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Brunnian links

by

Paul Gartside (Pittsburgh, PA) and Sina Greenwood (Auckland)

Abstract. A Brunnian link is a set of n linked loops such that every proper sublink
is trivial. Simple Brunnian links have a natural algebraic representation. This is used to
determine the form, length and number of minimal simple Brunnian links. Braids are used
to investigate when two algebraic words represent equivalent simple Brunnian links that
differ only in the arrangement of the component loops.

1. Introduction. A link with n components, an n-link , is the union
of n mutually disjoint smooth embeddings of the circle S1 in Euclidean
3-space, R

3. An oriented n-link is an n-link such that each component has a
given orientation. Two links, L1 and L2, are equivalent if there is an ambient
isotopy mapping L1 onto L2. Let Ci be the circle {〈x, y, 0〉 : x2 + y2 =
1/(i + 1)2} with anti-clockwise orientation. An oriented n-link is trivial if it
is equivalent to Cn =

⋃

i<n Ci.

A Brunnian link is a non-trivial n-link such that every proper sublink
is trivial. The most familiar example is the Borromean rings, a Brunnian
3-link. We will extend the definition of a Brunnian n-link to include the
trivial n-link.

If L is any non-trivial oriented Brunnian n-link, then selecting one curve
there is an ambient isotopy carrying the remaining curves to Cn−1. So L is
equivalent to Cn−1 ∪ ld, where ld is a simple closed curve looped around all
the curves in Cn−1. We will refer to ld as the distinguished curve.

Call a Brunnian n-link, L, simple if L is equivalent to a link L′ =
Cn−1 ∪ {ld} such that the projection of ld onto the plane z = 0 has no
self-intersections, meets each ray in the xy-plane emanating from the ori-
gin exactly once, and has anti-clockwise orientation. See Figure 1(a) for an
example.
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Fig. 1. The simple Brunnian link a0a1a
−1

0 a−1

1 a2a3a
−1

2 a−1

3 a1a0a
−1

1 a−1

0 a3a2a
−1

3 a−1

2

Any simple Brunnian link is equivalent to a link L of the following type.
Let O = {〈x, y, z〉 : x2 + y2 > 1}. Then L = Cn−1 ∪ {ld} and the projection
of ld onto the plane z = 0 can be divided into segments with end points
in O. Following each segment in an anti-clockwise direction it passes over
the top of C0, C1, . . . , Ci−1, for some i < n. It then either passes over the
top of Ci and back underneath it, or under Ci and back over the top of it,
before returning over the top of Ci−1, . . . , C0 to O. Call a Brunnian link of
this type canonical . See Figure 1(b) for an example.

The geometric representation of a canonical Brunnian link leads to a
natural algebraic representation. We can represent such a link by a word ,
aε0

i0
aε1

i1
. . . aεm

im
, εi ∈ Z. Pick a starting point in ld ∩ O. If we follow ld in an

anti-clockwise direction, ai represents a segment in which ld passes over then
under Ci, and a−1

i represents a segment in which ld passes under and back
over Ci. Figures 1(a) and 1(b) are equivalent links represented by

a0a1a
−1
0 a−1

1 a2a3a
−1
2 a−1

3 a1a0a
−1
1 a−1

0 a3a2a
−1
3 a−1

2 .

Since any simple Brunnian link is equivalent to a canonical Brunnian link,
any simple Brunnian link can be represented algebraically by a word. It is
immediately clear that such a word is not unique. For example, by choosing
a different starting point we will encounter the segments in a different order.

An alternative view of the words introduced above is to recall that the
fundamental group of R

3
r Cn−1 is free with letters represented by simple

loops about each circle. These letters correspond to the ai above.

A minimal Brunnian link is a simple Brunnian n-link whose associated
word is of minimal length (amongst all simple Brunnian n-links). Our key
results determine the form and length of minimal Brunnian links. In par-
ticular, if n = 2m + k, where k < 2m, then a minimal Brunnian n-link has
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length 2m(3k + 2m). We also compute the number of distinct words associ-
ated with minimal Brunnian n-links. Finally, we investigate when two words
represent topologically equivalent Brunnian links.

The plan for the remainder of the paper is as follows. In the next section
the basic definitions and notations are introduced. In Section 3 we determine
the length of a minimal Brunnian word, and then minimal Brunnian words
are classified and counted. In Section 4 we take a brief look at a generalisa-
tion of Brunnian links and determine the form and length of minimal words
representing these more general links. In Sections 5 and 6 we use braids to
determine when two words represent equivalent Brunnian links.

2. Preliminaries. Denote the set of simple Brunnian n-links by BS(n).

For each n define An to be the set {a0, a1, . . . , an−1}, and let A =
⋃

An.
Members of A and their inverses will be referred to as letters. A word is
any finite sequence aε0

i0
aε1

i1
. . . aεm

im
such that εi ∈ Z for all i. Let e denote

the empty sequence. We will use the term string when we want to re-
fer to a subsequence in a word even though any such sequence is itself
a word. When we refer to an arbitrary string we include the possibility
that it is an empty string. We denote words by v, w etc, and strings by
α, β etc.

If w is a word, denote the set {ai ∈ A : ai occurs in w} by A(w). A word
w is an n-word if A(w) = An or w = e. A word w has the form of an n-word

if exactly n different letters occur in w, or w = e (hence if w has the form
of an n-word then A(w) need not be An).

