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A Čech function in ZFC

by

Fred Galvin (Lawrence, KS) and Petr Simon (Praha)

Abstract. A nontrivial surjective Čech closure function is constructed in ZFC.

A closure function on a set X is a mapping ϕ : P(X) → P(X) such that
(i) ϕ(∅) = ∅, (ii) P ⊆ ϕ(P ) for all P ⊆ X, and (iii) ϕ(P ∪Q) = ϕ(P )∪ϕ(Q)
for all P,Q ⊆ X. In 1947 Eduard Čech [Č] asked: is there a closure function,
other than the identity, which is onto P(X)? A mapping answering Čech’s
question has come to be called a Čech function.

In 1978 the first author [G] announced a solution; however, dissatisfied
that his solution required some set-theoretic assumptions, he delayed writing
a paper. (Eventually, E. C. Milner and Karel Prikry [MP] included this
construction of a Čech function in a survey paper on almost disjoint sets.)
Around the same time, Roderick A. Price [P] produced a Čech function,
assuming the continuum hypothesis, and remarked that the equality r = c

suffices. (Here r is the reaping number, the smallest size of a family R ⊆ [ω]ω

such that for every X ⊆ ω there is some R ∈ R with either R ⊆ X or
R ⊆ ω \ X.) However, as the inequality r < c is consistent with ZFC ([K,
VIII, Exercise A10]), Price’s approach can hardly be modified into a ZFC
version.

In 1981 the second author with B. Balcar and J. Dočkálková [BDS] con-
structed (in ZFC) a family of subsets of ω with the properties needed for
the first author’s construction of a Čech function, namely, an infinite com-
pletely separable almost disjoint family. Now, the first author’s construction
ostensibly used a stronger assumption, namely, the existence of an infinite
completely separable maximal almost disjoint family; maybe this is why
the two results were not connected for 25 years. We still do not know if
this stronger statement is provable in ZFC. However, the second author
recently observed that the first author’s construction does not really need
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maximality, and so the existence of a Čech function on ω is proved in ZFC.
A self-contained proof is given in this note.

1. Short version. We shall work on the set ω of all finite ordinals.
An almost disjoint family is a family of infinite subsets of ω such that any
two distinct members meet in a finite set. If A is an almost disjoint family,
then it naturally divides all subsets of ω into two classes: a set is big if
it has infinite intersection with infinitely many members of A, and small

otherwise. In symbols, the family of big sets is

J +(A) = {X ⊆ ω : |{A ∈ A : |X ∩A| = ω}| ≥ ω}.

Clearly, the small sets, i.e. J (A) = {X ⊆ ω : |{A ∈ A : |X ∩ A| = ω}|<ω},
form an ideal in P(ω). An almost disjoint family A on ω is completely sep-

arable if, for each X ∈ J +(A), there is some A ∈ A with A ⊆ X. (It
should be noted that the term “completely separable” has sometimes been
used ([G], [MP]) to mean, in effect, “completely separable and maximal”.
This is due to the fact that the original definition of a completely separable
almost disjoint family given in [H]—A is completely separable if for every
M ⊆ ω either M ⊆

⋃
B for some finite B ⊆ A or there is some A ∈ A with

A ⊆M—implies maximality.)

Theorem 1 ([BDS, Corollary 2.3]). There is an infinite completely sep-

arable almost disjoint family on ω.

Observation 1. If A is a completely separable almost disjoint family

on ω and X ∈ J +(A), then |{A ∈ A : A ⊆ X}| = c.

Proof. Choose distinct sets An ∈ A, n ∈ ω, with |X ∩An| = ω. For each
n ∈ ω choose an infinite set Mn ⊆ X ∩ An \

⋃
i<nAi with |An \Mn| = ω.

Choose an almost disjoint family B of size c on ω. For each B ∈ B, the set⋃
{Mn : n ∈ B} belongs to J +(A) and, by the complete separability of A,

it contains some A(B) ∈ A. Clearly A(B) 6= A(B′) for distinct B,B′ ∈ B,
and each A(B) is a subset of X.

