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Invariant Borel liftings for
category algebras of Baire groups

by

Maxim R. Burke (Charlottetown)

Abstract. R. A. Johnson showed that there is no translation-invariant Borel lifting
for the measure algebra of R/Z equipped with Haar measure, a result which was generalized
by M. Talagrand to non-discrete locally compact abelian groups and by J. Kupka and
K. Prikry to arbitrary non-discrete locally compact groups. In this paper we study analogs
of these results for category algebras (the Borel o-algebra modulo the ideal of first category
sets) of topological groups. Our main results are for the class of non-discrete separable
metric groups. We show that if G in this class is weakly a-favorable, then the category
algebra of G has no left-invariant Borel lifting. (This particular result does not require
separability and implies a corresponding result for locally compact groups which are not
necessarily metric.) Under the Continuum Hypothesis, many groups in the class have a
dense Baire subgroup which has a left-invariant Borel lifting. On the other hand, there is a
model in which the category algebra of a Baire group in the class never has a left-invariant
Borel lifting. The model is a variation on one constructed by A. W. Miller and the author
where every second category set of reals has a relatively second category intersection with
a nowhere dense perfect set.

1. Introduction. A [ifting for a structure (X, X, N), where X is a non-
empty set, Y is a o-algebra of subsets of X and N C Y is a o-ideal of
subsets of X, is a Boolean homomorphism X' /N — X' which selects a rep-
resentative from each equivalence class. Equivalently, a lifting is a Boolean
homomorphism 6: ¥ — X' such that §(F) A E € N, and for all E, F € X,
EAF € Nimplies (E) = 0(F). If (X, X, ) is a complete o-finite measure
space and we take N to be the ideal of p-null sets, then (X, X', N) has a lifting
[Ma1958]. If X is a locally compact group and p is left Haar measure, then
a lifting exists which commutes with left translations (i.e., 0(zE) = z0(F))
[IT1967]. In the case of Lebesgue measure on the real line, if the Contin-
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uum Hypothesis holds then the representatives chosen by a lifting can be
taken to be Borel sets [vIN] but it is also consistent that no such Borel lifting
exists [Sh1983]. R. A. Johnson [Jo| proved that there is no Borel lifting for
Haar measure on R/Z which commutes with translations. This was subse-
quently generalized to non-discrete locally compact abelian groups [Ta| and
then to arbitrary non-discrete locally compact groups [KP|. (The result in
the non-abelian setting is that there is no Borel lifting for left Haar measure
which commutes with left translations.) The method of [Ta] was adapted to
arbitrary locally compact groups in [Lo| and [Bul993a.

In this paper, we deal with liftings for (X, BP(X),M(X)) where X is a
topological space, BP(X) is the o-algebra of sets E which have the property
of Baire, i.e., for which there is an open set U such that F A U is first
category, and M(X) is the collection of all first category (= meager) sets
in X. When the space X is clear from the context, we shall write BP and M
instead of BP(X) and M(X), respectively. We shall also use the notation
E =yt F tomean EA F € M. A lifting for (X, BP, M) is also called a lifting
for the category algebra BP/M of X.

It might as well be assumed that X is a Baire space (i.e., no non-empty
open set is first category) when we deal with BP /M, since, by a well-known
result of Banach (see, e.g., [Kur, Theorem 1.10.II1.1]), the union of the open
first category sets of X is a first category set and its complement is then a
Baire space which clearly has the same category algebra as X. A group which
is not first category is automatically Baire by invariance of the topology. An
important tool for working with Baire spaces is the following game charac-
terization. A topological space X is Baire if and only if Player I does not
have a winning strategy in the Banach—Mazur game for two players, I and
I1, in which, starting with Player I, the players alternately play the terms of
a decreasing sequence U; D U O --- of non-empty open sets and Player I
wins if the intersection of the sequence is empty. (See [Re, Theorem 2.1].)
When the stronger condition that Player II has a winning strategy holds,
X is called weakly a-favorable.

Category analogs of some of the measure-theoretic results on liftings
mentioned in the previous paragraphs have been considered in the literature.
See, e.g., [LMZ]. In [Mal977] it was observed in particular that a lifting
for the category algebra of X always exists. Liftings for product spaces
which relate nicely to liftings for the factors were studied in [BMMS]. In
the present paper, we establish category analogs of the above-mentioned
results on translation-invariance and prove the consistency result that no
non-discrete Baire separable metric group has a left-invariant Borel lifting for
its category algebra. We do not know whether there is a measure-theoretic
analog of this result.
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ProBLEM 1.1. If A* is Lebesgue outer measure on R, M is the o-algebra
of Lebesgue measurable sets and G is a subgroup of R, equip G with the
o-algebra Mg = {M NG : M € M} and the measure \* restricted to Mg. Is
it consistent with ZFC that for no subgroup G of (R, +) does the measure
algebra of G have an invariant Borel lifting?

(Only subgroups of positive outer measure are of interest but it is not
necessary to require A*G > 0. Indeed, a structure (X, X, N) has no lifting if
X € N, since we need 6() = 0 and #(X) = X but then () and X are equal
modulo N whereas 6(()) # 6(X), contradicting one of the requirements in
the definition of a lifting.)

Our topological terminology follows [En]. For set theory and forcing ter-
minology see [Kun|. For oracle-cc forcing, see [Sh1998]. We write e for the
identity element of an abstract group G. For each ¢ < w, let h;: 2¥ — 2¢
be the homeomorphism which interchanges 0 and 1 on the ith coordinate,

namely, h;(t)(j) =t(j) if 7 # ¢ and h;(t)(i) = 1 — t(4).

The author thanks W. Weiss and 1. Farah for helpful discussions of this
work and S. Solecki for telling him about Theorem 2.6.

2. Preliminary results. In this section, we gather results which are
either known or whose proofs are not substantially different from those of
known measure-theoretic analogs.

Unlike its counterpart for Haar measure mentioned in the previous sec-
tion, the following result is easy to prove. The reason for this is that, unlike
the situation for abstract measure spaces, there is always a natural choice of
a representative for each category class, namely the regular open represen-
tative. Cf. [Mal977, (1), p. 130].

PropoSITION 2.1. For any Baire topological group G, there is a left-
invariant lifting 0 for (G,BP,M).

Proof. For each E € BP, let d(F) be the unique regular open set in the
class of E in the category algebra. Note that d preserves finite intersections

and commutes with translations. Let F be an ultrafilter of subsets of G
extending the filter {E € BP : e € d(E)}. Define

OE)={recG:2'EcT})

That JF is an ultrafilter easily implies that 8 is a Boolean homomorphism.
It is clear from the definition that E =y F' implies (E) = 0( ). For any
E € BP, we have d(E) C 0(E) C d(E°) so that 0(E) =y d(E) =

For left-invariance we have 0(yF) = {z € G : 27 'yE € ffr} = {x
(y o) tEeFt=y{lz€G:27'E€TF} =yl(E). =
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The following simple but important result follows by replacing measure
by category in standard proofs of the measure-theoretic analog. For the

reader’s convenience we give a proof. Our presentation is taken from [Fr2003,
447B].

PROPOSITION 2.2. Let G be a Baire topological group, and let : BP(Q)
— BP(G) be a left-invariant lifting for the category algebra of G. Then 6 is
strong, i.e., U C O(U) for each open set U.

Proof. Let U be an open neighborhood of e. Let V' be an open neighbor-
hood of e such that V=V C U. Choose v € V N G(V). (Since G is Baire,
V & M(G).) Then e = v=tv € v710(V) = 0(v=1V) C O(V-IV) C 9(U). If
U is now any open set and = € U, then 7 'U is an open neighborhood of e
and hence e € (x~1U). This gives © = ze € 20(x~'U) = O(xz~'U) = (V).
Hence, U CO(U). =

The following lemma provides our framework for establishing the non-
existence of invariant Borel liftings. It is a version of the main idea of |Ta].
(Cf. the proof of [Lo, Theorem 1].)

LEMMA 2.3. Let G be a Hausdorff topological group and H C G a dense
Baire subgroup. Let (m; : i < w) be a sequence of non-zero elements of w

and let
®: (Hmz) x2¥ - G
1<w
be a homeomorphism onto a nowhere dense set C'. Let V C G be a Borel set.
Suppose that the following conditions are satisfied:

(a) C'N H is a dense Baire subset of C.

(b) For each (s,t) € (I[;,, mi) x 2% and each i < w, there is an open
set S C G containing ¢(s,t) and there is an o € H such that
o(s,hi(t)) = ap(s,t) and S\ C is partitioned by its intersections
with V and a~1V.

Then for any left-invariant lifting 0 for (H,BP, M), (VN H) N C does not
have the property of Baire relative to C N H. In particular, 6 is not a Borel
lifting.

