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Covering loally ompat groups byless than 2
ω many translates of a ompat nullsetbyMárton Elekes and Árpád Tóth (Budapest)

Abstrat. Gruenhage asked if it was possible to over the real line by less thanontinuum many translates of a ompat nullset. Under the Continuum Hypothesis theanswer is obviously negative. Elekes and Stepr	ans gave an a�rmative answer by showingthat if CEK is the well known ompat nullset onsidered �rst by Erd®s and Kakutanithen R an be overed by cof(N ) many translates of CEK. As this set has no analogue inmore general groups, it was asked by Elekes and Stepr	ans whether suh a result holds forunountable loally ompat Polish groups. In this paper we give an a�rmative answer inthe abelian ase.More preisely, we show that if G is a nondisrete loally ompat abelian group inwhih every open subgroup is of index at most cof(N ) then there exists a ompat set Cof Haar measure zero suh that G an be overed by cof(N ) many translates of C. Thisresult, whih is optimal in a sense, overs the ases of unountable ompat abelian groupsand of nondisrete separable loally ompat abelian groups.We use Pontryagin's duality theory to redue the problem to three speial ases; theirle group, ountable produts of �nite disrete abelian groups, and the groups of p-adiintegers, and then we solve the problem on these three groups separately.In addition, using representation theory, we redue the nonabelian ase to the lasses ofLie groups and pro�nite groups, and we also settle the problem for Lie groups. (M. Abértreently gave an a�rmative answer for pro�nite groups, so the nonabelian ase is alsoomplete.)1. Introdution. Under the Continuum Hypothesis the real line obvi-ously annot be overed by less than 2ω many translates of a set of Lebesgue2000 Mathematis Subjet Classi�ation: Primary 22B05, 28C10, 03E17; Seondary28E15, 03E35, 22D05, 22E15.Key words and phrases: ompat, null, zero, translate, ontinuum, 2ω, Pontryaginduality, LCA, Polish, separable, group, of, onsistent, ZFC, p-adi integers, pro�nitegroups, Lie groups.Researh of M. Elekes partially supported by Hungarian Sienti� Foundation grantsno. 49786, 37758, 61600 and F 43620.Researh of Á. Tóth partially supported by Hungarian Sienti� Foundation grantno. T 049693. [243℄



244 M. Elekes and Á. Tóthmeasure zero. On the other hand, it is well known that in some models of settheory there exists suh a overing [BJ℄. Moreover, we an obviously assumethat the set is Gδ. Gruenhage [Gr℄ asked whether suh a overing an beonstruted with an Fσ or losed or ompat nullset (using of ourse someextra set-theoreti assumption).Question 1.1 (Gruenhage). Let C ⊂ R be a ompat set of Lebesguemeasure zero and A ⊂ R be of ardinality less than 2ω. Does that imply
C + A 6= R?We remark that it is well known that in some models of set theory Ran be overed by less than 2ω many ompat nullsets ([BJ℄ or [BS℄), but inthese overings the sets are not translates of eah other.We also remark that already [Mi℄ onsiders ardinal invariants of losedmeasure zero sets, and [MS℄, [Pa℄ and [Sh℄ deal with �translative ardinalinvariants�; that is, when the small sets onsidered are translates of eahother. For another very losely related paper see [Zi℄.Gruenhage gave an a�rmative answer to Question 1.1 when C is thelassial Cantor set [Gr℄, and later Darji and Keleti [DK℄ generalized hisresults to the lass of ompat nullsets of paking dimension less than 1.Then Elekes and Stepr	ans [ES℄ answered all versions of Gruenhage's ques-tion in the negative as follows.Definition 1.2. De�ne

CEK =

{ ∞∑

n=2

dn

n!

∣∣∣∣ dn ∈ {0, 1, . . . , n − 2} ∀n

}
.The letters E and K stand for Erd®s and Kakutani.Definition 1.3. Let N denote the set of Lebesgue nullsets of the realline, and let cof(N ) = min{|H| : H ⊂ N , ∀N ∈ N ∃H ∈ H, N ⊂ H}.It is not hard to see that ω < cof(N ) ≤ 2ω (see [BJ℄).Theorem 1.4 (Elekes�Stepr	ans). R an be overed by cof(N ) manytranslates of the ompat nullset CEK.As cof(N ) < 2ω is onsistent with the axioms of set theory [BJ℄, weobtain the following.Corollary 1.5. It is onsistent with the axioms of set theory that lessthan ontinuum many translates of a ompat set of measure zero over thereal line.As CEK has no analogue in more general groups, it was asked in [ES℄whether suh a result holds for unountable loally ompat Polish groups.The main goal of this paper is to show that the answer is a�rmative in theabelian ase (Corollary 2.7). Note that ountable loally ompat groups are



