
FUNDAMENTAMATHEMATICAE193 (2007)

Some strongly bounded 
lasses of Bana
h spa
esbyPandelis Dodos (Athens) and Valentin Feren
zi (Paris)
Abstra
t. We show that the 
lasses of separable re�exive Bana
h spa
es and ofspa
es with separable dual are strongly bounded. This gives a new proof of a re
ent resultof E. Odell and Th. S
hlumpre
ht, asserting that there exists a separable re�exive Bana
hspa
e 
ontaining isomorphi
 
opies of every separable uniformly 
onvex Bana
h spa
e.1. Introdu
tion. A Bana
h spa
e X is said to be universal for a 
lass

C of Bana
h spa
es if every spa
e in C embeds isomorphi
ally into X. It is
omplementably universal if the embeddings are 
omplemented.A

ording to the 
lassi
al Mazur theorem, the spa
e C(2N) is univer-sal for separable Bana
h spa
es. By [JS℄, there does not exist a separableBana
h spa
e whi
h is 
omplementably universal for the 
lass of separableBana
h spa
es. However, A. Peª
zy«ski [P℄ 
onstru
ted a spa
e U with aS
hauder basis whi
h is 
omplementably universal for the 
lass of spa
eswith a S
hauder basis (and even for the 
lass of spa
es with the BoundedApproximation Property�see [Ka℄). There is also an un
onditional versionof U , i.e. a spa
e with an un
onditional basis whi
h is 
omplementably uni-versal for the 
lass of spa
es with an un
onditional basis.In 1968, W. Szlenk proved that there does not exist a Bana
h spa
e withseparable dual whi
h is universal for the 
lass of separable re�exive Bana
hspa
es [Sz℄. His proof is based on the de�nition of the Szlenk index whi
his a trans�nite measure of the separability of the dual of a spa
e. In 1980,J. Bourgain proved that any spa
e whi
h is either universal for separablere�exive spa
es, or for all C(K) for K 
ountable 
ompa
t, must be universalfor all separable Bana
h spa
es (see [Bou1, Bou2℄). B. Bossard formalizedthe use of des
riptive set theory, initiated by Bourgain, to study 
lasses ofseparable Bana
h spa
es in [Bo1, Bo3℄. He proved that any 
lass of separable2000 Mathemati
s Subje
t Classi�
ation: 03E15, 46B03.Key words and phrases: universal Bana
h spa
e, strongly bounded 
lass, Szlenk index,E�ros�Borel stru
ture.Resear
h supported by a grant of EPEAEK program �Pythagoras�.[171℄
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ziBana
h spa
es whi
h is analyti
, in the E�ros�Borel stru
ture of subspa
esof C(2N), and 
ontains all separable re�exive Bana
h spa
es, must 
ontain auniversal spa
e. In a re
ent paper [AD℄, S. A. Argyros and the �rst namedauthor have 
onne
ted Bourgain's and Bossard's approa
h to universalityproblems. Among other things, they introdu
ed the following 
on
ept.Definition 1. A 
lass C of separable Bana
h spa
es is said to be stronglybounded if for every analyti
 subset A of C, in the E�ros�Borel stru
ture ofsubspa
es of C(2N), there exists Y ∈ C that 
ontains isomorphi
 
opies ofevery X ∈ A.This notion is 
entral for understanding universality problems in Bana
hspa
e theory. In [AD℄, it is shown that several natural 
lasses of separableBana
h spa
es are strongly bounded. In parti
ular, the following is proved(see Theorem N in the introdu
tion of [AD℄).Theorem 2. The following hold :
(1) The 
lass of re�exive spa
es with a S
hauder basis is strongly bounded.
(2) The 
lass of spa
es with a shrinking S
hauder basis is stronglybounded.In this note we remove the assumption of the existen
e of a basis inTheorem 2 and we prove the following.Theorem 3. The following hold :
(1) The 
lass of separable re�exive spa
es is strongly bounded.
(2) The 
lass of spa
es with a separable dual is strongly bounded.Our method is to redu
e the proof of Theorem 3 to Theorem 2 by usinga uniform version of the theorem of Zippin [Z℄ stating that every Bana
hspa
e with a separable dual embeds into a spa
e with a shrinking S
hauderbasis. To this end, we are essentially based on the results of B. Bossard in[Bo2℄ and the alternative proof of Zippin's theorem given by N. Ghoussoub,B. Maurey and W. S
ha
hermayer in [GMS℄.Theorem 3 answers positively a question of H. P. Rosenthal from1979, [R℄. He asked whether there existed a universal spa
e with a separabledual for any given 
lass of spa
es on whi
h the Szlenk index is bounded. Inparti
ular, we have the following.Corollary 4. For every 
ountable ordinal ξ, the 
lass of spa
es withSzlenk index less than or equal to ξ is Borel. Thus, for every ξ < ω1, thereexists a Bana
h spa
e Yξ with separable dual su
h that for any spa
e X with

