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A topological application of flat morasses
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R. W. Knight (Oxford)

Abstract. We define combinatorial structures which we refer to as flat morasses, and
use them to construct a Lindelöf space with points Gδ of cardinality ℵω, consistent with
GCH. The construction reveals, it is hoped, that flat morasses are a tool worth adding to
the kit of any user of set theory.

1. Introduction

1.1. Flat morasses. The flat morasses used in this paper resemble gap-1
simplified morasses, in that they provide a method of building a large struc-
ture out of small pieces along a short directed set.

Morasses—first the concrete morasses of Jensen (see a description, for the
gap-1 case, in [1]) and later simplified morasses, whose existence was proved
equivalent to that of concrete morasses of the same gap-number by Velleman,
Jensen, Morgan and others—provide a technology for, for example, using
countable pieces to build a structure of size ω2, ω3 or more along a direct
system of length ω1. The recursion along the direct system has two stages,
the successor stage and the limit stage. The limit stage is trivially easy,
simply involving taking a direct limit; at the successor stage care is typically
required, as one has to amalgamate several simple structures together to
make a larger structure.

In the gap-1 case (at least in the simplified setting; from here on we drop
the word “simplified”), in which one is using pieces of size κ (for some κ)
and a recursion of length κ+ to build a structure of size κ++, this amalgama-
tion is still of a fairly simple kind; and there are many applications of gap-1
morasses in the literature. But the amalgamation step in the application
of a higher-gap morass presents a forbidding appearance (here one is skip-
ping more cardinals, to build a structure of size κ+++ or higher). Though
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the structure of such a morass is extraordinarily beautiful, it is still rather
complex.

Flat morasses will therefore, we hope, be of some use. While much less
elegant than the higher-gap morasses, they are—at least in the opinion of
the author—not much more complex than morasses of gap 1, and allow
one to build structures of size κn+, for any value of n, using pieces of size κ,
consistent with GCH. The author originally extracted them from an attempt
to apply higher-gap morasses to the problem described in the next section,
but in this paper a gap-n flat morass is derived rather more simply. While
this certainly shows them to be consistent with ZFC plus GCH, it leaves
open the precise circumstances under which they exist.

For those who are familiar with the use of gap-1 morasses, it may be
worth describing in a little more detail how flat morasses differ from them.
What does one sacrifice, in order to be able to build larger structures?

The most obvious thing is that the amalgamation step, in the use of a
flat morass, is less neat than it is in a gap-1 morass. At the amalgamation
stage in a gap-1 morass, one has a structure Aα on an ordinal θα, one has
two maps from θα to another ordinal θα+1, one of which is the identity on θα,
and the other is a shift map f such that

f : γ 7→

{

γ if γ < ξ,

θα + δ if γ = ξ + δ

for some ordinal ξ, and one must build Aα+1 in such a way that these two
maps both embed Aα in it. In a flat morass, though, there are more than
two maps, they may not all have the same domain, and they certainly do
not overlap this neatly.

The second, perhaps less important, thing is there is less control over the
limit stage, in that it is harder to say what a limit stage is; this difficulty is
visible in the preamble to condition 2(d)(ii) in the definition of a flat morass
in Section 2.2.

1.2. Lindelöf spaces of countable pseudocharacter. Recall that a topolog-
ical space X is Lindelöf iff every open cover of X has a countable subcover.

Arkhangel’skĭı’s striking theorem that every Lindelöf first countable
space has cardinality ≤ 2ℵ0 raises the question: what happens if we weaken
the hypothesis of first countability to countable pseudocharacter (that is,
the hypothesis that each point is a Gδ)?

The situation is entirely different. Shelah proved in [8] that consistently,
one can have a Lindelöf space of countable pseudocharacter with cardinality
ℵ2 under GCH. Hajnal and Juhász give a proof of this theorem in [4]. This
proof can be cast as an application of a gap-1 morass. Gorelić in [3] gen-
eralised this to cardinality 2ℵ1 , with 2ℵ1 being arbitrarily large; this result
can be proved using a generalisation of a gap-1 morass.
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In this paper we consistently obtain an example of size ℵω with GCH,
using the already-mentioned flat morasses.

There remain the following questions.

Question 1.2.1. Can it be proved from ZFC together with GCH that

flat morasses exist?

Question 1.2.2. Is it consistent with ZFC together with GCH that there

does not exist a Lindelöf space of cardinality ℵω having countable pseu-

docharacter?

Is it consistent that there exists one of cardinality iα, for all countably

infinite α, or of cardinality iω1?

Acknowledgements. This work emerged out of a visit made by the
author to P. M. Gartside at the University of Pittsburgh, to whom he is
indebted for being reminded of the problem, and for many discussions about
it. He is also indebted to C. Morgan and E. Mann for useful conversations.
My thanks also go to the anonymous referees for many insightful comments
and suggestions for improvement.

2. Flat morasses

2.1. Gap-1 morasses. For the purposes of comparison, we first recall the
definition of a gap-1 morass, and some of the major properties.

Definition 2.1.1. Suppose λ is a regular uncountable cardinal. A gap-1
morass of height λ is a pair M = 〈φ,G〉 such that

1. (a) φ is an ordinal-valued function on λ+ 1.
(b) If α < λ, then φ(α), which we write as φα, is < λ.
(c) φλ = λ+.
(d) If α ≤ β, then φα ≤ φβ .

2. G is a function with domain (λ+ 1) × (λ+ 1) such that

(a) G(α, β) (which we write Gα,β) is non-empty iff α ≤ β.
(b) If f ∈ Gα,β, then f is a one-to-one order-preserving function from

φα to φβ, and Gα,α has exactly one element, the identity on φα.
(c) (Compositionality)

(i) If f ∈ Gα,β and g ∈ Gβ,γ , then g ◦ f ∈ Gα,γ .
(ii) If α ≤ β ≤ γ and h ∈ Gα,γ , then there exist f ∈ Gα,β and

g ∈ Gβ,γ such that h = g ◦ f .

(d) (Covering at Limits)

(i) If F is a finite subset of φγ , where γ is a limit ordinal, then
there exist α < γ and f ∈ Gα,γ such that F ⊆ ran f .
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(ii) If γ is a limit, α, β < γ, f ∈ Gα,γ and g ∈ Gβ,γ , then there exist
δ < γ, h ∈ Gδ,γ , f ′ ∈ Gα,δ, and g′ ∈ Gβ,δ such that f = h ◦ f ′

and g = h ◦ g′.