Covering groups by translates of a nullset 245not interesting from this viewpoint, and that the assumption that the groupis Polish is natural, sine our problem atually onsiders a ardinal invariant(see [BJ℄), and this topi is usually disussed in the framework of Polishspaes.First we use Pontryagin's duality theory to redue the problem to threespeial ases: the irle group, ountable produts of �nite disrete groups,and the groups of p-adi integers; then we solve the problem separately forthese groups.In Setion 3 we disuss the nonabelian version of our problem. We reduethe nonabelian ase to the ases of Lie groups and pro�nite groups, and weshow that every nondisrete Lie group in whih every open subgroup is ofindex at most cof(N ) an be overed by cof(N ) many left translates of aompat set of Haar measure zero.Note that a set is of left Haar measure zero i� it is of right Haar measurezero.All groups are taitly assumed to be Hausdor�.Remark 1.6. The referee pointed out the following interesting fats.1. Our method of reduing the problem to some speial groups is fairlygeneral. Therefore it may well be appliable to show that all loally ompatgroups possess a ertain property, supposing that whenever a fator group
G/H has the property then G itself does.2. The use of cof(N ) is not optimal, one an show that onsistently itan be improved. In fat, it ould be replaed with the least ardinality κfor whih for every pair f, g : ω → ω onverging to in�nity every f -slaloman be overed by κ many g-slaloms (see De�nition 2.9). However, as this isnot a very well known invariant, and most probably this is also not optimal,we still prefer to use cof(N ).3. Question 1.1 is losely related to the following, whih essentially askswhether the set of translations we use an be arbitrary. Is it true that forevery unountable X ⊂ R there exists a ountable set Y and a losed nullset
F suh that (X +Y )+F = R? On an easily show that this is in fat equiva-lent to the following: Is it true that for every unountable X ⊂ R there existsan Fσ nullset A so that X + A = R? On an very easily give a onsistentnegative answer to these questions (e.g. if cov(N ) = 2ω > ω1), but a negativeanswer in ZFC would be interesting. On the other hand, a onsistent a�r-mative answer would prove the onsisteny of the so-alled Borel Conjeture+ Dual Borel Conjeture, whih is a longstanding open problem.2. The abelian aseRemark 2.1. It may be instrutive to bear in mind that the proof (justas in Setion 3 in the nonabelian ase) will onsist of two parts. First we prove



246 M. Elekes and Á. Tótha purely analyti result by onstruting a ompat nullset and showing thatevery so-alled �slalom� an be overed by a translate of that set, and thenwe apply a purely set-theoreti result stating that onsistently less than 2ωmany slaloms an over the spae.A topologial group is LCA if it is loally ompat and abelian.Definition 2.2. We say that a loally ompat group G is nie if thereexists a ompat set C ⊂ G of Haar measure zero suh that G an be overedby cof(N ) many left translates of C.The aim of this setion is to prove the following.Theorem 2.3. Suppose that G is a nondisrete LCA group in whihevery open subgroup is of index at most cof(N ). Then G is nie; that is,there exists a ompat set C ⊂ G of Haar measure zero suh that G an beovered by cof(N ) many translates of C.Remark 2.4. Both onditions of the theorem are neessary. First, if Gis disrete then the only nullset is the empty set, so no overing by nullsetsexists. Seondly, if there is an open subgroup of index κ then at least κmany ompat nullsets are needed to over G, sine a ompat set an onlyinterset �nitely many osets.In fat, as �cof(N ) = ω1 and 2ω = ω2� is onsistent with the axioms ofset theory [BJ℄, we atually obtain the following onsistent haraterization.Corollary 2.5. It is onsistent with the axioms of set theory that anLCA group G an be overed by less than 2ω many translates of a ompatnullset i� G is nondisrete and has no open subgroup of index at least 2ω.Before the proof of Theorem 2.3 we formulate two more orollaries.Corollary 2.6. Every unountable ompat abelian group and everynondisrete separable LCA group is nie; that is, it an be overed by cof(N )many translates of a ompat nullset.As cof(N ) < 2ω is onsistent with the axioms of set theory [BJ℄, and everyPolish spae is separable, we obtain the following, whih answers Question3.2 in [ES℄ in the abelian ase.Corollary 2.7. It is onsistent with the axioms of set theory that everyunountable loally ompat abelian Polish group an be overed by less than
2ω many translates of a ompat nullset.In the rest of this setion we prove Theorem 2.3. First we need twotehnial lemmas.



