < AB(L;, F;(Jg)). We let

(4) p = exp{—a’(|Jo])}
where ¢’ is given by (2). By (1), if J', f(J'),..., f™(J') is a disjoint set of
intervals and J O J', we have B(f™,J',J) > p. Therefore, if n(j) is the
return time of Il.j to I; and J C Iij then B(f"(j),lg,J) > 4.

The following lemma is Lemma 2.3 of [GK].

LEMMA 3.2. For every 6 > 0 there exists N = N(§) < 1 such that if
J CV CU are intervals and U is a §-scaled neighbourhood of V' then

B(U,J) < NB(V, J).
Furthermore, N — 1 as § — 0.
We add this lemma to (1) as follows.

LEMMA 3.3. Given § > 0, there exist 0 < A = A(J) < 1 and € > 0 such
that if |Ip| < & and I;,_; is a 0-scaled neighbourhood of I;, then for any J C Il.j
with j # 0,

B(I;,J) < AB(I;, F;(J)).
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Proof. From the previous lemma there exists some X' = ) (§) < 1 such
that

B(I;,J) < NB(I?,J).
Now from (1) we obtain

B(I;, J) < X 7B<I“5i(‘]))

where i is defined in (4). Since p — 1 as |Iy| — 0, if € is chosen small enough
then \'/pu < 1. We let A\ := X' /u. Thus B(1;,J) < AB(I;, F;y(J)). =

We will consider A = A(X) where X comes from Theorem 2.4(b) applied
to x and x comes from Theorem 2.3(a), i.e. X takes the role of § in Lemma 3.3.
In fact we shall adjust A again in Section 5, but it will remain independent
of 7 and strictly less than 1.

Proof of (3). For k > 2, B(I;,J;) < MN'B(I;, EF~'(J},)). Suppose
that FF'(Jy) C Ilj Then by Lemma 3.1, using Theorems 2.3 and 2.4(b),
B(Ii,Iij) < A where A = A(X). Thus, it is easy to see that B(I;, FF~!(J;))
< AIFFY /T Now |FE1(J)| < CONNFF ()| FI/ITi| by the Koebe
lemma, so we know that B(I;, FF~(J)) < C(x)A|FF(Jy)|/|L]. We apply
these estimates to the sizes of Jy:

| 4]
2|1
NTC (0 AFF ()

Then || < CA*YEF(J,)|. So YFZ0 [FY (Jk)| < CIFE(Ji)]/1 — A Hence

k
SO ()] < m’“uk)y(l + &)

J=0

| Tkl <

1+

This holds for any sum of returns which never lands in the central domain.
It is independent of i. Letting x = 1 + C/(1 — \) we arrive at (3). m

4. Cascade case. This section is devoted to the proof of Proposition 1.4.
Note that if there is a uniform upper bound on the length of sequences
Fi, Fiyq, ..., Fiiy all having central returns then Theorem 2.3 implies that
we may prove Proposition 1.4 as a well bounded case. However, there may
be arbitrarily long sequences of consecutive central returns.

Proof of Proposition 1.4. We suppose that there ¢ is such that
f™(T) C I; where F;_5 has a non-central return and Fj;; all have cen-
tral returns for j = 0,...,m — 1 and that Fj,,, has a non-central return.
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For £ > 0 we will bound the sum

T —Nj4m+1

So [kt ()

k=1
For our intial estimates, we may omit &, but later it will be necessary to
include it. Recall that we always assume here that f/(T)N 0l 1 e 1 = 0 for
all 0 < j < n;.

Let mg = nj+m+1 and let mg < m1 < n; be the smallest integer such
that f™(T) C I; \ Ii+1. Let m; < mg < n; be the next integer for which
fm2(T) C I; \ I;41 if such mgy exists. Proceeding in this manner, we obtain
a sequence Njymy1 < mp < mg < -+ < My = n;. S0

Ny —Ni4m+41 —1mjy1—m;
> e I—Z Z (T,
k=1 7=0 k=1

Define my_1 < m’ < n; to be minimal such that f™ (T) C I; \ Iitma1.
Assuming that Fj|;0 = f*, there exists 0 < p < m such that m' + sp = my
= n;. We can rewrite the sum above as

N —MNG4m+1 N-—-2Mjt1—m; m'—my_1
Do (1) = Z Z I+ Y (D)
k=1 k=1
p—1 s

+ |fk+7"s+m |
2.2

Using the method from the proof of Proposition 1.3, we see that

m/ p—1 s P
SO 4 N )| <
k=1 r=0 k=1 =0

We Wlll deal with the sum on the right-hand side later. We will first show
that 202 ST | PR (T)| < Cogpl 7 (T) /1T,

We denote the left and right components of I; \ I;41 by L; and R; re-
spectively. We know from Theorem 2.3(a) and (b) that |L;|/|li+1], | Ril/|Li+1]
> X.

We define ﬁz : Uj ff — I;\ Ii+1 to be the first return map to I; \ I;+1 such
that ﬁ(fj) € {L;, R;}. As in the well bounded case, for each 1 < j < N —2
and 1 <k < M1 — My, there exists a first entry domain U to I;\ Ii41 such
that f*+™i(T) c U. We may assume that f™+~™~%(0) = L;. Indeed, for
1 < j < N — 3 there exists le such that f"+1(T) C 17 C L;. We show that
1! is well inside L;, which will allow us to estimate | f*+™i(T)|/|U].

)
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7l

Suppose that Fl-]ﬂ = f%. Then there exists an extension to Vil D I such

(2
that f¥ : Vil — I;_1. Clearly Vil C L;, otherwise niceness is contradicted. By
Theorems 2.3(a) and 2.4(b), V} (and thus L;) is a X-scaled neighbourhood
of ﬁz

For 1 < j < N —2, we have B(L;, f™+.(T)) > uB(U, f*t™i(T)) where
 is defined in (4). Therefore,
k+m; |U’

O S TR ey

As in the well bounded case, using a small adaptation of Lemma 3.3, replac-
ing F; by F;, we can show that B(L;, f™ (T)) < AN~1= B(L;, f™~-1(T)) for
0 < j < N-—2.(Note that A is still the \() discussed following Lemma 3.3.)
Therefore, it can be shown that

N—-2mMjt1—m;

mg Caivm . fMN-_1
Z Z | mB(Luf (T)).

But since f™N-1(T) C If for some j' # 0, we have
[N (T)]
A
Notice that F;(f~-1(T)) = fm/(T,) So the Koebe lemma and Lemma 3.1
give B(L;, f™N-1(T)) < C(x)A|f™ (T)|/|1;], whence

N—-2mMj41—mj

e (1) < G LD
]Z% Z:j (D)) < 7

It remains to bound °P_ | f7*+™ (T)|'*+¢ (as can be seen below, we only
really need & > 0 for our estimates in the low case). We assume that f™ (T)N
Oliyj # 0 for 1 < j < m: otherwise SP_o | fr*+™ (T)|"+¢ < |L|'*¢, and we
are finished.

Let T = (T ) There exists some M > 0 such that FM (T ) fr(T).
We will bound Zk |EF(T 7)1+,

If M were uniformly bounded then we would be able to find some bound
on Z/{:\/[:O |Flk(f)| easily. But M may be very large. We consider this sum in

B(Li, f™(T)) < B(L;, II')

A\
F(T) .
/\ | — T
1
f I T T T I I 1
a!} a] aM-] aM aM+/ aM+l+z a/n ¢

Fig. 2. When T intersects the boundary points 9I;
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two cases: either F; is high, or Fj is low (the high case is the most straight-
forward). For some background on this dichotomy see [L]|. In both cases, we
relabel Fj|r,,, as F and I; as Iy. Now let I, = (ay,a)). We are assuming
that F'(c) is a maximum for F (see Figure 2).

The high case. We have two subcases to consider. We first assume that I}
are high and central for j = 0,...,m. This is known as an Ulam-Neumann

cascade.
LEMMA 4.1. In the high case, 22/[:0 |F*(T)| < C|Iy|.