Theorem 2 ([MP, Theorem 4.1]). If there is an infinite almost disjoint

family A on ω such that for every X ∈ J+(A) one has |{A∈A :A ⊆ X}|
= c, then there is a Čech function ϕ : P(ω) → P(ω).

Remark. Our Theorem 2 differs from Theorem 4.1 of [MP], in that the
almost disjoint family is not assumed to be maximal, but it has essentially
the same proof.

Corollary. There is a Čech function ϕ : P(ω) → P(ω).

Proof. Apply Theorem 1, Observation 1, and Theorem 2.
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2. Long version. Readers familiar with [BDS] and [MP] may skip to
Section 3; others will find proofs of Theorems 1 and 2 in this section.

The set ωω of all mappings from ω to ω will be considered with the
standard ordering, f ≤∗ g if {n ∈ ω : f(n) > g(n)} is finite. Recall that
the bounding number b is defined as min{|F | : F ⊆ ωω is unbounded under
≤∗}; it is an uncountable regular cardinal and, given a mapping g ∈ ωω in
advance, an unbounded family {fα : α < b} can be chosen so that (i) f0 ≥ g,
(ii) fα ≤∗ fβ and fβ 6≤∗ fα for α < β < b, and (iii) each fα is nondecreasing.

Consider the set ω×ω with the partition R = {{n}×ω : n ∈ ω}. Fix an
arbitrary X ∈ J +(R). For f ∈ ωω define [0, f) = {〈n, k〉∈ω × ω :k<f(n)}.
Choose g ∈ ωω so that |X ∩ [0, g)| = ω. Choose an unbounded family
{fα : α < b} satisfying (i)–(iii) above. Now, the following hold:

(a) for every α < b and every n ∈ ω, we have |[0, fα) ∩ ({n} × ω)| < ω;
(b) |X ∩ [0, f0)| = ω;
(c) for every P ∈ J +(R), the set

H(P ) = {α < b : (∀β < α)(∃γ < α) |P ∩ [0, fγ) \ [0, fβ)| = ω}

is closed unbounded in b.

Indeed, (a) is trivial, (b) follows from (i) by our choice of the mapping g.
For (c), consider any P ∈ J +(R); we have to show that H(P ) is closed
unbounded in b. Inasmuch as b is an uncountable regular cardinal, it will
suffice to show that, for each β < b, there exists γ < b such that |P ∩ [0, fγ)\
[0, fβ)| = ω. Let β < b be given. For each n ∈ ω, choose 〈mn, kn〉 ∈ P \[0, fβ)
with mn ≥ n, and define h(n) = kn. Choose γ < b with fγ 6≤∗ h. For any n
such that fγ(n) > h(n), we have mn ≥ n and fγ(mn) ≥ fγ(n) > h(n) = kn,
and so 〈mn, kn〉 ∈ P ∩ [0, fγ) \ [0, fβ). Since {n : fγ(n) > h(n)} is infinite, it
follows that P ∩ [0, fγ) \ [0, fβ) is infinite.

Given a filter F on ω, a set X ⊆ ω will be called F -fat if, for each F ∈ F ,
there exists F ′ ∈ F with |X ∩ F \ F ′| = ω.

Notice that given a countably generated filter F other than a cofinite
one, there are infinite sets M satisfying |M \F | < ω for every F ∈ F as well
as infinite sets N with |N ∩ F | < ω for some F ∈ F . A set X is F -fat if it
contains both types of infinite sets as subsets.

Lemma 1. Let F be a countably generated free filter on ω, and let X be

an F-fat subset of ω. Then there is a family {Rα : α < b} of infinite subsets

of ω such that :

(a) for each α < b and each F ∈ F , we have |Rα \ F | < ω;
(a1) whenever α < β < b, we have |Rα \Rβ| < ω = |Rβ \Rα|;
(b) R0 ⊆ X;
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(c) for every F-fat set P ⊆ ω, the set

{α < b : (∀β < α)(∃γ < α) |P ∩Rγ \Rβ| = ω}

is closed unbounded in b.