Covering groups by translates of a nullset 247Lemma 2.8. Let n ≥ 0 be an integer , G be a �nite group, and A and Sbe subsets of G suh that
(

1 −
1

n + 3

)
|G| ≤ |A| and |S| ≤ n + 2.Then there exists g ∈ G suh that S ⊂ gA.Proof. Clearly S 6⊂ gA i� g ∈ S(G \ A)−1. So it is enough to hek that

S(G \ A)−1 6= G, whih is lear, sine
|S(G \ A)−1| ≤ |S| · |G \ A| ≤ (n + 2)

|G|

n + 3
< |G|.For a sequene (Xn)n∈N of sets,×n∈N

Xn denotes their Cartesian prod-ut.Definition 2.9. For every n ∈ N let Xn be an arbitrary set, and �x afuntion f : N → N \ {0}. An f -slalom is a set of the form
S = ×

n∈N

Sn, where Sn ⊂ Xn, |Sn| ≤ f(n) (n ∈ N).Lemma 2.10. Let f0 : N → N\{0} be suh that lim∞ f0 = ∞, and let Xn

(n ∈ N) be ountable sets. Then ×n∈N
Xn an be overed by cof(N ) many

f0-slaloms.Proof. [BJ, 2.3.9℄ states that there exist a system of funtions fα : N →
N\{0} (α < cof(N )) with ∑

n∈N+ fα(n)/n2 < ∞, and for every α < cof(N )there exists an fα-slalom Sα = ×n∈N
(Sα)n ⊂ NN suh that these slalomsover NN mod �nite, that is, for every g ∈ NN there exists α < cof(N )suh that {n ∈ N : g(n) /∈ (Sα)n} is �nite. For an f -slalom S ⊂ NN let

SS = {S′ ⊂ NN : S′ is an f -slalom, and {n ∈ N : Sn 6= S′
n} is �nite}.Clearly, every SS is ountable, and hene ⋃

α<cof(N ) SSα
is easily seen to bea set of cof(N ) many slaloms atually overing NN. So we an assume that⋃

α<cof(N ) Sα = NN. Put f(n) = n2 + 1. Clearly, {n ∈ N : fα(n) > f(n)}is �nite for every α, and therefore an argument similar to the previous oneshows that every fα-slalom an be overed by ountably many f -slaloms. So
NN an be overed by cof(N ) many f -slaloms.[GL, 2.10℄ states that if f, g : N → N \ {0} are suh that lim∞ f =
lim∞ g = ∞, then the minimal number of f -slaloms needed to over NNequals the minimal number of g-slaloms needed to over NN. Therefore NNan be overed by cof(N ) many f0-slaloms, hene ×n∈N

Xn an also beovered by cof(N ) many f0-slaloms.In order to prove Theorem 2.3 we �rst need to prove it in two speialases: for ountable produts of �nite disrete (abelian) groups and for thegroups of p-adi integers.



248 M. Elekes and Á. TóthFor a sequene (Gn)n∈N of ompat groups, ⊗
n∈N

Gn is the (Cartesian)produt group with the produt topology.Theorem 2.11. For every n ∈ N let Gn be a disrete �nite group of atleast two elements. Then ⊗
n∈N

Gn is nie.Proof. Write N as the disjoint union of �nite sets Nn suh that 2|Nn| >
2(n + 3), and de�ne G′

n =
⊗

k∈Nn
Gk. Then ⊗

n∈N
Gn =

⊗
n∈N

G′
n and

|G′
n| > 2(n + 3). Hene for every n ∈ N we an �nd an An ⊂ G′

n suh that
(

1 −
1

n + 3

)
|G′

n| ≤ |An| ≤

(
1 −

1

2(n + 3)

)
|G′

n|.De�ne C =×n∈N
An. Then C is learly ompat, and ∏

n∈N

(
1− 1

2(n+3)

