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Conformal measures and matings between

Kleinian groups and quadratic polynomials

by

Marianne Freiberger (London)

Abstract. Following results of McMullen concerning rational maps, we show that the
limit set of matings between a certain class of representations of C2 ∗ C3 and quadratic
polynomials carries δ-conformal measures, and that if the correspondence is geometrically
finite then the real number δ is equal to the Hausdorff dimension of the limit set. Moreover,
when f is the limit of a pinching deformation {ft}0≤t<1 we give sufficient conditions for
the dynamical convergence of {ft}.

1. Introduction. An m : n holomorphic correspondence is a multival-
ued map f on the Riemann sphere defined as f : z 7→ w if p(z, w) = 0 for a
polynomial p of degree m in z and n in w. The theory of iterated holomor-
phic correspondences can be seen as a generalisation of both the theories
of iterated rational maps and Kleinian groups: the grand orbits of a point
under a degree d rational map z 7→ P (z)/Q(z) are the same as its grand
orbits under the d : 1 correspondence z 7→ w if wQ(z) − P (z) = 0; and the
orbit of a point under a finitely generated Kleinian group G = 〈g1, . . . , gk〉
is the same as the grand orbit of the point under the k : k correspondence
hG : z 7→ w if

(g1(z) − w) · · · (gk(z) − w) = 0.

In [6] Bullett and Penrose introduced a 1-parameter family F of holomor-
phic 2 : 2 correspondences which are matings between the modular group
PSL(2,Z) and degree two maps:

Definition 1. A 2 : 2 correspondence f is called a mating between
PSL(2,Z) and a degree 2 map gf if the action of f partitions the Riemann
sphere into two completely invariant sets Ω and Λ such that:
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(1) Ω is open, simply connected and f restricted to Ω is a 2 : 2 corre-
spondence conformally conjugate to

hPSL(2,Z) : z 7→ w if (σ̺(z) − w)(σ̺2(z) − w) = 0

acting on the open upper half-plane, where σ : z 7→ −1/z and ̺ :
z 7→ −1/(z + 1) form a generating set for PSL(2,Z);

(2) there exists an involution J associated to f such that J restricted
to Ω is conformally conjugate to σ;

(3) Λ = Λ+ ∪ Λ−, where Λ+ ∩ Λ− = {p}, and p is fixed by f ;
(4) f restricted to Λ− as domain and range is a holomorphic 2 : 1 map

denoted by gf ;
(5) J(Λ−) = Λ+ and J conjugates the action of f on Λ− to that of f−1

on Λ+;
(6) the remaining branch of f on Λ− sends it homeomorphically to Λ+.

Figures 1 and 2 show examples of matings in F .

The correspondences in the family F introduced by Bullett and Penrose
can be normalised to have the form J ◦CovQ

0 , where J is an involution and
Q is the cubic polynomial Q(z) = z3 − 3z (this notation will be explained

later). It then follows that p is a fixed point of both J and CovQ
0 . Thus F is

a one-complex-parameter family, the parameter being the “free” fixed point
of J . We write fa for the correspondence in F given by the parameter a.

Conjecture 1. Let f ∈F and let gf be the 2 : 1 restriction f : Λ−→Λ−.

Then gf is conjugate to a quadratic polynomial qc : z → z2 + c acting on

its (connected) filled Julia set. The conjugacy is conformal on interiors.

Conversely , for any c in the Mandelbrot set , there exists a correspondence

f ∈ F which mates PSL(2,Z) and qc. The set M = {a ∈ C : fa ∈ F} is

homeomorphic to the Mandelbrot set.

In Sections 3 and 4 of this paper we shall follow the work of McMullen in
[10] to show that for any correspondence f ∈ F there is a unique normalised
δ-conformal measure µ supported on ∂Λ. If f is geometrically finite then µ
is supported on the radial limit set Lrad(f) ⊂ ∂Λ, and the real number δ is
equal to the Hausdorff dimension of ∂Λ.

Bullett and Häıssinsky [4] recently proved Conjecture 1 for a wide sub-
class of F . As we shall see later, the obstruction to proving this result in
general is the fact that the sets Λ+ and Λ− meet in the point p, which we
shall refer to as the pinch point. This difficulty can be avoided if we do not
insist that the group involved in the mating is the modular group, and al-
low its limit set to become totally disconnected. Then it is actually possible
to construct a mating involving any quadratic polynomial qc with c in the
Mandelbrot set. For this purpose we consider the set of Kleinian groups with
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Fig. 1. This is a mating between PSL(2, Z) and z 7→ z2.

Fig. 2. This is a mating between PSL(2, Z) and z 7→ z2 − 1.
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connected ordinary set which are faithful representations of the free prod-
uct C2 ∗C3. There is a one-complex-parameter family of these groups, each
having a Cantor limit set. In parameter space these groups define an open
topological disc U , and the modular group (itself being a representation of
C2 ∗ C3) corresponds to a cusp point on the boundary of U . In fact, all the
groups in U are quasi-Fuchsian, and the ordinary set of each group contains
two completely invariant topological discs.

Definition 2. Let G be a group given by a parameter in the interior
of U and let qc be a quadratic polynomial with connected Julia set. A 2 : 2
correspondence f realises a mating between G and qc if the sphere is parti-
tioned into an open simply connected set Ω, two disjoint closed and simply
connected sets Λ+ and Λ− and a set C of curves such that:

(1) Ω is completely invariant and f restricted to Ω is a 2 : 2 correspon-
dence conformally conjugate to

hG : z → w if (σ̺(z) − w)(σ̺2(z) − w) = 0,

restricted to a simply connected completely invariant subset of its
ordinary set; here σ and ̺ are the order 2 and 3 generators of G
respectively;

(2) there exists an involution J associated to f such that J restricted
to Ω is conformally conjugate to σ;

(3) Λ = Λ+∪Λ− is completely invariant and f restricted to Λ− as domain
and range is a holomorphic 2 : 1 map conjugate to qc restricted to
its filled Julia set, the conjugacy being conformal on interiors with
∂ = 0 a.e. on Λ−;

(4) J(Λ−) = Λ+ and J conjugates the action of f on Λ− to that of f−1

on Λ+;
(5) the remaining branch of f on Λ− sends it homeomorphically to Λ+;
(6) the set C of curves is completely invariant under f ; it consists of the

orbit under f of a curve γ connecting Λ+ and Λ− with end-points
corresponding to the β-fixed point of qc.

See Figure 3. Bullett and Harvey proved in [5]:

Theorem 1. For any group G given by a parameter in U and any

quadratic polynomial qc with connected Julia set , there exists a 2 : 2 cor-

respondence f which realises a mating between the two. Up to Möbius con-

jugacy , f has the form J ◦ CovQ
0 .

A mating of this form is best understood as follows: if we remove from Ĉ

the sets Λ+ and Λ− then we are left with a topological annulus. Cutting
along the curves in C now turns this annulus into a topological disc. On
this disc the correspondence is conjugate to the group acting on a simply
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Fig. 3. This is an unpinched mating involving z 7→ z2. The line γ connects the cusps of
the two grey regions Λ+ and Λ−.

connected subset of its regular set. The gaps in the Cantor limit set of
the groups correspond to the curves in C. Also notice that if we shrink or
“pinch” the curve γ to a point then we expect to end up with a mating
as described in Definition 1 which satisfies Conjecture 1. For this reason
we refer to matings satisfying Definition 1 as pinched matings and to those
satisfying Definition 2 as unpinched matings.

In [4] Bullett and Häıssinsky formalised this idea (for technical reasons
they had to make an assumption about the nature of the quadratic polyno-
mial involved):

Theorem 2. Let qc be a weakly hyperbolic quadratic polynomial with

connected Julia set. Also assume that if the critical point 0 of qc is recurrent

then the β-fixed point of qc is not in its ω-limit set. Let G0 be a group

corresponding to a parameter in U and let f0 be a correspondence mating

the two. Then there exists a path {ft}0≤t<1 of correspondences such that as

t → 1 the ft converge uniformly to a correspondence f ∈ F , which is a

mating between qc and the modular group in the sense of Definition 1.

Such a path {ft}0≤t<1 is called a pinching deformation of f0.

In Section 5 of this paper we will show that if qc is geometrically finite
and if {ft}0≤t<1 is a pinching deformation of a correspondence f0 mating qc
with some group, then the limit sets Λt = Λt

+ ∪ Λt
− converge to the limit
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set Λ of f in the Hausdorff topology. Under certain conditions we can also
show that the Hausdorff dimensions of the limit sets ∂Λt vary continuously
with t and converge to the Hausdorff dimension of ∂Λ1.

Most of the proofs in this paper derive from those given by McMullen
for geometrically finite rational maps in [10].

2. Properties of matings. It turns out that correspondences which
represent matings (pinched or unpinched) have a convenient description in
terms of covering correspondences:

Definition 3. Let P be a polynomial of degree d. The covering cor-

respondence CovP of P is the d : d correspondence CovP : z 7→ w if
P (z) − P (w) = 0. It sends a point z to all the points which have the same im-
age as z under P . The deleted covering correspondence CovP

0 is the d−1 : d−1
correspondence CovP

0 : z 7→ w if (P (z) − P (w))/(z − w) = 0.

Note that each point has a finite grand orbit under CovP of size d.
Critical points are fixed by both CovP and CovP

0 and co-critical points
(points that map to the same image as a critical point) have fewer than d
(or d− 1) images under CovP (or CovP

0 ). Away from critical and co-critical
points of P , the action of CovP is reminiscent of the action of a cyclic group
of order d.

Definition 4. By the composition J ◦ f of a correspondence f and
a homeomorphism J we mean the correspondence z 7→ w if z 7→ J−1(w)
under f .

Definition 5. A transversal DP for CovP
0 is a maximal domain of in-

jectivity of P . We have CovP
0 (DP ) ∩DP = ∅ and CovP (DP ) = Ĉ.

Consider the cubicQ(z) = z3−3z. Then CovQ
0 is the 2 : 2 correspondence

z 7→ w if z2 + zw + w2 = 3.

The finite critical points of Q are 1 and −1 with co-critical points −2 and 2.

The following two results are proved in [3] and [5] respectively:

Theorem 3. A 2 : 2 correspondence f represents an unpinched mating

between a degree 2 holomorphic map and a group if and only if f is of the

form f = J ◦ CovQ
0 , where Q(z) = z3 − 3z and J is an involution with the

following properties:

(i) there exists a fundamental domain DJ of J and a transversal DQ

of Q containing the point 2, such that D0
J ∪ D0

Q = Ĉ (where D0

denotes the interior of a set D);

(ii) the point 2 is contained in the set Λ+ =
⋂∞

i=0 f
i(Ĉ −DJ).
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Theorem 4. A 2 : 2 correspondence f represents a pinched mating

between a degree 2 holomorphic map and the modular group PSL(2,Z) if

and only if f is of the form f = J ◦ CovQ
0 , where Q(z) = z3 − 3z and J is

an involution with the following properties:

(i) there exists a fundamental domain DJ of J and a transversal DQ

of Q containing the point 2, such that D0
J ∪D0

Q = Ĉ − {1};
(ii) the point 1 is a fixed point of J ;

(iii) the point 2 is contained in the set Λ+ =
⋂∞

i=0 f
i(Ĉ −DJ).