Denote the pth occurrence of ai in w by
p
ai. If w is a word and α is a

string, then w(α/ai) is the word obtained by replacing every occurrence of aε
i

in w by αε. We will abbreviate w(e/ai) to w(−ai). If R is a set of occurrences
of a±1

i in a word w, then w(−R) is the string obtained by removing from w
the occurrences of a±1

i in the set R.

Two words v, w are equivalent if v is convertible into w by a finite se-
quence of insertions and deletions of subwords aε

ia
−ε
i . An n-word is reduced

if aε
ia

−ε
i does not occur in w for any i < n or ε ∈ Z, otherwise w is reducible.

If w is a word, let ̺(w) be the reduced word equivalent to w.

We may obtain ̺(w) from w by successively removing occurrences of

aε
ia

−ε
i . When

p

aε
i

q

a−ε
i is removed we say that

p

aε
i cancels with

q

a−ε
i . It will be

important to know how cancelling proceeds when obtaining a reduced word
for expressions like w(−aj). In some cases an occurrence of ai must cancel
with a particular occurrence of a−1

i , but (by associativity) if cancelling can
proceed in different orders there may be several occurrences of a−1

i with
which ai may cancel.
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An n-word w is Brunnian if w(−ai) = e for each i < n. Note that
a Brunnian n-word represents a Brunnian (n + 1)-link. Denote the set of
Brunnian n-words by BA(n).

Lemma 1. For each n, BA(n) is a normal subgroup of the free group

on An.

Proof. Suppose v, w ∈ BA(n). Clearly w−1 ∈ BA(n), vw ∈ BA(n) and
vwv−1 ∈ BA(n). If w is a Brunnian n-word and v is equivalent to w, then
clearly v is a Brunnian n-word, and hence BA(n) is normal.

The length of a word w, denoted l(w), is zero if ̺(w) = e, otherwise it is
the number of letters in ̺(w) with exponent 1 or −1. A Brunnian n-word,
w, is minimal if l(w) ≤ l(v) for all v ∈ BA(n).

A word w contains a copy of ai0ai1 . . . aim−1
if there are strings

β0, β1, . . . , βm such that w = β0ai0β1ai1 . . . aim−1
βm. A Brunnian n-word,

w, is basic if it does not contain a copy of a word having the form of a
Brunnian n-word other than w itself.

The following properties are immediately obvious from the definition of
a Brunnian n-word.

1. Let w be a Brunnian n-word, n > 1. Then:

(a) if w = α
1
aiβ and w is reduced, then β contains a copy of α−1;

(b) a−1
i occurs in w exactly the same number of times as ai;

(c) if w 6= e then for each i < n there exist ε, ε′ ∈ Z and j < n such
that aε

ja
ε′
i a−ε

j occurs in w;
(d) if w 6= e then for each i < n there is a non-empty string ϕ such

that ai 6∈ A(ϕ) and aiϕa−1
i occurs in w;

(e) if w is basic then w 6= aiϕa−1
i for any string ϕ;

(f) ̺((w(−ai))(−aj)) = ̺((w(−aj))(−ai)) = e for every i, j < n for
every i, j < n (by associativity).

2. w is a Brunnian n-word if and only if aiwa−1
i is a Brunnian n-word

for all i < n.

Property 2 is equivalent to: αβ is a Brunnian n-word if and only if βα
is a Brunnian n-word. Of course αβ and βα represent the same Brunnian
link. They simply relate to different starting points.

This relation is important when deducing how words are formed from
subwords. Let ∼S be the conjugacy equivalence relation over BA(n): w ∼S v
if and only if there exist strings α and β such that w = αβ and v = βα.

We introduce another equivalence relation which will help to simplify
proofs in Section 3. Many of these proofs involve certain types of strings
which occur in a given word. These strings may take a variety of forms de-
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pending on whether the occurrence of each letter has index ±1. To prove
these lemmas for each one of the different forms involves repetitious argu-
ments. In order to circumvent such repetition we define α ≡ β if and only
if there is a sequence α = α0, α1, . . . , αm = β such that for each i we have
αi+1 = αi(a

−1
j /aj) for some j. We will prove each lemma for one case (one

element of the relevant ≡ equivalence class) whenever it is clear that the
other cases follow a similar argument.

The following is a natural extension of the notion of a Brunnian word.
An mn-word , m ≥ n, is a word w such that w is an m-word and w(−ai) = e
for all i < n. Extending our results on Brunnian words, we will compute the
form and length of minimal mn-words.

3. Minimal Brunnian words. In this section we determine the length,
form and number of minimal Brunnian n-words. We require several technical
lemmas.

Lemma 2. Suppose w is a reduced Brunnian n-word , n > 1, and suppose

j < n. Pick integers i, r, s and ε, and strings α and β such that , modulo ≡,

w = α
r
aia

ε
j(

s

a−1
i )β.

Partition all the occurrences of a±1
i into the maximum number of compo-

nents such that if k 6= i or j, then any member of any component can

only cancel with another member of the same component in the reduction

of w(−ak). Let R be the component containing
r
ai, and S the union of all

the other components. Let v1 = ̺(w(−R)) and v2 = ̺(w(−S)). Let u′
R and

u′
S be the words obtained from w(−aj) by replacing with (aja

−1
i a−1

j )±1 each

occurrence of a±1
i in R, for u′

R, and each occurrence of a±1
i in S, for u′

S.

Let uR = ̺(u′
R) and uS = ̺(u′

S). Then

(i)
s

a−1
i 6∈ R.