Proof. As X is F -fat, the filter F has a decreasing base {Fn : n ∈ ω}
with |X ∩ Fn \ Fn+1| = ω for each n ∈ ω, and F0 = ω. Identify Fn \ Fn+1

with {n} × ω, and follow the reasoning preceding Lemma 1. For α < b let
Rα be the set corresponding to [0, fα). Now (a), (a1), and (c) are clear, but
(b) need not hold; we know only that |X ∩R0| = ω. To rectify this, replace
R0 with X ∩R0.

Proof of Theorem 1. Let T ⊆ <ω1b consist of the functions s such that
all values s(ξ) are ω-limits (limit ordinals of countable cofinality). Clearly,
T is a tree of height ω1 when ordered by ⊆.

Our aim is to attach to each s ∈ T a countably generated free filter
Fs on ω, an Fs-fat set Xs ⊆ ω, and an infinite set As ⊆ ω; moreover,
we will have Ft ⊆ Fs whenever t ⊆ s, and |As \ F | < ω for all F ∈ Fs.
This will be done by a transfinite recursion of length ω1. For ξ < ω1, let
Tξ = {s ∈ T : dom s = ξ}. For s ∈ Tξ, the filter Fs and the set Xs will be
defined at step ξ, the set As at step ξ + 1.

Step 0. Let F∅ be any countably generated free filter on ω such that ω
is F∅-fat, and let X∅ = ω.

Step η + 1. We suppose that Fs and Xs are known for all s ∈ Tη. For
each s ∈ Tη, apply Lemma 1 to Fs and Xs, and let {Rs

α : α < b} be the
result. Let As = Rs

0; by Lemma 1(a) we have |As \ F | < ω for all F ∈ Fs.
For each ω-limit α < b, let Fsaα be the smallest free filter on ω containing
{Rs

α \Rs
β : β < α}. Then Fsaα is a countably generated filter extending Fs,

and ω is Fsaα-fat. Let Xsaα = ω.

Step λ a limit ordinal. We suppose that Ft is known for all t ∈
⋃
{Tξ :

ξ < λ}. For each s ∈ Tλ, let Fs =
⋃
{Fs↾ξ : ξ < λ}. Then Fs is a countably

generated free filter on ω, and ω is Fs-fat. Define

Mλ = {X ⊆ ω : |{s ∈ Tλ : X is Fs-fat}| = c}.

Assign to each s ∈ Tλ an Fs-fat set Xs ⊆ ω so that, for each X ∈ Mλ, we
have X = Xs for some s ∈ Tλ.

Let A = {As : s ∈ T}. Then A is infinite, in fact, |A| = |T | = c. We will
show that A is almost disjoint and completely separable. For s, t ∈ T , s 6= t,
let ξ(s, t) be the maximal ordinal ξ with s↾ξ = t↾ξ.

A is almost disjoint : Suppose u, v ∈ T , u 6= v. Let ξ = ξ(u, v) and s =
u↾ξ = v↾ξ. We may assume that either v = s and u is a proper extension of s,
or else both u and v are proper extensions of s and v(ξ) < u(ξ). Let α = u(ξ);
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let β = 0 if v = s, and β = v(ξ) otherwise. Then Rs
α \Rs

β ∈ Fsaα ⊆ Fu and,
if β > 0, Rs

β ∈ Fsaβ ⊆ Fv. Thus |Au \ (Rs
α \ Rs

β)| < ω and |Av \ Rs
β | < ω,

whence |Au ∩Av| < ω.