Proof. We know that Ij is a Y-scaled neighbourhood of I;. We will use the
Minimum Principle (Theorem 2.5) and Theorem 2.6 to estimate derivatives.
The idea here is that either we have derivative uniformly greater than one in
(a1,am) and we can bound Z/{:\/[:O |F¥(T)| as a geometric sum, or we have a
small derivative in some region, in which case we find a bound on the number
of a; that are in this region.

Let v > 1 satisfy /(7 — 1) > 1/2X. Then we may fix some integer r > 1
such that 2y > /_,7~* > 1. Note that r only depends on X. Observe that
there is a fixed point p € (a1, c). We can choose Iy to be so small that the
return time to it is greater than the ng given in Theorem 2.6. Therefore,
by that theorem, |[DF(p)| > of. If [DF(a1)| > ~ then from the Minimum
Principle, |[DF |, ;) > 7 where o/ = p3 min(y, o) with u defined in terms
of |Ip] in (4). We fix Iy to be small enough so that 4" > 1. Therefore,

M R , R
SOIFHD)| < = IF(D).
k=0 T
Suppose now that there is some u € (a1, ¢) such that [DF|(, ) <. We
will show that this must mean that u € (a1, a,) and thus we can uniformly
bound the sum of times that T lies in this region.
Suppose that (a1, as) C (a1,u). Then we have |a; 11 — a;| > |a; — a;i—1]/v
for all ¢ < s — 1. Therefore, if (a1,as) C U then

s—1 S )
‘C — a()] > Z \a¢+1 - ai’ > ’al - GO’ Z’Y_Z'
i=0 i=0

We know that |a; — ag| > 2X|c — ag|. By the definition of v we must have
s < r. Moreover, |DF |, ) > 7'

This helps us bound 224:0 |F*(T)| where F¥(T) C Iy \ I,. We suppose
that FM(T) = (ag, a;) for t < m. (See Figure 2.) Then

M
> [FH(T)| = |ay — ag| + min(2, M — 1)|ag — a1 | + - -
k=0

+min(i, M — (i — 1))|a; — ar—i| + - - - + |apr+¢ — apre—1|-
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This is bounded above by

min(é, M — (¢ — 1
rla, —aol + lax —an4| ) ( i E-1),
=0 v
The first summand is bounded by r|Ip| and the second summand is bounded
above by Clan — an+1]| for some C' > 0. So we get Zk o |[FR(T T)| < C|Io| as
required. =

The low case. We assume that we are in the same setting as above, but
with Fp central and low. This is known as a saddle node cascade. Again we
would like to bound Zk o |[FF(T )| defined as above. However, as we shall

see, we are only able to bound Zk o [FR(T T+,

LEMMA 4.2. In the low case, Zk o [FR(T T)|€ < C|Io| M.

Proof. We will apply the following result, a form of the Yoccoz lemma
(see for example [FM]).

LEMMA 4.3. Suppose that f € NF2. Then for all §,8' > 0 there exists
C > 0 such that if Iy is a nice interval such that

(1) Iy is a 0-scaled neighbourhood of I,

(2) Fy is low and central for k=0,...,m,

(3) there is some 0 < k < m with |I|/|I41] <1+,
then for 1 <k < m,

1 1 - [Ti—1 \ Ig| < C
C min(k,m — k)2 | Ip| min(k, m — k)2’

This lemma was suggested by Weixiao Shen. For the proof, see the ap-
pendix. (For comparison with other statements of the Yoccoz lemma, note
that we will prove that one consequence of our conditions for the lemma is
that we have a lower bound on |1, \ Ip+1|/|1o]-)

Suppose that Iy satisfies all the conditions of Lemma 4.3. In particular
we assume that for some fixed ¢’ > 0, we have |Ij|/|Ix+1| < 1+ ¢’ for some
0 < k < m. Then for any £ > 0,

M

YOIFHD)ME

k=0

C|I C|IL e
<Z< : ol . ol 2>
— min(k +t,m — (k+1)) min(k + 1,m — (k+ 1))

e~ L 1\
< Cll kzo<k+1_k+t> '

The sum above is bounded above for any & > 0.
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Next we suppose that the hypotheses of Lemma 4.3 do not hold. In
particular, this means |Iy|/|[Ix+1| > 1+ ¢ for k = 0,...,m. Note that |Iy| >
(14 0| | > (1 +6)2|I| > -+ > (1 +8)M|I);|. Therefore

M LM 11| i
FMT) < =S kL < 22— < Olly|.
k=0 k=0 k=0
So Lemma 4.2 is proved. =

We have shown that in both low and high cases we have EkMZO |Fk (f)|1+§
< C|Ip|**¢. We may apply the usual method to show that this means that
Zzgm/ |f”‘;‘*'ml(j:)|1+£ < C0j o maXyy <p<n, | FF(T)|. So there is some Ceasc
such that

N —Ni4+m+1

Z ’fk+ni+m+1 (T‘)|1+‘5 < Ccasco-i,m max |fk (T)|£

el Ni4+m <k<n;

as required. =

5. Exceptional case. In the last section we dealt completely with the
saddle node cascade. It is easily shown, for example by applying Lemma 5.1
below to all branches, that following a saddle node cascade we have a well
bounded case, and so the conclusions of Proposition 1.3 hold. An Ulam-
Neumann cascade, however, is not always followed by a well bounded case.
We estimate the sum for Fj in this alternative case here. Most of the sum
is dealt with by using the methods for the well bounded case, but we need
some new techniques to deal with two of the branches of Fj.

We consider the sum for F; where F;_o has a central return and F;_;
has a high non-central return. The situation here is only slightly different
from the case considered in Section 3, since we can prove that all domains
of F; are well inside I;, except possibly two. Both of these domains I have
Fl|IlJ = Fi*ﬂ[{' We denote the left-hand such interval by Il-L and the right-

hand one by IR (see Figure 3). These are the exceptional domains. If I;_;
is a X-scaled neighbourhood of I; then by Theorem 2.3 we know that I; is a
Xx-scaled neighbourhood of both IZ-L and IZR, and we may proceed as in the
well bounded case. But this will not always be so if I;_1 is at the end of a
long Ulam—Neumann cascade. So we will assume that I;_; is not a ?—scaled
neighbourhood of I;. Without loss of generality, we suppose that F;_i(c) is
a maximum for F;_q1 : [; — I;_1.

We are now ready to begin the proof of Proposition 1.5. The strategy is
as follows:

e Show there is some upper bound on B(Ii,lg) for j # L, R.
e State our main result in the proof: Proposition 5.3. We suppose that we
have some interval J C I} for j # L, R,0; F;(J),..., F™(J) C IFUIER;
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Fig. 3. The exceptional case

and F" T (J) C Iij, for 7/ # L,R,0. Then there exists some A < 1
such that B(I;,J) < AB(I;, F/"*(J)). Furthermore, "1, |FF(J)| <
B(I;, "™ (J))|I;]. We are then able to prove Proposition 1.5. In the
rest of this section we prove Proposition 5.3; essentially we need an
upper bound on Y7 |EF(J)|.

e In Lemma 5.4 we show that there exist an interval V' C I; and v > 1
such that

IDEi|(rromynwv > 7

This allows us to bound parts of the sum 7", |F¥(J)| which lie in
(IFUIR\ V.

e We next focus on V. We take first return maps to V' and use decay of
cross-ratios again to estimate sums of intervals in V' (see Lemma 5.6).
We can then complete the proof of Proposition 5.3.

We first show in the following simple lemma that we have uniform bounds
on how deep the domains of F; are in I; for all domains except IiL, IZR.

LEMMA 5.1. In the exceptional case outlined above, if j # L,0,R then I;
is a X-scaled neighbourhood of I .

In fact, a similar result also holds for the central domain by Theorem 2.3,
but this is not important for us here. This lemma proves that we can treat
the case where F;_o is central and F;_; is low and non-central as a well
bounded case.