(e) (Local Smallness) If α, β < λ, then |Gα,β| < λ.
(f) For each α < λ, Gα,α+1 has exactly two elements:

(i) the identity on φα,
(ii) a shift map σ having the property that for some η < φα,

σ(ξ) = ξ if ξ < η, and σ(η + ζ) = φα + ζ for all ζ.

This structure has many beautiful properties, of which we mention two:

1. (Coherence) If α ≤ β, and f, g ∈ Gα,β, then there exists η ≤ φα such
that

(a) for all ξ < η, f(ξ) = g(ξ),
(b) for all γ, f(η + γ) /∈ ran g, and for all γ, g(η + γ) /∈ ran f .

Therefore, on ran f ∩ ran g, f−1 and g−1 are equal; and ran f ∩ ran g is an
initial segment of both ran f and ran g.

2. (Offset Condition) If α ≤ β ≤ γ, f ∈ Gα,γ , g ∈ Gβ,γ , then ran f ∩ ran g

is an initial segment of ran f ; and there exists f ′ ∈ Gα,β such that ran f∩ran g
is an initial segment of ran(g ◦ f ′).

A comment is in order about the purpose of some of the clauses in the
definition.

Remember that the function of a morass is to perform constructions by
recursion. The idea is that we recursively define some first-order structure
on φα, such that the maps in the various Gα,β are embeddings.

The condition of Covering at Limits ensures that if γ is a limit, then
the structure we build on φγ is the direct limit along the morass of the
previously-built structures. In particular, the structure on φλ = λ+ is a
direct limit. In other words, we do not need to exercise any care at limit
stages.

The special form of Gα,α+1, which, unfortunately, we will not be able

to imitate closely in the definition of a flat morass, makes successor stages
particularly easy.

The condition of Coherence reassures us that we can arrange that all the
maps in the Gα,β are embeddings of our structures; that two maps f and g
will not impose incompatible requirements.

The Offset Condition tells us that the ranges of two morass functions
f and g can overlap in only a few ways. A generalised offset condition will
play an important role in the construction we will perform.
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2.2. The definition of a flat morass. We now define the structure we will
be using.

Suppose κ is an infinite cardinal. Then an gap-(n − 1) flat morass of

height κ+ is a pair 〈θ,F〉 such that

1. There is a partial order C, with order relation ≤C, and with greatest
element the ordinal κ+, such that:

(a) C \ {κ+} is directed and well-founded.
(b) θ is an ordinal-valued function on C.
(c) If α ∈ C \ {κ+}, then θ(α), which we write as θα, is < κ+.
(d) θκ+ = κn+.
(e) If α ≤C β, then θα ≤ θβ. [This will follow from the other condi-

tions.]
(f) For all α ∈ C \ {κ+}, {β ∈ C : β ≤ α} has cardinality ≤ κ.

2. F is a function with domain C × C such that

(a) F(α, β) (which we write Fα,β) is non-empty iff α ≤C β.
(b) If f ∈ Fα,β, then f is a one-to-one order-preserving function from

θα to θβ, which is onto only if α = β.
Fα,α has a unique element, namely the identity on θα.

(c) (Compositionality)

(i) If f ∈ Fα,β and g ∈ Fβ,γ , then g ◦ f ∈ Fα,γ .
(ii) If α ≤ β ≤ γ, and h ∈ Fα,γ , then there exist f ∈ Fα,β and

g ∈ Fβ,γ such that h = g ◦ f .
(iii) If f ∈ Fα,γ , g ∈ Fβ,γ , and ran f ⊆ ran g, then there exists

f ′ ∈ Fα,β such that f = g ◦ f ′. [This follows from the Offset
Condition.] We write f ′ as (f/g).

(d) (Covering at Limits)

(i) If F is a finite subset of κn+, then there exist α < κ+ and
f ∈ Fα,κ+ such that F ⊆ ran f .

(ii) Suppose α ∈ C. Then we say α is a limit in the morass struc-

ture iff it satisfies the following conditions:

A. For every pair x, y ∈ θα, there exist β <C α and f ∈ Fβ,α

such that x, y ∈ ran f .
B. For every pair f, g ∈

⋃

β<α Fβ,α, there exists h ∈
⋃

β<α Fβ,α such that ranh ⊇ ran f, ran g.

Then the collection of all sets ran f such that there exists
α < κ+ such that α is a limit in the morass structure and
f ∈ Fα,κ+ , is stationary in [κn+]≤κ.

(e) (Local Smallness) If α, β < κ+, then Fα,β has cardinality ≤ κ.
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(f) (Coherence) Suppose f, g ∈ Fα,β, and F is a finite subset of
ran f ∩ ran g. Then there exist γ ≤ α, f ′, g′ ∈ Fγ,α and a finite
subset G of θγ such that

F = f ◦ f ′(G) = g ◦ g′(G).

[This follows from the next condition.]
(g) (Offset Condition) Suppose f ∈ Fα,δ, g ∈ Fβ,δ. Then there exist

γ ≤ α, β, f ′ ∈ Fγ,α, g′ ∈ Fγ,β and h ∈ Fγ,δ such that

(i) ran f ∩ ran g = ranh.
(ii) h = f ◦ f ′ = g ◦ g′.

We write h as f ⊓ g. We write (f/g) for f ′ = (f ⊓ g/g), and (g/f) for
g′ = (f ⊓ g/f).

Notice that a gap-1 flat morass is not necessarily a gap-1 morass, because
of condition 2(f) in the definition of a gap-1 morass, and a gap-1 morass
is not necessarily a gap-1 flat morass, because of condition 2(d)(ii) in the
definition of a flat morass.

2.3. Conditions for the existence of a flat morass. We show that a flat
gap-(n − 1) morass of height κ+ exists given the assumption that for each
j ≤ n − 2, �κ(j+1)+ holds, and so we assume the existence of sequences as
follows:

Definition 2.3.1. For each j ≤ n− 2, let 〈Cj+1
α : α ∈ lim∩ κ(j+2)+〉 be

a sequence such that

• If α is a limit in κ(j+2)+, then Cj+1
α is closed unbounded in α.

• If α is a limit in κ(j+2)+ and the cofinality of α is less than κ(j+1)+,
then the order-type of Cj+1

α is less than κ(j+1)+.
• If α is a limit in κ(j+2)+ and β is a limit point of Cj+1

α , then Cj+1
β =

Cj+1
α ∩ β.

We note that this assumption is provable under V = L.
Also, for each j ≤ n − 1 and α ∈ [κj+, κ(j+1)+), let ψj

α be a bijection
between κj+ and α.

2.4. The construction of the flat morass. Let us say that a subset A of
κn+ of cardinality κ is rounded iff

(i) A ∩ κ+ is an ordinal.