If X ∈ J +(A), then there is some t ∈ T such that X is Ft-fat : Let
S = {s ∈ T : |X ∩As| = ω}. It is easy to see (e.g., using Ramsey’s theorem)
that there is an infinite set {si : i ∈ ω} of distinct elements of S such that
either (1) for some ordinal ξ we have ξ(si, sj) = ξ whenever i < j, or else
(2) for some ordinals ξi, i ∈ ω, we have ξ(si, sj) = ξi < ξj whenever i < j.

Suppose (1) holds. Then there is some s ∈ Tξ such that si↾ξ = s for all
i ∈ ω. We may assume that each si is a proper extension of s; let βi = si(ξ).
We may assume that βi < βj whenever i < j. Let α = sup{βi : i ∈ ω} and
t = saα; we claim that X is Ft-fat.

Consider any F ∈ Ft. Then F ⊇ (Rs
α \Rs

βi
) \D for some i ∈ ω and some

finite set D. Let j = i + 1 and let F ′ = Rs
α \ Rs

βj
∈ Ft. Then Rs

βj
\ Rs

βi
∈

Fsaβj
⊆ Fsj

, and so |Asj
\ (Rs

βj
\ Rs

βi
)| < ω. Since Asj

\ (F \ F ′) ⊆ [Asj
\

(Rs
βj

\ Rs
βi

)] ∪ (Rs
βj

\ Rs
α) ∪ D, it follows that |Asj

\ (F \ F ′)| < ω. Since

|X ∩Asj
| = ω, we also have |X ∩ F \ F ′| = ω, as required.

Now suppose (2) holds. For i ∈ ω let ti = si↾ξi, and let t =
⋃
{ti : i ∈ ω},

so that Ft =
⋃
{Fti : i ∈ ω}. We claim that X is Ft-fat.

Consider any F ∈ Ft. For some i ∈ ω we have F ∈ Fti ⊆ Fsi
, and so

|Asi
\ F | < ω. Let α = t(ξi). We consider three cases:

If si = ti, then Asi
= Rti

0
; in this case let F ′ = Rti

α \Rti
0
.

If si ⊇ t
a
i β where β < α, then Rti

β ∈ F
t
a
i

β
⊆ Fsi

and so |Asi
\Rti

β | < ω;

in this case let F ′ = Rti
α \Rti

β .

If si ⊇ t
a
i β where β > α, then Rti

β \ Rti
α ∈ F

t
a
i

β
⊆ Fsi

and so |Asi
\

(Rti
β \Rti

α )| < ω; in this case let F ′ = Rti
α .

In every case we have F ′ ∈ F
t
a
i

α
⊆ Ft and |Asi

∩ F ′| < ω, and so

|Asi
\ (F \ F ′)| < ω. Since |X ∩ Asi

| = ω, it follows that |X ∩ F \ F ′| = ω,
as required.

A is completely separable: We have just shown that, if X ∈ J +(A), then
there exist ξ < ω1 and s∅ ∈ Tξ such that X is Fs∅-fat. By the construction
and Lemma 1(c), the set of t ∈ T , t ⊇ s∅, such that X is Ft-fat, contains all
extensions s∅

aα with α ranging in an unbounded subset of b. In particular,
there are two different extensions s0, s1 of s∅ to ξ + 1 such that X is both
Fs0

-fat and Fs1
-fat. This is the start of a branching process which ends at

level λ = ξ+ω, where X ∈ Mλ. Now, by the construction, we have X = Xs

for some s ∈ Tλ, and so As = Rs
0 ⊆ Xs = X.

Proof of Theorem 2. Let A0 = {ω}. If the family An ⊆ [ω]ω is known,
choose for each A ∈ An an infinite completely separable almost disjoint
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family AA on A and let An+1 =
⋃
{AA : A ∈ An}. This defines a sequence

{An : n ∈ ω} of almost disjoint families on ω.