Moreover , the conjugacy φ from the upper half-plane to Ω extends to the

points 0 and ∞ and sends both of them to the point 1 = p = Λ+ ∩ Λ−.

Notice that in the case of an unpinched mating the set Λ+ is the filled

Julia set of a quadratic-like map. Let D = Ĉ −DJ . The restriction of f to
D is a 1 : 2 map, and f(D) ⊂ D. Thus the inverse map gf restricted to
f(D) is quadratic-like and Λ+ is its filled Julia set. By Douady and Hub-
bard’s straightening theorem [8] it follows immediately that on f(D) the
map gf is quasi-conformally conjugate to a unique quadratic polynomial
and that the conjugacy sends Λ+ to the (connected) filled Julia set of the
quadratic with ∂ = 0 a.e. on Λ+. That is, the conjugacy is conformal if Λ+

has interior.
In the case of a pinched mating we have a slightly different situation:

let D = Ĉ − DJ . The restriction of f to D is still 1 : 2, but now we have
f(D) ⊂ D with ∂D ∩ ∂f(D) = {1}. The inverse map gf restricted to f(D)
is a degree 2 map, but not quite quadratic-like because the boundaries of
D and f(D) touch. This fact is the main obstacle to a complete proof of
Conjecture 1, as here the straightening theorem cannot be applied.

We call such a map pinched-quadratic-like with pinch-point 1 = p =
∂D ∩ ∂f(D). The set Λ+ is the filled Julia set of gf .

See Figure 4.

1 11 1
Fig. 4. The left-hand picture shows the regions DQ and DJ for a pinched mating. DQ is
the inside of the outer curve, containing the point 1 on the left and ∞ on the right, and
DJ is the outside of the inner circle. The right-hand figure shows these two regions for
an unpinched mating. In both cases the inside of the inner circle maps 2 : 1 under f−1

onto DQ.
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2.1. Special points. The point p = 1 and the “singular points” ±2 play
special roles in the dynamics of correspondences which represent matings.
The following lemmas are easy to prove:

Lemma 1. Let f = J ◦ CovQ
0 be an unpinched mating and let gf denote

the inverse of f restricted to f(D), where D = Ĉ −DJ .

(i) The branch of f sending p = 1 to J(−2) has critical point p. Thus

in any neighbourhood of p this branch is a 2 : 1 map.

(ii) The points 2 and −2 have unique images J(−1) and J(1) under f .
Since 2 ∈ Λ+, it follows that 2 is the critical value of the map gf ,
with critical point J(−1).

Lemma 2. Let f ∈ F be a pinched mating and let gf denote the inverse

of f restricted to Λ+.

(i) The point p = 1 is fixed by one branch of f with derivative 1. For

all but one correspondence in F (up to conjugacy), p has one petal.

For the exceptional correspondence f , p has three petals and the

pinched-quadratic-like map gf has a unique fixed point. In this case

gf is conjugate to z 7→ z2 + 1/4.
(ii) The other branch of f sends 1 to J(−2) ∈ Λ+ with derivative 0.

The map gf is 1 : 2 on any neighbourhood of J(−2). See Figure 5.
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Fig. 5. This figure represents a pinched mating. The shaded region around the point 1
maps 2 : 1 onto the cut disc at −2 under CovQ

0 and then to the shaded disc at J(−2)
under J . The round circle represents ∂DJ , the closed curve within it represents ∂Λ+, and
the line tangent to the circle represents ∂DQ.

(iii) The point 2 has unique image J(−1) under f and the point −2 has

unique image J(1) under f . The critical value of gf is the point 2,
with critical point J(−1). Throughout , we denote this critical point

J(−1) by ω. See Figure 6.
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J(�2)
J(�1)

2 J(2)�2
1 �11

Fig. 6. These diagrams show how the singular points map to each other.

For an introduction to parabolic fixed points and petals see Chapter 6
of [1].

If a set E does not contain any forward (resp. backward) singular point
of f , then we say that f (resp. f−1) has two single-valued branches on E.

2.2. Properties of ∂Λ+. In this section we list some useful results about
∂Λ+. In the case of an unpinched mating f these results follow immediately
from the fact that Λ+ in this case has the properties of the filled Julia set
of a quadratic map. For a pinched mating f ∈ F however, we need to give
separate proofs.

Due to symmetry, corresponding results hold for ∂Λ−.

Proposition 1. Let f ∈ F be a pinched mating and let gf denote the

branch of f−1 sending f(D) to D (where D = Ĉ −DJ).

(a) Let z ∈ D − Λ+. The sets Hn = fn(z) converge to ∂Λ+ in the

Hausdorff topology.

(b) Given any open set U meeting ∂Λ+ there exists a subset S of ∂Λ+

contained in U and an integer M such that ∂Λ+ ⊂ gM
f (S).

(c) For any z ∈ ∂Λ+ the orbit fn(z) is dense in ∂Λ+.

Proof. (a) We recall the definition of convergence of compact sets in

the Hausdorff topology. Let Kn be a sequence of compact subsets of Ĉ. We
define lim infKn to be the set of points x such that every neighbourhood of
x meets all but finitely many Kn, and we define lim supKn to be the set of
points x such that any neighbourhood of x meets infinitely many Kn. Then
Kn → K if and only if

lim infKn = lim supKn = K.

It is obvious that any convergent sequence {yn ∈ fkn(z)} accumulates on
∂Λ+, so lim supHn ⊂ ∂Λ+. To show that ∂Λ+ ⊂ lim infHn we must show
that for any y ∈ ∂Λ+ and ε > 0 and for all n sufficiently large, Hn meets
the ε-neighbourhood N of y. Consider a connected component U of N ∩Ω.
Let γ be a boundary component of U that lies in Ω. Let φ be the conjugacy
from the upper half-plane to Ω which conjugates the generators σ̺ and σ̺2

of PSL(2,Z) to the two branches of f . By Proposition 2.14 of [13], every
boundary component of U which lies in Ω maps under φ−1 to a curve in the
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upper half-plane with distinct end-points in R̂+, so ∂φ−1(U) contains real
intervals.

Now φ−1(z) is a point in the upper half-plane and since the limit set
of the modular group is R ∪ ∞, it can be shown that for each integer n
sufficiently large, there exists a finite sequence i1 . . . , in of 1’s and 2’s such
that

σ̺i1 · · ·σ̺in(φ−1(z)) ∈ φ−1(U).

The result now follows since each σ̺i is conjugate to a branch of f .

(b) Let U be an open set meeting ∂Λ+ and let V denote a connected
component of U∩Ω. As above, φ−1(V ) is an open set in the upper half-plane
partially bounded by real intervals. It is a basic property of the modular
group that any interval in the positive real line contains a subinterval of the
form

[σ̺i1 · · ·σ̺iM (0), σ̺i1 · · ·σ̺iM (∞)],

where the ij are either 1 or 2, and M is a positive integer. Let [a, b] be such a
subinterval of ∂φ−1(V ). Let γ be a curve in the upper half-plane, contained
in φ−1(V ) with end-points a and b, and let U ′ be the region bounded by γ
and [a, b].

By the last assertion of Theorem 4, φ(γ) is a curve in V with end-points
on ∂Λ+. The boundary of U ′ = φ(U ′) consists of φ(γ) and a subset S of ∂Λ+

which lies in U . Changing the curve γ if necessary (but not its end-points)
we can ensure that the open set gi

f (U ′) does not contain J(−2) or J(∞)

for any 1 ≤ i ≤M . So gM
f is an analytic homeomorphism on U ′. Moreover,

gM
f (φ(γ)) is a simple closed curve meeting ∂Λ+ only in p. Since gM

f (U ′) is

simply connected it follows that gM
f (S) = ∂Λ+.

(c) This follows immediately from (b).

Lemma 3. Let f ∈ F be a pinched mating and let q ∈ ∂Λ+ be a parabolic

periodic point of gf of period k. Then there exists a neighbourhood N of q
such that each component of N ∩∂Λ+ −{q} is contained in a repelling petal

for gk
f at q.

Proof. We can analytically continue the branch h of f−k which fixes q
to a neighbourhood N of q. Its dynamics gives rise to attracting petals. If a
component C of ∂Λ+ ∩N −{q} is contained in an attracting petal, then so
is a point x ∈ Ω∩N , since petals are open. If q 6= p, this contradicts the fact
that all iterates of x under gf = f−1 accumulate at ∂Λ−. If q = p then, by
the last assertion of Theorem 4, the dynamics around p can be transferred
via the map φ to dynamics around the points 0 and ∞ in the boundary of
the upper half-plane. It is then easy to check that C being contained in an
attracting petal contradicts the action of σ̺ and σ̺2 near 0 and ∞.
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Lemma 4. Let f ∈ F be a pinched mating. Suppose the critical point

ω of gf is contained in ∂Λ+ and its orbit under gf eventually lands on a

periodic cycle, but not on p. Then this cycle is repelling.

Proof. Suppose that the cycle has period k, that it is non-repelling and
that q is a point of the cycle. Suppose that there exists a neighbourhood U
of q such that for all n the branch hn of fnk which fixes q is an analytic
homeomorphism on U . Since hn(x) → Ω as n→ ∞ for any x ∈ Ω and since
Λ+ maps into itself under each hn, we see that the images of U under hn

miss out more than three points of the sphere and hence the family {hn}
is a normal family. Let φ be the limit of a converging subsequence {hnj

}.
Then φ is injective or constant and φ(q) = q. Moreover, for all x ∈ Ω there
exists N such that x /∈ hn(U) for all n > N and hence φ(U) does not meet
Ω. But if φ is not constant then q lies in the interior of φ(U), so φ must be
constant with value q.

But this implies that q is a repelling periodic point of gf , contradicting
our assumption. Therefore, either q = p or the orbit of a critical point
of gf other than ω accumulates at q. But ω is the only critical point of gf ,
a contradiction.

Lemma 5. Let f ∈F be a pinched mating. Now suppose that for some k
we have ω∈fk(p) and let S denote the branch of fk sending p=1 to ω. Then

we can extend S to an analytic homeomorphism in a neighbourhood of p.

Proof. Let N ′ be a neighbourhood of the critical value gf (ω) = 2 and
denote by N the open neighbourhood arising from N ′ by removing a curve
γ connecting ∂N ′ and 2, together with its end-points. Let T1 and T2 denote
the two branches of gk−1

f on N such that p lies on the boundary of each

Ti(N). Similarly, let S1 and S2 denote the two branches of f defined on
N . Define the maps SiT

−1
i : Ti(N) → Si(N). These can be continuously

extended to the images of the curve γ under T1 and T2 to give a continuous
map S from a neighbourhood of p to a neighbourhood of ω. At any point
apart from p, S is the composition of two holomorphic maps and hence is
also holomorphic. The fact that it is holomorphic at p itself follows since S
is bounded.

3. The radial limit set. Many of the results of this paper concern
matings for which the map gf is “geometrically finite”.