(ii) A is closed under both ψj
α and (ψj

α)−1 for all α ∈ A∩ [κj+, κ(j+1)+),
for all j ≤ n− 1.

(iii) For all j ∈ [1, n−1], for all limits µ ∈ [κj+, κ(j+1)+), if A∩µ is cofinal

in µ then A contains the subset of Cj
µ enumerated by A ∩ κj+ (in

the sense that if Cj
µ is enumerated in order as {ηα : α < λ}, then A

contains {ηα : α ∈ λ ∩A}).
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Let us say that A is weakly rounded iff it satisfies conditions (ii) and
(iii) in the above list, but (iii) holds only for ordinals µ ∈ [κj+, κ(j+1)+) (for
j ≤ n− 1) such that µ is less than the supremum of A ∩ κ(j+1)+.

Lemma 2.4.1. The collection of weakly rounded sets contains a closed

unbounded subset of [κn+]κ.

Proof. Suppose A is the intersection of an elementary submodel M of
size κ of some large enough H(θ) with κn+, where 〈〈Cj

α : α ∈ lim∩κ(j+1)+〉 :

j ∈ [1, n − 1]〉 and 〈ψj
α : j ≤ n − 1, α ∈ [κj+, κ(j+1)+)〉 both belong to M

and κ ⊆ M.
Then it is clear that A ∩ κ+ is an ordinal, and that, by elementar-

ity, A is closed under ψj
α and (ψj

α)−1, for all j ≤ n − 1 and for all α ∈
A ∩ [κj+, κ(j+1)+).

Now we verify the modified condition (iii).
Suppose µ is a limit in [κj+, κ(j+1)+) for some j ≤ n− 1, A∩µ is cofinal

in µ, and µ is less than the supremum of A ∩ κ(j+1)+.
Then either µ ∈ A, in which case the subset of Cj

µ enumerated by A∩κj+

is included in A by elementarity, or Cµ is Cµ∗ ∩ µ, where µ∗ is the least
element of A greater than µ. Hence A ∩ Cµ = A ∩ Cµ∗ , so again the subset

of Cj
µ enumerated by A ∩ κj+ is included in A.

Define C so that

C = {κ+} ∪ {A ⊆ κn+ : A is rounded},

with α ≤C β iff β = κ+ or α ⊆ β.
Define θκ+ to be κn+.
If α is a rounded set, define θα to be the order-type of α. (It will follow

from the Claim in the proof of condition 1(f), in the next section, that

|C| = κn+
.)

If α ∈ C \ {κ+}, define Fα,κ+ to be the set whose only element is the
function enumerating the elements of α in order.

If α, β ∈ C \ {κ+} and α ≤ β, define Fα,β to be the set of all f such that
there exist g ∈ Fβ,κ+ and h ∈ Fα,κ+ such that h = g ◦ f . (Thus Fα,β has in
fact just one element.)

2.5. The flat morass conditions. We check that 〈θ,F〉 is a flat morass
of height κ+, by checking the clauses in the definition.

1. (a) That C \ {κ+} is directed will follow once we have established
condition 2(d)(ii). By the claim made in the proof of clause (f), if α <C β,
then for all j, supα ∩ κj+ ≤ supβ ∩ κj+, and for some j, supα ∩ κj+ <
β ∩ κj+—for otherwise we would have α = β, contradicting α <C β. So C is
well-founded.

(b) Obvious.
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(c) Obvious.
(d) By construction.
(e) It is unnecessary to check this condition.

(f) Claim. Suppose α ∈ C\{κ+}. Then α is determined by the sequence

〈sup{γ + 1 : γ ∈ α ∩ κj+} : j ≤ n〉.

Proof of Claim. Assume that

〈sup{γ + 1 : γ ∈ α ∩ κj+} : j ≤ n〉 = 〈sup{γ + 1 : γ ∈ β ∩ κj+} : j ≤ n〉.

We prove by induction on j that

α ∩ κj+ = β ∩ κj+ for each j.

Now, κ ⊆ α, β, because α and β are rounded. So the case for j = 0 is
done. If j = 1, then α ∩ κ+ and β ∩ κ+ are both ordinals, and so are equal.
So suppose the case for j ≥ 1 to be done; we do the case for j + 1. Let
λ = sup{γ + 1 : γ ∈ α ∩ κ(j+1)+}.

First suppose that λ is a limit. Then because α and β are both rounded,
α and β both contain the subset of Cj

λ enumerated by α ∩ κj+ = β ∩ κj+;

hence α ∩ β is cofinal in both α ∩ κ(j+1)+ and β ∩ κ(j+1)+. Now suppose
ξ ∈ (α∩β)∩ [κj+, κ(j+1)+). Then α∩ ξ = β ∩ ξ, because, by roundedness, α

and β are closed under the functions ψj
ξ and (ψj

ξ)
−1. Because α∩β is cofinal in

both α∩κ(j+1)+ and β∩κ(j+1)+, it now follows that α∩κ(j+1)+ = β∩κ(j+1)+.
Now suppose that λ is a successor ξ+1. Then again ξ ∈ α∩β, and because

α and β are both closed under ψj
ξ and (ψj

ξ)
−1, α ∩ κ(j+1) = β ∩ κ(j+1).

Now we apply the claim. Suppose f ∈ Fα,κ+ for some α <C κ
+. Then f is

the function from θα into κn+ enumerating α in order. Hence f is determined
by the sequence

〈sup{γ + 1 : γ ∈ ran f ∩ κj+} : j ≤ n〉.

Now, given β ≤C α, f ∈ Fβ,α and h ∈ Fα,κ+ , we have ran f ⊆ θα =
domh, and ran(h ◦ f) is determined by

〈sup{γ + 1 : γ ∈ ran(h ◦ f) ∩ κj+} : j ≤ n〉,

so ran f is determined by the sequence

〈sup{γ + 1 : γ ∈ ran f ∩ θj
α} : j ≤ n〉.

Since |θα| ≤ κ, there are only ≤κ-many possible such sequences; hence only
≤κ-many possible such f , hence only ≤κ-many possible β.

2. (a) Obvious. Note that for all α, Fα,α is non-empty.
(b) By definition.
(c) (Compositionality) (i) Suppose f ∈ Fα,β and g ∈ Fβ,γ . Then each of

Fα,κ+ , Fβ,κ+ and Fγ,κ+ has respectively a unique element f ′, g′ and h′. So
f ′ = g′ ◦ f and g′ = h′ ◦ g, so g′ = (h′ ◦ g) ◦ f = h′ ◦ (g ◦ f), so g ◦ f ∈ Fα,γ .
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(ii) If α ≤ β ≤ γ and h ∈ Fα,γ , let f ′, g′ and k′ be respectively the
unique elements of Fα,κ+ , Fβ,κ+ and Fγ,κ+ . Then f ′ = k′ ◦ h. Let f and g
be such that f ′ = g′ ◦ f and g′ = k′ ◦ g. Thus f ∈ Fα,β and g ∈ Fβ,γ . Then
f ′ = h′ ◦ g ◦ f , so g ◦ f = h, as required.