If w is minimal then

(ii) vl(−aj) 6= e whenever vl 6= e, l = 1, 2.

If aj occurs at least as frequently as ai in w, then:

(iii) either v1 6= e or v2 6= e;
(iv) |R| = |S|, and S is a single component ;
(v) ai occurs the same number of times in w as aj ;
(vi) l(uR) = l(uS) = l(w).

Proof. (i) If
s

a−1
i ∈ R then there is a sequence

r
ai =

p0

ai,
p1

a−1
i , . . . ,

pH

a−1
i =

s

a−1
i ,
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such that for all h there is a k 6= i, j such that
ph

aε
i cancels with

ph+1

a−ε
i in the

reduction of w(−ak).

Hence aj occurs the same number of times as a−1
j between each pair

ph

aε
i

and
ph+1

a−ε
i . It follows easily, by induction, that aj and a−1

j occur the same

number of times between
r
ai and any other member of the sequence. This is

not the case, however, for
r
ai and

s

a−1
i . Hence

s

a−1
i 6∈ R.

(ii) Suppose v1 6= e. If ̺(v1(−aj)) = e then v1 is an n-word since by
associativity, for each k 6= i, j members of S cancel with each other in the
reduction of v1(−ak) so that ̺(v1(−ak)) = e. And clearly ̺(v1(−ai)) = e.
Thus v1 is a copy of an n-word in w, but v1 6= w, hence ̺(v1(−aj)) 6= e.

(iii) Suppose v1 = v2 = e. Let w1 be the word obtained from w by
replacing each occurrence of a±1

i in R by a±1
n .

If ̺(w1(−aj)) 6= e then ̺(w1(−aj)) has the form of a Brunnian n-word
since for each k 6= i, j, ̺(w1(−ak)) = ̺(w(−ak)) = e, ̺(w1(−an)) = v1 = e,
and ̺(w1(−ai)) = e because v2 = e. Since l(̺(w1(−aj))) < l(w) we have a
contradiction, and hence ̺(w1(−aj)) = e. Thus w1 is an (n + 1)-word.

Pick aj1 and ai1, and components R1 and S1 of w1 analogously to R and
S in w (pick one of the most frequently occurring letters for aj1). If v11 =
̺(w1(−R1)) = e and v12 = ̺(w1(−S1)) = e, obtain u by replacing each a±1

i1

in R1 by a±1
n+1 and reducing. If ̺(u(−aj1)) 6= e then let w2 = ̺(v(−aj1)),

otherwise let w2 = u.
If v11 6= e and ̺(v11(−aj)) = e, let w2 = v11. It is easy to show that w2 is

an (n+1)-word. If v11 6= e and ̺(v11(−aj)) 6= e, let w2 = ̺(v11(−aj)). Con-
tinue by induction. For some m we must obtain a word wm, corresponding
to a word in w that has the form of a Brunnian n-word. Since l(wm) < l(w)
we have a contradiction and hence either v1 = e or v2 = e.

(iv), (v) and (vi). We first prove

Claim. uR 6= e 6= uS and uR and uS are Brunnian n-words.

Proof. We first show that uR 6= e 6= uS . If
t
aε

i in u′
R is part of a string

that replaced a member of R in w, and
t′

a−ε
i in u′

R was a member of S in w,

then a±1
j must occur an odd number of times between

t
aε

i and
t′

a−ε
i , twice

for each member from R that occurs between them, and once beside
t
aε

i .
Hence when cancelling to obtain uR, members of R must cancel with each
other and members of S must cancel with each other. Members of R can-
cel to obtain ̺(w(−aj)) if and only if the corresponding strings a±ε

j a±ε
i a∓ε

j

cancel when u′
R is reduced. Hence if uR = e, then ̺(w(−aj)(−R)) = e and
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̺(w(−aj)(−S)) = e. But since either ̺(v1(−aj)) 6= e or ̺(v2(−aj)) 6= e by
(ii) and (iii), uR 6= e. Similarly, uS 6= e.

We now show that uR and uS are Brunnian n-words. We have

̺(uR(−aj)) = ̺(w(−aj)) = e, ̺(uR(−ai)) = ̺(w(−aj)(−ai)) = e.

Suppose k 6= i, j and consider uR(−ak). Since members of R need only cancel
with members of R in the reduction of w(−ak) and hence in the reduction of
w(−aj)(−ak), it follows that the strings a±ε

j a±ε
i a∓ε

j cancel with each other
and

̺(uR(−ak)) = ̺(w(−ak)(−aj)) = e.

We may argue similarly for uS . Thus uR and uS are Brunnian n-words, and
the claim is proved.

The number of a±1
j ’s occurring in uR is at most 2|R|, and in uS at

most 2|S|. If a±1
j occurs J times in w then J ≥ |R| + |S|, since aj oc-

curs at least as often as ai in w. Since w is minimal, l(uR) ≥ l(w) and
l(uS) ≥ l(w), but if l(uR) > l(w) then l(uS) < l(w), and if l(uS) > l(w),
then l(uR) < l(w). Hence aj occurs 2|S| = 2|R| times, |S| = |R|, and S is a
single component.

Lemma 3. Suppose w is a minimal Brunnian n-word in which a partic-

ular collection of letters only appear in strings α±1 where α is a Brunnian

word , αaε
jα

−1 occurs in w, and aj does not occur less frequently than α.