Definition 6. We say that a correspondence f which represents a mat-
ing, pinched or unpinched, is geometrically finite if

(1) the intersection of the “post-critical set” P (f) = {gn
f (ω) : n ∈ N}

(recall that ω is the critical point of gf ) with ∂Λ+ is finite;
(2) there are no irrationally indifferent periodic points of gf in ∂Λ+.
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This definition may be somewhat surprising, since for rational maps the
definition of geometrically finite only requires a weaker version of point (1),
namely that the orbits of any critical points in the Julia set be finite. How-
ever, for rational maps, this immediately implies points (1) and (2) in the
definition above. For pinched matings though, the corresponding result is
not immediately obvious, since we cannot assume that ∂Λ+ is a genuine
quadratic filled Julia set (unless the mating is a limit of a pinching defor-
mation) and therefore do not have the extensive list of results that describe
the structure of quadratic filled Julia sets. Rather than attempting to prove
these results here, we have simply taken points (1) and (2) as the definition
of geometrically finite.

Definition 7. Let f be a mating, pinched or unpinched, let r be a
positive real number and let x ∈ ∂Λ+. We say that x ∈ Lrad(f, r) if for
all ε > 0 there exists a neighbourhood U of x with diam(U) < ε and a
positive integer n such that gn

f is an analytic homeomorphism on U and
gn
f (U) = B(gn

f (x), r), the ball of radius r and centre gn
f (x).

Define the radial limit set Lrad(f) =
⋃

r Lrad(f, r).

Lemma 6. The radial limit set does not contain any parabolic periodic

points or the critical point of gf , or any of their pre-images (this includes

the pinch-point p if f is a pinched mating).

Proof. If x∈Lrad(f, r) for some r then clearly lim supn→∞ |(gn
f )′(x)|=∞,

and this is not the case for any of the points mentioned.

We will show

Theorem 5. For f a pinched or unpinched geometrically finite mating ,
∂Λ+ − Lrad(f) consists of the parabolic periodic points (including p if f is

pinched) and the critical point of gf (if this is contained in ∂Λ+), together

with their inverse images under gf .

The proof of this is essentially the same as that of Theorem 6.5 in [10].
The main steps are the following two lemmas:

Lemma 7. Let f be a geometrically finite mating , pinched or unpinched.

Suppose that x ∈ ∂Λ+ is not equal to the pinch-point p, a point in the post-

critical set P (f), or any of their pre-images under gf . Then there exists

s > 0 such that for all N ∈ N there exists n > N such that on B(gn
f (x), s)

the inverse branch of gn
f sending gn

f (x) to x is an analytic homeomorphism.

Proof. We assume here that f is pinched. If it is not, we can use the
same argument, treating the set {p} consisting of the pinch-point as the
empty set. Let q1, . . . , qm be the points of P (f) ∩ ∂Λ+ and let xn = gn

f (x).
Now for some l ≥ 1 we see that {ql, . . . , qm} forms a repelling or parabolic
periodic orbit. Since the orbit of x gets repelled from this cycle and from
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the point p, by Lemma 3, we deduce that whenever it gets close to a point
in the cycle or p it must first have come close to an inverse image y of some
qj or p which is distinct from all the qi, l ≤ i ≤ m, and p. Hence if for some
subsequence {nk} we have limk→∞ xnk

= qj for some j, or limk→∞ xnk
= p,

then there exists a subsequence {ni} such that limi→∞ xni
= y, where y is

not one of the qi or p. Hence there exists s > 0 such that lim inf d(p, xni
) > s

and lim inf d(qj, xni
) > s for all 1 ≤ j ≤ m, where d denotes distance in the

spherical metric. Thus for all sufficiently large i the ball with centre xni
and

radius s does not meet the post-critical set or p and hence the result holds.

Lemma 8. Let f be a geometrically finite pinched or unpinched mating.

For every point x ∈ ∂Λ+ whose orbit under gf does not land on the pinch-

point p (if f is a pinched mating) or on the post-critical set P = P (f) we

have

‖(gn
f )′(x)‖ → ∞

in the Poincaré metric on D − {P}, where D = Ĉ −DJ .

Proof. Let Pn = g−n
f (P ), a sequence of compact sets increasing in size.

Now gn
f : g−n

f (D)−Pn → D−P is a proper local homeomorphism and hence
a covering map. Therefore gn

f is a local isometry from the Poincaré metric on

g−n
f (D)−Pn to the Poincaré metric on D−P . Let ιn : g−n

f (D)−Pn → D−P
be the inclusion map. Then by Theorem 2.25 of [11] we have ‖ι′n(x)‖ =
o(|s log(s)|), where s is the distance from x to (D − P ) − (g−n

f (D) − Pn) in

the Poincaré metric on D− P . By Proposition 1 we have fm(y) → ∂Λ+ for
all y ∈ ∂D, so the distance between x and (D − P ) − (g−n

f (D) − Pn) tends
to zero in the spherical metric and hence in the Poincaré metric on D − P .
Therefore ‖ι′n(x)‖ → 0. It now follows that the map gn

f ◦ ι−1
n expands the

Poincaré metric on D − P and the expansion factor tends to infinity as n
tends to infinity.

Proof of Theorem 5. By Lemma 6 no point whose orbit under gf even-
tually lands on p, on a parabolic periodic point or on the critical point ω of
gf can lie in Lrad(f). Suppose that x ∈ ∂Λ+ is not such a point. If the orbit
of x meets the post-critical set, then it lands on a parabolic or repelling
periodic point because f is geometrically finite. The former case is ruled
out by our assumption and Lemma 4, hence the orbit lands on a repelling
periodic point and therefore is in Lrad(f). If this orbit does not meet the
post-critical set then by Lemma 7 there exists a sequence {nj} of integers and
a real s > 0 such that the inverse branch hj of f

nj

f sending g
nj

f (x) to x is an

analytic homeomorphism on B(g
nj

f (x), s). By the Koebe distortion theorem,

the image Uj of B(g
nj

f (x), s) under hj satisfies diam(Uj) ≍ |(gnj

f )′(x))|−1.

By Lemma 8, ‖(gnj

f )′(x))‖−1 → 0 as j → ∞ in the Poincaré metric on
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D − P . Hence the same is true for the spherical metric and diam(Uj) → 0
as j → ∞.

We pause for a moment to consider the relationship between Lrad(f),
the radial Julia set of qc and the radial (or conical) limit set of the group
G. Recall that the radial Julia set of a geometrically finite quadratic poly-
nomial qc consists of the Julia set minus the inverse orbit of any parabolic
point and the inverse orbit of the critical point if it lies in the Julia set.
The radial limit set LG of a finitely generated Kleinian group G consists of
all limit points which are not parabolic fixed points. Therefore, if f is an
un-pinched geometrically finite mating between qc and G, then the radial
limit set of f corresponds exactly to that of qc. The group G in this case
has no parabolic fixed points, so assuming that the conjugacy φ : DG → Ω
extends to ∂DG → ∂Λ ∪ C we see that φ−1(Lrad(f)) ⊆ LG with equality if
and only if qc has no parabolic periodic point and its critical point 0 does
not lie in the Julia set.

If f is a pinched mating between qc and G = PSL(2,Z), then the β-
fixed point of qc corresponds to the pinch-point p. So, assuming that we
have a homeomorphism ψ : Λ+ → Kc conjugating gf to qc, we see that
ψ(Lrad(f)) ⊆ Lrad(qc) with equality if and only if the β-fixed point of qc is
parabolic. This is satisfied if and only if c = 1/4.

The radial limit set of the modular group consists of those points which
are not in the orbit of 0 or ∞. The conjugacy φ : H → Ω extends to 0
and ∞ and sends both to the pinch-point p. Thus, provided that φ extends
to R̂, we have φ−1(Lrad(f)) ⊆ LPSL(2,Z) with equality if and only if qc has
no parabolic periodic point other than possibly the β-fixed point, and its
critical point either does not lie in the Julia set or lands on the β-fixed point.

4. Conformal measures

Definition 8. Let f be a pinched or unpinched mating. An α-conformal

f -invariant measure is a positive Borel regular probability measure µ sup-
ported on the Riemann sphere such that for any Borel set E and for any
branch h of f or f−1 which is injective and single-valued on E we have

(1) µ(h(E)) =
\
E

|h′(z)|α dµ(z).

We also assume that the support of µ does not consist solely of the point
p = 1 (the pinch-point) if f is pinched. The critical dimension α(f) is defined
as

α(f) = inf{α ≥ 0 : ∃ an α-conformal f -invariant measure

supported on Λ+}.
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In this section we construct α-conformal measures on the limit sets ∂Λ
of pinched or unpinched matings f . If f is unpinched, then the results in
this section can be proved directly by application of proofs in [10], since in
this case the map gf is quadratic-like and Λ+ is its filled Julia set. If f is
pinched we have to be a little more careful in dealing with the existence of
the pinch-point p. In order to avoid having to switch from the pinched to
the unpinched case all the time, we assume throughout this section that f
is pinched, keeping in mind that the same results hold, and are easier to
prove, for unpinched matings.

The following is an important property of conformal measures:

Theorem 6. Let f ∈ F be a pinched mating , and let µ be a β-conformal

f -invariant measure supported on ∂Λ. Then for any r > 0 and any x ∈
Lrad(f, r)⊂Λ+ there exist arbitrarily small balls B(x, s) such that µ(B(x, s))
≍ sβ , where the constants involved in the “≍” are independent of x and s.

Proof. This is the same as Proposition 2.3 in [10]. Since it is short, we
will outline the proof here. Note that for any r > 0 there exists a non-zero
lower bound a(r) for µ(B(x, r)), where x ∈ Lrad(f, r). Let x ∈ Lrad(f, r).
Since x is in the radial limit set and by the Koebe distortion theorem, given
any s′ > 0 there exists 0 < s < s′ and an integer n such that gn

f (B(x, s))
contains the ball B(gn

f (x), r/32). Then

1 ≥ µ(gn
f (B(x, s))) ≥ µ(B(gn

f (x), r/32)) > a(r/32).

Moreover, there exist constants 0 < b(r) < B(r) < ∞ depending only
on r such that for all z ∈ B(x, s) we have b(r)/s < |(gn

f )′(z)| < B(r)/s.

Let h denote the branch of g−n
f sending gn

f (x) to x. Then µ(B(x, s)) =T
gn

f
(B(x,s)) |h′(z)|β dµ(z). Hence

µ(gn
f (B(x, s)))B(r)−βsβ < µ(B(x, s)) < µ(gn

f (B(x, s)))b(r)−βsβ,

so

a(r/32)B(r)−βsβ < µ(B(x, s)) < b(r)−βsβ.

4.1. Poincaré series. Let x ∈ Ω be a point whose orbit under f does not
land on the singular point ∞. Then for each integer n let S1,n, S2,n, . . . , S2n,n

denote the branches of fn at x.

Definition 9. We define the Poincaré series

Ps(x) =
∞∑

n=0

2n∑

j=1

|S′
j,n(x)|s.