(iii) It is unnecessary to check this condition.

(d) (Covering) (i) This follows from condition (ii).

(ii) Suppose C is a closed unbounded set in [κn+]κ, every member of
which is weakly rounded. We find an element of C belonging to C.

We build an increasing sequence 〈Cα : α ≤ κ+〉 of elements of C such
that

• for all α, for j ≤ n, Cα ⊆ Cα+1,
• for each limit λ, Cλ =

⋃

α<λCα.

Now let M be an elementary substructure of cardinality κ of a sufficiently
large Hν , including κ as a subset, and having the following sets as elements:

• 〈θ,F〉,

• 〈〈Cj
α : α ∈ lim ∩ κ(j+1)+〉 : j ∈ [1, n]〉 and

• 〈Cα : α ≤ κ+〉.

Let µ = M ∩ κ+; then µ is a limit, and Cκ+ ∩ M = Cµ.

We show that Cµ is rounded. We check the last condition of roundedness.
Suppose λ = sup(Cµ∩κ

(j+1)+) for some j ≤ n−1. Obviously all the cardinals
κj+ for j ≤ n belong to M. Hence M ∩ (κn+ + 1) \ λ is non-empty, and so
has a least element, which we refer to as λ∗.

Since Cµ is cofinal in λ, by elementarity Cκ+ is cofinal in λ∗, and indeed
λ∗ ∈ Cκ+ \Cκ+ , and so the cofinality of λ∗ is κ+. Let λα = sup(λ∗ ∩Cα) for
all α (so that λ = λµ and λ∗ = λκ+). For all α, Cα+1 contains the subset of

Cj
λα

enumerated by Cα ∩ κj+, because Cα+1 is weakly rounded.

Now the set 〈λα : α < κ+〉 is closed unbounded in λκ+ . Hence it meets

Cj
λ

κ+
in a closed unbounded set which is an element of M. It follows that

λµ belongs to this closed unbounded set, and so since Cj
λµ

= Cj
λ

κ+
∩ λµ,

Cµ includes a closed unbounded subset of Cj
λµ

, and this closed unbounded

set includes a cofinal set of limit ordinals. It now follows, since Cµ ∩ κj+ =
⋃

α<µCα ∩ κj+, and since the subset of Cj
λµ

enumerated by Cµ ∩ κj+ is the

union of the corresponding sets for the Cj
λα

for α ∈ M∩κ+, that the subset

of Cj
λµ

enumerated by Cµ ∩ κj+ is included in Cµ as required. Thus Cµ is

rounded, and is therefore an element of C.

(e) (Local Smallness) In fact, Fα,β has only one element.

(f) It is not necessary to prove this.
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(g) (Offset Condition) Suppose f ∈ Fα,δ, g ∈ Fβ,δ, and k ∈ Fδ,κ+ . Then
k ◦ f enumerates α and k ◦ g enumerates β. Let γ = α∩ β. We check that γ
is rounded. Clearly γ ∩ κ+ is an ordinal, and γ is closed under the actions
of ψj

ξ and (ψj
ξ)

−1 for all ξ ∈ γ.

Now suppose that γ∩µ is cofinal in µ, where µ is a limit in [κj+, κ(j+1)+)

for j ≥ 1. Then α∩µ contains the subset of Cj
µ enumerated by α∩κj+, and

β ∩ µ contains the subset of Cj
µ enumerated by β ∩ κj+. Hence γ = α ∩ β

contains the subset of Cj
µ enumerated by α ∩ β ∩ κj+ = γ ∩ κj+.

As a final comment on this construction, the flat morass constructed has
two strange properties: firstly, Fα,β has at most one element for any α and β,
and secondly, C is not well-ordered. This motivates the following question:

Question 2.5.1. Assume that there exists a gap-n morass of height κ+.

[Such have not been defined in this paper ; we refer the reader to the literature,
in particular , for n > 2, to C. Morgan’s 1989 Oxford D. Phil. thesis, or

to [7].]

Is there a gap-n flat morass of height κ+ for which the associated directed

system C is in fact the ordinal κ+ + 1?

Can one additionally obtain the property of finite covering , that for all

α ∈ κ+ + 1 = C, one of the following conditions must hold :

(i) for every finite subset F of θα, there exist β <C α and f ∈ Fβ,α such

that F ⊆ ran f , or

(ii) there exist finitely many ordinals γ1, . . . , γk < α and elements fi ∈
Fγi,α such that for all β < α, for all f ∈ Fβ,α, there exists i such

that ran f ⊆ ran fi?

Can we achieve that the finite number k, in condition (ii) above, is n+1?

The flat morass constructed in this paper has, in the special case κ = ω
and n = 2, the property that for all α < ω2, the set {ran f ∩ α : f ∈
⋃

β∈C\{κ+}Fβ,κ+} has cardinality ω1. This is, in the terminology of [2], a

thin stationary subset of [ω2]
ω. It is proved in that paper that such sets

may not exist if CH fails; thus the kind of flat morass constructed here is
independent of ZFC.

3. The topological application

3.1. Lindelöf graphs. We will now begin the construction of an oriented
graph on a set Xω1 of size ωn, that is to say, a function

G : (Xω1)
2 → {0, 1}.

We will construct G using a flat gap-(n− 1) morass 〈θ,F〉 of height ω1; let
C = dom θ.
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We will impose conditions on this graph which will enable us to construct
from it a regular Lindelöf space with points Gδ, by the method described
in [5], which we now summarize.

We define the notion of an oriented graph as usual:

Definition 3.1.1. If B is a set, a function G : B2 → {0, 1} is said to be
an oriented graph on B (or, in this paper, simply a graph).

If there exists a set B̆ such that B = B̆ × {0, 1}, then G is mirrored

iff for all x ∈ B and y ∈ B̆, G(x, 〈y, 0〉) = G(x, 〈y, 1〉), and for all y ∈ B̆,
G(〈y, ǫ〉, 〈y, ζ〉) = ǫ.

If there exists a set B̆ such that B = B̆ × {0, 1}, then if x = 〈y, ǫ〉, we
write x0 for 〈y, 0〉 and x1 for 〈y, 1〉, and we say x ∼ z iff x0 = z0.