As we shall see, the proof of this lemma is reminiscent of the cascade case
since we follow iterates of intervals along the central branch of some Fj .

Proof of Lemma 5.1. There exists some maximal i < i such that Fy_5 is
non-central. Then by Theorem 2.3, Iy is a Y-scaled neighbourhood of ;.



56 M. Todd

For j # L, R we will find F;|,; as a composition of some branches of Fy/ in
order to find some extensions. Fi/\[i,ﬂ maps Iij out of I; along the cascade,
through the sets I;_1\ I;, I,_2\ I;_1 and so on, until it maps to some interval
in I;;11 \ Iy42. Then this interval is mapped into some Iij, . This then maps

back into Iy ;1. The process may be repeated many times before I Z] is finally
mapped back to I;.
So we check that F-|I]- is a composition of maps as follows. Let j1 # 0 sat-

isfy (FZ g ]1,+1)(I‘7) - I"1 Let k1 =1 —1'. IfF\[J = (Fy \In)( ]1,+1)]ﬂ
then we stop here; we say r = 1. Otherwise, let ko > 0 be minimal such
that F'“'H'H“2 (I7) C Iy \ Iy41. Let jo # 0 be such that Fk1+1+k2(1]) IJ2
If F; ]Ig = Fk1+1+k2+1|p then we stop here; we say r = 2. Otherwise, we

continue this process until we finally return to I; and obtain k..
Suppose that » = 1. That is,

(i—i')+1
Fi|1?:Fi/ |].j'
K2 k2

Let U denote Fi(,i_i/)(fg) and U’ denote Il.j,l. Then Fy(U) = I; and Fy(U’)

. We know that Iy is a X-scaled neighbourhood of I;. So if we can
(i )] v)(U') C I;, we know
by Theorem 2.4(b) that I; is a Y-scaled nelghbourhood of IZ.] (since all the
intervals we are concerned with are disjoint). It is easy to see that for this
branch, (Fl./_(z_Z )|12_,+1)(U’) C I; by the structure of the saddle node cascade
since we have (Fj, |7, )(U) C Lirga \ iy, (Fy2[1,, )(U') € Liga \ Ty
and so on. So the lemma is proved when r = 1.

In the more general case, where r > 1 and

show that, taking the appropriate branch, (F;

2l (ki+1)
Fi|lj:Fi/ =t |Ij,

we may apply the same idea, again using the disjointness of the domains of
the first return map, to prove that I; is a ¥-scaled neighbourhood of IJ

If necessary we adjust A so that )\(X) <A<

By the above, if I; is a Y-scaled neighbourhood of I,L»L and IZ-R then we can
proceed with the method in the well bounded case to prove Proposition 1.5.
But this is not generally the case. So for our work here, we may assume that
I; is not a -scaled neighbourhood of IL or IZR, and that some iterate of J
enters IiL U IZ-R.

REMARK 5.2. In the previous sections we had uniform upper bounds on
the cross-ratio B(I;, I]) for all j and so we obtained estimates on the decay
of cross-ratios directly. This was used to estimate the sums of intervals. The
problem we often encounter in this section is that sometimes we only get
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good estimates on how cross-ratios decay and sometimes we only get good
estimates for the decay of the sizes of intervals. But these estimates are
difficult to marry together directly, so we will have to split up such cases.
The process is first described in the proof of Proposition 1.5 and again in the
proof of Lemma 5.6. (As we will see later, this splitting scheme deals with
the cases where we enter IiL U IZR from I;; V from Il-L U IZ-R; and A from V)

The principal result in this section is the following proposition.

PROPOSITION 5.3. If J, F;(J),...,F/"(J) C IF U I} then

(1) there exists some 0 < m < m such that Y}, |[EF()| < C(|[F™(J)|+
[E ()]s .

(2) for some A < 1 independent of i, if FimH(J) cI/,j#L,0,R, then
(a) Yopio |EF ()| < CB(L, F"H(J ))|I|; )
(b) lettmg J' be the element of F; '(J) inside some interval I’ for

j' # 1,0, R, we have B(IZ,J’) < AB(I;, F""2(J").

See Figure 4 for a schematic representation of the situation of this propo-
sition. If necessary we will adjust the A < 1 we use throughout this paper so
that we may assume that the proposition above holds for that A.

I;
N
I A A 1
N A
M — 1 e T 7!
Fo g F e T F'O)

Fig. 4. An illustration of Proposition 5.3

Proof of Proposition 1.5 assuming Proposition 5.3. As in the proof in the
well bounded case, we first show that we are principally concerned with the
intervals inside I;. Again, the proof of this fact is a slightly modified version
of the proof in the well bounded case.

Let nj41 < mp < --- < mj, = n; be all the integers between n;;1 and
n; such that f™i(T) C I; \ Iiy1 for j =1,...,5; — 1 and let my = n;41. Let
F; : U, U} — I, be the first entry map to I;. As before, we will decompose

the sum ) 1 nis1tl |f{(T)| as ]2_1 Zm]+1 M| fmatk (T
Suppose that f™+(T) c Ul-] for some Ui]. Suppose further that FZ]UlJ

= f%. Then there exists an extension to Vij D Uij so that f% : V;j — Ty
is a diffeomorphism, where 7’ is defined in the proof of Lemma 5.1. Then we
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have distortion bounds as usual:

[fR(fmatH(D)) [fma (D)
VAL ° VI o)
o - T
Thus,
S ey < eges D mj,?fm
k=1
Therefore,
n; CJi
> !fi(T)|<C(X)ﬁZ|fmi(T)
J=nit1+1 =1

Hence we are principally interested in the sum Zji |f™i (T )], that is,
”_1 o [FHT )\ where T'= f™(T). In fact, we focus on bounding o 2|FHT 7).
We split T7 F,(T), .. ,FZL?’_2(T) into two groups: one for those intervals
outside IZ-L U I,L»R and one for those inside IZ-L U IZ-R. Suppose that J is an
interval such that for some k > 0, we have FF(J) C Iij for some j # L,0, R;
then FFHL(J), EF2(J),...,FF(J) C IF U I} for some k' > k; and finally
ﬂkurl(J) C Iij, for some j' # L,0,R. From the last part of Proposition 5.3
we have

B(I;, FF(J)) < AB(I;, FF ().

Therefore, we can bound the sums of intervals which lie in the intervals
I for all j # L,R in a similar manner to that for the well bounded case,
independently of those intervals inside IiL U IiR, as follows.

Given k£ > 0 such that Fk(f) C Ij for some j # L,0,R we wish to

estimate ]Fk( T)|. Let 0 < k < j; — 2 be maximal such that Fk(T) C Ijl
for some ] # L,R. Then we apply Proposition 5.3 repeatedly to obtaln

B(I;, EF(T T)) < )\ZB(IZ,F]“( T)) for some [ > 0. The [ counts the number of
times that Fk+r( ) lies outside I* U IR for 0 < r < k. Then
||

[FA(T)| < —
1+ 2/NB(I;, FF(T))

We have two cases. In the first case k = Ji — 2. Then

B, 52T < B, ) O] gy @
|17} 177
<ARCRIE D)
Therefore, |F¥(T)| < C/\I\Fj’_l( T)|. This suffices to prove an upper bound
of the form C’\F‘“_l( T)| for the Fj-iterates of T outside IFU IR in this case.
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In the second case % < ji — 2. We have
k(T MDD  AIFFT
B(IiaFik(T))<B(Ii,Iij)’ L] AF(T))

5/

|17} 177

(2

)

since ]Fk( T)| < C(x )|Fk+1( T)| |IJ |/|I;]. Therefore, in this case we have a

bound of the form C’|Fk+1( )| for the iterates of T outside I U I
Finally, we use the above information about sizes of intervals outside
IiL U IZR to bound the sums of intervals inside IiL U IiR as well. In the first

case above, we have a bound of the form C’|Fji*1(/\)] for the iterates of 7" in
IFUIR. In the second case above, we have a bound of the form C’(|Fk( T)|+
\E"(T )| + |Fjl_1( T)|) for the iterates of T in I U I}.