)
= 0implies that C is of Haar measure zero.Put f0(n) = n+2 (n ∈ N). By Lemma 2.10, ⊗

n∈N
G′

n an be overed by
cof(N ) many f0-slaloms. We will omplete the proof by showing that every
f0-slalom S =×n∈N

Sn ⊂
⊗

n∈N
G′

n an be overed by a left translate of C.For every n ∈ N we an apply Lemma 2.8 to n, G′
n, An and Sn, and so weobtain a gn ∈ G′

n suh that Sn ⊂ gnAn. But then for g = (gn)n∈N ∈
⊗

n∈N
G′

nwe have S ⊂×n∈N
gAn = gC.We need ertain properties of the p-adi integers Zp that we ollet herefor the onveniene of the reader. For a preise treatment see e.g. [Ro℄. Theunderlying topologial spae is {0, 1, . . . , p − 1}N equipped with the prod-ut topology (eah fator is onsidered disrete). Addition is oordinate-wise with arried digits from the nth oordinate to the (n + 1)st; that is, if

x = (xn)n∈N, y = (yn)n∈N ∈ Zp then (x + y)0 = x0 + y0 if x0 + y0 ≤ p − 1while (x+y)0 = x0+y0−p if x0+y0 ≥ p. In the seond ase when alulating
(x+y)1 we add 1 to x1 +y1 and then hek whether the sum is greater than
p − 1, et., reursively.Theorem 2.12. For every prime p the group Zp of p-adi integers isnie.Proof. If we forget about the group operation then we an write Zp =

×n∈N
Xn, where Xn = {0, 1, . . . , p − 1} for every n ∈ N.Write N as the disjoint union of the �nite intervals [kn, kn+1), where

{kn}n∈N is a stritly inreasing sequene of nonnegative integers suh that
pkn+1−kn > 2(n + 3). De�ne X ′

n = ×k∈[kn,kn+1) Xk. Then ×n∈N
Xn =

×n∈N
X ′

n and |X ′
n| > 2(n + 3). As above, for every n ∈ N we an �nd an

An ⊂ X ′
n suh that

(
1 −

1

n + 3

)
|X ′

n| ≤ |An| ≤

(
1 −

1

2(n + 3)

)
|X ′

n|.Let C =×n∈N
An. Again, C is ompat and of Haar measure zero.



Covering groups by translates of a nullset 249Put f0(n) = ⌊(n+2)/2⌋ (n ∈ N) (⌊x⌋ is the integer part of x). By Lemma2.10,×n∈N
X ′

n an be overed by cof(N ) many f0-slaloms. We will ompletethe proof by showing that every f0-slalom S = ×n∈N
Sn ⊂ ×n∈N

X ′
n anbe overed by a translate of C.For every n ∈ N we de�ne a new group Gn (not a subgroup of Zp) asfollows. Let Gn = X ′

n = ×k∈[kn,kn+1) Xk, and for x = (xk)k∈[kn,kn+1) ∈ Gnand y = (yk)k∈[kn,kn+1) ∈ Gn put
(x +Gn

y)k = (x +Zp
y)k for every k ∈ [kn, kn+1);that is, we always forget about the last arried digit. One an hek that Gnwith this addition is indeed a group. For example, to avoid all alulations,it is easy to see that this group is (anonially isomorphi to) pknZp/pkn+1Zpand also to pknZ/pkn+1Z, but we will not use this fat.Put 1n = χ{kn} (χH is the harateristi funtion of the set H). Fix

n ∈ N, and set S̃n = Sn ∪ (Sn +Gn
1n). As |Sn| ≤ ⌊(n + 2)/2⌋, we learlyhave |S̃n| ≤ n+2, hene we an apply Lemma 2.8 to n, Gn, An and S̃n, andso we obtain a gn ∈ Gn = ×k∈[kn,kn+1) Xk suh that S̃n ⊂ An +Gn

gn. Let
xn be the inverse of gn in Gn. Then S̃n +Gn

xn ⊂ An. Put x = (xn)n∈N ∈

×n∈N
X ′

n. We laim that S +Zp
x ⊂ C, whih will omplete the proof. Fix

s = (sn)n∈N ∈ S. When we reursively alulate the digits of s +Zp
x, weneed to show that for every n ∈ N we have ((s +Zp

x)k)k∈[kn,kn+1) ∈ An, butthis is lear, as ((s+Zp
x)k)k∈[kn,kn+1) equals either ((sn +Gn

xn)k)k∈[kn,kn+1)or (sn +GN
xn +Gn

1n)k)k∈[kn,kn+1), depending on whether there is a arrieddigit at kn or not.Before proving Theorem 2.3 we need an algebrai fat about abeliangroups. It is formulated in Theorem 2.16, whih is well known, e.g. a moregeneral version appears in [KR℄, but for the sake of ompleteness we inludea proof below.Definition 2.13. Let G be an abelian group. For every n ∈ N let Gpn =
{g ∈ G : png = 0}, and also let Gp∞ =