We also define

δ(x) = inf{s > 0 : Ps(x) <∞} and δ(f) = inf{δ(x) : x ∈ Ω}.
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We will see later (Theorems 7 and 11) that for f geometrically finite,
δ(x) is independent of x for all x ∈ Ω.

Proposition 2. Let D = Ω ∩ (Ĉ −DJ) and x ∈ D. Then

(1) δ(x) ≤ 2;
(2) P2(x) <∞;
(3) Pβ(x) < ∞ if x meets the support of a β-conformal f -invariant

measure.

Proof. This follows the proof of Proposition 4.3 in [10]. Since x ∈ D
we have fn(x) ∈ D for all n. In particular fn(x) 6= ∞ for all n. Hence
there exists a ball B centred at x such that all branches of fn are analytic
homeomorphisms on B. Moreover, we can choose B so that the images of B
under branches of iterates fn are disjoint. The total spherical area of these
images is finite, as they all are contained in D. But the area of each image
U is proportional to the square of the derivative of the branch of fn sending
B to U at x (by the Koebe distortion theorem) and hence P2(x) < ∞ and
δ(x) ≤ 2.

Now suppose that x meets the support of a β-conformal measure µ. Then

∞ > µ
(⋃

n

fn(B)
)

=
∑

n

2n∑

j=1

µ(Sj,n(B)) ≍ Pβ(x).

4.2. Constructing conformal measures. We now use the approach of Pat-
terson and Sullivan (as used in Theorem 4.1 in [10] for rational maps) to
construct a δ-conformal measure supported on the boundary of the set Λ
for f ∈ F .

Theorem 7. Let f ∈ F and let x ∈ Ω ∩ (Ĉ − DJ). Then ∂Λ car-

ries a δ(x)-conformal f -invariant measure µ with no atoms on repelling or

parabolic periodic points of gf or any of their inverse images under gf .

Proof. By Proposition 2 we know that δ = δ(x) <∞. We first construct
a measure on ∂Λ+. Let s > δ and for any Borel set E define

µs(E) =
1

Ps(x)

∞∑

n=0

2n∑

j=1

|S′
j,n(x)|sδSj,n(x)(E),

where δSj,n(x)(E) = 1 if Sj,n(x) ∈ E and 0 otherwise.

Let E be a Borel set in D such that a branch h of f−1 is injective and
single-valued on E and such that h(E) ⊂ D. Then

µs(h(E)) =
1

Ps(x)

∞∑

n=0

2n∑

j=1

|S′
j,n(x)|sδSj,n(x)(h(E))

=
1

Ps(x)

∞∑

n=0

2n∑

j=1

|(h−1Sj,n(x))′(x)|s
|(h−1)′(Sj,n(x))|s δh−1Sj,n(x)(E)
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=
1

Ps(x)

∞∑

n=0

2n∑

j=1

|(h−1Sj,n)′(x)|s|(h′(h−1Sj,n(x)))|sδh−1Sj,n(x)(E)

=
\
E

|h′(z)|s dµs(z) −
{
|h′(x)|s/Ps(x) if x ∈ E,

0 otherwise.

Similarly, one gets the corresponding result for h a branch of f injective and
single-valued on a Borel set E ⊂ D.

If Ps(x) diverges at δ, let µ be a weak accumulation point of the µs as
s → δ. If Ps(x) does not diverge at s = δ, we use a standard trick to force
Ps(x) → ∞. As s → δ, change a large but finite number of terms in Ps(x)
and the definition of µs from |S′

j,n(x)|s to |S′
j,n(x)|t, where t = 2δ− s. Using

the same notation as above, this gives measures µs satisfying\
E

min{|h′(z)|s, |h′(z)|t} dµs(z) ≤ µs(h(E))

≤
\
E

max{|h′(z)|s, |h′(z)|t} dµs(z),

for x /∈ E and with t → δ as s → δ. See [10, Chapter 4] for details. Again,
let µ be a weak accumulation point of the µs.

In both cases, µ is a probability measure with support on ∂Λ+. Since
it is constructed using weak limits, it follows from the Riesz representation
theorem that it is Borel regular. We will show that µ is a δ-conformal mea-
sure: Let A be a subset of ∂Λ+ such that a branch h of gf = f−1 is injective
and single-valued on A. For the moment, assume that A does not contain
the critical point ω of gf .

We cover A by open neighbourhoods U(z), z ∈ A, such that

• h restricted to U(z) is injective and single-valued,
• µ(∂U(z)) = µ(∂h(U(z))) = 0,

• U(z) ∩ {J(−2)} = 0,
•
T
(
⋃

U(z))−A
|h′(z)|δ dµ(z) < ε for some given ε > 0.

We choose a countable subcover {Un} and define sets A1 = U1 and An =
Un−

⋃
k<n Uk. A standard result from measure theory states that if measures

µs converge weakly to a measure µ, and if A is a Borel set with µ(∂A) = 0,
then µ(h(Ak)) = lims→δ µs(h(Ak)). Hence,

µ(h(Ak)) = lim
s→δ

\
Ak

|h′(z)|sdµs(z).

But on each Ak the functions |h′(z)|s are uniformly bounded above and
converge uniformly to |h′(z)|δ, so we have µ(h(Ak)) =

T
Ak

|h′(z)|δ dµ(z).
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Now

µ(h(A)) = µ
(⋃

k

h(A ∩Ak)
)

≤
∑

k

µ(h(Ak)) =
∑

k

\
Ak

|h′(z)|δ dµ(z)

=
\
A

|h′(z)|δ dµ(z) +
∑

k

\
Ak−A

|h′(z)|δ dµ(z) ≤
\
A

|h′(z)|δ dµ(z) + ε.

On the other hand, we have

∞ > µ(h(A)) = µ
(⋃

k

h(A ∩Ak)
)

=
∑

k

µ(h(A ∩Ak)) =
∑

k

(µ(h(Ak)) − µ(h(Ak −A)))

≥
∑

k

( \
Ak

|h′(z)|δ dµ(z) −
\

Ak−A

|h′(z)|δ dµ(z)
)

=
\

⋃
Ak

|h′(z)|δ dµ(z) −
\

⋃
Ak−A

|h′(z)|δ dµ(z) ≥
\
A

|h′(z)|δ dµ(z) − ε.

Since ε was arbitrary we have µ(h(A)) =
T
A
|h′(z)|δ dµ(z) as required.

Now suppose that the critical point ω of gf lies in A and that gf is
injective and single-valued on A. Then since g′f (ω) = 0 we have\

A

|g′f (z)|δ dµ(z) =
\

A−ω

|g′f (z)|δ dµ(z).

Thus, if there is no atom at gf (ω), then

µ(gf (A)) = µ(gf (A− ω)) =
\

A−ω

|g′f (z)|δ dµ(z) =
\
A

|g′f (z)|δ dµ(z).

To show that there is indeed no atom at the critical value gf (ω), note that
on a punctured neighbourhood of ω the map gf is locally injective and single-
valued and hence transforms the measures µs by the rule that gives rise to
δ-conformality of µ. Since ω is a critical point, we can find neighbourhoods
of ω on which the derivative of gf is arbitrarily small. This means that for
any ε > 0 there is a punctured neighbourhood N of gf (ω) with µs(N) < ε
for all s sufficiently close to δ. Moreover, we have µs(gf (ω)) = 0 for all s
because the µs do not assign any mass to points in ∂Λ+. Hence

lim sup
s→δ

µs(N ∪ gf (ω)) < ε,

so µ has no atom at gf (ω).
Similar arguments work for h a branch of f , proving that µ is a δ-

conformal measure.
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Next, we show that there are no atoms at parabolic or repelling periodic
points of gf which lie in ∂Λ+, or any of their images under f . The proof for
repelling or parabolic periodic points of gf follows from the local dynamics of
the correspondence f and is the same as that for rational maps in Theorem
4.1 of [10]. The key idea here is to cover a neighbourhood of the periodic
point q of gf by fundamental regions for the linearised dynamics of gf : if q is
repelling, these regions are annuli An, nesting down to q with gn

f : An → A0

satisfying |(gn
f )′| ≍ λn for some λ > 1. Using the fact that the µs behave

like s-conformal measures we deduce that µs(U − q) = O(λ−Ns), where
U = {q} ∪ ⋃∞

n=N An. Thus for N large enough and s sufficiently close to
δ we get µs(U − q) < ε. Since each µs does not have an atom at q we get
µ(U) ≤ lim supµs(U) < ε and hence there is no atom at q.

If q is parabolic with one petal we recall that locally gf acts like the
Möbius transformation T : z 7→ z/(1 − z) around its parabolic fixed point
0 (Chapter 2 of [7]). The boundary of an attracting petal of gf corresponds
to a curve in the T -plane which at its cusp is asymptotic to the positive
real line. By Lemma 3 there exists a neighbourhood N of q such that every
component of the intersection of N and ∂Λ+ lies in a repelling petal, so we
can deduce that ∂Λ+ corresponds to a region asymptotic to the positive real
line in the T -plane. We can now use the dynamics of T in a neighbourhood
of the positive real line to find fundamental regions for the action of gf

near q and estimate the |(gn
f )′| on these regions, thus obtaining the result

as above. If q has more petals the result can be proved similarly; for more
details on the methods for the parabolic case see Theorem 4.1 of [10].

We can now deduce that there are no atoms at pre-periodic points q
of gf (which do not land on p) in the same way as in [10]. Suppose that

gi
f (q) = gi+j

j (q) for some i, j > 0. If q is not a critical point of gi
f , in other

words if its orbit does not land on the critical point ω of gf , then an atom
at q would give rise to an atom at the periodic point gi

f (q), a contradiction.

If q is a pre-critical point then, as explained in the proof of Theorem
4.1 of [10], we consider the homeomorphic branches of g−i

f ◦ gj
f ◦ gi

f (q) on a
punctured neighbourhood of q to obtain the result.

Now suppose that q 6= ω is a pre-periodic point whose orbit lands on p.
The pinch-point p is a parabolic fixed point of gf (see Lemma 2), and the
above arguments apply. Hence there is no atom at p, and we can find a
neighbourhood U of p, not containing x, such that

lim sup
s

µs(U − {p}) < 2ε,

for any given ε > 0. By the construction of the µs, any part of U which
carries positive measure lies in DQ. Let U0 = U ∩DQ. Then µ(U) = µ(U0).

Let h denote the branch of fn (for the appropriate n) sending p to q.
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Since U0 is contained in DQ we see that h restricted to U0 is an analytic
homeomorphism. Its image is a topological disc B with a cut C from the
point q to the boundary of B. See Figure 5. The cut C is the image of
∂DQ ∩ ∂U0. The measures µs are constructed using the orbit under f of a

point x ∈ Ω ∩ (Ĉ − DJ). The points in this orbit never land on ∂DQ or
any of its images and hence the cut C carries no positive measure for any of
the µs. Hence,

µs(B − {q}) = µs(B − C) =
\

U0

|h′(z)|s dµs(z)

for all s. Now p is a critical point of the branch h, so for small enough U we
have |h′(z)| < 1/2 for z ∈ U . Then µs(B−{q}) < µs(U0)/2 ≤ ε. This works
for all s sufficiently close to δ and any given ε, so µ has no atom at q.