So in the worst case we have the bound

G (L0, P2 A

+ +
|| | ;] | ;]

for the sum " S |fE(T)|, as required. u

5.1. Proof of Proposition 5.3. Denote the smallest interval containing
both IZ-L and IZ»R by I!. Recall that we are assuming that the critical point
is a maximum for Fi—l’[;- (Recall that Fi’[il_,u[i]?{ = Fi_l‘IZ_LU[iR.) This means
that there is some fixed point p of F; in IZ-R. Clearly, there also exists a point
p' € IT such that F;(p') = p. Let V := (p/, p).

We outline the proof of Proposition 5.3 as follows. We suppose that some
iterate of J enters V. Let 0 < s1 < s9 < s3 be defined as follows: Flk(!]) C
I\Vfor 1 <k<sp; FFUPN(T) c VN (IFUIR); and F2R(J) c I\ V for
1 <k < 83— s9. Any sum of the form > ;° |FF(J)| can be broken up into
blocks consisting of such sums.

The scheme for proving Proposition 5.3 is to first show that ]DF,-\];\V
is uniformly large. This is proved in Lemma 5.4 and helps to deal with the
sums > ;L [FF(J)| and > 725 |F£27K(.J)|. Then we have to prove that we
have bounds on the sums of 1ntervals which return to V. This, proved in
Lemma 5.6, helps to deal with Y5271 |FS1HF( 7).

Note that the proof of Proposmon 5.3 is the only time in this paper that
we use the symmetry of the map (and it is only a simplifying assumption).

LEMMA 5.4. There exists some v > 1 independent of i such that
|DFi|wv > -

Proof. We start by observing as in the last section that |DFj(p)| > oy.
By symmetry, |DF;(p’)| > oy as well. Observe that IZ-L also contains a fixed
point g of F;. We have |DF;(q)| > oy, too. Furthermore, there exists a point
q' € IR such that F;(¢’) = q. From symmetry, |DF;(¢')| > of.



60 M. Todd

We can estimate |DF}|(p7q/) using the minimum principle as follows. We
use our 4 given in (4) in place of yiy. Then |[DF|(, ) > pPop. When Ij is
small enough, p is close to 1. Thus we may ensure that our intervals are
so small that |DF|, 4y > o for some ¢ > 1. (To fix precisely how small
our intervals must be, we can, for example, choose ¢ = \/@) By symmetry,
[DEi|(g,pr) > o

We deal with the remaining part of the proof of the lemma by showing
that F; has large derivative when z € I} and either x < g or z > ¢'. We use
the following consequence of Theorem 2.3 and the minimum principle.

CLAIM. There erzists some v = ~'(x) > 1 such that, writing I} =
(I7,1%) and I} = (r=,r "), if Iy is sufficiently small and B(1;, 1), B(I;, I})
are sufficiently large then

|DFil(1- q), IDFil (g 5+) > v

Proof. Let 6 := 4(|Iy|/|Iy+1] — 1) > X where 7 is defined in the proof
of Lemma 5.1. We suppose that |DFi’|IZ-/+1\I¢ < 1+ 26. Then we prove by
induction that | yk|/|Iir4k+1] = 14260 for 0 < k < i —¢'. By construction
this is true for £k = 0. We assume that it is true for some 0 < k < ¢ —1¢ — 1.
Then

Iipope|  Higwral + (supg, g IDEy )™ g \ L |
+ht v
(it k2| — | Lty k12|

>4 20 itrn|
14260 L ko]

Then it is easy to see that |l xy1|/|Lirsks2| > 1+ 26 as required.
In particular, we have proved that |DFE} ’11-/+1\Ii < 14260 implies that I; is
a f-scaled neighbourhood of both I} and I}, a contradiction (since g > i\)

So there must exist some x € I; 41\ I; such that |[DF;(x)| > 1420 > 1+ 2¥.
Therefore, by Theorem 2.5 and (1) we have

|DFy(3yp) > 1 min(1 + 2%, 0y).

Choosing |Ip| small we have some 7 > 1 such that [DF, 4 > 7. In
particular [DF;|- oy > /. Similarly we can show |[DFj|y,+) >/ =

Letting v := min(p,~’) proves the lemma. u

By the above, we will be able to estimate the sizes of iterates of T inside
(IF UIR)\ V as a geometric sum.

We will need some real bounds for V. The following lemma, which con-
trasts with Lemma 5.4, will later be used to obtain these bounds.
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LEMMA 5.5. There ezists some C = C(x, |I!|) > 0, where C(x, |I!|) tends
to some constant C(x) as |I!| — 0, such that

’DFi’IiLUIiR <C.

Proof. We work with Fy : I;; 1 — I where ¢’ is defined in the proof of
Lemma 5.1. There exists some m > 1 such that Fi/|[i/+1 = fmhi,ﬂ. We can
decompose this map into two maps so that F;y = L o g where g = f|U¢, i.e.
g(x) = f(c) = |¢(2)[*, and L = f™=1: f(Lyy1) — Iy

By Theorems 2.4(a) and 2.3(a) we have DLE:? < C(x) for z,y € f(Lit1)-
So

I; I;
oy —

IDL@) < CO) 7 37 = [¢(Tix11/2)°]

for x € f(li41). Also
[Dg(x)| = a|Dé ()| |¢(x)* | < o sup |Dg(@)|é(|Li+1l/2)|*".

IEI,L-/+1
For U C Uy a small neighbourhood of ¢, let
N D
Dist(¢,U) := sup | d)(z)]
S Do)
Observe that as I/ becomes smaller, Dist(¢, I/) tends to 1. For z € IZ»L U IZ»R,
sup,cr,,, |[Do(x)] |1i] |43
(Ll | Ti1]

Since we have assumed that |I;|/|;+1| is bounded below, there is some con-
stant C' > 0 such that for all x € I/,

|DF;(z)| < CC(x) Dist(¢, I}).
Letting C(x, |I}]) := CC(x) Dist(¢, I) we have proved the lemma. m
We denote the first return map to V' by ﬁl : Uj VJ — V. We first wish

to find some control on the sizes of the domains of ﬁ Let my,; be such that

|DFi(x)] < aC(x)

2aC () Dist(¢, I})

F, lvi = m‘” |y7i- The following lemma is key to proving Proposition 5.3.

LEMMA 5.6. If F*(J),...,F™(J) C V N (IF UIR) are all the iterates
of J up to ly, which lie in V N (IFUIR), and all intermediate iterates FF(J)
fork=0,1,...,1,, liein IZ-LUI,L»R, then

lm

Y IEHD) < CIE™(T)].

k=0
Furthermore, there exists A\y < 1 such that |J| < C’)\l‘}"_m]Film(J)].
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Proof. We split the sum as follows:

m—11li+1-;

lm
STIEEI=3 3 1T
k=0

=0 k=1

where we let lp = —1. We know from Lemma 5.4 that |[DFj|;ny > 7 so

Li+1=1; lj+1—=1;—1 lir1
Ltk L ok _ FTT ()
Z [ (D] < [F7()] Z Y k<12_—7,1-
k=1 k=0

Hence,

Im m
S < T I
k=0 j=0

So we only need to bound the sum of returns to V.

Denote the rightmost element of | ; V3 by V! and the leftmost element
by V2 (observe that Fj|y1 = F2|y1 and Fly2 = F?|y2). We get an estimate
on how deep each V7 is inside V for j > 2 because V! and V? have some
definite size compared to |V, since by Lemma 5.5 we know that [V1],|V?]
> |V|/C?. Therefore, there exists some &8¢ depending only on f such that V
is a d)-scaled neighbourhood of V7 for all j > 2. So by Lemma 3.2, there
exists some A\, < 1 depending on d; such that for any interval J' C Vi,
B(V,J) < Xi,B(V7,J') for j > 2 (in fact this is also shown in the Claim
below). As usual we can use Lemma 3.3 to conclude that there exists some
Ay < 1 such that B(V,J') < AyB(V, Fy(J)). If we remain away from V'
and V2, this fact and the usual argument would be sufficient to obtain the
required bound on sums.