In (b) it would be enough to assume the property when ¢(s,t) € H. Note
that (b) implies that if ¢(s,t) € H then for all i < w, (s, hi(t)) € H.

Proof. Fix s € [[,.,m; and t € 2¥ such that ¢(s,t) € H and fix i < w.
Let S and « be as in (b). By Proposition 2.2 and because C'N H is nowhere
dense in H (C'N H is nowhere dense in G and H is dense in G), we see that
SNHCOHSNH)=06((S\C)N H) is partitioned by its intersections with
(VN H) and 0(a~ 'V N H). Since o € H and 0 is left-invariant, we have
O(a 'V N H) = 0(a' (VN H)) = at0(V N H). Hence, precisely one of
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(s, t) € 0(VNH), p(s,hi(t)) = ap(s,t) € 0(V N H) holds. Thus, precisely
one of (s,t) € 1(G(V N H)), (s,hi(t)) € ¢~ 1(6(V N H)) holds. It follows

)
that A = ¢~ 1(0(V N H)) does not have the property of Baire relative to
Y = ¢ 1(CNH). Indeed if it did, then either A or Y \ A would contain
a basic open set ([u] x [v ]) N'Y modulo M(Y'), say A contains such a set.

(For some n < w, u € [[,;_,,m;, and v € 27, [u] X [v] denotes the set of
all (s,t) € domp such that v C s and v C ¢.) Fix any ¢ < w such that
i > |v|. Then the map (s,t) — (s, h;(t)) restricts to a homeomorphism of
[u] x [v] which carries the trace of A precisely to the trace of Y\ A. Since A
is residual in ([u] X [v]) NY, it follows that so is Y\ A. But this is impossible
since ([u] x [v]) MY is second category by (a). m

The following proposition isolates a version for category of the argument
from the first paragraph of the proof of [Bul993a, Theorem 2.1].

PROPOSITION 2.4. Let G be a weakly a-favorable topological group, let K
be a normal subgroup of G such that G/ K is metrizable and let m: G — G/ K
be the projection map. Suppose that in G/ K there are a Borel set U and a set
C such that 7=1(C) is weakly a-favorable and for any left-invariant lifting
0 for (G/K,BP,M), 8(U) N C does not have the property of Baire relative
to C. Then the sets 1= 1(U) and 7~1(C) have the same properties in G, i.e.,
for any left-invariant lifting 6 for (G,BP, M), (== 1(U)) N7=1(C) does not
have the property of Baire relative to 7= 1(C).

Proof. We note for emphasis the elementary fact that since K is normal,
for any set A C G we have KA = J,c 4 Ky = Uye s yK = AK and hence
any left K-invariant set is K-invariant. Let 6 be a left-invariant lifting for

(G,BP,M). Define §: BP(G/K) — BP(G/K) by the formula
0(B) = n(0(r(E)))-

Because 7 is open [HR, Theorem 5.17], the preimage under m of each
nowhere dense set is nowhere dense. Hence, the preimage of each meager
set is meager. It follows that the preimage of each set with the property
of Baire has the property of Baire. Hence (7 !(E)) is defined for each
E € BP(G/K). Clearly,  preserves unions. Moreover, because 7~ 1(E) is
K-invariant and 6 is left-invariant, it follows that 8(7~!(E)) is K-invariant.
Because 0(7~'(E)) and (7~ !(E°)) are complementary K-invariant sets,
7 maps them to complementary sets. Thus, § is a Boolean homomorphism.
The image under 7 of a K-invariant (i.e., full preimage) meager set is mea-
ger by Proposition 2.5. If E € BP(G/K) and U is the regular open set in
the class of (7~ 1(E)), then U is K-invariant. Hence M = U A (7~ 1(E))
is K-invariant. We see that 0(E) = w(8(z—1(E))) = «(U) A ©(M) has
the property of Baire. If Ey /A F5 is meager, then 7= 1(F;) A m=1(Ey) =
7 1(E1 A E5) is meager and hence §(7~1(E})) = 0(7~1(Es)). Thus, (E}) =
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9(E3). For open U C G/K, we have 7~ 1(U) C (7~ 1(U)) since  is strong.
Applying 7 gives U C 5((_]) Since the same is true for the interior of the
complement of U, we get O(U) =y U. Finally, if g € G, then

T(9)0(E) = n(g)n(0(n~ (E))) = n(g0(x~ (E))) = n(0(gn~(E)))
=n(0(n~ (n(9)E))) = O(n(g)E).
[For the second last equality, note that = € 7= (7 (g)E) gives 7(x) € n(9)F,
7(g 'x) € E. Then we get = g(g~'2) € gn~1(E).]

So 0 is a left-invariant lifting for the category algebra of G/K. Suppose
O(7=~1(U)) N 7=1(C) has the property of Baire relative to 7~1(C). We then
find that O(U) N C = 7(0(x~1(U))) N C = 7(0(z=1(U)) N 771(C)) has the
property of Baire relative to C since 7~!(C) is weakly a-favorable and the
restriction of  to m#~1(C) is an open map onto C. (See the proof that O(E)
has the property of Baire.) This contradicts the properties of U and C. u

In [Bul993a], a form of the Kuratowski-Ulam theorem for group quo-
tients was established. The following proposition, without the assumption
that Y is metrizable (see [Bul993a, Theorem 1.5]), was left as an exercise
for the reader with the claim that it covered an easier special case of the
Kuratowski—Ulam result which sufficed for the rest of that paper. Unfortu-
nately, we do not see why this form of the statement is true. The special
case where Y is metrizable also suffices for the purposes of the main result
of [Bul993a] and for our purposes here. This time we give a careful proof
of it.

PROPOSITION 2.5. Let X and Y be topological spaces such that X 1is
weakly a-favorable and Y is metrizable. Let m: X — Y be an open continuous
surjection. If A C'Y is second category, then m—1(A) is second category in X .

Proof. Note that for any topological space T and any dense subspace
S, S is Baire if and only if the Banach—-Mazur game in T', modified so that
Player I wins if the intersection of the plays does not meet S, has no winning
strategy for Player I. We denote this modified game by G(T, S).

By replacing Y by a non-empty open subset U in which A is everywhere
second category, and replacing X by 7 !(U), we may assume that A is
everywhere second category in Y. Then 7~ !(A) is dense in X since 7 is
open. Let 7x be a winning strategy for Player II in the Banach-Mazur game
for X. Let ox be a strategy for Player I in G(X, 7 !(A)). We must show that
ox is not winning. We use ox and 7x to describe a strategy oy for Player I
in §(Y, A). We need to define oy (Gy, Ho, ..., Gy, Hy,) corresponding to each
play

Go2Hy2G12H 2

of the game §(Y, A). Only plays for which G,, = oy (Go, Ho, ..., Gn-1,Hp—1)
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for each n < w are relevant, so we limit ourselves to those. The definition
involves defining an auxiliary sequence of open sets in X:

Ug2Vo2U12VID---

The definitions are as follows. For each non-empty open subset G of Y
and each n < w, we fix a non-empty open L(G,n) C G having diameter at
most 27" in some fixed metric for Y. Now we let

(1) Un = UX<U07 Vb N 7T71<H0), ceey Un—l: Vn—l N 7r71<Hn—1)):
(ii) Vi = 7x (U0, Vo, ..., Un—1,Vp-1,Un),
(111) Gn = O‘y(Go, Ho, cey anl, anl) = L(?T(Vn), TL)
We check inductively that

(iv) Uy 2 Vo 2+ Up 2 Vi # 0,
(v) Go2 Ho2-+- 2 Gy 2 Hy # 0,

(vi) Uy D Vona Y Hy) D --- DU, DV, N~ (H,) # 0.

Consider first what happens when n = 0. Item (i) shows that Uy = ox(0)
is a non-empty open set. Then (ii) gives Vo C Uy and Vj # 0. Item (iii)
then implies that Gy = oy (0) = L(7(V4),0) is a non-empty open set. Then
by assumption Hy C Gy and Hj is non-empty. The inclusion in (vi) is a
consequence of the inclusion in (iv).

Suppose that for some n we have verified (iv) and (v) and all of (vi)
except the inequality at the end. By (iii), H, C G, C 7(V,) so that V,, N
7 1(H,) # 0. Then (i) makes sense for n + 1 and gives U,11 C Vj,. This,
together with (iv), justifies (ii) for n 4+ 1 and gives V411 C U,41. Item (i)
also gives m(U,41) C H,. By (iii) for n + 1 (which makes sense by (v)),
Gnt1 € 7(Vps1) € 7(Upt1) € Hy. Thus, (v) holds for n + 1. The second
last inclusion in (vi) for n 4 1 is immediate from the definition of U, as
given by (i).