⋃
n∈N

Gpn . We say that G is a p-groupif G = Gp∞ .Definition 2.14. Let p be a prime. An abelian group G is alled quasi-yli if it is generated by a sequene (gn)n∈N with the property that g0 6= 0and pgn+1 = gn for every n ∈ N. For a �xed prime p the unique (up toisomorphism) quasiyli group is denoted by Cp∞ .Note that Cp∞ = (Q/Z)p∞ = (R/Z)p∞ .Lemma 2.15. Let p be a prime and G be an in�nite abelian p-group suhthat Gpn is �nite for every n ∈ N. Then G ontains Cp∞ as a subgroup.



250 M. Elekes and Á. TóthProof. We de�ne a graph on G as follows. For every nonzero g ∈ G weonnet pg with g. The resulting graph is learly a tree (with root 0) inwhih eah node has �nitely many immediate suessors by the �niteness ofthe Gpn 's. So by König's lemma [Ku, 5.7℄ the tree has an in�nite branh,whih learly generates a quasiyli subgroup.For a sequene (Gn)n∈N of abelian groups, ⊕
n∈N

Gn is the diret sumgroup (that is, those elements of the produt that only have �nitely manynonzero oordinates) with the disrete topology.Theorem 2.16. Every in�nite abelian group G ontains a subgroup iso-morphi to one of the following :(i) Z,(ii) ⊕
n∈N

Gn, where eah Gn is a �nite abelian group of at least twoelements,(iii) Cp∞ for some prime p.Proof. If G ontains an element of in�nite order then G ontains Z as asubgroup. Therefore we may assume that G is a torsion group.Every torsion group is the diret sum of p-groups: G =
⊕

p prime Gp∞[Fu, 2.1℄.Suppose that |Gp∞ | ≥ 2 for in�nitely many primes p. For every suh p wean �nd a �nite nontrivial subgroup of Gp∞ , and hene we have a sequene
(Gn)n∈N of �nite nontrivial groups suh that ⊕

n∈N
Gn ⊂ G. So we mayassume that |Gp∞ | = 1 for all but �nitely many primes. As G is in�nite,there is a prime p for whih Gp∞ is in�nite.Assume that Gp is in�nite. Then Gp is learly an in�nite-dimensionalvetor �eld over Fp, therefore it ontains ⊕

n∈N
Cp as a subgroup (Cp is theyli group of p elements).So we may assume that Gp is �nite. Then we laim that Gpn is also �nitefor every n ∈ N. We prove this by indution on n. The map g 7→ pg is ahomomorphism of Gpn+1 into Gpn with kernel Gp, so |Gpn+1 | ≤ |Gpn | · |Gp|,whih �nishes the indution. Hene we an apply Lemma 2.15 to Gp∞ , anddedue that Cp∞ ⊂ Gp∞ ⊂ G. This �nishes the proof.The following lemma is ruial.Lemma 2.17. Let G be a loally ompat group and H ⊂ G a ompatnormal subgroup. If G/H is nie then so is G.Proof. Let µG be a left Haar measure on G, and let π : G → G/H bethe anonial homomorphism. Then by [Ha, �63, Thm. C℄, µG ◦π−1 is a leftHaar measure on G/H. This shows that the inverse image of a nullset in

G/H under π is a nullset in G. Moreover, [Ha, �63, Thm. B℄ states that theinverse image of a ompat set under π is also ompat.