Now suppose that the orbit of the critical point ω of gf eventually lands
on p. Let h denote the branch of gn

f which sends ω to p. By Lemma 5 we can
extend h to an analytic homeomorphism on a neighbourhood V of ω. Hence
there exists a > 0 such that |h′(z)| ≥ a for all z ∈ V . If there is an atom
at the point ω then there exists ε > 0 such that for any neighbourhood U
of the pinch-point p we have µs(h

−1(U)) > ε for all s sufficiently close to δ.
Since h is injective and single-valued on h−1(U), we have

µs(U) =
\

h−1(U)

|h′(z)|s dµs(z) ≥ asµs(h
−1(U)) > aδε.

Hence there is an atom at p, a contradiction.
So far we have constructed µ with support on ∂Λ+. For E a Borel set

meeting ∂Λ− we define µ(E) =
T
J(E) |J ′(z)|δ dµ(z). We then normalise so

that µ(∂Λ) = 1. A simple calculation now shows that µ is a δ-conformal
measure.

Corollary 1. If f is geometrically finite, then the measure µ we have

constructed is supported on the radial limit set.

Theorem 8. The Hausdorff dimension HD(Lrad(f)) of the radial limit

set is equal to α(f).

Proof. The fact that the Hausdorff dimension of the radial limit set is
at most α = α(f) can be proved as for rational maps in Corollary 2.4 of
[10]. Suppose that µ is an α-conformal measure. Let n ∈ N. For any ε > 0
find a point x ∈ Lrad(f, 1/n) and 0 < s < ε satisfying µ(B(x, s)) ≍ sα.
Inductively, define more balls B(xi, si) with the same property, each disjoint
from the ones before. Now if for some x ∈ Lrad(f, 1/n) the ball B(x, s)
was not chosen, then it must be contained in a ball previously chosen, so
Lrad(f, 1/n) ⊂ ⋃iB(xi, 3si). Moreover, we have µ(B(xi, si)) ≍ sα

i , so
∑

(diam(B(xi, 3si)))
α ≍

∑
µ(B(xi, si)) ≤ µ(∂Λ+).
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Thus the α-dimensional Hausdorff measure of Lrad(f, 1/n) is finite and the
Hausdorff dimension of Lrad(f, 1/n) is at most α. This works for all n, and
the result now follows because Lrad(f) =

⋃
n Lrad(f, 1/n).

For the proof in the other direction we recall some definitions: We say
that a compact set X ⊂ ∂Λ+ is hyperbolic if there exists an m such that for
all x ∈ X we have ‖(gm

f )′(x)‖ > 1 (in the spherical metric) and p 6= gn
f (x)

for all n. We define hypdim(f) = sup{HD(X) : X is hyperbolic}. Moreover
we define Lhyp(f) to be the union of the hyperbolic sets for gf . Then

HD(hypdim(f)) ≤ HD(Lhyp(f)) ≤ HD(Lrad(f))

since the expansion property on Lhyp ensures that Lhyp(f) ⊂ Lrad(f). Now
for a rational map R one knows that α(R) ≤ hypdim(R) ≤ HD(Jrad(R)),
where Jrad(R) is the radial Julia set for R. We will prove the same result
for our correspondence f in a very similar way, using results from [14].

The general idea is to construct measures mn on compact subsets Kn of
∂Λ+, which behave very much like conformal measures. The Kn tend to ∂Λ+

as n→ ∞, but each Kn does not contain the inverse orbits under gf of the
pinch-point p and the critical point ω. This fact enables us to show that the
dimensions of the measures mn are at most hypdim(Kn) ≤ hypdim(∂Λ+)
for each n. As n → ∞ they weakly converge to a conformal measure m on
∂Λ+ of dimension at most hypdim(∂Λ+) ≤ HD(Lrad(f)), which proves the
result.

For each n we define an open set Vn as follows: if p ∈ ⋃∞
n=0 g

n
f (ω) = P or

if ω /∈ ∂Λ+ we define Vn to be the disc of radius 1/n and centre p. Otherwise,
define Vn to consist of two open discs An centred at p and Bn centred at
vω = gf (ω) = 2, both of radius 1/n. We will see in the proposition following
this proof that either p ∈ P , or lim sup |(gn

f )′(vω)| > 1. Define Kn to be
the set of points in ∂Λ+ whose orbit under gf never enters Vn. Then Kn is
compact. Clearly we have gf (Kn) ⊂ Kn.

Choose n large enough so that gf is injective on Vn. Then every point
in Kn has at least one inverse image outside of Vn, which implies that every
point in Kn also lies in gf (Kn), hence gf (Kn) = Kn. The function |g′f | is
bounded on eachKn and gf can be extended analytically to a neighbourhood
of Kn. This enables us to use a construction presented in Chapter 10 of [14]
to obtain measures mn supported on Kn which, regarded as measures on all
of ∂Λ+, satisfy

mn(gf (E)) =
\
E

|(gf )′(z)|sn dmn(z)

for all Borel sets E on which gf is injective and single-valued and which
satisfy E ∩ V n = ∅, and

mn(gf (E)) ≥
\
E

|(gf )′(z)|sn dmn(z)
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for all Borel sets E on which gf is injective and single-valued and which
satisfy E ∩ V n 6= ∅. The real numbers sn involved here are non-decreasing
with n. Moreover, they satisfy

sn ≤ hypdim(Kn) ≤ hypdim(∂Λ+) ≤ HD(Lrad(f)).

As n tends to infinity, the measures mn converge weakly to a measure m
supported on ∂Λ+. It is easy to show that for any Borel set E on which gf

is injective and single-valued, and which does not contain p or vω, we have

m(gf (E)) =
\
E

|g′f (z)|s dm(z),

where s = limn→∞ sn. An argument similar to that used in the proof of
Theorem 7 shows that in fact m has no atoms at p or its inverse orbit un-
der gf . Using the properties of the mn, one can also show that m(gf (vω)) ≥
|g′f (vω)|sµ(vω). However, since

lim sup
n→∞

|(gn
f )′(vω)| = lim sup

n→∞

|(gn
f )′(gf (vω))| > 1,

the measure m cannot possibly ascribe any mass to gf (vω) as otherwise the
point masses along its orbit would add up to infinity. It follows thatm is an s-
conformal measure supported on ∂Λ+ and therefore α(f) ≤ HD(Lrad(f)).

Proposition 3. Suppose that ω ∈ ∂Λ+. Then either p ∈ P or

lim sup
n→∞

|(gn
f )′(vω)| ≥ 1.

Proof. Suppose that p /∈ P , so there exists ε > 0 such that the distance
between any point in P and J(−2) is greater than ε. Assume that

lim sup |(gn
f )′(vω)| < 1.

For every integer n, let rn be the maximal real number such that the iter-
ate gn

f is single-valued on the disc Bn = B(ω, rn). In other words we have

J(−2) /∈ gi
f (Bn) for all 0 ≤ i < n. Then rn → 0 as n → ∞, as by Proposi-

tion 1 any open set meeting ∂Λ+ maps to all of ∂Λ+ under a finite number
of iterations of gf .

Let {rnk
} be a strictly decreasing subsequence. Then for all k there exists

nk ≤ jk < nk+1 such that J(−2) ∈ gjk

f (Bnk
), so the diameter of gjk

f (Bnk
) is

greater than ε for all k. Now if infinitely many of the gjk−1
f are univalent on

gf (Bnk
), then by the fact that rnk

→ 0 and the Koebe distortion theorem,

we get limk→∞ |(gjk−1
f )′(vω)| = ∞, contradicting our assumption.

Thus for any k, there exists nk ≤ ik < jk such that ω ∈ gik
f (Bnk

). For
k large enough, gf is a strong contraction of Bnk

, since ω is a critical point
of gf . Moreover, the growth of |(gn

f )′(vω)| is bounded by 1, so for k large
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enough, the diameter of gik
f (Bnk

) is less than half the diameter of Bnk
. Since

ω ∈ gik
f (Bnk

) we have gik
f (Bnk

) ⊂ Bnk
, contradicting Proposition 1.

4.3. Dynamics on the radial limit set. So far we have shown that the
Hausdorff dimension of the radial limit set of any f ∈ F is equal to α(f) and
that for any f ∈ F there exists a δ-conformal measure µ supported on ∂Λ
for some finite real number δ. Moreover, we know that if f is geometrically
finite, then the Hausdorff dimension of ∂Λ+ equals that of Lrad(f) (because
∂Λ+ − Lrad(f) is countable) and that the measure µ is supported on the
radial limit set. In this section we will prove:

Theorem 9. For any f ∈ F there exists at most one normalised con-

formal measure supported on the radial limit set. The measure is α(f)-
conformal and ergodic with respect to the action of gf .

Theorem 10. If the canonical α(f)-conformal measure exists then

• Ps(x) diverges at s = α(f) for all x ∈ Ω ∩ (Ĉ −DJ);
• if A is a Borel set with gf (A) ⊂ A then A has either zero or full

measure.

Theorem 11. If f ∈ F is geometrically finite then

δ(f) = HD(Lrad(f)) = HD(∂Λ+) = α(f).

Moreover , the measure µ constructed in Theorem 7 is the unique normalised

δ(f)-conformal measure with support in Ω − {p}.
Corollary 2. If f ∈ F is geometrically finite and µ is a conformal

measure supported on ∂Λ+ then either it is the canonical measure µ con-

structed in Theorem 7, or it is an atomic measure of dimension greater than

α(f) supported on the orbit under f of parabolic periodic points and the

critical point of gf .

Corollary 3. If f ∈ F is geometrically finite then HD(∂Λ+) < 2.

Proof of Theorem 9. This is Theorem 5.1 of [10]. Let ν be a β-conformal
measure and let µ be an α(f)-conformal measure, both with support on the
radial limit set. Let r > 0. By Theorem 6, for all x ∈ Lrad(f, r) there exist
arbitrarily small balls satisfying

ν(B(x, s))

µ(B(x, s))
≍ sβ

sα(f)
.

If β > α(f) then sβ−α(f) → 0 as s→ 0 and

lim
s→0

ν(B(x, s))

µ(B(x, s))
= 0,

and hence
ν(Lrad(f, r)) = 0.
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This contradicts the fact that ν is supported on the radial limit set, so
β = α(f).

Now suppose that ν1 and ν2 are two α(f)-conformal measures. Let E be
a set such that ν1(E) = 0. Let sn be a sequence of positive real numbers
tending to 0. Then for each n we can find a cover Vn of E such that:

• for all x ∈ E there exists r with 0 < r < sn such that B(x, r) ∈ Vn,
• νi(B(x, r)) ≍ rα for i = 1, 2, α = α(f).

By the Besicovitch covering lemma, for each n there exists a countable
subcover Un of Vn consisting of balls which we label B(xj,n, rj,n), and such
that the balls B(xj,n, rj,n/a) are disjoint, where a > 0 is some constant.

As n→ ∞, the coverings Un tend to E, hence

lim
n→∞

ν1

( ⋃

Uj∈Un

Uj

)
= ν1(E) = 0.