Sz(X) ≤ ξ, X embeds into Yξ.J. Bourgain had asked whether there existed a separable re�exive Ba-na
h spa
e whi
h is universal for separable uniformly 
onvex spa
es. Very
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ently, E. Odell and Th. S
hlumpre
ht answered this question in the af-�rmative [OS℄. From our point of view, their result is an immediate 
on-sequen
e of Theorem 3 and of the fa
t that uniform 
onvexity is a lo
alproperty, and therefore, that the 
lass of separable uniformly 
onvex Bana
hspa
es is Borel.Corollary 5 (E. Odell, Th. S
hlumpre
ht). The 
lass UC of uniformly
onvex separable Bana
h spa
es is Borel. Thus, there exists a separable re�ex-ive Bana
h spa
e Y that 
ontains isomorphi
 
opies of all uniformly 
onvexseparable Bana
h spa
es.2. Preliminaries. A topologi
al spa
e is Polish if it is separable andits topology is generated by a 
omplete metri
. Its Borel subsets are thosebelonging to the smallest σ-algebra 
ontaining the open sets. An analyti
subset is the 
ontinuous image of a Polish spa
e, or equivalently, of a Borelsubset of a Polish spa
e. A 
o-analyti
 subset is the 
omplement of an ana-lyti
 subset. If X and Y are Polish spa
es, a Borel map f from X into Y isa map su
h that f−1(B) is a Borel subset of X for any Borel subset B of Y .If X is a Polish spa
e and B is a 
o-analyti
 subset of X, then a map
φ : B → ω1 is said to be a 
o-analyti
 rank on B (a Π

1
1-rank in the logi
alterminology) if there are relations ≤Σ,≤Π in X ×X whi
h are analyti
 and
o-analyti
 respe
tively, su
h that for every x, y ∈ B we have

φ(x) ≤ φ(y) ⇔ x ≤Σ y ⇔ x ≤Π y.We refer to [Ke℄ for a thorough presentation of rank theory as well as to[KL℄ for its appli
ations. Here we simply state the following properties of
o-analyti
 ranks whi
h will be needed later on (see [Ke℄).Lemma 6. Let X be a Polish spa
e, B a 
o-analyti
 subset of X and
φ : B → ω1 a 
o-analyti
 rank on B. Then the following hold :(a) (Boundedness) For every A ⊆ B analyti
 we have

sup{φ(x) : x ∈ A} < ω1.(b) For every ξ < ω1, the set {x ∈ B : φ(x) ≤ ξ} is Borel.The standard Borel spa
e of separable Bana
h spa
es. Let X be a Polishspa
e and denote by F (X) the 
olle
tion of all 
losed subsets of X. We equip
F (X) with the E�ros�Borel σ-algebra. This is the σ-algebra generated bythe sets {F ∈ F (X) : F ∩ U 6= ∅}, where U ranges over all non-empty opensubsets of X. It is well known that the E�ros�Borel stru
ture is standard.This means that there exists a Polish topology τ on F (X) su
h that theBorel σ-algebra of (F (X), τ) 
oin
ides with the E�ros�Borel σ-algebra (see[Ke, Theorem 12.6℄).
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ziNow let X be a separable Bana
h spa
e and put
Subs(X) = {F ∈ F (X) : F is a linear subspa
e of X}.Then Subs(X) is a Borel subset of F (X) (see [Ke, p. 79℄) and so a standardBorel spa
e in its own right. If X = C(2N), then Subs(C(2N)) is the standardBorel spa
e of all separable Bana
h spa
es and we denote it simply by SB.We refer to [AD℄, [AGR℄, [Bo1℄, [Bo3℄ and [Ke℄ for more ba
kground materialon SB. We will need the following fa
t, whi
h is essentially a 
onsequen
e ofthe Kuratowski�Ryll-Nardzewski sele
tion theorem (see [Ke, p. 76℄). Thereexist two sequen
es dn : SB → C(2N) and Sn : SB → C(2N), n ∈ N,of Borel fun
tions su
h that for every X ∈ SB we have {dn(X)}n = Xand {Sn(X)}n = SX . As usual, for any Bana
h spa
e X we denote by