Then it is possible to replace exactly half the occurrences of α±1 in w(−aj)
by a±1

j α±1a∓1
j , and reduce to obtain an n-word that is also minimal.

Proof. The proof of Lemma 2 can easily be adjusted to this situation.

Lemma 4. If w is a minimal Brunnian n-word then for each i < n and

ε = ±1, aε
i does not occur consecutively in w.

Proof. Obvious if n ≤ 2. Suppose n > 2 and w = aiaiα (it is sufficient
to obtain a contradiction for this case). Partition the occurrences of a±1

i in
w such that members of each component can only cancel with each other

in ̺(w(−aj)) for each j 6= i. If
1
ai and

2
ai are in the same component, then

there exists a sequence
1
ai =

r0
ai,

r1

a−1
i ,

r2
ai, . . . ,

rm
ai =

2
ai such that each

rh

aε
i cancels

with
rh+1

a−ε
i in ̺(w(−aj)) for some j. Then ai and a−1

i occur an equal number

of times between each pair
rh

aε
i and

rh+1

a−ε
i .

Let nh be the total number of occurrences of a±1
i between

1
ai and

rh

aε
i .

A simple induction argument shows that nh is always even if ε = −1 and

odd if ε = 1. But
rm−1

a−1
i cancels with

2
ai so there must be an even number
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between
rm−1

a−1
i and

2
ai. However, there are nm − 1 occurrences between

rm−1

a−1
i

and
2
ai, giving a contradiction.

Lemma 5. For each n > 1, if w is a minimal Brunnian n-word , then

there is a Brunnian n-word v such that :

(i) all letters occur the same number of times in v as in w;
(ii) if n is even, then all letters in v occur in strings aiaja

−1
i a−1

j (mod-

ulo ≡), and for any two such strings α and β, either A(α) = A(β) or

A(α) ∩ A(β) = ∅; if n is odd , then all letters except one of the least

occurring letters, ak say , occur in such strings, and ak only occurs in

strings ak(aiaja
−1
i a−1

j )a−1
k (aiaja

−1
i a−1

j )−1 (modulo ≡, modulo ∼S).

Proof. By Lemma 2(v),(vi) and Lemma 4, obtain from w a minimal
Brunnian n-word u such that one of the most frequently occurring letters,
a±1

j , only occurs in strings aε
ja

ε
ia

−ε
j , ε = ±1, and a±1

i and a±1
j occur the same

number of times in u as in w. Pick one of the strings
x
aε

j aε
i

y

a−ε
j occurring in u.

Partition the occurrences of aj in u into a maximal number of components
such that members of each component can only cancel with members of
the same component in the reduction of u(−ak) if k 6= i, j. Let X be the

component containing
x
aε

j and Y the component containing
y

a−ε
j . By arguing

as in the proof of Lemma 2(i) we can deduce that for each string aε
ja

ε
ia

−ε
j

occurring in u, one of a±1
j is in X and the other is in Y .

Let u1 be the word obtained from u by removing every occurrence of
ai and replacing every member a±ε

j of X by aε
ia

ε
ja

−ε
i . Then the letters a±1

i

and a±1
j only occur in u1 as part of a string aiaja

−1
i a−1

j (modulo ≡), and
by Lemma 2(vi), l(u) = l(u1).

Suppose ak is one of the most frequently occurring letters other than ai

or aj . Pick al such that aε
l a

ε
ka

−ε
l occurs. As above, obtain u2 such that a±1

k

and a±1
l only occur in strings (akala

−1
k a−1

l )±1.

Suppose i = l. Then all occurrences of a±1
i , a±1

j and a±1
k are (modulo ≡)

in strings α±1 and β±1, where

α = aiaja
−1
i a−1

j and β = akaia
−1
k a−1

i ajaiaka
−1
i a−1

k a−1
j .

Let u′ = u2(akaiaja
−1
i a−1

j a−1
k /β). Clearly, ̺(v) 6= e, and it is not too difficult

to show that v is an n-word. Once again we have a contradiction, since u′

is shorter than v2, and so l 6= i. Similarly l 6= j.

Continue by induction to obtain a Brunnian n-word um in which all the
letters, except one if n is odd, only occur in strings aiaja

−1
i a−1

j (modulo ≡),
and for any two such strings α and β, either A(α) = A(β) or A(α)∩A(β) = ∅.
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If n is even we are done. If n is odd, let ak be the only letter that does not
occur in such a string. Pick α such that αakα

−1 occurs in um. Then ak

does not occur less often than α in um (otherwise swap the occurrences of
α±1 with those of a±1

k to obtain a Brunnian n-word shorter than w). By
Lemma 3 we are done.

3.1. Length. We now determine the length of a minimal Brunnian n-
word. We first determine an upper bound.

Lemma 6. Suppose n = 2m + k, k < 2m and n > 0. Then there is a

Brunnian n-word , wn, such that l(wn) = 2m(3k + 2m), 2m − k letters occur

2m times and 2k letters occur 2m+1 times in wn.

Proof. Let w0 = a0, a Brunnian 1-word. Suppose n = 2m + k, k < 2m

and wn is a Brunnian n-word such that:

• wn has length 2m(3k + 2m);
• 2m − k letters occur 2m times and 2k letters occur 2m+1 times.

Pick one of the letters ai that occurs 2m times and let

wn+1 = wn(aiana−1
i a−1

n /ai).