Since A is Baire, the strategy oy is not winning in G(Y, A). Choose the
responses H,, for Player II so that (), Gy, = ), H, meets A. By (iii), the
intersection cannot contain more than one point. Hence there is a y € A such
that (,, Gn =(),, Hn = {y}. Since 7x is a winning strategy, there is a point
ze€(),Un=), Va By (i), 7(x) € Hy, for all n < w. Hence 7(x) = y, which
gives z € 7 1(A). This shows that ox is not winning for G(X, 7 !(A)) and
hence that 7=!(A) is Baire and hence everywhere second category in X. =

We shall need the following fact about metrizable groups.

THEOREM 2.6 ([TH-J, Theorem 2.3.5, p. 352|). If G is a metrizable topo-
logical group, then the topology of G is generated by a left-invariant metric
d, i.e., a metric satisfying d(x,y) = d(zz, zy) for all z,y,z € G. Moreover,
the metric o given by

oz, y) =d(z,y) +dx',y )
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generates the topology of G and, if (é, 0) denotes the completion of the metric
space (G, 0), then the group multiplication extends uniquely to G in such a
way that (G, p) is a topological group.

Notice that if we are given transitive models of set theory M; C Ms and
a separable metric group (G, d) € Mj, where d is a left-invariant metric, then
Theorem 2.6 gives natural embeddlngs of (G, o) into complete metric groups
(Gi,0i) € My, i = 1,2, and in Ms, G5 can be considered in a natural way
to be an extension of él. Furthermore, in M, if we fix a countable dense
set G’ C G then the Borel subsets of G; (and in fact we care only about
the open sets and the closed sets) have natural countable codes describing
how they are built using balls {z € G; : o(z,y) < €}, where y € G’ and
€ is a positive rational number. In such circumstances, we shall simply write
G instead of G1 or Gg, leaving it to the context to 1nd1cate which group is
intended.

We shall make use of the following well-known facts. We do not know a
convenient reference for them in precisely the form we require, so we give
the brief proofs. For a reference which essentially contains this, see [Hu,
Chapter V.

PROPOSITION 2.7. Let G be a topological group.

(a) Let H be a subgroup of G. If for some p € H and some open neigh-
borhood U of p the set U N H s first category in G, then H 1is first
category in G.

(b) If G is Baire and A C G contains a residual subset of a non-empty
open set, then AA™! is a neighborhood of the identity.

(¢c) (Open Mapping Theorem) Let G and H be Polish groups and let
f: G — H be a continuous homomorphism. If the range of f is second
category, then f is open.

Proof. (a) Let ¢ € H. The map ¢: G — G defined by ¢(z) = gp~ 'z is a
homeomorphism of G such that ¢(U) is an open neighborhood of ¢(p) = ¢
and ¢(U)NH = ¢(U)N¢(H) = ¢(U N H) is a first category set. This
shows that H is locally first category at every one of its points and hence
is first category by the result of Banach cited in the introduction (|Kur,
Theorem 1.10.I11.1]).

(b) We may take the open set in question to have the form Uz for some
xz € G and some open neighborhood U of the identity e. So our assumption
is that AN (Uz) is residual in Uz. Choose an open neighborhood W of e
such that WW C U. For each w € W, the set (wA) N A contains a residual
subset of (wUx) N (Ux) and the latter is non-empty since it contains wwz.
Hence (wA) N A is not empty, from which it follows that w € AA~!. Thus,
W C AA™L.
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(c) Let Vj be an open neighborhood of the identity e € G. Choose an open
neighborhood V' of e so that VV =1 C V4. Since countably many translates
of V cover G, countably many translates of f(V') cover f(G). Since one of
these must be second category in H, f(V) is second category in H. Since f
is continuous and V' is open, f(V) is analytic and hence has the property of
Baire. By (b), f(V)f(V)™! = f(VV~1) C f(Vo) is a neighborhood of the
identity in H. m

3. Weakly a-favorable metric groups

THEOREM 3.1. Let G be a weakly a-favorable metrizable non-discrete
group. Then there are an open set U C G and a nowhere dense Cantor
set C' C G such that for any left-invariant lifting 6 for (G,BP(G), M(G)),
0(U) N C does not have the property of Baire relative to C.

Proof. Fix a winning strategy o for Player II in the Banach—-Mazur game
on (G. By induction on n < w, we define o, € GG, and for ¢ € 2", we define, by
induction of the lexicographic order on 2", non-empty open sets U* and W/
so that the following conditions are satisfied. (The mention of n in this
notation is redundant since n = |t|, but for the case where ¢ is the constant
zero sequence, which we denote simply by 0 regardless of the value of n, the
notation Uj, W{' avoids ambiguity.)

(i) 09 =aG.
(ii) For each n < w, t € 2" and i < 2, U D W D U and U™ N
U”+1 = . The union Ujs™ U U”+1 is not dense in Wt .
(iii) Uy = BrUy, where
ol
(Take 33 = e.)
(iv) For each ¢ € 2", we have

vo oW g D Why
@
k+1 k+1 1kt ki1
3 Birtern Baesigpaany) ™ Warri ey 2 Wirgesn 2
2 B (Beny)” 1Wsn(t)v

where for each ¢t € 2", s"(t) denotes the immediate predecessor of ¢
in the lexicographic order on 2". Even though s"(0) does not exist,
we set W7, n) = = Uy, B2, (o) = & The sequence of inclusions stops

at VV0 when n = 0, the last inclusion being the special case of (1)
where £k = n — 1 and hence applying only when n > 0. The set W}
is Player II’s next move according to ¢ when the sequence of plays
so far has been as above.
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UTL+1 UTL+1

(v) Uyt C G is a non-empty open set, a;, € G and and ay,
are disjoint subsets of (3]')"'W]* whose union is not dense in
(ﬁ?)_lVVl", where the subscript 1 denotes the constant sequence
with value 1 in 2". Furthermore, each of the sets U™ and o, Uy
has diameter at most 1/(n + 1) in some fixed left-invariant metric
for G.

To carry out the induction, start by defining Ug = G and let Wg be Player
IT’s first move according to ¢ in the game where Player I's first move is Ug.
This takes care of (i), (iii), (iv) and the first inclusion in (ii) when n = 0.
Given UJ* and W} for t € 2", define U™ and ay, so that (v) holds. Since
G is not discrete, and hence has no isolated points, this is not a problem.
Define other U by the formula in (iii).

For the first part of (iv), fix t € 2"+ and notice that, by the induction
hypothesis, according to the first inclusion in (ii) and clause (iii), for k+1 < n
we have

k+1 (ﬂk-i-l

—1yr/k+1
tF(k:-}—l) k+1(t k+1))) WSkJrl

( [(k+1))

k+kl+1 (ﬁkktll er1))) 1Ufkt11( t1(k+1))

k+1 k+1 _ prk+1
U0 = Ugrry
and the last term, according to the second inclusion in (ii), is contained
in Wtkrk so that the inclusions (1) hold. (Check separately the case where
t[(k+1) is the zero sequence.) The inclusions (2), for k+ 1 < n, hold by the
last part of (iv). Now define W™ as in the second part of (iv). The first
inclusion in (ii) (i.e., W™ C U*!) holds by the definition of W"™ and
the calculation above with k = n, or directly from the definition of W"Jrl if
t=0.
There remains to check the parts of clause (ii) (for n) with superscript
n + 1. For the inclusion, we have

n+l _ on+lym+l _ gn n+1
Ui =B, Ug™ =605,

where v = e or 7 = «a,, depending on whether ¢+ = 0 or ¢ = 1. Either way,
from (v) we deduce that

(+)  URFNC AN T and Ut U U s not dense in 37(57) 7T W

The inclusion W C B8 ;) 1WS’;(t) from the last part of (iv) can be
rewritten as

(BP) W C ( ;‘n(t))‘lWﬁm(t)-
Iterating this gives
(+) B~ W c (BT twy
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whenever s,¢t € 2" and s precedes t lexicographically. In particular, (k)
holds for all s when ¢ = 1. From (*) we now get

Ut C BB W C BB T = W)
together with the last statement of (ii). Finally, U™ nURT = (3rU7 ) N
BroanUi™h = BrUFT Nan U™ = 0 by (v).
By (ii) we have, for each ¢ € 2%,

Ug 2Wg 2 2 Wy 2 UkJ(rkl+1) szrklﬂ)

Hence, (,., U}, = Ny<w Wil, and by (iv) the right-hand side equals the
intersection of a sequence of plays of the Banach—-Mazur game in which Player
IT uses a winning strategy. Hence, this intersection in non-empty. By (v), we

have

M Ut = {o(0))

n<w
for some : 2¥ — G. From (ii) and the last statement of (v), it follows that
¢ is continuous and one-to-one. Let C' be the range of ¢. By (ii) and (v),
C' is nowhere dense in G. (If ¢(t) were in the interior, then by (v), Uy}, is in
the interior for some n. This contradicts (ii).) It also follows from (ii) that
(%) c= o

n<w s€2m
The rest of the proof follows the argument for the 2éme étape of the

proof in [Ta] (see also the proof of [Lo, Theorem 1]). For completeness, we
reproduce the argument. For € G\ C, there is a largest n = n(z) < w such
that x € U* for some (unique) ¢t = ¢(z) € 2". Define

V={xeG\C:ty+ - +t,—1is odd}.