SX = {x ∈ X : ‖x‖ = 1} the sphere of X, and by BX = {x ∈ X : ‖x‖ ≤ 1}its (
losed) ball.We denote by REFL and SD the subsets of SB 
onsisting of all re�exivespa
es and all spa
es with separable dual respe
tively. Both are 
o-analyti
non-Borel (see [Bo3℄). For every separable spa
e X, Sz(X) denotes the Szlenkindex of X (see [Sz℄). It is de�ned as follows. Let F be a w∗-
losed subsetof BX∗ . For ε > 0, we let F ′

ε be the set of x∗ in F su
h that for any w∗-neighborhood V of x∗ we have diam(V ∩F ) > ε. Let F
(0)
ε = BX∗ and de�neby trans�nite re
ursion

F (ξ)
ε =





(F
(ζ)
ε )′ε if ξ = ζ + 1 is a su

essor ordinal,

⋂

ζ<ξ

F (ζ)
ε if ξ is a limit ordinal.

Then we set Szε(X) = inf{ξ < ω1 : F
(ξ)
ε = ∅} if the set {ξ < ω1 : F

(ξ)
ε = ∅}is non-empty, and Szε(X) = ω1 otherwise. Finally, we let

Sz(X) = sup
ε>0

Szε(X).It is well known that X ∈ SD if and only if Sz(X) < ω1. However, mostimportant for our purposes is the fa
t that the Szlenk index is a 
o-analyti
rank on SD (see [Bo3℄). Thus Lemma 6 applies to it. For an extensive surveyon the Szlenk index we refer to [L2℄.3. A uniform version of Zippin's theorem. The aim of this se
tion isto present the following uniform version of M. Zippin's theorem [Z℄ essentiallybased on the results of B. Bossard in [Bo2℄.Proposition 7. The following hold :
(1) Let A be an analyti
 subset of REFL. Then there exists an analyti
subset A′ of REFL su
h that for all X ∈ A there exists Y ∈ A′ witha S
hauder basis that 
ontains X.
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(2) Let A be an analyti
 subset of SD. Then there exists an analyti
subset A′ of SD su
h that every Y ∈ A′ has a shrinking basis andfor all X ∈ A there exists Y ∈ A′ that 
ontains X.The proof of Proposition 7 is modeled after the proof of Zippin's theoremgiven by N. Ghoussoub, B. Maurey andW. S
ha
hermayer in [GMS℄. Part (2)is an immediate 
onsequen
e of the following result of Bossard (see [Bo2,Theorem 3.1℄) modulo the fa
t that the Szlenk index is a 
o-analyti
 rankon SD. Note that sin
e having a S
hauder basis is analyti
, we may alwaysassume in Proposition 7 that A′ is an analyti
 set of spa
es with a S
hauderbasis.Theorem 8 (B. Bossard). There exists a universal map φ : ω1 → ω1su
h that for every Bana
h spa
e X with separable dual and every 
ountableordinal ξ, if Sz(X) ≤ ξ, then X embeds into a Bana
h spa
e Y with ashrinking basis with satis�es Sz(Y ) ≤ φ(ξ).To see that Theorem 8 implies part (2) of Proposition 7 one argues asfollows. Let A be an analyti
 subset of SD. By Lemma 6(a), we get

sup{Sz(X) : X ∈ A} = ξ < ω1.Let [N] denote the set of all in�nite subsets of N and let (un)n denote thebasis of the universal spa
e U of Peª
zy«ski. Consider the set
S = {L ∈ [N] : (un)n∈L is shrinking}.In [Bo3℄, it is shown that S is 
o-analyti
 and that the map

S ∋ L 7→ Sz(span{un : n ∈ L})is a 
o-analyti
 rank on S (see [Bo3, Theorem 5.4℄). Therefore, by Lem-ma 6(b), the set
Sξ = {L ∈ S : Sz(span{un : n ∈ L}) ≤ φ(ξ)}is a Borel subset of S. Sin
e the map [N] ∋ L 7→ span{un : n ∈ L} ∈ SB isBorel, it follows that the set