Then 2m − (k + 1) letters occur 2m times in wn+1, and since both a±1
i and

a±1
n occur twice as often in wn+1 as ai occurred in wn, there are 2k + 2

letters occurring 2m+1 times in wn+1. Also, l(wn+1) = l(wn) + 3 · 2m =
2m(3(k + 1) + 2m). If k + 1 = 2m, then l(wn+1) = 2m+12m+1.

Theorem 7. If w is a minimal Brunnian n-word , 0 < n = 2m + k and

k < 2m, then l(w) = 2m(3k + 2m).

Proof. Clearly the theorem holds when n = 1. Suppose that it holds
for each n′ < n. If n is even, by Lemma 5 pick a minimal Brunnian
n-word, w, such that the letters only occur in strings α±1

t where αt =
atan−(t+1)a

−1
t a−1

n−(t+1), 0 ≤ t < n/2. Let v be the word obtained by re-

placing each αt by at. Then v is an n/2-word. Clearly w is minimal if
and only if v is minimal, and l(w) = 4l(v) = 4 · 2m−1(3k/2 + 2m−1) =
2m(3k + 2m).

Suppose n is odd. Pick a minimal Brunnian n-word, w, such that all the
letters other than a0 only occur in strings α±1

t , where αt = atan−ta
−1
t a−1

n−t,

0 < t < (n − 1)/2, and a0 only occurs in strings β = a0α1a
−1
0 α−1

1 . Suppose
that the number of occurrences of the α±1

t ’s in w is x, and β±1 occurs y
times. Obtain a Brunnian word u from w by replacing each α±1

i by a±1
i , and

each β±1 by a±1
0 . Then u has the form of a Brunnian (n−1)/2-word. Obtain

a word v from w with the form of a Brunnian (n + 1)/2-word, by replacing
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each α±1
i by a±1

i . Then

l(w) = 4x + 10y ≤ 2m(3k + 2m),

l(u) = x + y ≥ 2m−1

(

3

(

k − 1

2

)

+ 2m−1

)

,

l(v) = x + 4y ≥ 2m−1

(

3

(

k + 1

2

)

+ 2m−1

)

,

and hence

2m(3k + 2m) ≥ 4x + 10y = 2(l(u) + l(v)) ≥ 2m(3k + 2m).

Hence l(w) = 2m(3k + 2m).

3.2. Form. We can now establish that any minimal Brunnian word must
have a certain form.

Let M′ be the collection of words such that:

(i) ∀ai ∈ A, ai, a
−1
i ∈ M′;

(ii) ∀v, w ∈ M′, if A(v) ∩ A(w) = ∅ then vwv−1w−1 ∈ M′;
(iii) ∀w ∈ M′, if v ∼S w then v ∈ M′,

and let
M = {w ∈ M′ : (∃n ∈ ω) A(w) = An}.

Observe that every w ∈ M is ∼S equivalent to a string of the form
αβα−1β−1 (provided l(w) > 1). Also note that every word in M is a basic
Brunnian word. Finally, we remark that not all Brunnian words have this
form (for example, a0a1a

−1
0 a2a0a

−1
1 a−1

0 a−1
0 a1a0a

−1
2 a−1

0 a−1
1 a0).

Theorem 8. Every minimal Brunnian n-word w is in M.

Proof. We will assume that all strings in this proof are chosen modulo ≡.
We prove this by induction on n. If w is a minimal Brunnian 1-word then
w = a±1

0 ∈ M. If w is a minimal Brunnian 2-word then w is a non-trivial
arrangement of the letters a0, a

−1
0 , a1 and a−1

1 and hence w ∈ M. If w
is a minimal 3-word then one letter occurs twice. Hence w has the form
a0αa−1

0 α−1 and clearly α = a1a2a
−1
1 a−1

2 .
Suppose for each n′ < n any minimal n′-word is a member of M, and

n > 3.
Suppose aj is one of the most frequently occurring letters and aiaja

−1
i

occurs in w. By Lemma 2(ii),(iii) and Lemma 6, remove half the occurrences
of ai from w(−aj) and reduce to obtain a minimal (n − 1)-word v. Then
v = αβα−1β−1. We may assume that a±1

i occurs in α and not in β. Pick one
of the most frequently occurring letters ak in β, which only occurs in strings
akala

−1
k a−1

l (which is possible since n > 3). At least one string alaka
−1
l

corresponds to such a string in w. If not then ̺(w(−ah)) 6= e for h = i, l
or k, or al must occur consecutively in w, contradicting Lemma 4. Remove
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half the occurrences of al from w(−ak) and reduce to obtain a minimal
(n − 1)-word v′. Now v′ = α′β′(α′)−1(β′)−1, a±1

i and a±1
j only occur in

α′ say, and they only occur in strings aiaja
−1
i a−1

j . Hence it is clear that

w = α′β(α′)−1β−1 ∈ M.

3.3. Number. In this section we establish the number of different forms
of a minimal Brunnian n-word. We consider the words v, w ∈ M to have the
same form if there is a sequence u0, u1, . . . , um such that u0 = v, um = w
and for each h < m either uh ≡ uh+1, uh+1 may be obtained from uh by
interchanging all occurrences of a±1

i with a±1
j for some i, j < n, or uh+1 =

uh(β/α) where α ∼S γδγ−1δ−1, α occurs in uh and β ∼S α. We associate
members of M with binary trees, so that the number of forms of a word
is the number of non-isomorphic trees that are associated with minimal
n-words.