Moreover, we have
∞∑

j=1

ν1(B(xj,n, rj,n/a)) = ν1

(⋃

j

B(xj,n, rj,n/a)
)

≤ ν1

(⋃

j

B(xj,n, rj,n)
)

= ν1

( ⋃

Uj∈Un

Uj

)
,

so

lim
n→∞

∞∑

j=1

ν1(B(xj,n, rj,n/a)) = 0.

Since each ν1(B(xj,n, rj,n/a)) is proportional to rα
j,n, this implies that

lim
n→∞

∞∑

j=1

rα
j,n = 0.

Now

ν2

( ⋃

Uj∈Un

Uj

)
≤

∞∑

j=1

ν2(B(xj,n, rj,n)) ≍
∞∑

j=1

rα
j,n,

so

ν2(E) = lim
n→∞

ν2

( ⋃

Uj∈Un

Uj

)
= 0,

hence ν1 and ν2 are absolutely continuous with respect to each other.

Next we show ergodicity of any α(f)-conformal measure ν: Suppose that
gf (E) = E and that ν(E) > 0. Then ν restricted to E is also an α(f)-
conformal measure and hence absolutely continuous with respect to ν. Hence
ν(∂Λ+ −E) = ν|E(∂Λ+ − E) = 0 and E has full measure.
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Now if ν1 and ν2 are two α(f)-conformal measures, then their Radon–
Nikodym derivative is a gf -invariant Borel function. It is well known that
this, together with ergodicity, implies that the Radon–Nikodym derivative
is constant (see for example Lemma 9.1 in [12]).

Proof of Theorem 10. This is Theorem 5.2 of [10]. Let µ be the canonical
measure which is supported on the radial limit set. We say that a ball B′

is a descendant of a ball B which meets ∂Λ+ if for some n > 0 the map
gn
f restricted to B′ is univalent and analytic with bounded distortion and

image B. Let r > 0 be such that µ(Jrad(f, r)) > 0. One can show that
there exists a finite set of balls {B1, . . . , Bn} such that every x ∈ Jrad(f, r)
is contained in infinitely many descendants of balls in that set. Now let
Ai be the set of points in Jrad(f, r) which are contained in infinitely many
descendants of Bi. Then for some i we have µ(Ai) > 0. By the Borel–Cantelli
lemma we have

∑
µ(B′) = ∞, where the sum is taken over all descendants

of Bi.
Now for any x ∈ Bi we see that any descendant B′ contains a point

y which maps to x under an iterate of gf . Let h denote the branch of fn

sending x to y. Then

µ(B′) = µ(h(Bi)) =
\

Bi

|h′(z)|α(f) dµ(z).

Hence by the Koebe distortion theorem we have µ(B′) ≍ |h′(x)|α(f). But∑
µ(B′) = ∞ and each branch of fn contributes to the Poincaré series, so

Ps(x) = ∞ at s = α(f) for all x ∈ Bi.

If x ∈ Ω ∩ (Ĉ −DJ) then we can find a point in the orbit of x under f
which lies in one of the Bi, by Proposition 1.

For the second point let A be such that gf (A) ⊂ A and such that
µ(A) > 0. One can modify the proof of the classical Lebesgue density the-
orem so that it works in the more general setting of finite Borel measures,
and so we know that there exists a Lebesgue density point x with

lim
s→0

µ(B(x, s) ∩A)

µ(B(x, s))
= 1

and x ∈ Lrad(f, r) for some r > 0. We can find sequences {sn} and {kn} such
that gkn

f : B(x, sn) → Dn is univalent and analytic with bounded distortion

and B(gkn

f (x), r/16) ⊂ Dn. Moreover, gkn

f (x) ∈ A, so

µ(A ∩Dn)

µ(Dn)
=
µ(gkn

f (A ∩Bn))

µ(gkn

f (Bn))
=

T
A∩Bn

|(gkn

f )′(z)|α dµ(z)T
Bn

|(gkn

f )′(z)|α dµ(z)
,

where Bn = B(x, sn) and α = α(f). Since x is a density point, the expression
tends to 1 as n→ ∞. Now choose a subsequence such that Dn → D∞ in the
Hausdorff topology, so µ(D∞) = µ(A ∩D∞). But D∞ contains an open set
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meeting ∂Λ+ and so by Proposition 1 there exists an integer n and a subset
U of ∂Λ+ contained in D∞ such that ∂Λ+ ⊂ gn

f (U). This gives

µ(∂Λ+) = µ(gn
f (D∞)) = µ(gn

f (A ∩D∞))

= µ(gn
f (A) ∩ gn

f (D∞)) = µ(gn
f (A) ∩ ∂Λ+) = µ(gn

f (A)) ≤ µ(A),

so A has full measure.

Proof of Theorem 11. We know that if f is geometrically finite then
the measure µ constructed in Theorem 7 is supported on the radial limit
set. It follows from Theorem 9 that the set has dimension α(f). Hence
δ(x) = δ(f) = α(f) for all x ∈ D. Moreover, by Theorem 8, α(f) is equal
to the Hausdorff dimension of the radial limit set. But this is equal to the
Hausdorff dimension of ∂Λ+ by Theorem 5.

Now consider a normalised δ(f)-invariant measure ν which has support
in Ω − {p}. Then by the dynamics of f , we see that ν has support in

D = Ω ∩ (Ĉ −DJ). If ν has support the interior of D, then by Proposition 2
we have Pα(x) <∞, contradicting Theorem 10. Hence Ω does not meet the
support of µ. We will show that ν is non-atomic: Suppose that ν has an
atom at a point x which lies in the orbit under gf of the critical point ω of
gf . Then ω ∈ ∂Λ+ and the orbit of ω lands on a periodic cycle and since
ν is δ(f)-conformal this cycle has multiplier of modulus one, contradicting
Lemma 4. So suppose that ν has an atom at a point x which does not lie
in the orbit under gf of the point ω. We may assume that x 6= p. Suppose
that gf (y) = x. Since y /∈ {c, J(−2)} we have ν(x) = |g′f (y)|δν(y) and hence

ν(x)/ν(y) = |g′f (y)|δ. But then

Pδ(x) =
∑

gn
f
(y)=x

|(gn
f )′(y)|−δ =

∑

gn
f
(y)=x

ν(y)/ν(x) ≤ ν(D)/ν(x) <∞,

a contradiction. It follows that ν has no atoms. Since ∂Λ+ − Lrad(f) is
countable, ν is supported on the radial limit set, and hence ν is equal to the
canonical measure µ from Theorem 7.

Proof of Corollary 2. Suppose that ν is a conformal measure supported
on ∂Λ. If it is δ(f)-conformal then by Theorem 11 it is equal to µ. If it is
β-conformal for β > δ(f) then it must be supported on ∂Λ+ − Lrad(f) by
Theorem 9.

Proof of Corollary 3. By Theorem 11 we have δ(f) = α(f) = HD(∂Λ+)
≤ 2. If HD(∂Λ+) = 2 then both µ and 2-dimensional Lebesgue measure
are 2-conformal measures. But µ is not equal to Lebesgue measure as it is
supported only on ∂Λ+. This contradicts Theorem 11.

5. Pinching deformations. In this section we investigate how the
Hausdorff dimension of the limit set varies along a pinching deformation
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{ft}0≤t<1 with limit a correspondence f ∈ F . The most complete result
occurs in the case where all the correspondences f and ft, t < 1, are given
by real parameters.

Definition 10 ([4]). Let f0 be an unpinched mating between a quad-
ratic polynomial qc and a representation of C2 ∗ C3 with connected regular
set, let p0 denote the fixed point of f−1

0 which corresponds to the landing
point of the external ray of argument 0 of qc (known as the β-fixed point of
qc), and let γ be an arc in Ω with end-points p0 ∈ Λ0

+ and J(p0) ∈ Λ0
−. A

pinching deformation {ft}0≤t<1 of f0 is given by a family of quasi-conformal
maps ht, 0 ≤ t < 1, such that each correspondence ft = ht ◦ f0 ◦ h−1

t is
holomorphic and such that

• the pairs (ft, ht) converge uniformly to a pair (f, h) as t→ 1, and
• the non-trivial fibers of h are exactly the closure of the connected

components of the orbit of γ.

Since a geometrically finite quadratic polynomial satisfies the two con-
ditions in Theorem 2 we have:

Theorem 12. Let f0 be an unpinched mating between a representation

G of C2 ∗C3 with connected regular set and a geometrically finite quadratic

polynomial qc. Then there exists a pinching deformation of f0 such that the

ft converge uniformly to a mating f ∈ F between the modular group and qc.

We pause briefly to recall the construction of a pinching deformation
given in [4]: let f0 be the initial unpinched mating, which gives rise to sets
Ω0 and Λ0 = Λ0

+ ∪ Λ0
−. Let p0 be the point corresponding to the β-fixed

point of the quadratic-like map gf0
.

We choose a curve γ in Ĉ − Λ0 which connects p0 and J(p0). We now
construct a collar neighbourhood N of γ, that is, a neighbourhood bounded
by two curves, both with end-points p0 and J(p0), which lie on either side
of γ. Thus γ divides N into two parts, B+ and B−. For each t we now define
an almost complex structure σt on B− ∪B+ by first defining it on a model
strip L in the complex plane and then transferring it onto B+ and B− by
means of conformal homeomorphisms ψ− : L → B− and ψ+ : L → B+. We
spread σt to the images of N using the dynamics of f0. By the measurable
Riemann mapping theorem there exists a quasi-conformal homeomorphism
ht which integrates σt. The family {ft = htf0h

−1
t }t<1 can be proved to be

a pinching deformation with limit f . Moreover, f is a mating between the
modular group and the quadratic involved.

Before stating the main results of this section we recall the following
definitions of [10]:

Definition 11. Suppose that a sequence {λn} ⊂ C − {0} tends to 1
and let λn = exp(Ln + iθn). We say that λn tends to 1 radially if
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θn = O(Ln).

We say that λn tends to 1 horocyclically if

θ2
n/Ln → 0.

For a sequence {λn} → λ we say that the convergence is radial (or horo-

cyclical) if λn/λ→ 1 radially (or horocyclically).

Given a pinching deformation ft → f , let q be a parabolic periodic point
of gf with multiplier λ and let qn be the corresponding periodic points of
gft

with multipliers λt. Then we say that qn → q radially or horocyclically if
λn → λ radially or horocyclically.

Theorem 13. If ft is a pinching deformation with limit f then the limit

sets ∂Λt
+ of ft converge to the limit set ∂Λ+ of f in the Hausdorff topology.

Theorem 14. Let qc : z 7→ z2 + c be a geometrically finite quadratic

polynomial with c 6= 1/4, with connected Julia set and such that the critical

point of qc does not land on the β-fixed point. Let f0 be a mating between qc
and a representation of C2 ∗C3, and let {ft}0≤t<1 be a pinching deformation

with limit f . Let pt denote the β-fixed points of gft
, so pt → p. If either

(i) pt → p radially , or

(ii) pt → p horocyclically and lim inf(HD(∂Λt
+)) > 1,

then HD(∂Λt
+) → HD(∂Λ+).