A′ = {Y ∈ SB : ∃L ∈ Sξ su
h that span{un : n ∈ L} ∼= Y }is an analyti
 subset of SD (here ∼= denotes as usual the isomorphism relation,whi
h is analyti
). Theorem 8 implies that A′ is as desired.This simple argument 
annot be used in order to derive part (1) of Propo-sition 7 dire
tly from Theorem 8, as the Szlenk index is not a 
o-analyti
rank on REFL (see [Bo2, p. 68℄). However, it does follow from the te
h-niques of [Bo2℄ and the method of [GMS℄. We will des
ribe this below. Let
f0 ∈ C(2N) be a �xed fun
tion that separates points in 2N and let 1 be the
onstant fun
tion equal to 1. For every X ∈ SB we let

E(X) = span{X ∪ f0 ∪ 1}.We have the following easy fa
t.
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ziLemma 9. The map SB ∋ X 7→ E(X) ∈ SB is Borel. In parti
ular , if
A ⊆ REFL is analyti
, then the set A1 = {E(X) : X ∈ A} is an analyti
subset of REFL.Proof. Let dn : SB → C(2N), n ∈ N, be the sequen
e of Borel fun
tionssu
h that for all X ∈ SB we have {dn(X)}n = X. Now observe that for every
U ⊆ C(2N) open, we have

E(X) ∩ U 6= ∅ ⇔ ∃n ∈ N ∃p1, p2 ∈ Q with dn(X) + p1f0 + p21 ∈ U.Thus the fun
tion E is Borel. As for every re�exive spa
e X the spa
e E(X)is re�exive, the lemma is proved.From now on we �x an analyti
 subset A of REFL. Let A1 be the setobtained by Lemma 9 for A. Applying Lemma 6(a) we see that
sup{Sz(Z) : Z ∈ A1} = ξ < ω1.Denote by e = (en)n the 
anoni
al basis of ℓ1. If H ∈ Subs(ℓ1) and e ∈ ℓ1,then eH will be the 
lass of e in ℓ1/H, and e

H = (eH
n )n. Re
all that anyseparable Bana
h spa
e is isometri
 to ℓ1/H for some H. By Lemma 3.2 in[Bo2℄, the subset Zξ of Subs(ℓ1) × ℓN

1 × C(2N)N × SB de�ned by
Zξ = {(H,h,x, X) : Sz(X) ≤ ξ, span(x) = X, span(h) = H,

x
1
∼ e

H , 1 ∈ X and f0 ∈ X}is Borel (as usual, x
1
∼ e

H means that x is 1-equivalent to e
H). For every

a ∈ Zξ write a = (H(a),h(a),x(a), X(a)). Given su
h an a and applyingthe sli
ing methods developed in [GMS℄ one produ
es the following obje
ts:(I) A 
losed, 
onvex, bounded and symmetri
 subset W (a) of C(2N) su
hthat the map
Zξ ∋ a 7→ W (a) ∈ F (C(2N))is Borel (see [Bo2, Lemma 3.6℄). Moreover, if X(a) is re�exive, thenthe set W (a) is weakly 
ompa
t.(II) A monotone basis b(a) ∈ C(2N)N for C(2N) su
h that again the map
Zξ ∋ a 7→ b(a) ∈ C(2N)Nis Borel (see [Bo2, Lemma 3.5℄).Performing the Davis�Figiel�Johnson�Peª
zy«ski interpolation [DFJP℄ forthe pair (C(2N), W (a)), it is shown in [GMS℄ that the interpolation spa
e

∆(a) 
ontains X(a) and the sequen
e b(a) de�nes a shrinking basis of ∆(a).We noti
e that by (I) above, if X(a) is re�exive, then the 
lassi
al propertiesof the interpolation s
heme of [DFJP℄ imply that the spa
e ∆(a) is alsore�exive. Denote by b̃(a) the sequen
e b(a) regarded as a basis of ∆(a).The 
ru
ial fa
t established by this pro
edure is that the subset R of Zξ ×



Strongly bounded 
lasses of Bana
h spa
es 177
C(2N)N × SB de�ned by

R = {(a,v, V ) : span(v) = V and v
1
∼ b̃(a)}is Borel (see the proof of Lemma 3.7 in [Bo2℄). Noti
e that if (a,v, V ) ∈ R,then V is isometri
 to ∆(a). Now 
onsider the set A′ de�ned by