For each w ∈ M construct a tree Tw such that the root is the word w,
if a member of Tw is a string of length 1 then it has no successors, and if
it is a string σ and σ ∼S αβα−1β−1, then it has two successors, α and β.
Observe that:

• Tw is unique up to isomorphism;
• if w ∈ M and |A(w)| = n, then Tw has n leaves (members of T with

no successors);
• v and w have the same form if and only if Tv and Tw are isomorphic.

Let f(m, 0) = f(m, 1) = f(m, 2m) = 1 for every m. Define recursively, for
m > 1 and k < 2m,

f(m, k) =



























⌊k/2⌋
∑

l=0

f(m − 1, l) · f(m − 1, k − l) if k ≤ 2m−1,

⌊k/2⌋
∑

l=k−2m−1

f(m − 1, l) · f(m − 1, k − l) if k > 2m−1.

Theorem 9. Let n = 2m + k where k < 2m. The number of forms of a

minimal Brunnian n-word is f(m, k).

Proof. The number of forms is the number of non-isomorphic binary
trees with 2m −k leaves at height m, and 2k leaves at height k +1. Suppose
T is a finite binary tree, and l and r are the two immediate successors of
the root of T . Let L(T ) be the subtree of all successors of l including l,
and R(T ) the subtree of all successors of r including r. Then two trees S
and T are isomorphic if and only if L(S) is isomorphic to L(T ) and R(S) is
isomorphic to R(T ), or L(S) is isomorphic to R(T ) and R(S) is isomorphic
to L(T ). The number of such non-isomorphic trees is f(m, k).
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We may also use the binary trees to determine the length of mem-
bers of M that have particular forms. Let B be the isomorphism classes
of {Tw : w ∈ M}. We will simply speak of the element T in B rather than
the equivalence classe [T ]. Now define l′ : B → ω as follows. Given T ∈ B
assign each leaf the number 1. Each vertex is assigned the number equal to
twice the sum of the numbers assigned to its immediate successors. Then
l′(T ) is the number assigned to the root of T . It is not difficult to conclude
that l(w) = l′(Tw). Note that l′ is well defined but not 1-1.

One can now easily prove:

Lemma 10. The maximum length of an n-word in M is 2n + 2n−2 +
2n−3 + · · · + 2.

4. mn-words. We now address the minimal length of an mn-word, first
establishing the form of a minimal mn-word.

Lemma 11. If 0 < n ≤ m then any minimal mn-word has the form

aεn

in
a

εn+1

in+1
. . . a

εm−1

im−1
ua−εm−1

am−1
. . . a−εn

an
,

where each εh = ±1, and u is a minimal Brunnian n-word.

Proof. Let w be a minimal mn-word which is not an mn′-word for any
n′ > n. When m = 1 the claim is obvious. So we argue by induction on m.

Suppose w is a minimal mn-word and any minimal rn-word has the
required form if r < m. Let w′ = ̺(w(−am−1)). If w is also an mn′-word
we are done. It might not be an m′n′-word, but if we rename the letters
appropriately, we can ensure that it is. Hence, without loss of generality,
assume that for some n ≤ n′ ≤ m′ < m, w′ is an m′n′-word but not an
m′(n′ − 1)-word. Then v = am′am′+1 . . . am−1w

′(−am−1)a
−1
m−1 . . . a−1

m′ is an
mn′-word, and l(v) ≤ l(w) since the minimum collection of letters removed
from w in w′ is one occurrence of each of a±1

m′ , . . . , a
±1
m−1. It follows that w′

is a minimal m′n′-word

aεn

i′n
a

εn+1

in+1
. . . a

εm−1

im′
−1

ua−εm−1

am′
−1

. . . a−εn

a′

n
,

where u is a minimal n′-word, and exactly one occurrence of each of
a±1

m′ , . . . , a
±1
m−1 cancelled in ̺(w(am−1)).

By Lemma 6 and Theorem 7, if n′ > n then the length of u is greater
than the length of a minimal n-word by at least 6(n′−n), hence n′ = n and
u is a minimal n-word.

Now suppose w does not have the required form. Then for some i ≥ m′,
ai occurs within u, and therefore a−1

i also occurs in u. In fact more than one
of each must occur in u (contradicting minimality), otherwise there must
be an n-word occurring between the single occurrences of ai and a−1

i in u,
giving a contradiction.
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Corollary 12. If n < m then the length of any mn-word is strictly

greater than the length of a minimal Brunnian n-word.

From our knowledge of minimal Brunnian words and Lemma 11 we im-
mediately deduce:

Theorem 13. A minimal pq-word has length L = 2(p−q)+2m(3k+2m)
where q = 2m + k and k < 2m.

Proof. Follows immediately from Theorem 7 and Lemma 11.

5. Braids. It seems natural to view a simple Brunnian link as a closed
braid. In this section we briefly discuss this relationship which we will use
in the following section to investigate when two Brunnian words represent
the equivalent links that differ only in the order of the component loops.

Call a braid on n threads an n-braid and denote the threads in an n-braid
by t0, t1, . . . , tn−1. Let Bn be the group of all braids on n threads, so Bn has
letters σ1, . . . , σn−1 and defining relations

σiσk = σkσi, k 6= i − 1, i + 1,

σiσi+1σi = σi+1σiσi+1.

See [H] for definitions of all standard braid terms used in this section.