Then V is the union of countably many sets of the form U\ (Ujs" uUAH)
and hence is Borel. If i < n < w and ¢ € 2¢ satisfies ¢(i) = 0, then by (iii)
we have

Uh (t)In —ﬂt Oéz(ﬁt i) lUtT?n
Similarly, if ¢(i) = 1, then
n= 5§[ia;1(ﬂzri)ilep{n
CLAIM. For any t € 2¥ and any ¢ < w, there is an open neighborhood

S of ©(t) and there is an o € G such that p(hi(t)) = ap(t). Furthermore,
S\ C is partitioned by its intersections with V and a1V .

Proof. We can take for S any Uil with @ < m. Intersecting over n
in the two displayed equations above shows that ¢(h;(t)) = ap(t) where
= ﬁti“azil(ﬂfri)_l. Now consider z € S\ C = Uj},, \ C. We want to
show that precisely one of x, ax belongs to V. For the unique n such that
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z €U\ (UgpUUY) for some s € 2", we have n > m since z € Uyj;,,. Thus
© < n and we have

ax € aUg = Upn(,y and  ax € aUg = Upn j=0,1,

5)j’
where h}': 2" — 2" interchanges 0 and 1 on the ith coordinate. It follows
that ax € C and the same unique n witnesses this. The unique r such that
x € U is r = s and the unique r such that ax € U;" is r = h]'(s). Thus,
precisely one of x, ax is in V. This gives the second statement of the Claim. =

The proof is now completed using Lemma 2.3. The U in the statement
of the theorem is any open representative of the class of V' in the category
algebra. m

THEOREM 3.2. Let G be a non-discrete locally compact Hausdorff group.
Then there are an open set U C G and a nowhere dense compact set C' such
that for any left-invariant lifting 6 for (G,BP(G), M(Q)), O(U)NC does not
have the property of Baire relative to C.

Proof. As in the proof of [KP, Theorem 3.2|, we have a compact normal
subgroup K of G such that G/K is second countable and not discrete. By
[HR, Theorem 5.22|, G/K is locally compact. Hence Theorem 3.1 applies.
Get U and C as given there for G/K. Let m: G — G/K be the projec-
tion map. Then 7—!(C) is compact since C is compact and 7 is perfect.
(m is closed since G/K has the quotient topology and for any closed set
C C G, 7 1(n(C)) = CK is closed.) Furthermore, 7~!(C) is nowhere dense
since 7 is open. The rest follows from Proposition 2.4. u

The next two results show that, assuming the Continuum Hypothesis
(CH), we cannot replace weakly a-favorable by Baire in Theorem 3.1.

PROPOSITION 3.3. Let G be a Baire topological group. Let L be a dense
subgroup of G which is a Luzin set, i.e., is uncountable but has countable
intersection with each first category set. Then L has a left-invariant Borel
lifting for its category algebra.

Note that a subgroup which is a Luzin set is automatically a Baire space.
This follows from Proposition 2.7(a).

Proof of Proposition 3.3. Take any left-invariant lifting 6 for the category
algebra of G. (There is such a lifting by Proposition 2.1.) Restricting to L
gives a left-invariant lifting for the category algebra of L. Indeed, for regular
open V C L, there is a unique regular open U C G such that V = U N L.
Note that for I € L, IV = (IU) N L. Define (V) = 6(U) N L. Then 0 is
a Boolean homomorphism and a selector for the category classes, and for

lelL,
O(V) =0(U)NL = (10(U))NL=10U)NL) =16(V).
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Now consider any regular open set V' C L. We observe that §(V) AV is
first category and hence countable. Thus, §(V) is Borel. m

PROPOSITION 3.4. (CH) Let G be a non-discrete Baire separable met-
ric group. For positive integers k,l and words w(z1,...,x) on the alphabet
{z1,...,2k,01,...,a1}, where x1, ..., x} are variables and a1, ...,a; € G, let
us call functions G¥ — G, x — w(z), word maps.

(a) Suppose that each word map either has countable range or is open.
Then there is a dense subgroup of G which is a Luzin set.

(b) Suppose that some word map G* — G, x> w(x), where w is a word on
the alphabet {x1,...,x} (no constants), has first category range and
nowhere dense fibers. Then G has no subgroups which are Luzin sets.

Proof. (a) Let B be a countable base for the topology of G. Let L C G
be a set such that L N B is second category for each non-empty B € B, and
for each positive integer n, there do not exist uncountably many pairwise
disjoint n-element subsets of L which, when identified (arbitrarily) with some
enumeration, form a nowhere dense subset of G". [See [To, Proposition 6.0]
for the existence of such an L. The context there is the real line, but the same
argument works for any Baire separable metric space. Briefly, by CH, there is
an increasing chain (M : £ < w) of countable elementary submodels of H,
for a suitably large regular cardinal A, such that G € My and R C U§<w1 M.
(Note that then we also have G C J,_,, M since My contains a one-to-one
function G — R.) Let s: w1 — B\ {0} be such that s~1(B) is uncountable
for each B € B\ {0}. Inductively choose z¢, { < wi, so that for some model
M,¢) containing {ze : § < £}, x¢ is a member of s(§) which is a Cohen
real over M, . Then L = {x¢ : § < wi} is as desired because if N is a
(code for a) closed nowhere dense subset of G", then, since R C [ J;_,,, M,
we have N € M, for some 1 < w;. Then no n-tuple of distinct elements of
{xe :m < € <wi} belongs to N]

We now verify that the subgroup of G generated by L is a Luzin set.
If uncountably many words w¢, ( < wi, on the elements of L belong to a
closed nowhere dense set N C @, then we may assume that the subsets
of L involved all have the same cardinality m and form a A-system. We
may enumerate them as {xg,...,z,_1, xﬁ, e ,ajg%_l} where {zg,..., 2,1}
enumerates the root and is the same for all words. We may also assume
that there is a function f: G™™" — G such that f(y,,...,ym—1) is given
by a fixed word on the alphabet {xo,...,z,—1} U{yr,...,ym—1}, and for
each ( < wy, we = f(ﬂvg,...,xfn_l). Since the w¢ are distinct, f does not
have countable range. Hence, f is an open continuous map, so f~1(N) is a
closed nowhere dense set in G™". Since f~1(NN) contains uncountably many
disjoint (m — r)-tuples of L, we have a contradiction.
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(b) Let f be the given word map. Suppose some subgroup L were a Luzin
set. Since the fibers of f are nowhere dense, L has a countable intersection
with each one. Since L itself is not countable, it follows that its image f(L)
is uncountable. The fact that w contains no constants gives f(L) C L. By
assumption, f(L) is first category in G and hence L is not a Luzin set,
a contradiction. m

We can be more precise about the conditions under which there exist
subgroups which are Luzin sets in abelian Polish groups.

COROLLARY 3.5. Let G be a non-discrete abelian Polish group. There
is a (dense) subgroup L of G which is a Luzin set if and only if, for each
integer a, the map x — ax has either an open range or an open kernel.

The parentheses around the word “dense” indicate that the statement is
true with or without it.

Proof. Suppose the condition fails and a is a counterexample. Since x — ax
is a continuous homomorphism, by the Open Mapping Theorem (Proposi-
tion 2.7(c)) the fact that the image is not open implies that the image is first
category. Since the kernel of this map is a subgroup, the fact that it is not
open implies that its interior is empty. Now apply Proposition 3.4(b).

Conversely, if the condition holds, we show that the hypothesis of Propo-
sition 3.4(a) is satisfied. Since G is abelian, each word map f: GF — G is
given by a formula of the form f(x1,...,25) = c+ Zle a;x;, where ¢ € G,
ai,...,a € Z. If each of the maps x — a;x has countable range, then so
does f. If one of them has open range, then (by the Open Mapping Theorem)
it is an open map and hence so is f. m

This characterization was motivated by the following example.

EXAMPLE 3.6. (CH) Let n > 1 be an integer and consider the discrete
cyclic group Zy,. The group (Z,)* has a dense subgroup which is a Luzin set
if and only if n is prime.