For n> 0, fix a one-to-one mapping fn :J+(An) ∩
⋃
{P(A) :A∈An−1}

→ An such that fn(X) ( X for each X ∈ dom fn. (By our choice of the
families An, this is possible according to Observation 1.) Define a mapping
ψ : P(ω) → P(ω) by the formula

ψ(P ) =
⋃

n∈ω

⋃
{X ∈ dom fn : P ∩ fn(X) ∈ J +(An+1)};

thus ψ(fn(X)) ⊇ X whenever X ∈ dom fn. (In fact ψ(fn(X)) = X, as
the interested reader can easily verify.) Clearly ψ(∅) = ∅, and ψ(P ∪ Q) =
ψ(P ) ∪ ψ(Q) for all P,Q ⊆ ω. Hence, the mapping ϕ(P ) = P ∪ ψ(P ) is a
closure function; we claim that ϕ is a Čech function. The mapping ϕ is not
the identity, since ω = ψ(f1(ω)) = ϕ(f1(ω)) and f1(ω) 6= ω.

The mapping ϕ maps P(ω) onto P(ω): Let Y ⊆ ω. For n ∈ ω, let
Bn = {A ∈ An : Y ∩ A ∈ J +(An+1)}. Let B =

⋃
{Bn : n ∈ ω}, and let C

be the set of all maximal elements of B. For C ∈ C, let n(C) be the unique
n ∈ ω with C ∈ An.

For each n ∈ ω, the set {A ∈ An : (∃C ∈ C) C ⊆ A} is finite: This is
clear for n = 0, since |A0| = 1. Suppose that {A ∈ An : (∃C ∈ C) C ⊆ A} =
{Ai : i < k}, while D = {D ∈ An+1 : (∃C ∈ C) C ⊆ D} is infinite. Then
{D ∈ D : D ⊆ Ai} is infinite for some i < k. But then Ai ∈ Bn, and we
have some C ′ ∈ C with C ′ ⊇ Ai as well as some C ∈ C with C ( Ai, which
is impossible. Induction completes the proof.

For C ∈ C ∩ An, let Y (C) = Y ∩ C \
⋃
{E ∈ C : n(E) < n}. Then

|(Y ∩C) \ Y (C)| < ω, since C is almost disjoint and for each k ∈ ω contains
only finitely many elements of Ak; hence Y (C) ∈ dom fn+1. Let

Q =
⋃

{fn+1(Y (C)) : n ∈ ω, C ∈ C ∩ An} ⊆ Y,

and let R = Y \ ψ(Q). We claim that Y = ϕ(Q ∪ R). As ϕ(Q ∪ R) =
Q∪R∪ψ(Q∪R) = Q∪ (Y \ψ(Q))∪ψ(Q)∪ψ(R) = Q∪Y ∪ψ(Q)∪ψ(R) =
Y ∪ ψ(Q) ∪ ψ(R), we will finish the proof by showing that ψ(R) = ∅ and
ψ(Q) ⊆ Y .

ψ(R) = ∅: Assuming ψ(R) 6= ∅, we must have R ∩ fn(X) ∈ J +(An+1)
for some n ∈ ω and X ∈ dom fn. Since R ⊆ Y , it follows that fn(X) ∈ Bn,
and so fn(X) ⊆ C for some C ∈ C; let m = n(C). Then fm+1(Y (C)) ⊆ Q,
and so we have Y (C) ⊆ ψ(fm+1(Y (C))) ⊆ ψ(Q) and R ∩ fn(X) = Y ∩
fn(X) \ ψ(Q) ⊆ Y ∩ C \ Y (C). Hence |R ∩ fn(X)| ≤ |Y ∩ C \ Y (C)| < ω,
contradicting the assumption that R ∩ fn(X) ∈ J +(An+1).

ψ(Q) ⊆ Y : It will suffice to show that, if X ∈ dom fn and Q ∩ fn(X) ∈
J +(An+1), then X ⊆ Y . Consider such an X, and let B = fn(X) ∈ An.
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Since Q ⊆ Y , it follows that B ∈ Bn, and so B ⊆ C for some C ∈ C; let
m = n(C) ≤ n.