The closure of a braid is a link, and any link is equivalent to a closed
braid [A]. Two braids define equivalent oriented links if and only if there is a
finite sequence of moves involving adding or deleting a thread which shows
up as a free factor σ±1

n−1 or by conjugation, taking one braid to the other
(this was first stated in [M] and later proved in [B]).

Simple Brunnian links have an obvious braid representation, and Brun-
nian words correspond naturally to certain braid words. It is easy to find
a closed braid equivalent to any given simple Brunnian n-link, L. Take a
word in BA(n − 1) representing L. Think of the braid obtained by running
n− 1 straight arcs vertically, and threading t0 through them in the obvious
way. If w = aε0

i0
aε1

i1
. . . aεm

im
, each εh = ±1, let t0 run across the top of the

threads to ti0 , loop around it by passing over the top and back underneath if
ε0 = 1, or passing underneath and back over the top if ε0 = −1, and return
back across the top. Repeat for ai1 etc. Hence if w ∈ BA(n), then a braid
whose closure is equivalent to the link represented by w may be obtained
by replacing every occurrence of ai in w by σ0σ1 . . . σiσiσ

−1
i−1 . . . σ−1

0 , and

every occurrence of a−1
i by σ0 . . . σ−1

i σ−1
i σ−1

i−1 . . . σ−1
0 . We call a closed braid

of this form canonical . For example the 2-word a0a1a
−1
0 a−1

1 represents a link
equivalent to the canonical braid σ0σ0σ0σ1σ1σ

−1
0 σ−1

0 σ−1
0 σ0σ

−1
1 σ−1

1 σ−1
0 . The

closure of the braid σ0σ0σ0σ1σ1σ
−1
0 σ−1

0 σ−1
1 σ−1

1 σ−1
0 is equivalent to the link

represented by a0a1a
−1
0 a−1

1 .



272 P. Gartside and S. Greenwood

Let BB(n) be the set of n-braids whose closures are equivalent to simple
Brunnian n-links and call these Brunnian braids. To simplify the expression
of a Brunnian braid, let βi = σ0σ1 . . . σiσiσ

−1
i−1 . . . σ−1

0 for each i. Given a
canonical Brunnian braid βε0

i0
βε1

i1
. . . βεm

im
, the corresponding Brunnian word

is then aε0

i0
aε1

i1
. . . aεm

im
∈ BA(n).

6. Equivalent Brunnian words. The objective of this section is to
investigate when two Brunnian words give rise to topologically equivalent
simple Brunnian links. Each Brunnian word represents a Brunnian link in
canonical form. Hence n − 1 loops are concentric about the origin and all
loops have an anti-clockwise direction. It is clear, for example, that conjugate
Brunnian words yield links which are topologically equivalent. The following
theorem describes algebraic operations that yield topologically equivalent
Brunnian links.

Theorem 14. Suppose v and w are two Brunnian n-words and there is

a sequence w1, . . . , wm such that v = w1, w = wm and wj+1 can be obtained

from wj by an operation of one of the following types:

(i) replace w by ak
i wa−k

i for some i < n and k = ±1;
(ii) replace all occurrences of a±1

i with (a−1
i ai+1ai)

±1 and a±1
i+1 with a±1

i
(or symmetrically in i and i + 1);

(iii) rewrite the word in the form δ0a
ε0

0 δ−1
0 δ1a

ε1

0 δ−1
1 . . . δmaεm

0 δ−1
m such

that for each h, a−1
0 does not occur in δh and δh 6= e, and replace

each δhaεh

0 δ−1
h with δ−1

h aεh

0 δh.

Then v and w generate equivalent links.

To prove this theorem we will exploit the connection between braids and
links. Each operation corresponds to a straightforward topological operation.
Since our motivation is to examine when Brunnian words represent equiva-
lent simple Brunnian links, we are only concerned with canonical Brunnian
braids. We describe the topological operation in each case, and then compute
the algebraic equivalent to the topological operations.

(i) Conjugation is obvious.

(ii) This relates to swapping two adjacent curves, neither of which is the
distinguished curve.

Suppose L is a canonical simple Brunnian n-link and B is the corre-
sponding braid. Let Ci refer to the simple closed curve which is the closure
of ti. Obtain B′ from B by swapping ti and ti+1. We consider two possible
cases. Either ti passes over the top of ti+1, or it passes under it. This relates
to Ci+1 passing through the inside of Ci, or Ci passing through the inside
of Ci+1 (respectively).
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Suppose first that ti passes under ti+1. Define T : BB(n) → BB(n) as
follows: If B ∈ BB(n), take σiBσ−1

i and pull the threads ti and ti+1 tight to
get B′. Let T (B) be the canonical braid equivalent to B′. Then T induces
a function, T ∗, on the strings βi occurring in braid words. T ∗ has no effect
on βj if j 6= i, i + 1. Since T takes σiσi+1σi+1σ

−1
i to σiσi, it follows that

T ∗(βi+1) = (βi) (see Figure 2).

Fig. 2

Moreover, T takes σiσi to σ−1
i σi+1σi+1σi and hence T ∗(βi) = β−1

i βi+1βi

(see Figure 3).

Fig. 3

For example if t1 passes under t2 and B = β0β
−1
1 β−1

0 β, then T (B) =
β−1

0 β1β0β
−1
1 . Thus the words a0a1a

−1
0 a−1

1 and a−1
0 a1a0a

−1
1 define equivalent

links.