We must deal with the case where iterates enter V1, V2. The idea is to
split the situation into the case where intervals land in a region where | DF}|
is large and the case when the intervals land in a region where we do not
have good estimates on |DF}|.

We first focus on V2, We know from Theorem 2.6 that | DF;(p')| > of and

so |DF,(p')| > Q?. There must also exist some fixed point r of F; in V2 with
|DF;(r)| > of. Letting Ay := (p/,r) and applying the Minimum Principle as
before, we obtain \Dﬁ’i\@ > o for some g > 1. Let 7/ be the point in V1 such
that [5(r') = 7. Then adjusting ¢ > 1 if necessary, | DF;|(, ) > 0. We define
Ay to be the interval in V! which has Fj(A;) = V' \ V2. Clearly A, C (', p),
so |DF;|x, > o. For convenience later, we let A := A; U As.

We are now ready to deal with bounding ZZ"”:_Ol |Ek(J)\ Observe that

~m—1

F;" " (J) must be contained in some V7. Suppose first that j > 2; we deal
with the case where j = 1 or 2 later. Suppose further that J C V' and
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j' > 2; here the other case is similar. We will again split up the sum. Let

N} = 0. Let N; be minimal such that I?Z-NI(J) NA=0and ﬁiNlJrl(J) C A
Let N{ > N; be minimal such that F\lNl(J) C A and F;NlH(J) NA=0.1In

this way we obtain Nj < Ny < N] <--- < Ny_1 < Nj,_; so that

m—1 M—1 Nij+1—Nj Nj1=Nj+
FE =3 (X B Y IR W))
k=0 j=0 k=1 k=1
NJVI—N],Wfl ,
D D Ol
k=1

where Np; = m — 1. Observe that the first sum in the brackets concerns
intervals which land inside A and the second sum in the brackets concerns
intervals in V' \ A. Then

NJ,'+1_ Jj+1 Nj+1_NJ,'+1_1

SNj1+k SN K C sV
Yo ETTTDI<IE T Y, et < 1 15T ()
k=1 k=0 9
for some C. NN N
Now we consider >, 71" 7 |F, i (J)|. In fact we learn most from es-

o Ny—N ~N' 4k
timating the sum MM MR necessary we make Ay < 1
g k=1 7 y

smaller so that for J C VJ\A; for j = 1,2 we have B(V,J) < Ay B(V, F;(J)).
Then for 1 <k < Np, — Nj,;_,

1/\4—1+k NM—N]/\/I—I_k

BV, E M) < Ay B(V,EM ().
Recalling that M =m — 1 we get B(V, F™"~'(.J)) < B(V, VI)|E™~Y(J)|/|V7].
Letting By := max{sup,~, B(V,V7), B(V,VI\A;), B(V,V*\A;)}, we obtain
Vi
2(Vi|
NM_N]/\/I—I_

k Srm—
Av By|E"H(J)]
Letting By := By /(By + 2) we have

~N" k
BV ) <

1+

~N! otk 5 \Nu—Ny_ 4k V] s
E ) < By et S )
Hence
N N Ni+k
SN+ Sm—
doOIE T < CIEPTHI)
k=1

We now estimate the other sums concerning intervals outside A as follows.
Let ' := exp{—a'(Io)|Io|/(1 — 07')}. Suppose that E»NM_Z(J) C VJ. Then



64 M. Todd

~Npr_o—Nj,_—1

taking the appropriate branch, we have F, (V) C V7 and

BV, ENv-2(1y) < X, B(EN M2 M1l (yy Nz )y

7

>\/V Ny >‘/V Ny 1+l
7 B(F; V), ;M) < Y, - B(V, F (J))-

Shrinking Iy if necessary, as usual, so that \{,/up’ =: Ay < 1, we obtain

~N* 1
BV, FN=2()) < Ay B(V, E; M= ().
Clearly then we can proceed in bounding the sum, applylng the usual
method of decaying cross-ratios. So we can bound ) ;" |Fk( )| above by
C]Fim L(7)| for this case.

To complete this case, we will bound |F;""*(.J)| in terms of |F/"(.J)|.
We do this by constructing an extension. Let the left-hand and right-hand
members of F;"(p') be denoted by b and b’ respectively. Denote (b, ¥') by V.
By Lemma 5.5, V' is a dy-scaled neighbourhood of V' where dy depends
only on f.

CLAIM. For all domaing VI, j > 2, there exists an extension to some in-
terval U7 D VI such that U? C V' and F-mv’j :U? — V' is a diffeomorphism.

Proof. For j > 2 the return maps are a composmon of F|y followed by
Fi| IR and then some number of iterates of F}] I So F ! must pull V’ back
into I". Observe that this element of F; *(V") is below p’ (and clearly away
from Fj(c)). Any further pullbacks in I* remain below p’ as well. Therefore
when some element Fi_k(V’) is finally pulled back into IiR, it is mapped above

p and remains away from Fj(c). Therefore we have elements of F, *~2(V’)
mapping inside V which do not contain c. =

By the above Claim and Theorem 2.4 we have some C' > 0 depending
only on f such that if j > 2, then
L v V]
C Vil Vi
(Recall that we are assuming that F;" (V)N A = ().) Therefore,
Nu—=Ny

ANtk ~m
Yo ETTO) < CIEMI))-

k=1

< |DFj|y; < C -~

There remains a further case to consider. Above we assumed F\lm_l(J )
C V7 where j > 2. But if j € {1,2} we have two cases. We first note that
if F'™(J) N {r,r’} = 0 then the intervals we are concerned with are either
completely inside Ag, A; or completely inside V' \ (A2 U A;). Then we may
proceed as above. But if F¥(.J) contains r or 7/ then we split F¥(.J) into two
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intervals, with this periodic point at their intersection. We may then apply
the procedure above to estimate the size of each interval. We need only apply
this splitting argument once since if we intersect a periodic point of ﬁz once,
we must stay there for all time under iteration by ﬁz Thus we need only
alter our constants by a factor of 2 to deal with this case. Note that we only
—Num |F;NM+]€(J)

. N1
have one sum where this problem could occur: ), | where

N}, = m. This is because r is a fixed point for F;.

Clearly, we can use the cross-ratio argument as usual to obtain the esti-
mate |F/N(J)| < ATIC|E ()], so |J| < APTIO|EM™ (). =

We may adjust our usual A so that A\yy < A < 1.

Proof of Proposition 5.3. Suppose first that Fim'H(J) C I} for j # L, R.
Then, in particular, we can be sure that F/"(.J) does not contain p or p'.
Then we also know that none of F¥(J) contain p or p/ for 0 < k < m — 1.
This means that we can be sure that all the intervals we consider are either
contained in V or disjoint from V.

Recall that 0 < s1 < so < s3 = m are defined as follows (we suppose that
some iterate of J enters V; otherwise the proof is simpler): FF(J) C I\ V
for 1 < k < sy; EPTNT) ¢ Vn(IFUIR); and FP2(J) € VN (IFUTRY),
E2Ry \ V for 1 <k < s3— so.

Then if s3 > s9,

83—S82 s3—s2—1

Z [FER )] < B () YR < CIEP (),

by Lemma 5.4.
From Lemma 5.6,

So—S1

Z [FSTHI)] < CIF2 ()]

and |FS ()] < C]Ff?(J)\.
Also 5
Z (D <y DD A7F < ClF2(I).
k= k=0
Therefore,

ZIF’“ )| < CIE= ()]

If s3 > so then

53

AR < CUES (D] + |[F2 ().
k=0
Therefore, the first part of the proposition is proved.
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Now if F"(J) C Iij for j # L, R, 0 then recalling that s3 = m we will
obtain an estimate for |[F(J)| in terms of B(I;, F;"t(.J)):
, B(I;, F™(J
B(]Z,.FZSQ(J)) < B(lpi—53+82 (Iz)aFZSZ(J)) < M
I
_ BULE ()
I '
We are allowed to use p here since all intermediate intervals must be disjoint
(otherwise we would have to pass through V' again). Therefore

F>2(J)| <
‘ 7 ( )| 1 + 2#2/B(Il,F;m+1(J))

Similarly we can show that |F/™(J)| < C|I;|B(I;, F;"**(.J)). Therefore

< C|L|B(IL;, E™ ().