Proof of Theorem 13. Since ∂Λ0
+ is compact and since the ht converge

uniformly to h, we see that the images ht(∂Λ
0
+) converge to h(∂Λ0

+) in the
Hausdorff topology. Moreover, since each ht is a conjugacy for t < 1 and
since the ht converge uniformly to h, it follows that ht(∂Λ

0
+) = ∂Λt

+ and
that h(∂Λ0

+) = ∂Λ+. The result follows.

Lemma 9. Let {ft}0≤t<1 be a converging pinching deformation with

limit f . Then each ft is an unpinched mating between a group Gt and the

quadratic qc. Moreover , we can assume that each ft for 0 ≤ t < 1 is of the

form Jt ◦ CovQ
0 , where Q(z) = z3 − 3z.

Proof. By definition the initial correspondence is an unpinched mating
which partitions the sphere into sets Ω0, Λ0 and C0. These give rise to sets
Ωt, Λt and Ct for each 0 < t < 1.

Since f0 is an unpinched mating, there exists a conformal homeomor-
phism φ : Ω0 → D, where D is a completely invariant subset of the regular
set of the group G0, conjugating f0 to the action of the group G0. Compos-
ing each ht with φ, we get quasi-conformal maps φt : Ωt → D. Transferring
the standard complex structure on Ωt to D using φt, and then spreading it
to all of Ĉ using the involution χ, we get an almost complex structure on
the sphere which can be integrated by the measurable Riemann mapping
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theorem. The conjugate of G0 under the integrating map now gives the re-
quired group Gt. We know that any mating can be conjugated to one of the
form Jt ◦ CovQ, and the rest follows.

Proof of Theorem 14. By Lemma 9 for each t < 1 the correspondence ft

is an unpinched mating between qc and a group. The results of the previous
section hold for these unpinched matings as well, and since qc is geometri-
cally finite, each ∂Λt

+ carries a unique normalised conformal measure µt of
dimension δt, where δt is equal to the Hausdorff dimension of ∂Λt

+. Choose
a subsequence {tn} such that the µtn = µn tend to a measure ν in the weak
topology as tn → 1 and such that δtn = δn → δ as n → ∞. Then the
measure ν is supported on ∂Λ+ by Theorem 13. In fact, similar arguments
to those used in the proof of Theorem 7 show that ν is δ-conformal on any
Borel set A not containing the singular points of f and f−1 in its interior.
Now if ν has no atoms on (pre-) periodic points of gf then by Corollary 2
we have δ = HD(∂Λ+), and this proves the theorem.

To show that there are indeed no atoms at these points we follow the
proof of Theorem 11.2 of [10].

For a periodic point q of gf which lies in ∂Λ+, let qn denote the corre-
sponding periodic points of gfn

, so qn → q. Then there exists a neighbour-
hood of q on which all gfn

as well as gf are analytic homeomorphisms. Let h
and hn denote the local inverses of gf and gfn

which fix q and qn. Now if q is
repelling for gf (and therefore attracting for h), we can find a fundamental
annulus A0 around q such that {q}∪⋃∞

i=0 h
i(A0) covers a neighbourhood V

of q. Enlarging A0 slightly, we can also assume that

V ⊂ {qn} ∪
∞⋃

i=0

hi
n(A0).

Since q and the qn are attracting for h and hn, we have |h′n| < λ < 1 for some
λ and all n sufficiently large in a neighbourhood of q. Then, for V sufficiently
small, we see that for any x ∈ A0, any ε > 0 and all n sufficiently large,∑

hi
n(x)∈V

|(hi
n)′(x)|δn < ε.

Since the µn have no atoms, we find that

µn(V ) ≤
∞∑

i=0

µn(hi
n(A0)∩V ) =

\
A0

∑

hi
n(x)∈V

|(hi
n)′(x)|δn dµn(x) < εµn(A0) < ε.

Since ε was arbitrary, we conclude that there is no atom at q. See Theorem
11.2 in [10] for details.

If q is parabolic and not equal to p then, since each gfn
is conjugate to

qc on Λtn
+ , each gfn

has a parabolic periodic point qn of the same period as q
and with the same petal number. It follows that the derivatives of gfn

at qn
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are equal for all n and hence that qn → q radially. If q = p then, since the
quadratic involved is not z 7→ z2 + 1/4, we see that all the qn are repelling,
and we have radial convergence as one of the assumptions in our theorem.
Thus, in any case, we are able to apply Theorem 10.2 of [10], which implies
that for any ε > 0 and any compact set A0, there exists a neighbourhood V
of q such that ∑

hi
n(x)∈V

|(hi
n)′(x)|δn < ε

for all n sufficiently large. We now proceed as in the repelling case, by finding
a fundamental region for the action of h near q. Again see Theorem 11.2 in
[10] for details.

It remains to prove that there are no atoms on pre-periodic points. For a
pre-periodic point whose orbit under gf does not land on p this can be shown
as in Theorem 11.2 in [10]. Suppose that q is a point whose orbit under gf

eventually lands on p. Then by our assumption it is not the critical point
of gf . We will show that given any ε > 0 there exists a neighbourhood N
of q such that µn(N) < ε for all n sufficiently large. Let h denote the branch
of an iterate of f which sends p to q. Then h is a 2 : 1 analytic map on
some neighbourhood of p with p as a critical point. Since there is no atom
at p, we can choose a neighbourhood U of p such that µn(U) < ε for all n
sufficiently large. Let hn be the branch corresponding to h, sending hn(pn)
to qn for some qn. Then each hn is a 2 : 1 analytic map on U with critical
point p. Also observe that hn → h uniformly on some neighbourhood of p
containing U , so h′n → h′ uniformly on U . Thus, shrinking U if necessary,
we can assume that for all n sufficiently large we have |h′n(z)| < 1.

Let DQ be the transversal for Q defined earlier. Let U0 = U ∩ DQ, so
that each hn is injective on U0 and

µn(hn(U0)) =
\

U0

|h′n(z)|δn dµn(z) ≤ ε.

The set hn(U0) forms a cut neighbourhood of qn for each n, and, by con-
struction of the measures µn, the cut Cn carries no mass under µn, so we
can assume that for n sufficiently large and Nn = hn(U0) ∪ Cn we have
µn(N) < ε. Moreover, the Nn converge to a neighbourhood of q, and we
deduce that there exists a neighbourhood N of q with µn(N) < ε for all n
sufficiently large.

Remark 1. We had to exclude the case where the quadratic in the mat-
ing is z 7→ z2 + 1/4 because in this case the fixed points of the correspon-
dences in the pinching deformation which tend to p are parabolic with one
petal. The limit however will be the unique correspondence for which p = 1
has three petals. In this situation Theorem 10.2 in [10] is not applicable.
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6. Real pinching deformations. In this section we will see that if
we assume that the quadratic qc involved in a mating has real parameter c
then the assumption of radial convergence in Theorem 14 is automatically
satisfied. Moreover, if c is real, then the result of Theorem 14 also holds
when the orbit of the critical point does land on the β-fixed point of qc. We
say that a mating f = J ◦ CovQ

0 is real if both the fixed points of J are
real.

Theorem 15. Let qc : z 7→ z2 + c with c ∈ R − {1/4} be geometrically

finite with connected Julia set. Then there exists a pinched mating f ∈ F
between qc and PSL(2,Z), and a pinching deformation {ft}0≤t<1 with limit

f such that HD(∂Λt
+) → HD(∂Λ+).

In order to prove this result we will need:

Theorem 16. Let G be a faithful discrete representation of C2 ∗C3 with

connected regular set and let qc : z 7→ z2 + c be a quadratic polynomial

with connected Julia set. Then there exists an unpinched real mating f =
J ◦ CovQ, where Q(z) = z3 − 3z, between G and qc if and only if G is a

Fuchsian group and c is real.

Before proving Theorem 16 we prove the following lemma:

Lemma 10. Let g : U → V be a quadratic-like map with connected Julia

set Kg. If g commutes with complex conjugation then it is hybrid-equivalent

to a quadratic qc : z 7→ z2 + c with c real.

Proof. Since g commutes with complex conjugation, we see that U , and
hence V , are both symmetric with respect to the real axis.

We will sketch the proof of the straightening theorem, keeping track of
what happens to the symmetry arising from complex conjugation. Let U ′ and
V ′ be two round open discs, centred at the origin, such that q0(U

′) = V ′

and U ′ ⊂ V ′ (where q0 : z 7→ z2). Clearly, q0 commutes with complex
conjugation as well. Let c1 denote complex conjugation in the g-plane and
c2 complex conjugation in the q0-plane.

Let ζ be a point on the real line contained in the interior of the disc
Ĉ − V in the g-plane. Then there exists a unique Riemann map R sending
Ĉ − V to Ĉ − V ′ with R(ζ) = ∞ and R′(ζ) > 0.

Now the map c2Rc1 also sends Ĉ − V to Ĉ − V ′ with R(ζ) = ∞ and
R′(ζ) > 0, so by uniqueness we have c2Rc1 = R.

LetA be the annulus V−U andA′ the annulus V ′−U ′. The Riemann map
R extends to the outer boundary ∂V of A, which we assume to be smooth.
We can extend R to a map R : ∂U → ∂U ′ between the inner boundaries
of the two annuli by the rule g(z) = R−1q0R(z) for all z ∈ ∂U . Finally, we
extend R quasi-conformally to the interior of A so that R(A) = A′. Since
the regions involved are symmetric with respect to the real axis and since
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the maps involved all commute with complex conjugation, we can define R
on A so that c2Rc1 = R everywhere (this is done by first defining R on the
intersection of A and the upper half-plane and then extending this to the
lower half-plane accordingly).

Next, we define a degree two map F on Ĉ by F (z) = g(z) on U and
F (z) = R−1q0R(z) elsewhere. We also have an orientation-reversing involu-

tion J on Ĉ given by J(z) = c1 on V and J(z) = R−1c2R(z) elsewhere. By
definition, J commutes with F .

We now define an almost complex structure σ that is preserved by F in
the usual way. Note that σ is also preserved by J .

By the measurable Riemann mapping theorem, there exists a quasi-
conformal homeomorphism φ which carries σ to the standard complex struc-
ture. The conjugate of F by φ is a degree two holomorphic map of the
complex plane and therefore a quadratic polynomial q. The conjugate J̃
of J by φ is an orientation-reversing involution of the plane that fixes a
curve pointwise and preserves the standard complex structure. Any such
map is conformally conjugate to complex conjugation. Moreover, q com-
mutes with J̃ , so it follows that g is hybrid-equivalent to a quadratic which
commutes with complex conjugation. The result follows.

Proof of Theorem 16. We recall briefly the construction given in [5] of
the mating f0 using quasi-conformal surgery: Firstly, the group G is a rep-
resentation of the free product C2 ∗ C3 and has connected regular set and
hence a Cantor limit set. Let σ and ̺ denote the order 2 and 3 generators
of G respectively. There exists a unique involution χ of the sphere which
conjugates each of σ and ̺ to its inverse. Moreover, for the group 〈σ, ̺, χ〉
there exists a fundamental domain ∆ as shown in Figure 7. Here P and P ′

denote the fixed points of ̺, Q and Q′ the fixed points of σ, and W and T
the fixed points of ̺χ and σχ respectively.