Covering groups by translates of a nullset 251Hene if C ⊂ G/H is a ompat nullset witnessing that G/H is nie then
π−1(C) ⊂ G is a ompat nullset witnessing that G is also nie.Remark 2.18. The following example shows that the lemma does nothold in general, that is, when H is a losed normal subgroup. Let H bea disrete group of ardinality greater than cof(N ) and let G = H × R.Then G/H is nie by Theorem 1.4, but G is not nie as every ompat setintersets only �nitely many osets.Now we are ready to prove our main theorem.Proof of Theorem 2.3. By the prinipal struture theorem for LCAgroups [Ru, 2.4.1℄, G has an open subgroup H whih is of the form
H = K ⊗ Rn, where K is a ompat subgroup and n ∈ N. By assump-tion the index of H is at most cof(N ), so it su�es to prove that H is nie;therefore we an assume G = H.Suppose n ≥ 1. By [ES, 2.1℄, R is nie; let C be the ompat nullsetwitnessing this fat. Then it is easy to see that K × C × [0, 1]n−1 witnessesthat G = K ⊗ Rn is nie. Hene we an assume n = 0, so G is ompat.By Lemma 2.17 it is su�ient to �nd a losed subgroup H ⊂ G suh that
G/H is nie. By [Ru, 2.1.2℄ (and by the Pontryagin duality theorem [Ru,1.7.2℄) fators of G are (isomorphially homeomorphi to) the dual groupsof losed subgroups of Ĝ. As G is ompat, Ĝ is disrete [Ru, 1.2.5℄. Heneit su�es to �nd a subgroup M ⊂ Ĝ suh that M̂ is nie.By Theorem 2.16, Ĝ has a subgroup isomorphi either to Z, or to⊕

n∈N
Gn, where eah Gn is a �nite abelian group of at least two elements,or to Cp∞ for some prime p. We need to show that the duals of these groupsare nie.By [ES, 2.1℄, R is nie, whih easily implies that the irle group T is alsonie, so we are done in the �rst ase, sine Ẑ = T.In the seond ase note that Ĝ is �nite i� G is �nite, hene eah Ĝn is�nite. By [Ru, 2.2.3℄ the dual of a diret sum (equipped with the disretetopology) is the diret produt of the dual groups (equipped with the produttopology), so (

⊕
n∈N

Gn)∧ =
⊗

n∈N
Ĝn, whih is nie by Theorem 2.11.Finally, the third ase is settled by Theorem 2.12, sine by [HR, 25.2℄,

Ĉp∞ = Zp.3. The nonabelian ase. The aim of this setion is to redue thegeneral ase to the ase of pro�nite groups, that is, inverse limits of �nitegroups (1).

(1) We have been informed by M. Abért that he reently proved that every in�nitepro�nite group is nie [Ab℄.



252 M. Elekes and Á. TóthTheorem 3.1. Suppose that every in�nite pro�nite group is nie. Thenevery nondisrete loally ompat group in whih every open subgroup is ofindex at most cof(N ) is also nie; that is, there exists a ompat set C ofHaar measure zero suh that the group an be overed by cof(N ) many lefttranslates of C.Similarly to Corollary 2.5 we also have the following.Corollary 3.2. Suppose that every in�nite pro�nite group is nie. Thenit is onsistent with the axioms of set theory that a loally ompat group Gan be overed by less than 2ω many left translates of a ompat nullset i� Gis nondisrete and has no open subgroup of index at least 2ω.The main goal of this setion is to prove Theorem 3.1. We start with theLie ase. We use [MZ℄ as the main referene, so note that Lie groups are notassumed to be seond ountable.Theorem 3.3. Every nondisrete Lie group in whih the identity om-ponent has index at most cof(N ) is nie; that is, it an be overed by cof(N )many left translates of a ompat set of Haar measure zero.Proof. Let G be a Lie group as in the theorem. We an learly assumethat G is onneted. Every ompat neighbourhood of e (the identity of
G) generates an open σ-ompat subgroup, moreover, every open subgroupis atually lopen. As G is onneted, we �nd that G is σ-ompat, heneit has the Lindelöf property. Therefore it su�es to show that there is aneighbourhood of the identity that an be overed by cof(N ) many lefttranslates of a ompat set of Haar measure zero.Every nondisrete Lie group ontains one-parameter subgroups, that is,ontinuous homomorphi (not neessarily losed) images of R (see e.g. [MZ,2.22℄). Let H ⊂ G be the losure of suh a subgroup. Then H is a losedonneted ommutative subgroup of G. By [MZ, 4.11℄ eah losed subgroup ofa Lie group is itself a Lie group, and so H is atually a submanifold. If G = H,we an apply Theorem 2.3, so we an assume that H is a proper subgroup. Let
M be a submanifold transversal to H so that dim(H) + dim(M) = dim(G)and(1) H ∩ M = {e}.Lemma 3.4. There is a ompat set K ⊂ M whih is a neighbourhood of
e (in M ), so that if m : H × K → G is the restrition of the multipliationmap then(i) m(H × K) = HK is a neighbourhood of e,(ii) m : H × K → HK is a homeomorphism.Proof. It is well known that if we use the exponential map as a hartthen the derivative of the multipliation map G × G → G takes the form
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(x, y) 7→ x + y in the tangent spaes [Wa℄. This implies that the derivativeof m is nonsingular at (e, e). Hene by the inverse funtion theorem, m is adi�eomorphism in a neighbourhood of (e, e). More preisely, there exist openneighbourhoods U , V and W of e in H, M and G, respetively, so that therestrition of m is a smooth bijetion of U × V onto UV = W .This shows that (i) holds for any hoie of K that is a neighbourhoodof e.Now we laim that(2) H ∩ W ⊂ U.Indeed, if h = uv ∈ H ∩ UV then v = u−1h. As U ⊂ H we obtain v ∈ H,and as V ⊂ M by (1) we get v = e, so h = u.Choose a ompat neighbourhood K ⊂ V of e in M so that(3) KK−1 ⊂ W.We laim that K satis�es (ii), whih will �nish the proof of the lemma.First we show that the map m : H×K → HK is injetive. If h1k1 = h2k2then h−1