53
S IFF()] < CILIB(L, F*TH(T)) < CulL|
k=0

for some Cy > 0.

We now prove the final part of the proposition. Clearly for any run
of intervals Fj(J),...,FF(J) C IF U IR, considering the branch of Fi_k
which follows the iterates of J, we have B(FF, F, *(I;),J) > u” where
p" = exp{—C10’(|Io|)|To|}. We consider the branch of F,™ % which fol-
lows the backward orbit of F;"*1(.J). Clearly, F; "™ 2(I;) is strictly inside Iij .
Thus,

/

B(I;,J") < NB(I},.J') < NB(F; " 2(I;), J') < o B(F (L), F ()
)\I

"

< B(I;, F"2(.J')).
For |Iy| small enough, we can alter the usual X slightly so that \'/u”p < X
and still ensure that A < 1. Thus, B(I;, J') < AB(I;, F/"*2(J")) as required.
When we do not escape [ ZL ul Z-R then we may have some intersection with
p or p'. In this case, we split our interval in two and estimate the size of each
piece as above. We need only apply this idea once, so we can change our
constants to cater for this case too. In this case, part (2) of the proposition
does not occur. =

6. Proof of the main theorem in the non-infinitely renormalis-
able case. We recall that B(f",T,J) > exp{—C Y 7=5 |f*(T)|"+"} when
f € C**1. We will find a bound on the sum Y7=0 | f#(T)|"*" by using the
main propositions above and also finding some decay property for the size of
the domains of F; for some values of i. We assume that f*(7) N3, # () only
within a cascade case (i.e. when there exist i, m such that F; is in a cascade
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case and f*(T) C I; \ I;1.m). It is easy to see how to extend the proof when
this is not true.

Let F; : Uj U — I, be the first entry map to I; (we include the branches
of the first return map in this case too). For i < j and an interval V, we
define S(i, §, V) to be the maximum of | f*(V)|, |f2(V)|,...,|f7(V)]. We
will consider S(nit1,n;,T). Let n(i, j) be such that Fj ; = f"(i’j)|Uj. Now

let Uis(i) be the interval for which S(O,n(i,j),Uij) is maximal. Let n(i) =
n(i, s(i)). Clearly,

S(niv1,ni, T) < S(0,7(i), UY).
We would like to show that for certain ¢, this quantity decays with 7 in a
controlled way.

We start by assuming that F;_; is in a well bounded case. We have
two subcases. Firstly, suppose that Uis(l)
bounded case, we have ]Uis(l)| < |Ii=1]/(1 + 2x). Since I; is a domain of the
first return map to I, we have

S(0,7(i — 1), U=y

C I;. Then since F;_q is in a well

’ i—1

1+ 2x

W) <

Now assume that U;(i) N I; = (. Then there exists some extension V; D
U;(i) such that f”(s(i)) : Vi — I;_1 is a diffeomorphism. We will show that
Uis(i) is uniformly smaller than V;. By (1) we know that B(V},Uis(i)) <
B(I;—1,1;)/u for p as in (4). Thus, by Lemma 3.1, |Uis(i)| <|\Vil/(1+2u/A(x)).
Since V; is a first return domain to I;_; we have
$(0,7( - 1), 0;7)

1+2u/A(x)
Let v :=max(1/(1 + 2x),1/(1 4+ 2u/A(x))). Clearly v < 1. So

S(0,7(), USD) < 480,71 — 1), UZ5Y),

We let Cyy = max(Cyp, Cease; 3Cex). Note that by disjointness, all
iy 0im < 1. 1f f € NF?T7 and F;_; is well bounded, we have

B(fni—n¢+17fm+1+1(T)7 fni+1+1(J))

| <

(2

T —Ni41

> exp{~C(S(nia,mi, T))" Y |fFm0 (1))}

k=1
> exp{—C(5(0, (i), U'))"Con}
> exp{—C(¥5(0,a(i — 1), U V)" Can}.
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If we are not in the infinite cascade case then the sums for Fj, Fi 1, ...
can be broken into blocks consisting of a cascade; possibly followed by an
exceptional case; followed by one or more well bounded cases. So suppose
that F; is well bounded, F;, Fi41,..., Fiym—1 have central returns, Fj;,, has
a non-central return and Fji,,+1 is an exceptional case. So note that, in
particular, Fj,,4+2 must be well bounded. Then

S(0, (i +m +3), UL ) < 480, + m +2), UL

¥S(0,7(i + 1), U ) Usy,

Therefore, we have

[y

n )|
B(f™,T,J) >exp{ Ckzo\ ]+77}

> exp{—CC’au(S(O, (0 8(0 )" Z ’yk"}
k=0

/
> eXp{—CCau 7(0- (’IOD) }
1—Am
Hence it is easy to see that for any 0 < K < 1, if Iy is the central domain
of a first return map to some I_;, and Iy is sufficiently small and F_; is
non-central, then we may bound B(f",T,J) below by K.

Note that we can always start with a well bounded case when we do not
have an infinite cascade. We simply induce on a nice interval finitely many
times until we obtain a non-central return and thus obtain a suitable 1_;.
We consider the infinite cascade case in the next section.

The second part of Theorem 1.2, concerning A(f™, T, J), is proved in the
same way.

3

7. Infinite cascade case. Here we consider the case where we have
some [y such that F; are central for ¢ = 0,1,.... In this case we will find
that [I;41|/|;| gets very close to 1. See Figure 5 for an example of such a
map. In particular, I; will not shrink down to a point (the critical point ¢)
as 1 increases so we cannot use the method above to bound sums of intervals
which land very close to c. The principal tool here is an extension given by a
result of [K2]. We will not supply all the details of our proof of Theorem 1.2
in this case since the techniques are mostly the same as those applied in the
previous sections.

We start by letting Iy be any nice interval about ¢. We assume that we
have some infinite cascade. This means that for a nice interval Iy > ¢, F; is
central (and high) for all ¢, where F; is defined in the usual way. The main
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i+1 ]ﬁ} IA_7
Fig. 5. An infinite cascade

idea here is that we can still find good bounds on some interval Ipo and
then apply the methods of Section 4 to it. Then we need to find another
interval ;¢ around c which is smaller than all Ip;, also has good bounds
and is uniformly smaller than Ipo. In such a way, we obtain a sequence of
intervals [; o which can each be treated as in the high cascade case above,
and which shrink uniformly to the critical point. Clearly F; ; will always be
central and high for all ¢, > 0.

PROPOSITION 7.1. For f € NF? and € > 0 there exists some Cipt > 0
such that for any small Io g deﬁned as above, T' C Iy implies

Z|fk )" < Cin.

Clearly this completes the proof of Theorem 1.2 in this case.

Proof. We will prove this with a series of lemmas.

For all 7 the central branch of F; has two fixed points, gg and pg to the left
and right of ¢ respectively (as usual, we assume that F;(c) is a maximum for
Fi|1,.,). We let gj be the point in I;;1 not equal to go which maps by F; to qo.
We define pj, similarly. We define Iy o to be (p, po). Let Fyo : Uj Ig,o —Ipp
be the first return map to Ipo (where I(())’O is the central domain). We have
the following lemma.

LEMMA 7.2. There exists some X > 0 dependmg only on f such that Iy
s a X-scaled neighbourhood of every domain IO o Which has 8[8 ol Iy = 0.