Proof. 1f n is composite with non-trivial factoring n = ab, then the map
x +— ax maps (Z,)* into {0, a, 2a, ..., (b—1)a}*. The range is nowhere dense.
Furthermore, the fibers of this map are nowhere dense. (The fiber over ax is
{y:ay=azx} ={z+bz:2¢€ (Z,)*} =2+ {0,b,2b,...,(a—1)b}*.) Now
use Corollary 3.5.

If n is prime then the maps = — ax on Z, are constant when a is a
multiple of n, and bijections of Z, otherwise. The same is thus true for
multiplication by a on (Z,)“ and again we can apply Corollary 3.5. =

PrROBLEM 3.7. Assume the Continuum Hypothesis. Do the following
groups have a dense Baire subgroup which has an invariant Borel lifting
for its category algebra? (a) (Z4)“, (b) (Z2)“ x R.
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REMARK 3.8. Analogous examples related to liftings for their measure
algebras can be worked out for Haar measures in locally compact Polish
groups. We do not elaborate on this here as it is outside the topic of this

paper.

4. Baire separable metric groups

THEOREM 4.1. It is consistent with ZFC that (1) every second category
set in R has a second category subset of cardinality wi, and (2) for every
Baire separable metric group (G, d) without isolated points, where d is a left-
invariant metric, there are a Borel set W C G and a continuous one-to-one

map
©: (H ml) x 2% = @,
<w
where 0 < m; < w for each i < w and (é,@ is given by Theorem 2.6, so
that the following properties hold:

(a) ran is nowhere dense in G.

(b) GNrany is a dense Baire subset of ran .

(c) Foranys € [[,.,m;andt € 2¥ and any i < w, there are o« € G and
an open neighborhood S of ¢(s,t) such that (s, hi(t)) = ap(s,t)
and S\ ran ¢ is partitioned by its intersections with W and o~ 'W.

The proof combines ideas from the proof of Theorem 3.1 and of the result
of [BM] that it is consistent that every second category set of reals is second
category in a nowhere dense perfect set. Before proving the theorem, we need
some lemmas, principally Lemma 4.5.

DEFINITION 4.2. A sequence
M = (Ms : § is a limit ordinal < w1)

is called an oracle if each Mjs is a countable transitive model of a sufficiently
large fragment of ZFC, 6 € Ms, Ms |= “0 is countable” and for each A C wy,
{6 : ANd € My} is stationary in w;.

The meaning of “sufficiently large” depends on the context. In a particular
proof, some fragment of ZFC for which models can be produced in ZFC
must suffice for all the oracles in the proof. The existence of an oracle is
equivalent to ¢ (see [Kun, Theorem II 7.14]), and hence implies CH. We limit
the definition of the M-chain condition to partial orders of cardinality ws.
This covers our present needs. Associated with an oracle M, there is a filter

Trap(M) generated by the sets
{6 <wi : 0 is alimit ordinal and ANd € Ms}, ACw.

This is a proper normal filter containing all closed unbounded sets.
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DEFINITION 4.3. If P is any partial order, P’ C P, and ® is any class
of sets, then we write P’ <p P to mean that every predense subset of P’
which belongs to ®© is predense in P.

DEFINITION 4.4. A partial order P satisfies the M -chain condition, or
simply is M -cc, if there is a one-to-one function f: P — w; such that

{6 < wy : § is a limit ordinal and f71(4) <wms, P}
belongs to Trap(M), where Ms s = {f~1(A): A C 4§, A € Ms}.

It is not hard to verify that if P is M-cc, then P is ccc. Also, any one-
to-one function g: P — wj can replace f in the definition.

In what follows, ) denotes the countable forcing notion for adding one
Cohen real.

LEMMA 4.5 (Main Lemma). Let M = (Mjs : 6 < wi) be an Ny-oracle. Let
(G,d) be a Baire separable metric group without isolated points, where d is
a left-invariant metric. Then there is a forcing notion P which is M-ce, and
P-names W for a Borel subset of G, and 1, i < w, for non-zero elements
of w, and ¢ for a continuous one-to-one map

& (Hm) X2 G
<w
so that for every I' C P x () generic over V and every non-empty open set
B C G,

(a) ran@[I'] is nowhere dense in G,

(b) for any s € [[,., 4[] and t € 2¥ and any i < w, there are « € G
and an open neighborhood S of [I'|(s,t) such that ¢[I'](s, hi(t)) =
apll](s,t) and S \ ran@[I'] is partitioned by its intersections with
W[ and o~ "W[I7,

and there is no Borel set X C G in V[I'] such that

(c) X Nran@[I'] is meager relative to ran p[I],
(d) BNnrang[I'] #0 and GNBNrang[I'] C X.

Note that the non-existence, for each non-empty open B, of a Borel set X
satisfying (c) and (d) just says that G Nran¢[I'] is a dense Baire subset of
ran ¢[I']. The given wording is more convenient for our purposes.

Proof of the Main Lemma. Fix a countable dense subgroup G’ C G and
let B be the base for G consisting of G and all the left translates by elements
of G’ of all the open p-balls of rational radii centered at points of G’.
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DEFINITION 4.6. Define partial orders P=P((a, : n<()) where ¢ <wy,
ap € G as follows. The conditions in P are the quadruples

p:(Fp,< SEHmptEQ”nSnP>,
<n
(af i <mp), (77 :j<mf,i<np))
where:
(1) e € F), and F), is a finite subset of G' U {a, : n < (}.
(2) np <w, 0 <m? <wfori<mny, (Up)t, € B forallse]]
te 2, al,'y”EG’and’yO—eforallj<m i < np.
(3) Ugo=G-
(4) For each n < np, s € []
following properties hold:
a is an open subset of G and ¢ - , where ¢
Up)ty i ub f G and 1Upg,:t1, Up)?+, where cl
denotes closure in G.
as p-diameter at most 27".
(b) (U2, has g-d 2

(c) If (K',1") € my, x 2 is distinct from (k, 1) then (U, )?;tll N (Up)?,j’ltl,
fnd Q.

(d) e € (Up)go and (Up)s, = (Bp)s:(Up)s o, where the subscripts 0
denote the constant zero sequence of length n and

(ﬁp)st - (ao)t(O)’ygs(O) e (afz—l)t(n_l)fyz—l,s(n—l)'

(Take (ﬁp)070 = e.) The superscripts ¢(7) indicate exponentiation.
All other superscripts are just superscripts.

(5) B C UH{(Up)s% : s € [icp, mis t € 27}

The order on P is: p < ¢ if and only if the following conditions are satisfied:
(6) Fp 2 Fy, np > ny.
(7) For all i < ng, mf’ =m, af = o and, for each j < m], 'ygj = %g,j'
(8) For all n < ngy, s €[], ?and t € 2", we have (Up)?, = (Uy)%,.

p
i<np Y and

mb, ¢t € 2" and (k,l1) € m, x 2, the

<n

z<n
LEMMA 4.7. For every condition p and every finite set A C U{(UP)Z?f

s € [licy, mb, ¢t € 2™}, there is a condition ¢ < p such that Fy = F,, ny =

n,+1, A C U{(U, )Z% 05 € [Licn, ml, t € 2"} and for all s € [Tic,, m m,

t € 2™ the set | J{(T, )le;rll (k,1) € my, x 2} is not dense in (Up):f;.

Proof. Replacing A by AU F),, we may assume that F,, C A. Let A’ be
a finite subset of (Up)g,% containing

U{@ (@pisnay:se T mb, e 2m .

i<np
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Note that by (1) we have e € A and hence e € A’ (by the first part of (4)(d)
and the fact that (ﬁp)g’% = e). Define a condition g by setting F, = F),
ng = np+1, my, = |A’|. Let q agree with p below n,, as required by (7), (8).
For x € A’, choose open sets S, such that z € S, C clS, C (Up)gﬁ), the sets
Sz, © € Al, are pairwise disjoint, |J,c 4 Sz is not dense in (Up)g’%, and for
all s € [[;cp,, m! and ¢ € 2", the g-diameter of (ﬁp)jfgsx is at most 274,
For all o € G close enough to e, we have ax € S, for each z € A’. Pick one
such o € G'\ {e}. For a small enough open neighborhood W of e, we derive
for each x € A’ that W and axW are disjoint subsets of S,.. Choose B € B
such that e € B C BB C W. For each x € A’ \ {e}, choose v, € G’ close
enough to z so that v, 'z, 271y, € B. We have

x €~ BCxBBCzW.
Let A" = {A'(i) : i < |A'|} with A’(O) = e Let (Uyph = B, af, = a,
'Vzpi = Yar(sy when 0 < i < [A’| and 'an,o = e. Define the other values of
(UQ)Z}/ by (4)(d). This works.
[We have

np+1 np+1 np 1 np+1
(5) Uyt = B (U)ot = cl(By)eh(ad )'ve Uy
= Cl(ﬁp)s,ta Pan’]ng

where 'Vgp,k = Yaw if 0 < k < |A’| and 721”0 = e. For z = A'(k) and
v = VZp,kv we have yB C W C S, and ayB C azW C S,. From (x) we get

AU C l(Bp)2nSe = (Bp)a% el S C (Bp)ma(Up)gly = (Up)t

If © € Fp, then 2 € (Up),} for some s,t. Then y = ((6,)57) 'z € A" We
have y € ~,B and for some ¢ < |A'|, y = A'(i). Then z € (5p)87tfyyB =

(Ug)oto' ] m

Let K be a P-name for the set constructed from the generic filter I" as
follows:
K = m U{(Up)?,t ipel,n<mnpy}
n<w
(The name really depends on @ = (a,, : 7 < (), but omitting explicit mention
of @ should not cause any confusion.)