V ∈ A′ ⇔ ∃Y ∈ A ∃a ∈ Zξ ∃v ∈ C(2N)N [E(Y ) = X(a) ∧ (a,v, V ) ∈ R].As R is Borel and E is a Borel map, we see that A′ is analyti
. By the fa
t that
A ⊆ REFL and property (I) above, we infer that every V ∈ A′ is re�exive, i.e.
A′ is an analyti
 subset of REFL. Finally, we noti
e that for every Y ∈ Athere exists aY ∈ Zξ su
h that X(aY ) = E(Y ). Thus ∆(aY ) ∈ A′. As
E(Y ) = X(aY ) embeds into ∆(aY ), so does Y . It follows that the set A′ hasall desired properties and the proof of part (1) of Proposition 7 is 
ompleted.4. Proof of the main resultsProof of Theorem 3. (1) Let A be an analyti
 subset of REFL. By Propo-sition 7(1), there exists an analyti
 subset A′ of REFL su
h that for every
Y ∈ A there exists Z ∈ A′ with a S
hauder basis su
h that Y is 
ontainedin Z. By Theorem 2(1), the result follows.(2) Let A be an analyti
 subset of SD. By Proposition 7(2), there exists ananalyti
 subset A′ of SD of spa
es with a shrinking basis, su
h that for every
Y ∈ A there exists Z ∈ A′ su
h that Y is 
ontained in Z. By Theorem 2(2),the result follows.Proof of Corollary 4. Fix a 
ountable ordinal ξ. By Theorem 3(2), it isenough to show that the set {X ∈ SD : Sz(X) ≤ ξ} is Borel. But this isan immediate 
onsequen
e of the fa
t that the Szlenk index is a 
o-analyti
rank on SD and of Lemma 6(b).Proof of Corollary 5. By Theorem 3(1), it is enough to show that the
lass UC of separable uniformly 
onvex Bana
h spa
es is Borel. To see thislet Sn : SB → C(2N), n ∈ N, be the sequen
e of Borel fun
tions su
h thatfor every X ∈ SB we have {Sn(X)}n = SX . Now observe that

X ∈ UC ⇔ ∀k ∈ N ∃l ∈ N su
h that ∀n, m ∈ N

‖Sn(X) − Sm(X)‖ ≥
1

k
⇒

∥∥∥∥
Sn(X) − Sm(X)

2

∣∣∣∣ ≤ 1 −
1

l
.Invoking the Borelness of the fun
tions (Sn)n we see that UC is Borel.It is a
tually known that a separable spa
e is isomorphi
 to a uniformly
onvex spa
e if and only if its weak∗-dentability index (an ordinal index
lose to the Szlenk index) is less than ω (see [L1℄). Our method does notgive information on the Szlenk index, or the weak∗-dentability index, of
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zithe re�exive spa
e provided by Corollary C. This spa
e must have weak∗-dentability index stri
tly greater than ω.We 
lose this se
tion by noting the following un
onditional versions ofthe above results. Their proofs are easy adaptations of the methods of [AD℄,with the use of the un
onditional version of the universal spa
e of Peª
zy«skiinstead of the S
hauder basis version.Theorem 10.
(1) The 
lass of re�exive spa
es with an un
onditional basis is stronglybounded.
(2) The 
lass of spa
es with an un
onditional basis and not 
ontaining

ℓ1 is strongly bounded.The universal spa
es with an un
onditional basis and not 
ontaining ℓ1obtained in (2) are a
tually 
omplementably universal for the 
orrespondinganalyti
 
lasses of spa
es with an un
onditional basis and not 
ontaining ℓ1.Corollary 11.
(1) The 
lass UUC of uniformly 
onvex Bana
h spa
es with an un
ondi-tional basis is analyti
. Thus, there exists a re�exive Bana
h spa
ewith an un
onditional basis that 
ontains isomorphi
 
opies of alluniformly 
onvex Bana
h spa
es with an un
onditional basis.
(2) The 
lass of spa
es with an un
onditional basis and non-trivial type isanalyti
. Therefore there exists a re�exive spa
e with an un
onditionalbasis whi
h is universal for this 
lass.Proof. We noti
e that the 
lass of spa
es with an un
onditional basis isanalyti
. So part (1) is an immediate 
onsequen
e of Theorem 10(1). Forpart (2) we re
all that the subset of SB 
onsisting of all spa
es with non-trivial type is analyti
 (see [AD℄). Observe that a spa
e with non-trivial type
annot 
ontain a 
opy of ℓ1 or c0, therefore by the 
lassi
al theorem of James,it must be re�exive if it has an un
onditional basis. By Theorem 10(1), theresult follows.
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