Given a mirrored graph G on a set B, we can define two topologies on
B as follows:

Definition 3.1.2. For i ∈ {0, 1}, we define a topology τ i by de-
claring the following subsets of B to be subbasic open sets: for each x,
the set Ux,i,i = {xi} ∪ {y 6∼ x : G(x, y) = i}, the set Ux,i,1−i =
{y : G(x, y) = 1 − i} \ {x0, x1}, and the singleton set {x1−i}.

Note that, in the coding used, the first argument of the function G

codes clopen sets, while the second argument codes points; and the function
G describes the incidence relation between points and open sets.

Note that if x 6∼ y, then y0 ∈ Ux,i,j iff y1 ∈ Ux,i,j .

Of course topological properties of these two topological spaces will de-
pend on graph-theoretic properties of G. We define a couple of possible
properties of G:

Definition 3.1.3. Let B be a set. Then a mirrored graph G :
B2 → {0, 1} is Hausdorff iff for all x, y ∈ B such that x 6∼ y, there ex-
ists z ∈ B such that z 6∼ x, y, G(z, x) = 1 and G(z, y) = 0.

The graph G is Lindelöf iff the topologies τ0 and τ1 are Lindelöf.

The theorem suggested by the terminology is true; and even more, given
that τ i is Lindelöf, we can deduce that τ1−i has points Gδ, by an adaptation
of the arguments in [5, Lemmas 1.4 and 1.5]:

Proposition 3.1.4. If a graph G on B2 is Hausdorff and Lindelöf , then

both topologies τ0 and τ1 turn B into a regular Lindelöf space with points Gδ.

Proof. We show that if τ0 is Lindelöf, then τ1 has points Gδ.
Certainly, for any point x, {x0} is Gδ in τ1, because it is open. So we

show that {x1} is Gδ.

Consider the family

U = {x1} ∪ {Ux0,0,0} ∪ {Uz,0,0 : z 6∼ x, x /∈ Uz,0,0}.
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Since G is Hausdorff, this is a τ0-open cover of X. Let V be a countable
subcover. Let

V ′ = {Uy,1,0 : Uy,0,0 ∈ V}.

Then x1 /∈
⋃

V ′, and V ′ covers all but countably many points of B. Since V ′

is a family of τ1-clopen sets, and τ1 is Hausdorff, we can now see that {x1}
is a Gδ, as required.

So, we set out to construct a Hausdorff, Lindelöf graph on a set of
size ωn.

3.2. The construction: motivation and preliminary definitions. We will
perform this construction by recursion along the flat morass 〈θ,F〉 assumed
at the beginning of Section 3.1, as follows. First, we define, for each α ∈ C,
the domain of the graph associated with α.

Definition 3.2.1. Suppose α ∈ C. We define

Xα =
⋃

β<α

Fβ,α × θα × {0, 1}.

For α 6= ω1, we define

Yα =
⋃

β≤α

Fβ,α × θα × {0, 1}.

If α <C β and f ∈ Fα,β, we define f∗ : Yα → Xβ as follows:

f∗(g, ξ, q) = 〈f ◦ g, f(ξ), q〉.

If x = 〈g, ξ, q〉 and y = 〈g′, ξ′, q′〉 are elements of Xα or Yα, say x ∼ y iff
g = g′ and ξ = ξ′.

So, we must construct mirrored graphs Gα onXα and Hα on Yα extending
Gα such that for all f ∈ Fα,β, f∗ embeds Hα in Gβ, in the obvious sense:

Definition 3.2.2. Suppose Gα is a graph on Xα, Hα is a graph on Yα,
and Gβ is a graph on Xβ, where α <C β. Then Gα embeds in Hα iff
Hα↾Xα × Xα = Gα, and f∗ embeds Hα in Gβ iff for all x, y ∈ Yα,
Gβ(f∗(x), f∗(y)) = Hα(x, y).

The ultimate aim, of course, is the construction of the graph Gω1 on Xω1 ,
which is a set of size ωn.

However, if we are attempting to construct Gα, having already con-
structed Hβ for β < α, we had better be confident that the proposed em-
beddings of the Hβ in Gα are compatible, in the following sense:

Definition 3.2.3. A sequence of graphs Hβ on Yβ, for β <C α, is com-

patible with the morass structure iff for all β, γ <C α, for all f ∈ Fγ,α and
g ∈ Fβ,α, for all w, x ∈ Yγ and y, z ∈ Yβ, if f∗(w) = g∗(y) and f∗(x) = g∗(z),
then

Hγ(w, x) = Hβ(y, z).
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How can we be sure that a sequence of graphs will be compatible with
the morass structure? Recall that, by the Offset Condition, if f and g are as
in the last definition, there exist δ ≤ β, γ, f ′ ∈ Fδ,γ , g′ ∈ Fδ,β and h ∈ Fδ,α

such that

• ranh = ran f ∩ ran g,
• h = f ◦ f ′ = g ◦ g′.

It easily follows that

• ranh∗ = ran f∗ ∩ ran g∗,
• h∗ = f∗ ◦ f ′∗ = g∗ ◦ g′∗.

Thus we can see the following:

Lemma 3.2.4. If , for each β <C α,

• Gβ is a graph on Xβ,
• Hβ is a graph on Yβ,
• Gβ is embedded in Hβ,

and if , for each γ <C β <C α and f ∈ Fγ,β, f∗ embeds Hγ in Gβ, then the

sequence of graphs 〈Hβ : β <C α〉 is compatible with the morass structure.

It is now easy enough to see how to construct Gα, given Hβ for β <C α.
We must simply ensure that if f ∈ Fβ,α, then f∗ embeds Hβ in Gα. For
some values of α—in particular, by the Covering Condition, for the crucial
value α = ω1—this will completely define Gα. For other values of α, there
may be pairs 〈x, y〉 ∈ Xα

2 such that there does not exist any f ∈ Fβ,α, for
β < α, such that x, y ∈ ran f∗, and so there may be a bit of additional work
to do.

Once Gα has been constructed, we build Hα, which differs from Gα be-
cause Yα \Xα is (if α <C ω1) countably infinite.

We use these countably many new points for two purposes.

The first is to index new open sets whose purpose is to ensure that Hα is
Hausdorff. If we do this for every α <C ω1, then this will (by the Covering
Condition) be enough to guarantee that Gω1 is Hausdorff.

The second purpose is more subtle and harder to describe, and is to do
with ensuring that Gω1 is Lindelöf.

So, how do we make sure that Gω1 is Lindelöf?