It will be convenient to have a particularly simple form for the (P x Q)-
names 7 for closed sets in G. We will call such a name nice if it is identified
with a name for its complement having the form | Jz.g{B} x Ap, where the
Ap’s are countable sets of conditions, B C B’ = Ap C Apg, and given a
generic filter I', 7 names the set whose complement is (J{B € B : I'N Ap
# (}. |For a given name 7, an equivalent nice name can be obtained by
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taking a countable M < H) containing B (for some large enough regular
cardinal \) and setting Ap =M N{x € PxQ:zl- B C 7}

CramM 4.8 (Main Claim). Let Ps = P({a, : 7 < 0)), 0 < wy be given,
as well as a countable N5, Ps € Ng, a condition (p*,7*) € Py x @), s €
HK%* mf , t € 2™ and Ps; x Q-names for closed sets T, so that |-p;xq

“raNK is relatively nowhere dense in K”, n < w. Then we can find ag € GN
(Up*)Zf such that, letting P51 = P({a, : 1 < 6)), the following conditions

hold:

(A) Ewvery predense subset of Ps which belongs to Ns is a predense subset
of Psy1.

(B) There is a condition (p',r") € Ps11 x Q extending (p*,r*) such that
as € Fyy and for alln < w, (p',r") IFp;s, xqQ as & Tn-

Proof of the Main Claim. Choose a sufficiently large regular A and choose
a countable N < H) such that Pj, (a, : 7 < §), (7, : n < w), N5 € N. Choose
a Cohen real over N, a5 € G N (Up*)Zf. For the purposes of choosing as,
think of Cohen forcing as B ordered by inclusion.

REMARK 4.9. Incompatible elements of Ps remain incompatible in P54
as incompatibility of two conditions p, ¢ with, say, n, < n, can only result
from a failure to have m] = mj, of = of, 7, = +;, (Up)s, = (Ug)s,
below n, (more precisely for j < my, i <np, s € [[.,, M, t €27, n < ny),
or a failure of the (Uy)}% to include all points of F,.

Proof of condition (A). Let J C Ps be predense, J € Ns. We must show
that J is predense in Ps,i. Let p € Psy1, p € Ps. By the definition of Ps,q,
F,, has the form F U {as} where F' is a finite subset of {a, : n < 0}. If p is
not compatible with any element of J, then some I € B containing as forces
this over N. By shrinking I, we may take I C (Up*)gg*. Choose p; € P,
a common extension of the condition p € Ps obtained from p by replacing
F, by F and some py € J so that for some s’ € [] mbt, ¢ e 2", we

i<np,
have a5 € (Upl):,‘j 4. [The set of possible values for (Upl):,‘j 4, covers a dense
open subset of I which belongs to N, so as belongs to one of them. To see
that I is densely covered by these values, fix any a € I and € > 0. Applying
Lemma 4.7 sufficiently many times gives ¢ < p in Pjs so that some (Uq):,‘it,,
contains a and has g-diameter less than . Then, because J is predense in
Ps, we get p1 € Ps, a common extension of ¢ and some py € J. Then for any
s, 1" for which (Up, )"t is contained in (U,)7 ., we deduce that the former
is within ¢ of a.] Then p is compatible with ps.

Proof of condition (B). Let p’ be obtained from p* by replacing Fj- by
F,«U{as}. Take ' = r*. If Nas] believes that these satisfy (B) then they do
and we are done. Otherwise, choose (p”,7”) in N|[as] extending (p/,’) and
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1 < w such that
N[ad] |: (p”v'rll) “_P5+1 xQ 4§ € T;.

For some Cohen condition I € B containing ags, we have, letting  be a name
for the Cohen real and writing Fj» = F” U {as} with a5 ¢ F”,

N ETIF“Fp =F"U{z} and (p",7") IFp;, xq@ v € .

npll

. Let
s//,t//
7" € Ps be obtained from p” by replacing F,» by F” U {y}, where y is any
element of G'NI. (Adding y ensures 7 IFp, INK # ().) In N, extend (p”,7")

to (", ") € Psx @ which forces (over Psx @) that some I’ = (Uﬁw)?j/;/// -
I has the property that I’ N K # @ and I’ N K is disjoint from 7;, and choose

this extension so that as € I’.

By shrinking I, we may assume that it is contained in some (Upr)

[Arranging the last condition is a matter, as in the proof of condition (A), of
checking that the set of possible values for I’, ignoring the requirement a5 € I’,
belongs to N and covers a dense subset of I. To check the latter, first extend

7" in N to p € Ps so that some I = (Uﬁ)g’;i is contained in I and is within a

given € of a given ¢ € I. Adding an element of ING to F; if necessary, we may
assume that pIFp, TN K # (. Next, in N, extend (p, ") to (7"”,7") € Ps x Q
which decides an I’ € B such that I’ C I, I' VK # 0 and I’ N 7; = 0. Since

N=111

(7", ") forces I' N K # (), I' meets some (Upr) i - By adding to Fyn a

point 3o € G’ from the intersection and then extending 7" finitely many times
using Lemma 4.7, we may assume that the (UH//)Z,?,N;,,, which contains yq is

P
contained in I’. Now replace I’ by (UI—,///)Z,?,”;,,,-]

/11

Now let p
Since ag € I,

€ P51 be obtained from 7" by replacing F» with FynU{as}.

(*) (p”/, Tm) H_Pa+1 xQ as g Ti-
More precisely, because
@", ") kpyxo I'N N K=0

holds in NYas], it also holds in V. (A filter I" C Ps x @ generic over V inter-
sects N[as] in a filter generic over N|as], the value 7;[I"] only depends on this
intersection and the statement being forced is absolute.) By an observation
of Shelah, it follows that

(ﬁ//ly’r’”) “_P6+1><Q I/ a T = @

(See [Bul993b, Lemma 4.13]. Observe that the proof of (A) showed that
Ps <n Ps41 and, as noted above, incompatible elements of Psremain incom-
patible in Pjs,.)
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Hence this last statement is true with p”’ in place of P as well, and (x)
follows. Since (p™,r") extends (p”,r”), this contradicts the choice of (p”, ")
(using absoluteness again to replace N[as] by V). This completes the proof
of the Main Claim. =

The proof of the Main Lemma is now a mostly routine (for the reader
familiar with oracle-cc forcing) bookkeeping argument using the Main Claim.
There are a few points where some care is needed, so we give the argument.
The middle part of the argument closely follows [Bul993b, pp. 144-145].

Suppose § < wy and 7 is a nice P X ()-name for a closed set in G. If
7 = Upen{B} X Ap is such that the Ap’s are contained in Ps x @, then 7
is also a Py x @-name for a closed set.

Fact 4.10. If IFpxg “T is a nowhere dense subset off(”, then also I-p; <
“r is a nowhere dense subset of K.

(As pointed out after the definition of K, this notation denotes two dif-
ferent names in the two statements above.)

Cram 4.11. Ify € B and u lFp;xg B C 7¢ then u is compatible with
some v € Ap: for some B’ so that y € B’ C B.

[Let I" be a generic filter containing u. Then y € B C 7[[']° = |J{B' :
B' € B,I'nN Ap: # 0}. Hence, there is v € I' N Ap/ for some B’ such that
y € B’. Choose B” € B so that y € B” C BNB'. By assumption, Ag: C Apgn
so that v € Agn. Also, y € B” C B.]

To prove Fact 4.10, suppose it fails. Then, for some condition (p,r) €
Ps x (Q and some B € B,

(%) (p,7) Fpxo W # BN K C 7.