If E ∈ C \ {C}, then Y (E) ∩ C is finite since E ∩ C is finite; moreover,
Y (E) ∩ C = ∅ except for finitely many sets E with n(E) ≤ m. Hence the
set

⋃
{Y (E) : E ∈ C \ {C}} has finite intersection with C, and therefore

also with B. Since B ∩ Q ∈ J +(An+1), we must have B ∩ fm+1(Y (C)) ∈
J +(An+1).

Let D = fm+1(Y (C)) ∈ Am+1. We consider three cases:
If m = n, then D ∈ An+1; this is impossible since B ∩D ∈ J +(An+1).
If m = n − 1, then D ∈ An. Since B ∩ D is infinite, we must have

B = D, i.e., fn(X) = fn(Y (C)). Since fn is one-to-one, it follows that
X = Y (C) ⊆ Y .

If m < n− 1, then D ∈ Ak where k = m+ 1 ≤ n− 1. Since X ∈ dom fn,
we have X ⊆ A for some A ∈ An−1. Since A ∩D is infinite, we must have
A ⊆ D, and so X ⊆ D ⊆ Y (C) ⊆ Y .

3. Concluding remarks. (a) It should be obvious that, once we have a
Čech function on ω, then we also have a Čech function ϕ on any κ≥ω, and we
may even demand that |ϕ(P )\P | = κ for some P ⊆ κ. The situation changes
if we demand that ϕ be κ-additive, i.e., whenever τ < κ, then ϕ(

⋃
ι<τ Pι) =⋃

ι<τ ϕ(Pι). The foregoing construction generalizes to a regular cardinal κ
under the assumption that there is a completely separable almost disjoint
family A on κ; this means that |A ∩ B| < κ for distinct A,B ∈ A, every
A ∈ A is of size κ, and every X ⊆ κ such that |{A ∈ A : |X ∩A| = κ}| ≥ κ

satisfies |{A ∈ A : A ⊆ X}| = 2κ. But there is no hope of finding such a
family in ZFC, since James E. Baumgartner [B] has shown that “2ω1 > ω2

and there is no almost disjoint family on ω1 of size ω3” is consistent with
ZFC. In the case of a measurable cardinal κ, Roderick A. Price [P, Theorem
3.13] has shown that a κ-additive Čech function ϕ : P(κ) → P(κ) exists if
κ carries a κ-complete ultrafilter of character κ+.

(b) The reader may have noticed that our Čech function has plenty of
fixed points. This is not some strange by-product of the construction. Jǐŕı
Vinárek proved in the seventies the following unpublished statement:

Theorem (Vinárek). If ϕ is a Čech function on X, then for every in-

finite P ⊆ X there is an infinite T ⊆ P such that ϕ(S) = S for all S ⊆ T .

(That is, every infinite subset of X contains an infinite discrete closed set.)

Proof. Choose a countably infinite set P0 = {xn : n ∈ ω} ⊆ P . For
each n ∈ ω choose Pn+1 with ϕ(Pn+1) = Pn \ {xn}. Thus {Pn : n ∈ ω} is
a decreasing sequence of infinite sets, and

⋂
{ϕ(Pn) : n ∈ ω} = ∅. Choose

tn ∈ Pn \ {t0, . . . , tn−1} and let T = {tn : n ∈ ω}; thus |T \Pn| ≤ n for all n.
If S ⊆ T , then ϕ(S) ⊆ S ∪ ϕ(Pn) for every n, whence ϕ(S) = S.
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Note that Vinárek’s theorem holds true not only for a Čech function, but
also for any closure function ϕ satisfying (1) ϕ({x}) = {x} for all x ∈ X,
and (2) for each infinite set P ⊆ X there is an infinite set Q with ϕ(Q) ⊆ P .

(c) Although our proof makes heavy use of the axiom of choice, we do
not know if the existence of a Čech function on ω is in fact independent
of ZF.
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[Č] E. Čech, Problème 75, Fund. Math. 34 (1947), 332.
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