2 h1 = k2k
−1
1 =: h. Then learly h ∈ H, and by (3) we also have

h ∈ W , hene by (2) we obtain h ∈ U .Now we apply the fat that m is a bijetion between U × K and UK(as K ⊂ V ) to the equality hk1 = ek2. Indeed, h, e ∈ U and k1, k2 ∈ K, so
k1 = k2 and h1 = h2, proving that m is injetive.Finally, we show that the inverse of m is also ontinuous. We use againthe fat that m is a smooth bijetion between U ×K and UK. So let U1, K1be neighbourhoods of some h ∈ H and k ∈ K, respetively; then h−1U1 ×
K1k

−1 is a neighbourhood of (e, e). Hene its image h−1U1K1k
−1 ontainsa neighbourhood W1 of e. Thus hW1k is a neighbourhood of hk ontainedin the image of U1 × K1 under m, proving that the inverse of m is alsoontinuous.Now we omplete the proof of Theorem 3.3.Fix a Haar measure µH on H, and onsider a ompat nullset C in H asin Theorem 2.3. The set CK is ompat, and cof(N ) many left translates of

CK over HK, whih is a neighbourhood of e in G. Therefore the proof ofthe theorem will be omplete one we show the following.Lemma 3.5. CK is of µG-measure zero, where µG is a left Haar measureon G.Proof. By the above lemma the multipliation map H × K → HK is ahomeomorphism, hene BK is Borel for every Borel set B ⊂ H. So we ande�ne the set-funtion
µ : B 7→ µG(BK) (B ⊂ H Borel).



254 M. Elekes and Á. TóthIt is easy to see that this is a left-invariant measure whih is �nite for ompatsets. We hek that if A ⊂ H is a nonempty open (in H) set. Then µ(A) > 0.Let a ∈ A. Then a−1A is a neighbourhood of e in H. Clearly µ(A) =
µG(AK) = µG(a−1AK) > 0, sine a−1AK is a neighbourhood of e in G.By the uniqueness of Haar measure [Ke, 17.B℄, there exists c > 0 suhthat µ = cµH , and so µG(CK) = µ(C) = cµH(C) = 0. This onludes theproof of the lemma, and hene of the theorem.Remark 3.6. Lemma 3.5 also follows from the onstrution of Haarmeasure via an invariant smooth volume form, but we deided to use thisalternative approah, whih establishes the lemma in a more diret fashion.The proof of the above theorem with minor modi�ations shows that if
H is a losed subgroup of a separable Lie group G, and H an be overedby κ many left translates of a ompat nullset, then G an also be overedby κ many left translates of a ompat nullset. It would be interesting to seeif this remains true in general, and if so, if it ould be used to establish ourmain theorem for pro�nite groups.Next we onsider the ompat ase. The following fat is most probablywell known. It was ommuniated to us by Ken Kunen.Statement 3.7. Every in�nite ompat group has a fator whih iseither an in�nite Lie group or an in�nite pro�nite group.Proof. More preisely we show that if G is an in�nite ompat groupthen either it has an in�nite Lie group fator or G itself is pro�nite.Denote by U(n) the unitary group on Cn. By the Peter�Weyl theorem[HR, 27.40℄ the set of all representations of G in the U(n)'s separate pointsof G, hene G is (isomorphi to) the inverse limit of the images of theserepresentations. If all these images are �nite then G is pro�nite, and we aredone. Otherwise G has a fator that is an in�nite ompat subgroup of some
U(n). But by [MZ, 4.11℄ eah losed subgroup of a Lie group is itself a Liegroup, so we are done.Now we are ready to prove Theorem 3.1.Definition 3.8. We say that a topologial group does not ontain ar-bitrarily small subgroups if there is a neighbourhood of the identity thatontains no nontrivial subgroup.The identity omponent of G is denoted by G0.Proof of Theorem 3.1. First note that if H is a losed normal subgroupin a topologial group G and every open subgroup of G is of index at most
cof(N ) then the same is true for G/H and also for every open subgroupof G.