Then some extension (p/,7’') € P x @ decides By € B, By C B meeting
K but disjoint from 7. Note that By must meet some (Up/):;/. We may
assume that there is a point y € G' N By N (Up/)gﬁl in F,; (by adding one
if necessary). By Claim 4.11, (p/,r’) is compatible with some (p”,7") € Ap,
for some Bj such that y € By C By. Then (p,r) modified by adding y to
F,, is also compatible with (p”,r”). As observed earlier, this modification of
(p,r) and (p”,r") must have a common extension (p,7) in Py x Q. Since
y € Fp, we have (5, 7) IFp,xg B1 N K # 0. However, (5,7) < (p",7") € Ap,,
so (p,7) IFpyxo Bi N7 = 0, contradicting (*x) and the facts that By C B
and (p,7) < (p,r). This proves Fact 4.10.

Fix a bijection g: w — B. Let ((ps, Ss,ts5,75,05) : 0 < wy) list all 5-tuples
(p,s,t,r,7) where p < wy, s € WY, t € 2<% r € Q,7 = {0y : i < w),
o; = U, {n} x An(0;), and each A, (0;) is a countable subset of w; x Q. We
can arrange that for each ¢, ps < ¢ and, for all n,i, A,((05);) C 6 x Q. We
also want that each 5-tuple (p,s,t,r,@) is listed sufficiently often so that
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{6 <wi:(p,s,t,r,T) = (ps,Ss5,t5,7s,0s)} meets every member of Trap(M).
[Apply [Kun, Theorem I1.6.11] to the dual ideal of Trap(M).] For § < wy,
inductively define models Ns, (@, : 7 < §), and a 1-1 function hs: Ps — w
whose range is an initial segment of w; which includes 4. As in the statement
of the Main Claim we write Ps = P((a, : n < d)). We want V¢’ < 6, hy C hs,
and at limits, hs = Uy 5 hs and Ps = | Jz 5 Psr. At successor stages use the
Main Claim to get Psy1, with:

(i) p* = hy " (ps)-

(ii) If s5 € HK%* m’;* and t5 € 2" then (s,t) = (ss,t5). Otherwise
(s,t) = (0,0) where the 0-sequences have length 7.

(iii) r* = rs.

() 7 = UplB} x {(h;'(a),) : (971(B),(@.q) € (05)is @ < wil,
1 <w.
(It does not matter here whether 7; is a nice name in the sense
defined earlier. It simply names the set whose complement is defined
from I' by | {B€B:3uel, (B,u)€n}.)

(v) N5 = a countable transitive model of a large fragment of ZFC such

that N5 2 Ug o5 Nov U M5, U {7} U {Ps}.

Let P = U5<w1 E;, h = U5<w1 hs. Define K for P as above. We must first

show that P is M-cc. By induction on o > 0 we easily deduce from (A) of
the Main Claim that

Pé <M5,h Pa

for every v < wy, and hence Ps5 <jy;, P. For a closed unbounded set of 9,
we will have Ps = h~1(§). Thus h witnesses that P is M-cc.

Now, let I C P x @ be generic over V. Let my, a;, 755 (J < my, i < w),

& (n <w, s €, mi t €2") denote, respectively, m}, af, 'yf,j, (Up)s+
for any p € I' for which i < n < n,. Lemma 4.7 ensures that there are
arbitrarily large values of n, for p € I'. Define ¢: (][, mi) x 2 — G by
{e(s,0)} = Ny<w Usdtntn- By Definition 4.6(4)(a,b,c), ¢ is a well-defined
one-to-one continuous map.

Part (a) of the Main Lemma follows from (4)(b) and a simple genericity
argument using Lemma 4.7. (Cf. the reason that C' is nowhere dense in G in
the proof of Theorem 3.1.) Part (b) follows by an argument similar to the end
of the proof of Theorem 3.1. For z € G\ K, there is a largest n = n(z) < w
such that x € U}, for some (unique) s = s(z) € [[;,,ms, t = t(z) € 2"
Define

W={xeG\K:tg+ - +ty,—1 is odd}.

Then W is the union of countably many sets of the form UJ; \ U{ontt .

k < my, i < 2} and hence is Borel. If i < n < w and t € 2¥ satisfies ¢(i) = 0,
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then by (4)(d) we have, for each s € T[], ms,

U ha(tyin = Briani®i(Beriot) Ultnim
Similarly, if (i) = 1, then

Ughnhit)in = B Blpir) Ul

CLAIM 4.12. For any s € [[;.,mi, t € 2¥ and any i < w, there is an
open neighborhood S of ¢(s,t) and there is an o € G such that p(s, hi(t)) =
ap(s,t). Furthermore, S\ K is partitioned by its intersections with W and

~1
a "W.

Proof. We can take for S any Uglm.tpm With @ < m. Intersecting over
n in the two displayed equations above shows that ¢(s, hi(t)) = ap(s,t)
where o = ﬂg[iﬂiafl(ﬁgmm)_l. Ifx e S\ K =Ug, 1, \ K, then from the
definition of « it follows that precisely one of x, ax belongs to W. This gives

the second statement of the claim. m

Suppose there were a generic I' C Px(Q, B € B and a Borel set X € V[I]
which give a counterexample to the Main Lemma. Then there is a sequence
of nice P x @-names (7; : i < w) for closed sets whose traces on K are
relatively nowhere dense such that X N K C Uico 7ilI], and there is a
condition (p*,r*) € P x @ which forces (d) of the Main Lemma with (J,_, 7
in place of X, ie., BNK #0and GNBNK C U<y 7i- The first statement

implies that B meets at least one (Up*)z’i*. By adding a point of G’ from such

an intersection to F» and extending p* finitely many times using Lemma 4.7,

we can assume that (Up*)gﬁ* C B. Then B can be replaced by (Up- )Zt*
The set of all § < w; which satisfy any one of the following conditions

belongs to Trap(M):

(i) (p* r*) € Ps x Q.
(ii) 7 = Upepi{B} x Ap(m) is a Ps x Q-name, i < w.
(ii) A1(5) = B,
(iv) oi = Up{n} x{(h(p),q) : (p,q) € Ag(n)(Ti)} € M;, i < w.
(v) For all ¢’ > § and i < w, IFp,xq “7 is a closed set which has a

relatively nowhere dense trace on K.

[As explained above, for (v) all that is required is to choose J large enough
so that each 7; is a Ps X Q-name.]

Choose a ¢ satisfying all these properties and for which (ps, ss,ts,7s5,05)
= (p*,s,t,r*,7). Then T is a sequence of Ps; x @-names for closed sets
which have a relatively nowhere dense trace on K. So by (B) of the Main
Claim, there is a condition (p/,r") < (p*,r*) with the property given there.
This will clearly contradict our choice of (p*,7*) if we can show that the
subscript Ps11x@ in (B) can be replaced with PxQ. Fix i <w. By induction
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on a > ¢ we have P51 <p;,, P and hence Ps;1 <n,,, P. As already
observed, elements of P51 which are incompatible remain incompatible in P.
From Shelah’s observation mentioned above [Bul993b, Lemma 4.13], we have
(p',7") IFpxo as & 7, which is the desired contradiction. This proves the
Main Lemma. =

Before turning to the proof of Theorem 4.1, we recall the basic properties
of oracle-cc forcing. See [Sh1998, Chapter IV] for the details. A version of
this material is also explained in [Bul993b, Sections 4-6].

PROPOSITION 4.13. The M-cc has the following properties:

(1) If a < ws is a limit ordinal, ((Pg)s<a, (Qp)p<a) is a finite-support
a-stage iteration of partial orders, and for each 3 < a, Pg is M-cc,
then P, is M -cc.

(2) If P is M-cc, then there is a P-name M" for an omcle such that for
each P-name Q for a partial order, if I+p “Q is M -cc” then P % Q
is M-cc.

(3) If M, a < w1, are oracles, then there is an oracle M such that for
any partial order P, if P is M-cc, then P is M-cc for all @ < wy.

LEMMA 4.14. Assume $. Let A be a non-meager subset of R. Then there
is an oracle M = (Ms : 6 < w1) such that if P is any M-cc partial order,
then IFp “A is non-meager”.