Proof. Clearly, I; tends to (qo,qp). So we denote (qo, qy) by Iso. We will
first show that I, is uniformly larger than I o, and then show that all except
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two non-central domains of the first entry map to Iy have an extension to
I, and show what this means for I&O. These two domains are the ones with
either py or p|, in the closure.

In a similar manner to the exceptional case, we will find an upper bound
for |DF;|z,,,. This will allow us to get good bounds for the first return map
to 1070.

For large i, the ratio I; has |I;11|/|I;] close to 1. The following lemma,

an adaptation of Lemma 7.2 of [K2|, allows us to bound |DFj|y, .

LEMMA 7.3. If f € NF? then there exist constants 0 < 75 < 1 and 73 > 0
with the following property. If T' is any sufficiently small nice interval around
the critical point, Rp is the first entry map to T and its central domain J
is sufficiently large, i.e. |J|/|T| > T2, then there is an interval W which is a
T3-scaled neighbourhood of T such that if ¢ € Rp(J) then the range of any
branch of Ry :' V — T can be extended to W provided that V is not J.

This lemma is only needed as a C3 result in [K2], but it easily extends
to our C? case.

It is straightforward to see that the above lemma is sufficient to prove
a version of Lemma 5.5 in our case. That is, for large 4, there exists some
C" such that |DF;|1,., < C'. This implies that there exists some 0 < 6 < 1
depending only on f such that |lpo| < 0|Is| and, equivalently, some § > 0
such that I, is a -scaled neighbourhood of I .

Now, for the moment we let Fpo also denote the first entry map and
U F I&O also include the first entry domains. We will show that many of the
branches have an extension to a uniformly larger domain. Suppose that there
exists a domain I&O with F,U N I&O = () such that Fy : I&D — Ip,o does not

have an extension to I,. That is, supposing F[)’0|Ij = f”( there is
0,0

My

0,0
no interval V' D I&O such that f79) : V — I is a diffeomorphism. Let
0 < k < n(j) — 1 be maximal such that fU)=* . fk(Igﬁo) — 1o, has no
extension to /. Clearly, if Iy is small, f : f”(j)_l(lgvo) — Io0 always has
an extension, so k < n(j)—1. Then there exists some interval W D fk“(I&O)
such that f(@)—k=1. W — I is a diffeomorphism and the element W’ of
f7H(V) containing f*(I} ;) contains c.

Since I, is a nice interval, W’ C I,. We also know that fk(lg’o) C
Iso\1p . Therefore W' contains either py or pj. But then either frO)=k=1(pg)
or frU)=F=1(plY is contained in I, \ Ip o, which is not possible.

Consider 13,0 for some j # 0 where I&O C Ipp is a domain of the first
return map. We will show that this domain is uniformly deep inside I .
There exists some V' D f(I87D), where f79) : V — I is a diffecomorphism



Distortion bounds for C*™ wunimodal maps 71

and V is a d-scaled neighbourhood of f([é’o). Let V' be the maximal interval
around I&O such that f(V’) = V. We show that V' C Iyo. Let V(f(c))
denote the maximal interval around f(c) which pulls back by f~! to Ip. If
V is not contained in V'(f(c)) then either py or pj, is contained in V. Thus,
™9 (pg) or f”(j)(pf)) lies in I \ 10,0, a contradiction. So V' C Iy and Ipp
is a ¢’-scaled neighbourhood of I&O where §' = min(g, 1/2). The case of the
central branch follows in the usual manner. =

So we are in a type of high cascade case for Fjo. Note that the branches
with pp or p{, in their closure can be dealt with in the same way as the
domains V1, V2 were dealt with in the exceptional case.

We may assume that Fj o has an infinite cascade and is high as well. Let
Fpy,1 be the first return map to I and so on, so we obtain Iy;. We sum for
Foo,Fo1,... as in the high cascade case. We let q1,q],p1,p} be defined as
above for the fixed points of Fyolz,,. We let Iy denote (qi,q;). We may
apply the same ideas as above to find some new interval I; o := (p1, p}) which
has |11 9| < 8]1o,00|- We may define I; j for i > 2 and 0 < j < oo in a similar
way.

Let fNi(T) be the last iterate of 7' which lies inside I; . Let N/ be the
maximal integer N; > N/ > N;;1 such that sz((T) is not in ;o \ I; oo. Then
these arguments prove the following lemma.

LEMMA 7.4. There exists some C' > 0 such that
Ni—N!
> 1N < 05,
k=1
where G; 1s defined as follows. Let 0; := SUPyedomF, , Z?Si) |7 (V)| (and
n(V) is defined as k where Fioly = f*). Let Vc Iio \ L1 be an interval
such that f*(V) is one of the connected components of Iio\ 11 and (V)

~

is disjoint from both ;g\ I;1 and L1109 for 0 < j < n(V). Then o; is the

supremum of all such sums Z?S;) |fj(‘7)\ and o;.

Now we consider ZgiINi“ | fE+Nier(T)|. If none of these intervals
contain p;,q; then we are in I; o \ Iiy1,0. By the Minimum Principle,
|DF¢]11,700\11+1’0 is uniformly greater than 1. So we can easily bound our sum.
If none of our intervals contains p;, but some f**Ve+1(T) contains g, qh we

can split fF+Nit1(T) at qg or q( into two intervals. It is easy to see that
there is some C' > 0 such that Z]kV;IN”I |fHHNe (T < Oy IF po, pfy is
contained in some |f¥*tYi+1(T)| then we must split the interval at py or pj.
Note that we may have to split the interval | f¥+Vi+1(T)| at arbitrarily many
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Dis q; or p;, q;. Therefore,

N!—Nj1 i
Z ‘fk+Ni+l(T)’1+§ < CZ(k —1)S(Ng,n(k), T)gak
k=1 k=i

where S and 7 are defined analogously to Section 6. As before, there is some
constant 0 < 6’ < 1, here depending on 6 rather than -, such that 6’ governs
the decay of S(N;,n(i),T). Hence, we can put this estimate together with
Lemma 7.4 to get

N;—N;11
Z |fk+Ni+1( )|1+£ < CS NZ,TL Zkelk,f
k=1
Similarly to what was done before, we can conclude that there exists some
Cins > 0 such that

DT < Ciat. m

k=0

A. Proof of the Yoccoz lemma. We recall the lemma.

LEMMA 4.3. Suppose that f € NF2. Then for all 6,8’ > 0 there exists
C > 0 such that if Iy is a nice interval such that

(1) Iy is a 0-scaled neighbourhood of I,
(2) F; is low and central for i =0,...,m,
(3) there is some 0 < i < m with |L;|/|Liy1| <1+,
then for 1 <k < m,
1 1 [ Lipr—1 \ Lits| C
C min(k,m — k)2 | I min(k,m — k)2’
For similar statements see [FM]| and [Sh2].

Proof. We first point out the following claim.

CLAIM 1. For f as in the lemma, there exists some C(f,0,0") > 0 such
that

Inm
Hml  c.6.8).
| o]

This is proved in Section 5 of [Sh2|. One consequence of this is that
|1y \ Im+1|/|1o| is uniformly bounded below. This is one of the assumptions
in the statement of the Yoccoz lemma in [FM].

Our proof now involves using a result of [ST|, the bound § and the small
size of Iy, to find a nearby map in the Epstein class. The structure of such
maps, particularly at parabolic fixed points, along with some new coordi-
nates, give us estimates for |I;1 51 \ Lirk|/|Li]-
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We suppose that s > 0 is such that Fy|;, = f*|;,- We observe that f*~!
has uniformly bounded distortion depending on §. We will denote Fyl|r, by F'.
Letting 9 : [am,a1] — [0, 1] be an affine diffeomorphism we will work with
the map ¢ o Foty~!. For the rest of the appendix we will abuse the notation
and denote this map by F' too.

Previously we assumed that F'|;, had a maximum at c. It will be con-
venient to suppose now for this section that ¢ is a minimum for F'|7,. Also
we let I; = (a},a;). So in particular, F'(a;+1) = a;. We firstly define a point
which allows us to partition [a,,,a1] in another way.