Suppose that, at the end of the construction, U is a cover of Xω1 in
the topology τ i. Without loss of generality, U is a cover by basic open sets;
we can therefore code it by a subset pUq of [Xω1 × {0, 1}]<ω, such that
{〈xj , ǫj〉 : j < r} ∈ pUq iff

⋂

j<r Uxj ,i,ǫj
∈ U . Then by the condition of

Covering at Limits, there will exist α <C ω1 and f ∈ Fα,ω1 such that
pVq = pUq∩ [ran f∗ ×{0, 1}]<ω codes a cover of ran f∗. Let us define Uα so
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that V = f∗(Uα), where

pf∗(Uα)q = {{〈f∗(x), ǫ〉 : 〈x, ǫ〉 ∈ A} : A ∈ pUαq}.

Then, to ensure that V is a countable subcover, we will want to have ensured
that if Uα is a cover of Xα, then, for all β >C α and for all f ∈ Fα,β, f∗(Uα)
is a cover of Xβ, and, indeed, of Yβ.

We will only be interested in doing this when ran f∗ belongs to some
large closed unbounded set, and then we will be able to assume that α is a
limit in the morass structure; and we will arrange for f∗(Uα) to be a cover
of Xω1 by imposing the following condition:

Definition 3.2.5. Suppose X is one of Xα or Yα, and that G is a mir-
rored graph on X. Let Z ⊆ X. Then G reflects to Z iff, for all x ∈ X, there
exists z ∈ Z such that for all y ∈ Z, G(y, x) = G(y, z). We say that z is an
image of x in Z.

It is then enough for us to guarantee that all Gα are mirrored, and that
Gω1 reflects to ran f∗, to ensure that f∗(Uα) is a cover of Xω1 , and that
therefore U has a countable open subcover (namely f∗(Uα)).

This will depend crucially on the Offset Property.
So, we wish the sequence of graphs Gα, Hα to have the following property:

Definition 3.2.6. Suppose D is a downward-closed subset of C (that
is, for each p ∈ D and q <C p, q ∈ D). Suppose graphs Gα on Xα and Hα

on Yα have been constructed for α ∈ D. Then we say they are reflective iff
they satisfy the following conditions:

• For each α ∈ D, provided α is a limit in the morass structure, Hα

reflects to Xα.
• If β <C α ∈ D and f ∈ Fβ,α, then Gα and Hα reflect to ran f∗.

We must address the question of how we are to construct our graphs to
be reflective. It would appear to be easy enough to construct Hα from Gα

so that Hα reflects in Xα.
The question of making sure that, if β <C α and f ∈ Fβ,α, Gα reflects

to ran f∗, is rather more difficult, for the following reason.
Suppose we are given β1, β2, β3 <C α and fi ∈ Fβi,α for each i. Suppose

we have x ∈ Xα, and we are trying to choose zi ∈ ran f∗i , for each i, so that
zi is an image of x in ran f∗i . We might begin as follows.

First, choose some z1 ∈ ran f∗1 , and promise to ensure that z1 shall be
an image of x in ran f∗1 . Next, observe that, assuming the family of graphs
constructed so far is reflective, there is z1,2 ∈ ran (f1 ⊓ f2)

∗ such that z1,2

is an image of z1 in ran (f1 ⊓ f2)
∗ (1). Define z2 to be z1,2. Next, try to

(1) For, z1 ∈ Xα, because ran f∗1 ⊆ Xα. Suppose γ is such that (f1 ⊓ f2) ∈ Fγ,α. Then
γ <C α. By reflectivity, the graph Gα reflects to ran (f1⊓f2)

∗. Thus there exists an image
z1,2 of z1 in ran (f1 ⊓ f2)

∗.
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define z3. Observe that there exist z1,3 ∈ ran (f1 ⊓ f3)
∗ such that z1,3 is an

image of z1 in ran (f1 ⊓ f3)
∗ and z2,3 ∈ ran (f2 ⊓ f3)

∗ such that z2,3 is an
image of z2 in ran (f2 ⊓ f3)

∗.

But we now cannot proceed further; we cannot simply identify z3 as one
of z1,3 or z2,3; we need some kind of mixture of the two. What we need, in
fact, is the following condition:

Definition 3.2.7. Suppose G is a graph on X, where X is one of Xα

or Yα. Then we say it admits hybridization under the following circum-
stances.

Suppose βi <C α ∈ D, for i = 1, . . . , n, fi ∈ Fβi,α, and zi ∈ ran f∗i such
that for all i and j and y ∈ ran f∗i ∩ ran f∗j , G(y, zi) = G(y, zj). Then there
exists z ∈ X such that for all i, zi is an image of z in ran f∗i .

This concept is related to the notion of a twin in [8].

If we know that all graphs Hβ , for β < α, admit hybridization, then we
may hope to be able to construct a graph Gα preserving the condition of
reflectivity.

We use the new points in Yα\Xα to ensure that Hα admits hybridization.

We now perform the construction.

3.3. Performing the construction. We recursively construct graphs Gα

onXα and Hα on Yα, for α ∈ C, satisfying the following inductive hypotheses:

Assumption 3.3.1. Suppose D is a downward-closed subset of C such

that for all α ∈ D, Gα and Hα have been defined. Then:

• Each Gα embeds in the corresponding Hα.

• If β <C α ∈ D and f ∈ Fβ,α, then f∗ embeds Hβ in Gα.

• The family of graphs Gα and Hα, for α ∈ D, is reflective.

• Each Hα is Hausdorff.

• Each Hα admits hybridization.

In this section, we assume that these hypotheses hold for D = {β : β <Cα}
and give the construction of Gα and Hα; in the next section we will show
that the inductive hypotheses are preserved.

We first dismiss an easy special case.

Gα: the base case. If α is a minimal element of C, then Xα is empty; so
Gα will be the empty graph.

Gα: the limit case. The next case we consider is that in which α is a
limit in the morass structure, which implies that

Xα ×Xα =
⋃

β<Cα

⋃

f∈Fβ,α

ran f∗ × ran f∗.
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Then we simply define Gα so that for all f ∈ Fβ,α, for all x, y ∈ Yβ,
Gα(f(x), f(y)) = Hβ(x, y). We postpone till the next section the argument
that this function is well-defined; but we observe that if so, Gα is now a
total function on Xα ×Xα.

We note that, by the Covering Condition, this defines Gω1 for us, given
all Gα, Hα for α <C ω1.

Gα: the general case. Now we show how to define Gα in the general
case. We will be taking care to preserve the hypothesis of reflectivity. We
will assume that α <C ω1 (since the case α = ω1 has already been dealt
with).