Suppose now that ti passes over ti+1. Define T : BB(n) → BB(n) simi-
larly to the above, but taking σ−1

i Bσi rather than σBσ−1. Again T ∗ has no
effect on βj if j 6= i, i + 1, while T ∗(βi) = βi+1 and T ∗(βi+1) = βi+1βiβ

−1
i+1.
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For example if t1 passes over t2 and B = β0β1β
−1
0 β−1

1 , then T (B) =
β1β1β0β

−1
1 β−1

0 β−1
1 .

(iii) This relates to swapping the distinguished curve with C0.

Suppose the closure of B ∈ BB(n) is L ∈ BS(n). Since we assume that
B is canonical, t0 corresponds to the distinguished curve in L. Let B′′ be a
braid with closure equivalent to L, but with t1 as the distinguished curve.
We will take B′′ to be the braid derived from B by pulling the threads
t0, t2, t3, . . . , tn−1 taut, and letting t1 loop around them. Then σ0B

′′σ−1
0

swaps t0 and t1. Let B′ be the canonical braid equivalent to σ0B
′′σ−1

0 . The
process we will now describe will combine these two steps and transform B
directly into B′.

Suppose B = βε0

i0
βε1

i1
. . . βεl

il
and consider the corresponding word w =

aε0

i0
aε1

i1
. . . aεl

il
∈ BA(n). We will construct a word w′ which reduces to w,

with the form δ0a
ε0

0 δ−1
0 δ1a

ε1

0 δ−1
1 . . . δmaεm

0 δ−1
m such that for each h, a−1

0 does
not occur in δh and δh 6= e.

At least one occurrence of aε
0 in w is flanked by some ai and a−1

i .
For the pth occurrence of aε

0 (possibly a string of length greater than 1)
in w, let αp be the maximal string such that a±1

0 does not occur in αp

and aε
0 occurs in the string γ0p = αpa

±1
0 α−1

p . If w = γ00γ01 . . . γ0m we
are done, otherwise for each possible p let α1p be the maximal string such
that a±1

0 6∈ α1p and α1pγ0qγ0(q+1) . . . γ0lpα
−1
1p occurs in w (at least one such

string occurs for cancelling to proceed in ̺(w(−a0))). Let w1 be the word
obtained from w by replacing each maximal string α1pγ0qγ0(q+1) . . . γ0lα

−1
1p

by

γ1p = α1pγ0qα
−1
1p α1pγ0(q+1)α

−1
1p . . . α1pγ0lα

−1
1p .

Note that w1 reduces to w.

Now change strings α2pγ1qγ1(q+1) . . . γ1lα
−1
2p in w1, where α2p are maxi-

mal, to

γ2p = α2pγ1qα
−1
2p α2pγ1(q+1)α

−1
2p . . . α2pγ1lα

−1
2p ,

if w1 6= γ10γ11 . . . γ1m. Continue until wm = γm0γm1 . . . γml. Note that wm

reduces to w and has the form δ0a
ε0

0 δ−1
0 δ1a

ε1

0 δ−1
1 . . . δmaεm

0 δ−1
m as required.

Then w′ = wm.

Now consider the braid corresponding to w′. If α is a string in a Brunnian
word w denote the corresponding string in the canonical braid word repre-
senting w by b(α). We can unravel each b(δp)β0b(δ

−1
p ) to get b(δ−1

p )β0b(δp).

Each b(δp)β0b(δ
−1
p ) is a symmetrical bit of the woven thread t0, which picks

up t1 at the very centre. By unravelling it, t1 is pulled through following b(δp)
(and b(δ−1

p )), but in the opposite direction. Turning t1 into the first thread
corresponds to conjugation by σ0. Thus the final outcome is a replacement
of each b(δp)β0b(δ

−1
p ) with b(δ−1

p )β0b(δp) and conjugation by σ0.
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Pulling threads other than t1 taut and conjugating by σ0 does not
give a canonical braid. It would be necessary to strategically add strings
σ−1

i σi−1 . . . σ−1
0 σ0σ1 . . . σi to the braid. However, this process is incorporated

in the algebra.
For example, consider

B = β0β1β
−1
0 β−1

1 β2β1β0β
−1
1 β−1

0 β−1
2 .

Then

w = a0a1a
−1
0 a−1

1 a2a1a0a
−1
1 a−1

0 a−1
2 ,

w1 = (e)a0(e).(a1)a
−1
0 (a−1

1 ).a2.(a1)a0(a
−1
1 ).(e)a−1

0 (e).a−1
2 ,

w2 = (e)a0(e).(a1)a
−1
0 (a−1

1 ).(a2)(a1)a0(a
−1
1 )(a−1

2 a2)(e)a
−1
0 (e)(a−1

2 )

= (e)a0(e).(a1)a
−1
0 (a−1

1 ).(a2a1)a0(a
−1
1 a−1

2 ).(a2e)a
−1
0 (ea−1

2 )

= w′,

and

B′ = (e)β0(e).(β
−1
1 )β−1

0 (β1).(β
−1
1 β−1

2 )β0(β2β1)(β
−1
2 e)β−1

0 (eβ2)

= β0β
−1
1 β−1

0 β1β
−1
1 β−1

2 β0β2β1β
−1
2 β−1

0 β2.

Figure 4(a) is the braid β0β1β
−1
0 β−1

1 . Changing the distinguished loop
gives 4(d), the braid β0β

−1
1 β−1

0 β1. Figures 4(b) and 4(c) indicate how t1 is
pulled through as t0 unravels.

Fig. 2. Changing the distinguished loop
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