Proof. This is [Sh1998, Example 1V.2.2]. u

We now prove Theorem 4.1. Because of part (1) of its statement, it suffices
to establish part (2) for groups of cardinality wy. [If (G, d) is arbitrary, then
the fact that G has a dense G5 subset homeomorphic to w“ ensures that G
has a dense subgroup Gy of size w; which is Baire. (Take a second category
set of size w; in each non-empty member of a countable base for G and let
Go be the subgroup generated by their union.) Then any V, ¢ which work
for (Go, d(Go x Gp)) will continue to work for (G, d) since G = G and (b),
(c) are preserved by enlarging G inside é]

Start with a ground model of V' = L. Fix a diamond sequence

<(fougomhoc) o< wsy, Cof(a) = w1>
for trapping triples (f,g,h) consisting of:

(1) A function f: wy — ([w2]=¥)“. The idea of f is that, with wy iden-

tified with the ccc partial order we are about to build, [ws]=“ con-
tains the maximal antichains. Thus, (Jwe]<“)* contains a name for
each real number (construed as a subset of w). Then for any non-
meager set X in the extension, we can find a ground model function

f: wg — ([w2]=*)* enumerating the names of the elements of X.
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(2) Functions g: w1 X w — ([we]S¥)¥*% and h: w1 X w1 — ([w2]=¥)* in-
tended to represent a pair (G, d) where G is a group of cardinality w;
whose underlying set we take to be w; itself and d is a left-invariant
metric for G. More specifically, h(«, 3) is intended to represent (the
name of) the value d(«, 3) and g(«, 3) is intended to represent the
composition of a and # under the group operation. (If the composi-
tion of a and f3 is 7, then g(a, ) can be thought of as a real which is
a subset of w xw and which is a well-ordering of w with order-type ~.)

So for each o < wq of cofinality w1, fo: @ — ([a]5*)%, ga: w1 X W1 —

([a]=)“*« and hq: wi x w1 — ([a]S¥)%. Also, for each (f,g,h) as in (1)-

(2), {a < we : cof(a) = w1, fla = fa, 9 = go and h = hy} is stationary

in wsy.

We will inductively define an wo-stage finite support iteration

<<Pa>a§w27 <Qa>a<w1>

as well as P,-names M, for oracles and one-to-one functions F: P, — wo
for @ < wo such that the range of each Fy, is an initial segment of wo which
includes «, and for 8 < a < wo, we have Fg C F,,. (At each stage, F,, is any
function satisfying these conditions.)

For a < ws, we will let Xa denote the P,-name for the set of real numbers
whose elements have the names

U {n} x B (fal©)(0), € <

n<w

Similarly, we will let Ga and da denote the wy x wi-sequences of P,-names
for real numbers

(U )} < B (gal6r. &) (mm) s 61,62 < )
(m,n)ewxw

and

(U tn} x Fit (ha(r, €2)(n) s &1, < 1)

n<w

respectively. At stage o < w9 of the construction, if cof(a) = wy and if
IFp, “Xa is not meager”,

then we use Lemma 4.14 to get a P,-name ]\_Jla for an oracle so that if P
is any forcing notion which is M ;—cc, then X, remains non-meager after
forcing with P.

If cof(a) = wy and if

IFp, “(Ga, da) is a Baire separable metric group

with left-invariant metric da”,
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then use Lemma 4.5 to get a P,-name Qa for a partial order which is M ,-cc
and forces a continuous function ¢ and a Borel set V as described in the
statement of the lemma. Then use Lemma 4.14 and Proposition 4.13(3) to

get a P, yi-name ]\_4;+1 for an oracle such that if P is any forcing notion
which is M;+1—CC, then G, Nran¢ remains a dense Baire subset of ran¢
after forcing with P.

Otherwise, let ]\7; be any P,-name for an oracle.

For 8 < a, let Pg, be the usual Pg-name for a partial order such that
P, is isomorphic to a dense subset of Pg * Pg, (see [Bal). Let Mg, be a
P,-name for an oracle such that
(1) if IFp,“Pgq is ]\75—(:(: and H‘PBQ“QQ is Mﬁa—cc” i

then |Fp,“Pgoy1 = Ppa * Qa is Mﬁ—cc”.
(There is such an M g, by Proposition 4.13(2). In (1), M g, is actually a Ps-
name fOIE Pg ,-name for an oracle. We denote the corresponding P,-name
also by M gq.)

Let M, be a P,-name for an oracle such that
(2) Fp, “If Qq is Ma-cc, then Qg is M;—cc and M go-cc for all 3 < .

(Use Proposition 4.13(3).)
In all other cases, take (), to name the partial order @ for adding one
Cohen real. We thus have

(3) IFp, “Qg is My-cc”.
Now suppose that for some F,,-name X we have
IFp,, “X is not meager”.

(Every non-meager set in any extension has a name forced by the weakest
condition to be non-meager since there always is a non-meager set.) Fix a
name f such that

“_pw2 “f: wy — X is onto”.

Then define f: wy — ([wa]=¥) so that if
7e = Upco{n} x FHf(O)(n), € <w,

then, for each £ < wo,
Fr., £(6) = Te.
There is a closed unbounded set C' C wy such that for each o € C' of cofinality
w1 we have:
(i) flaz a— ([a]=)~.
(ii) V€ < a, 7¢ is a Py-name.
(iii) IFp, “{7¢ : £ < a} is not meager”.
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(For (iii), note that when « has cofinality wi, each P,-name for a meager
set is a Pg-name for some 3 < a. Thus, if M is an elementary submodel of
Hy for a suitably large 6 such that |M| = wi, MY C M, (1¢: £ <ws) € M
and & = M Nwg € wy has cofinality w;, then for each (nice) P,-name o for
a meager Borel set, we have ¢ € M and hence M knows about a maximal
antichain of conditions each deciding a £ for which 7¢ is forced not to be in o.
The antichain is countable and hence contained in M. For each condition in
the antichain, the least £ which it decides is in M and hence below «. Hence
IFp, “{7¢ : £ < a} is not contained in ¢”.)

Choose such an « of cofinality w; for which f]a = f,. By (i) and (ii), the
definition of 7¢ would not change if we used f, instead of f and F,, instead
of F. Then from the definition of X, we get

Fp, Xo = {m: &< a}.
So at stage a we chose a P,-name M, and we arrange that
IFp, “Punis M ,-cc’.

[This follows easily by induction on v > « and Proposition 4.13(1,2). (Recall
that P, can be viewed in the canonical way as an iteration: see [Bal.) At
limits y use Proposition 4.13(1). At stages v + 1, use (3) to get IFp, “Q is
M -cc” and then use (2) and (1) with (5, a) replaced by (a,7)]

Hence, by the choice of M,

(4) IFp,IFp, . ¢ (,, is not meager”,
from which it follows that
IFp,lFp, ., “X, is not meager”
since if this failed then we would have
plkp, qlrp,,, Xa CB

for some conditions p € P,, ¢ € P,,, and some name B for a meager Borel
set. But then for some v, we have o < v < wo, q € P, and Bisa P,-name,
and this contradicts (4).

By what we have established, there are guaranteed to be sets of cardi-
nality w; which are not meager in any extension by F,,. Hence there are
guaranteed to be Baire separable metric groups of cardinality w; (for ex-
ample, subgroups of R). Suppose that for some P,,-names G and d and a
nice FP,,-name f for a subset of w x w1, we have

IFp,, “(G, d) is a Baire separable metric group with underlying set w;
(where G names the operation) and f: w — w; has dense range

in (G, d)”.
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(By what we just said, every Baire separable metric group with underly-
ing set w; has a name such that the weakest condition forces the desired
properties.)

Define g: w1 x w1 — ([wa]=¥)“** and h: w1 X w1 — ([w2]=¥)¥ so that if

Q(£17£2) = U {(man)} X F_l(g(£17£2)(m7n))v §1,82 <wi,

(m,n)Ewxw
51’62 U{n} x F~ ( (61752)(71))7 51552 < w1,
n<w

then for each &1, & < wi,
p,, “Q(fl,ﬁg) = G({l,fg) is the composition of & and & in (G, d)”
and

Fp,, “B(1,&) = d(&1, &), where h(£1,&p) is interpreted
as explained at the start of the proof”.

For all large enough a < wg, we have:
(i) g: w1 X w1 — ([a]=¥)*** and h: w1 X w; — ([a]=9)~.
(ii) Q({l,fg) and h(&1,&2) are Py-names for all &1, & < w.
(iii) fis a P,-name.
Choose any such « of cofinality wy. By (i) and (ii), the definitions of G(&1, &)

and h(fl,fg) would not change if we used g, instead of g, h, instead of h,
and F, instead of F. Then from the definitions of G, and h, we get

IFp, “(Ga,dg) is a Baire metric group with left-invariant metric d,
and f: w — w; has dense range in (G, d)”.

(Being a metric group is clearly absolute. That f is a function with dense
range is also absolute. Being Baire is downward absolute.) Then Qo was
chosen to add ¢ and V as required by the theorem.

[That the values of G, are well-orderings is absolute and then the order-
types are equal in VP and V%, The fact that Go N ran ¢ is a dense Baire
subset of ran ¢ is preserved by the choice of Ma+1 and the fact that Po41,0,
is M. at1-cc.]

This completes the proof of the theorem.
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