Given x ∈ Xα, we define the function y 7→ Gα(y, x). And, of course, we
ensure (without difficulty) that if x ∼ x′, then Gα(y, x) = Gα(y, x′).

We enumerate the set
⋃

β<Cα Fβ,α in order-type ω as {fn : n ∈ ω}, in

such a way that if there exist β <C α and f ∈ Fβ,α such that x ∈ ran f∗,
then x ∈ ran f∗0 . For each n, define βn so that fn ∈ Fβn,α.

We define the function y 7→ Gα(y, x), for y ∈ ran f∗n, by recursion on n.

For the base case, if x ∈ ran f∗0 (let us say x = f∗0 (z0)), and y ∈ dom f∗0 ,
then we simply define Gα(f∗0 (y), x) to be Hβ0(y, z0). If x /∈ ran f∗0 , then
choose some z0 ∈ dom f∗0 , and let Gα(f∗0 (y), x) = Hβn

(y, z0).

Now suppose n > 0. Again, if x ∈ ran f∗n, say x = f∗n(zn), and y ∈
dom f∗n, then we define Gα(f∗n(y), x) to be Hβn

(y, zn). If x /∈ ran f∗n, we use
the condition of admitting hybridization as follows. For each i < n, suppose
fi⊓fn ∈ Fβi,n,α. Let fi⊓fn = fi◦(fn/fi). (Recall, from condition 2(g) in the
definition of a flat morass, that fi ⊓ fn is a function, indeed an element of
the flat morass, whose range is ran fi ∩ ran fn; and fn/fi is defined to be the
function satisfying fi ◦ (fn/fi) = fi ⊓fn.) Then, by the inductive hypothesis
of reflectivity, there exists zi,n ∈ Yβi,n

such that (fn/fi)
∗(zi,n) is an image of

zi in ran (fn/fi)
∗.

Now consider the functions (fi/fn), the points zi for i < n, and the points
(fi/fn)∗(zi,n). By the condition of admitting hybridization, as applied to the
graph Hβn

on dom f∗n, we find an element zn of Yβn
(depending, of course,

on the zi for i < n) such that for each i < n, (fi/fn)∗(zi,n) is an image of
zn in ran (fi/fn)∗.

Now, for each y ∈ Yβn
, define Gα(f∗n(y), x) to be Gβn

(y, zn).

Finally, suppose y /∈ ran f∗n for any n. Then let Gα(y, x) = 0.

Having defined Gα, we now define Hα.

Hα: preliminaries. Recall that we wish to ensure that Hα is Hausdorff
and admits hybridization.

If α is a limit in the morass structure, we do not explicitly construct Hα

to admit hybridization; instead we build it to reflect to Xα.
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Accordingly, at stage α we define a Hausdorffness problem to be a pair
〈x, y〉 of distinct elements of Yα such that x 6∼ y.

We define a reflection problem to be

• ∅, if α is a limit in the morass structure;
• otherwise, a finite set {S1, . . . , Sn}, where Si = 〈fi, zi〉, and there

is βi < α such that fi ∈ Fβi,α, zi ∈ Yβi
, and for all i and j, if

f∗i (y) = f∗j (z), then Gβi
(y, zi) = Gβj

(z, zj).

We list all Hausdorffness problems as 〈Pn : n ∈ ω〉, and all reflection
problems as 〈Qn : n ∈ ω〉. We allow the possibility that these lists may
include repetitions.

List Yα \Xα as 〈xn : n ∈ ω〉, so that if Pn = 〈pn, qn〉, then xn 6∼ pn, qn.

Hα: new open sets. Suppose Pn is the pair 〈pn, qn〉. We define Hα(xn, y)
= 1 for all y ∼ pn, and Hα(xn, y) = 0 for all y 6∼ pn.

Hα: new points. If there exists m < n such that xm ∼ xn, then we will
already have defined Hα(y, xn) for all y, so no action is necessary.

So suppose that for all m < n, xm 6∼ xn.
Suppose α is a limit in the morass structure. Then we choose some

x ∈ Xα and, for all y, and for all x′ ∼ xn, define Hα(y, x′) to be Hα(y, x)
(which has already been defined).

Now suppose α is not a limit in the morass structure, and suppose Qn is
the reflection problem 〈S1, . . . , Skn

〉. We write Si as 〈f−i, z−i〉. (Notice the
change in notation from the definition above of a reflection problem; this
makes the induction below easier to describe.)

Now we define the function y 7→ Hα(y, xn) by imitating the procedure
for defining the function y 7→ G(y, x), for x ∈ Xα, in the following way.

We enumerate the set
⋃

β<α Fβ,α in order-type ω as {fm : m ∈ ω}. For
each m ≥ −kn, define βm so that fm ∈ Fβm,α.

We define the function y 7→ Hα(y, xn), for y ∈ ran f∗m, by recursion on m,
simultaneously choosing zm ∈ ran f∗m (for m ≥ 0) to be an image of xn in
ran f∗m.

For the base case, which is m < 0, if y ∈ ran f∗m, let Hα(y, xn) =
Gα(y, zm).

Now suppose m ≥ 0. We use the condition of admitting hybridization as
follows. For each i < m, suppose fi⊓fm ∈ Fβi,m,α. Let fi⊓fm = fi◦(fm/fi).
Then, by the inductive hypothesis of reflectivity, there exists zi,m ∈ Yβi,m

such that (fm/fi)
∗(zi,m) is an image of (f∗i )−1(zi) in ran (fm/fi)

∗.
Now consider the functions (fi/fm), and the points (fi/fm)∗(zi,n). By

the condition of admitting hybridization, as applied to the graph Hβm
on

dom f∗m, we find an element žm of Yβn
such that for each i <m, (fi/fm)∗(zi,m)

is an image of žm in ran (fi/fm)∗. Let zm = f∗m(žm).
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Now, for each y ∈ ran f∗m, define Hα(y, xn) to be Gα(y, zm). Let
Hα(xn

0, xn) = 0, and let Hα(xn
1, xn) = 1. Finally, if y 6∼ xn and y /∈ ran f∗n

for any m then let Hα(y, xn) = 0.
Now for all x′ ∼ xn, let Hα(y, x′) = Hα(y, xn).

This completes the definitions of Gα and Hα. We now show that they
have the properties required.

3.4. Checking the inductive hypotheses. We prove that if α ∈ C, and
if Gβ and Hβ all satisfy the inductive hypotheses for β <C α, then the
inductive hypotheses are preserved at stage α.