Covering groups by translates of a nullset 255Suppose that G is a nondisrete loally ompat group in whih everyopen subgroup is of index at most cof(N ). We have to over G by at most
cof(N ) many left translates of a ompat left nullset. By [MZ, 4.5, Cor.℄(atually, in every loally ompat group G) there exists an open subgroup
G′ ⊂ G and a ompat normal subgroup H of G′ suh that G′/H does notontain arbitrarily small subgroups.

G′ is learly nondisrete, sine G is nondisrete and G′ is open. As theindex of G′ is at most cof(N ), it is su�ient to over G′ by at most cof(N )many left translates of a ompat nullset, hene we an assume G = G′.So H is a ompat subgroup of G suh that G/H does not ontain arbi-trarily small subgroups.Now we separate two ases. First assume that H is open. It su�es toshow that H is nie. As above, H annot be disrete, so it is in�nite. ByStatement 3.7 either H has an in�nite pro�nite fator, in whih ase we aredone by assumption (and by Lemma 2.17), or H has a fator whih is anin�nite Lie group. But an in�nite ompat Lie group is learly nondisrete,and every open subgroup has �nite index, so we are done in this ase byTheorem 3.3 (and again by Lemma 2.17).So we an assume that H is not open, hene G/H is not disrete. ByLemma 2.17 it is su�ient to show that G/H is nie. By [MZ, 4.2, Cor. 2℄ if aloally ompat group does not ontain arbitrarily small subgroups then theidentity omponent is open, hene (G/H)0 is open in G/H. By the remarkat the beginning of the proof the index ondition holds for G/H too, so it issu�ient to show that (G/H)0 is nie.As G/H does not ontain arbitrarily small subgroups, the same holds forthe subgroup (G/H)0. By [MZ, 4.4, Thm.℄ a onneted loally ompat groupthat does not ontain arbitrarily small subgroups is a Lie group, and learlyall these requirements hold for (G/H)0. Moreover, as G/H is nondisrete,the same holds for the open subgroup (G/H)0. Hene Theorem 3.3 showsthat (G/H)0 is nie, �nishing the proof.We onlude with some natural questions. Theorem 3.1 shows that the�rst two are equivalent (2).Question 3.9. Can we drop the assumption in Theorem 2.3 that thegroup is abelian?Or equivalently,Question 3.10. Suppose G is an in�nite pro�nite group. Is G nie?That is, an G be overed by cof(N ) many left translates of a ompat set ofHaar measure zero?
(2) M. Abért's result, mentioned in footnote 1, answers these questions a�rmatively[Ab℄.



256 M. Elekes and Á. TóthOf ourse in both questions it is also natural to replae cof(N ) by < 2ω.In that ase one an show that these questions are also equivalent to theoriginal Question 3.2 in [ES℄.Our last question is a reformulation of [ES, Question 3.4℄.Question 3.11. Suppose that κ is a ardinal and G1, G2 are unountableloally ompat (abelian) separable (Polish) groups suh that G1 an be ov-ered by κ many translates of a suitably hosen ompat nullset. Is the sametrue for G2?Aknowledgements. The authors are indebted to Kenneth Kunen andSªawomir Soleki for some useful onversations. We are also grateful to theanonymous referee for his useful suggestions.
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