The quotient of ∆ ∪ ̺(∆) ∪ ̺2(∆) by χ is an annulus A which carries a
2 : 2 correspondence arising from ̺ ∪ ̺2, and whose inner boundary maps
2 : 1 onto the outer boundary under the projections of σ̺ and σ̺2. The pro-
jection of σ gives an involution on the outer boundary. See Figures 8 and 9.

For the quadratic qc one can choose a topological disc V bounded by
an equipotential such that q−1

c (V ) is a topological disc as well. The inner
boundary of the annulus B = V − q−1

c (V ) maps 2 : 1 onto the outer bound-
ary under qc; and the outer boundary carries an involution j coming from
sending an external angle t to 1 − t.

The surgery construction in [5] now matches the annuli A and B to give

a mating f = J ◦ CovQ
0 , where Q(z) = z3 − 3z. The annulus A corresponds

to the intersection of a transversal DQ of CovQ
0 and a fundamental domain

DJ of J .
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Fig. 7. A fundamental domain ∆ of the group, made up of the images of a line n connecting
P and W , a line m connecting Q and T and a line l connecting W and T , under the group
elements ̺, σ and χ.

Fig. 8. Three copies of the fundamental do-
main ∆. Fig. 9. The quotient annulus A.

If G is Fuchsian, the orientation-reversing involution χC, where C denotes
complex conjugation, descends to a reflectional involution on A. Similarly, if
c is real, complex conjugation C gives a reflectional involution of B. These in-
volutions are matched by the surgery construction and the resulting mating
f then commutes with an orientation-reversing involution I of all of Ĉ which
preserves the standard complex structure. Such an involution is conformally
conjugate to complex conjugation.

The fixed points of J correspond to the projections onto the annulus A
of the points Q and T , which lie on the line of symmetry of the reflectional
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involution on A. Since this involution passes to complex conjugation, we
deduce that J has two real fixed points.

It remains to prove the other direction of the theorem: Suppose that
f = J ◦ CovQ

0 and that the involution J has real fixed points x1 < y1.

We note that the disc DQ bounded by the line {x ± i
√

3x2 − 3 : x ≥ 1}
and containing the point 2 is a transversal for Q with the property that for
z ∈ ∂DQ we have z = C(z) = CovQ

0 (z) ∩ ∂DQ.
Now, since f is a mating, there exists a fundamental domain DJ of J

such that D0
Q ∪D0

J = Ĉ. Images of the annulus DQ ∩DJ tile the regular set
Ω of the correspondence, and it is this annulus, cut along an appropriate
line, that corresponds to the regular set of the group.

Let D be the bounded component of the complement of the circle that
passes through the two real fixed points of J and is centred on the real line.
This clearly is a fundamental domain of J with the property that if z ∈ ∂D,
then J(z) = z. Moreover, D is properly contained in DQ: Suppose that it
is not and that ∂DQ and ∂D meet in a point z. Then, clearly, z and z are
fixed points of f and hence lie in Λ. Since z = J(z) and since J sends Λ+

to Λ− we deduce that one of z and z lies in Λ+ while the other lies in Λ−.
However, since f commutes with complex conjugation we see that z ∈ Λ+

if and only if z ∈ Λ+, a contradiction. Hence the boundaries of DQ and D

do not meet. It follows that the interior of Ĉ − D and the interior of DQ

together cover the sphere, and so we can take Ĉ−D to be the fundamental
domain DJ of J mentioned above.

Now the annulus DQ ∩DJ = DQ −D is invariant under complex conju-

gation. If we quotient it by the action of the branches of CovQ
0 together with

the involution J , we get a sphere S with four cone-points: P̃ of order 2π/3

corresponding to ∞, Q̃ of order π corresponding to the (real) fixed point x1

of J (see Figure 10), T̃ of order π corresponding to the (real) fixed point x2

of J , and W̃ of order π corresponding to the fixed point 1 of CovQ
0 . Since

f is a mating, the sphere S is precisely the orbifold of the group 〈σ, ̺, χ〉.
The cone-point P̃ corresponds to the fixed point P of ̺, Q̃ corresponds to
the fixed point Q of σ, T̃ corresponds to T and χ(T ) and W̃ corresponds to
W and χ(W ) (see Figure 10). Complex conjugation in the correspondence
plane now descends to an orientation-reversing involution on S which fixes
pointwise a closed curve through the four cone-points.

Now consider the component of this fixed curve that connects the cone-
point P̃ to the cone-point Q̃ and contains the other two cone-points. Cut-
ting the sphere along this component gives a fundamental domain ∆ of
the group as in Figure 7. The involution on S now gives an orientation-
reversing involution I, sending ∆ to itself and fixing a curve that runs from
the point P to the point Q and interchanging the points T and χ(T ) and
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Fig. 10. The top figure shows the annulus DQ − D. The line segments connecting 1 and
x2 and x1 and ∞ mark its intersection with the real line. The bottom left figure shows
the orbifold sphere and the curve along which it is cut. Cutting it gives the fundamental
domain in the bottom right figure.

the points W and χ(W ). Since we have cut S along a curve fixed by the
involution on S, and since in the correspondence plane complex conjuga-
tion coincides with J on ∂DJ and with a branch of CovQ

0 on ∂DQ, we also
have

• ̺(x) = I(x) for x lying in the boundary component of ∆ that connects
W to P ,

• ̺−1(x) = I(x) for x lying in the boundary component of ∆ that con-
nects χ(W ) to P ,

• σ(x) = I(x) for x lying in the boundary component of ∆ that connects
T to χ(T ),

• χ(x) = I(x) for x lying in the boundary component of ∆ that connects
W to T .

Let J = χ ◦ I, so that J sends ∆ to χ(∆). Using the group elements
σ and ̺ we can extend J to an orientation-reversing involution defined on
all the copies of the fundamental domain ∆, which together make up the
regular set of the group. We do this as follows: If w is a word in σ, ̺ and ̺2,
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then we define
J(w(∆ ∪ χ(∆))) = w(J(∆ ∪ χ(∆))).

By definition, J commutes with both σ and ̺. It also fixes pointwise the
images under the group of the boundary components l and χ(l) of ∆.

Now, since every point in the limit set of our group is an accumulation
point of copies of the fundamental domain∆, one might hope that the defini-
tion of J can be extended to the limit set. As the following argument shows,
this is indeed the case. Whether or not our group is Fuchsian, it certainly
is quasi-conformally conjugate to a Fuchsian group, since all the groups
involved in our matings come from one quasi-conformal conjugacy class.
Hence, all the copies of our fundamental domain ∆ have quasi-conformal
images which are copies of a fundamental domain of a Fuchsian group.
Moreover, the combinatorics of our involution J , in other words the way
in which it permutes copies of the fundamental domain, is exactly the same
as that of complex conjugation in the Fuchsian case. Since complex conju-
gation in the Fuchsian case extends to the limit set, we deduce that J can
be extended to the limit set analogously.

Since it comes from complex conjugation in the correspondence plane,
the involution J preserves angles everywhere, except possibly on the limit
set of the group. But as mentioned before, our group is quasi-conformally
conjugate to a Fuchsian group by a quasi-conformal homeomorphism φ. The
limit set of a Fuchsian group is contained in R̂, which maps to a quasi-circle
under φ. Now post-composing J with a map of the form

z 7→ az + b

cz + d

gives a homeomorphism that is conformal everywhere, except possibly on
a set contained within a quasi-circle. But quasi-circles are removable for
conformal homeomorphisms; in other words, a map that is defined on Ĉ and
conformal everywhere off a quasi-circle is also conformal on the quasi-circle
(this is a standard result, see for example Proposition 2 in [2]). Therefore
our composition is conformal on the whole sphere and it follows that J is
conformally conjugate to complex conjugation.

Thus, σ and ̺ commute with a conformal conjugate of complex conju-
gation and this implies that the group they generate is Fuchsian.

Lastly, we need to show that the quadratic qc has real parameter c.
Since f commutes with complex conjugation the quadratic-like map g =
f−1 : f(DJ) → DJ commutes with it as well. The result now follows from
Lemma 10.

Proof of Theorem 15. Let f0 be a mating between qc and a Fuchsian
representation G of C2 ∗ C3. By Theorem 16, f0 is real. We will show that
there exists a pinching deformation ft → f such that all ft are real. The
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fixed points p0 and J(p0) of f0 are real and one can check ([4]) that we can
choose for the curve γ the real interval [J(p0), p0]. Moreover, we can choose
the collar neighbourhood N to be symmetric with respect to complex con-
jugation. Hence we can choose ψ− = ψ+. Since f0 commutes with complex

conjugation C, we see that ft commutes with ht ◦ C ◦ h−1
t and that this map

preserves the standard complex structure. It follows that ht ◦ C ◦h−1
t is con-

formally conjugate to complex conjugation. Hence, conjugating suitably, we
ensure that ft commutes with complex conjugation with the real line in the
f0-plane corresponding to the real line in the ft-plane, and therefore Jt has
two real fixed points.

It follows that the fixed points pt → p of the correspondences ft are all
real. The first derivative of the branch of ft that fixes pt commutes with
complex conjugation and therefore it is real at pt. Hence pt → p radially.

The only case not covered by this argument is when the critical point
of qc lands on the β-fixed point. Since c is real, the only quadratic with this
property is q−2 : z 7→ z2 − 2. This has Julia set the real interval [−2, 2]. By
similar considerations to those in the proof of Theorem 16, the image of this
interval under the hybrid-equivalence to gft

is a real interval, so Λt
+ is a real

interval for all t < 1. Now there is a unique mating f such that gf satisfies

the same critical relation as q−2, namely f = J ◦ CovQ
0 , where

J(z) =
5z − 8

2z − 5
,

the involution fixing the points 1 and 4. This f is the limit of the ft. It
is easy to check that Λ+ is a real interval as well, so HD(Λt

+) = 1 for all
0 ≤ t ≤ 1.

7. Generalisations. In [3] we presented families of (n − 1) : (n − 1)
correspondences representing matings between the nth Hecke group Hn and
Chebyshev-like maps of degree n− 1, for each integer n ≥ 3. The nth Hecke

group is a Fuchsian group isomorphic to C2 ∗Cn with limit set the real line
union infinity. It is generated by the matrices

σ =

(
0 1

−1 0

)
, ̺ =

(
0 1

−1 −2 cos(π/n)

)
.

The group H3 is the modular group. Chebyshev-like maps are maps with
just two critical values, one being fixed and one being free.

Using analogous methods to those used in this paper for n = 3, it is
possible to prove the results of Sections 1–4 of this paper for these higher
“degree” matings.

In [9] it was shown that for each n > 3 there exist unpinched matings be-
tween quasi-Fuchsian groups with Cantor limit sets and certain polynomials
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with disconnected Julia sets, however the existence of converging pinch-
ing deformations in this context has not yet been proved. Assuming that
these pinching deformations can indeed be constructed by methods similar
to those in [4], we conjecture that the results of Section 5 of this paper will
hold true for any of the matings presented in [3].
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