Let xp € [am,a1] be so that |F(zg) — zo| = ming,, <z<a, |F(z) — |-
It is easy to show that DF(xzp) = 1. We suppose throughout that
|F(x0) — x| shrinks to zero as |Iy| — 0; otherwise the proof is much simpler.
We can estimate the shape of F' near zy using the following definition and
lemma.

Let k£ > 0. We say that the real-analytic map f : [0,1] — [0, 1] is in the
Epstein class & if f(x) = pQy where Q is the quadratic map Q(z) = 22,
¥ is an affine map and ¢ : [0,1] — [0,1] is a diffeomorphism whose inverse
has a holomorphic extension which is univalent in the domain C(_, 1) =
C\ ((—o0, —Kk]U[1+ K, 00)). For more details on maps in this class see [MS].
The following lemma is proved in [ST].

LEMMA A.l. Let f € NF2. Suppose that I is a nice interval around c
and J is a first entry domain which is disjoint from I and with entry time s.
Suppose that § > 0 is some constant such that there exists some J O J such
that f : J — I' is a diffeomorphism where I' is a k-scaled neighbourhood
of I and S |f7(J)| < 1. Let o : J — [0,1] and 75 : T — [0,1] be affine
diffeomorphisms. Then for all € > 0 there exists 6 > 0 such that |I| < ¢
implies that there exists some function G : I — I in the Epstein class & /o

such that ||Ts 0 f* o1yt — G2 < €.
We use this to prove the following claim.

CrAM 2. There exists some 0 < A < B such that, for Iy sufficiently
small,

F(wo) + (x = @0) + A(x — 20)* < F(x) < F(x0) + (z — 20) + B(z — x0)*.

Proof. We know that f°: Iy — I; has the following property. The map
f*71: f(I2) — I has an extension to Iy. Furthermore, since Iy is a é-scaled
neighbourhood of I; we use Lemma A.1 to obtain a map G in the Epstein
class which is C2-close to f*.

In fact we can choose different starting intervals I,, with the same real
bounds which are smaller and smaller and which are then rescaled to maps
F,, that map from the unit interval to itself. For each such map we obtain the
nearby map G, in the Epstein class where ||F}, — G, ||c2 — 0 as n — oo. For
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F,, we let xj denote a point which is equivalent to xg for F'. Since we assume
that | Fy,(z() — (| goes to zero, our limit map G has a parabolic fixed point
2. Also D?Goo(28°) > 0. Thus, there exist 0 < A < B depending only on
f such that for all = € [0, 1] we have
Goo(25°) + (2 — 23°) + Alr — 23°)” < Goo()

< Guolaf?) + (& — %) + Blo — 29)"
Clearly, for large n, we have the same condition for G,,. Therefore, if we take
I small enough, we may assume that it holds for F' too.

We define ¢ := F(xg) — zo. Then we have
e+ Al —x9)? < F(z) —x < e+ Bz — x0)°.

We suppose that N is such that xg € [an,an+1). Then for 0 <i < N —1 we
let z; := F"'(xg). We will use this equation to find estimates for a; — a;1.
Throughout we will let C, C’ denote some constants depending only on 6, §'.

Cramm 3.
N =< 1//e.
Proof. Let N' =max{1 < j <N —1:xz; —z9 < +/c}. We will first show
that N’ satisfies the claim. For j < N’, we have
e< Tj+1 — To < E(B—l- 1).
Therefore,
N'—1
N'e < Z Tjt1 — Tj < N’E(B—{— 1).
=0
Since Zj-\[:/al Tjq1 —xj = TN — T < /€ we have N’ < 1/4/e. Furthermore,
Tjp1—xo > esoe(N'(B+1)+1) > /e and N' > 1/(B +1)y/c — 1. That
is, N' < 1//e.

Next we find estimates for N — N’. For N’ < j < N we again consider
the estimates

€+ A(a:j — ;170)2 <zjp1—x;<e+ B(l‘j — 560)2.
But note that here B(x; — 19)? > ¢ so we can write instead
Azj — x0)? < xjy1 —xj < 2B(x; — x0)°.

We make a change of coordinates. We let y; := 1/(x; — x). Then

Yy Yj+1 = Sl — %
i = )
T (xj — 20)(xj1+1 — 7o)
By the above bounds we have
A(z; — x0 2B(z; — o
M <yj_yj+1 < M < 2B.

Tj+1 — X0 Tj+1 — X0
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Furthermore,

Ala; = o) Awj—m) A
T — x5) + (w5 —wo) ~ 2B(xj —w0)* + (w5 —wo) ~ 2B+ 1
Observe that xy € (a1,a0) and |ag — a1| > 0. So since |xy — zy_1] is

approximately |ag — a;| and since we fixed 0, we know that yy = O(1). Also
note that yy» = O(1/4/¢) and so yn» — yny = O(1/4/2). Summing we obtain

Yj —Yj+1 > (

N/
C
—= <YN' —YnN = Z yj — yj+1 < 2B(N — N'),
Ve j=N—-1
! N’ !/
A(N - N')
ETUNTUNS DL ui—uim> gy
j=N-1
So N — N’ < 1/y/e too. Adding this to the estimates for N’ proves the
claim. m

To prove the Yoccoz lemma, we will use Claims 1 and 3 together, along
with bounded distortion, which means that a; —a;41 is like xn_; —on_j_1.

Firstly we will use the above coordinate change again. For j > N’ we
have

J .

A(N —j

Yj > Yj — YN = Z yi—yi+1>2(37+1)

j=N-1
and so

1 A(N — ) 2B+1 \?
d ziy1—2; <2B| ———
z,—zo  2B11 M WM ESEP AN )

We have proved that if 0 < 7 < N’ then
(5) e<zj1—x; <Ce
and if N/ < j < N then
C/
(N —j)*
Similarly we can define z; = FJ(x) for negative j where 0 < |j| < m — N.
Now we will show that Claim 3 follows for this situation too and we get

equivalents to (5) and (6). We define some M’ analogously to the definition
for N’ and so if |j| < M’ then

(6) EL< Tjp1 —x; <

e<zjp1 —xj < Ce.
And if M' < |j| < m — N then
C c’

(m— N + j)? REARE (m— N + )2
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(In the step of the proof where estimates on yy_,, are required, we use
Claim 1 to get |am—1 — am,| uniformly bounded below and the fact that
| _m—1 — | is approximately |a;,—1 — an|.) Note also that we can show

that m — M’ < 1/,/e.

Observe that a; — a;41 is essentially the same as xn_; — xn—j—1. So if
N >j> N — N', we have

Ce < aj — ajy1 < Ce.
Observe that 1/(N—N’) >1/j > 1/N. Sincee < 1/N?and e < 1/(N — N')?
this implies that we have
C/]2 <aj —ajy1 < C//j2.
Now if N — N’ > j > O(1) then clearly we have a; —aj1 < C’/j2. Also,

N—-1

2
TN_j— TN—jo1 > AlTn_j1 — 20)* = A( Z (rn—k — xN_k_l))
k=j—1
N’ )
> A(Z(mk - :rk_l)) > A(N'VE)
k=1

Now since /e < 1/N’, we have znx_; — xn—_j—1 2 1. Thus
C/j? < aj —aj11 < C'/5%
If N <j <m— M’ then again we have
Ce <aj—aj < Ce.

Note that we also have m—N > m—j > m—M'. Since m— N, m—M' <
1/4/e we have

C c’
(m—j2 =Y NS =
If m— M <j<m-—1 we have
C o
(m—j2 =Y =)

where the lower bound follows as above.

To conclude, if 1 < j < N then we have some constant C such that
j < C(m—j)and aj —aj41 < 1/42. If N < j <m — 1 then we have some
constant C’ such that m —j < C’j and aj —a;41 < 1/(m — j)%. So in either
case we have .

(min(jv m— J))z

a; — aj41 =

as required. m
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