Lemma 3.4.1. If

Xα ×Xα =
⋃

β<Cα

⋃

f∈Fβ,α

ran f∗ × ran f∗,

then Gα is well-defined and mirrored.

Proof. The required result is that if f∗(w) = g∗(y) and f∗(x) = g∗(z),
where f ∈ Fβ,α and g ∈ Fγ,α, then Hβ(w, x) = Hγ(y, z).

But this follows from the fact (see condition 2(g) in the definition of a
flat morass) that, if f ⊓ g ∈ Fδ,α and f ⊓ g = f ◦ (g/f) = g ◦ (f/g), then
(g/f)∗ embeds Hδ in Hβ and (f/g)∗ embeds Hδ in Hγ ; and moreover there
exist u and v such that (g/f)∗(u) = w, (g/f)∗(v) = x, (f/g)∗(u) = y and
(f/g)∗(v) = z.

By a similar argument we can confirm the general case:

Lemma 3.4.2. Gα and Hα are well-defined and mirrored.

Lemma 3.4.3. If β < α and f ∈ Fβ,α, then f∗ embeds Hβ in Gα.

Proof. This is explicit in the construction.

Lemma 3.4.4. Suppose ǫ <C ω1. Then the family of graphs Gβ and Hβ,
for β ≤C ǫ, is reflective.

Proof. If α ≤C ǫ is a limit in the morass structure, then we explicitly
arranged that Hα should reflect to Xα.

For, suppose z ∈ Yα \Xα. Then, if we enumerate Yα \Xα as 〈xn : n ∈ ω〉,
as described in the section “Hα: preliminaries”, then z = xn for some n.

If there does not exist m < n such that xm ∼ xn, then, in the section
headed “Hα: new points”, in the case where α is a limit in the morass
structure, we chose a point x ∈ Xα, and, for all y and x′ ∼ xn, defined
Hα(y, x′) to be Hα(y, x). But Hα(y, x) is equal to Gα(y, x), since Gα ⊆ Hα

and y, x ∈ Xα = dom Gα.
Consulting Definition 3.2.5, we see that we have determined that x

should be an image of y in Xα. Moreover, x is also an image of any x′ ∼ y.
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Thus, for every y ∈ Yα \Xα, y possesses an image in Xα. Hence, Hα reflects
to Xα.

Now suppose that β and α are any two elements of C below ǫ, and that
β <C α. We show by induction on α that Hα reflects to ran f∗.

Suppose that f ∈ Fβ,α, and that z ∈ Yα. We show that z has an image
in ran f∗. First suppose that z ∈ Xα.

If α is a limit in the morass structure, then by condition 2(d)(ii) in the
definition of a flat morass in Section 2.2, there exist γ <C α and g ∈ Fγ,α

such that z ∈ ran g∗, and there exist δ and h such that γ, β <C δ <C α,
h ∈ Fδ,α, and ran f, ran g ⊆ ranh.

Hence z ∈ ranh∗. Now an appeal to the inductive hypothesis for δ
tells us that (h∗)−1z has an image in ran (f/h)∗. Hence z has an image
in ran f∗.

If α is not a limit in the morass structure, we examine the section of the
construction of Gα headed “Gα: general case”. In that section, we enumer-
ated

⋃

γ<Cα Fγ,α in order-type ω as 〈fn : n ∈ ω〉. Suppose f = fn. Then
we chose a point zn ∈ Yβ, and defined Gα(f∗(y), z) to be Hβ(y, zn), for all
y ∈ Yβ; that is, for all y ∈ ran f∗, Gα(y, z) = Gα(y, f∗(zn)). Thus in this
case also, z has an image in ran f∗.

We have now dealt with the case where z ∈ Xα. Now suppose z ∈ Yα\Xα.
Turning to the part of the section “Hα: new points”, we find, again, that we
have listed

⋃

γ<Cα Fγ,α in order-type ω as 〈fn : n ≥ −m〉 for some m, and,
if f = fn, then we have chosen a point žn ∈ Yβ and defined Hα(y, z) to be
Gα(y, f∗(žn)), which, as we have already seen, is equal to Hβ((f∗)−1(y), žn),
for all y ∈ ran f∗. That is, we have provided z with an image in ran f∗.

We now see that the family of graphs Gβ and Hβ, for β ≤C α, is indeed
reflective.

Lemma 3.4.5. Hα is Hausdorff.

Proof. Let p, q be distinct elements of Yα, and suppose p 6∼ q. Then the
pair 〈p, q〉 is a Hausdorffness problem. So, by the construction, there is a
point x ∈ Yα \Xα such that Hα(x, p) = 1 and Hα(x, q) = 0.

Lemma 3.4.6. Hα admits hybridization.

Proof. If α is not a limit in the morass structure, then whenever
S1, . . . , Sk is a finite sequence of pairs, with Si having the form 〈fi, zi〉,
where fi ∈

⋃

β<α Fβ,α and zi ∈ ran f∗i , and where for all y ∈ ran f∗i ∩ ran f∗j ,
Gα(y, zi) = Gα(y, zj), then 〈S1, . . . , Sn〉 is a reflectivity problem.

Hence, there exists x ∈ Yα \Xα such that for each i, for all y ∈ ran f∗i ,
Hα(y, x) = Hα(y, zi).

If α is a limit in the morass structure, suppose S1, . . . , Sn is a sequence
of pairs as above. Then there exists f ∈

⋃

β<Cα Fβ,α such that for all i,
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ran fi ⊆ ran f . Suppose f ∈ Fγ,α, and for each i, fi = f ◦ gi and zi = f(wi).

Then, recalling that f∗ embeds Hγ in Hα, we can apply the induc-
tive hypothesis, that Hγ admits hybridization, to the sequence of pairs
〈g1, w1〉, . . . , 〈gn, wn〉.

We have now established that the inductive hypotheses are preserved,
and so the graphs Gα and Hα can be constructed for all α.

3.5. Properties of the graphs. Finally, we require to show that G = Gω1

is Hausdorff and Lindelöf.

Proposition 3.5.1. G is Hausdorff.

Proof. Suppose x, y ∈ Xω1 and x 6∼ y. Then by the Covering Property
we can find α < ω1 and f ∈ Fα,ω1 such that x, y ∈ ran f∗.

Let x = f∗(x′) and y = f∗(y′). Then x′ 6∼ y′. Thus, because Hα is
Hausdorff, there exists z′ 6∼ x′, y′ such that Hα(z′, x′) = 0 and Hα(z′, y′) = 1.
Recall that f∗ embeds Hα in Gω1 = G. Let z = f∗(z′). Then G(z, x) = 0
and G(z, y) = 1, as required.

Proposition 3.5.2. G is Lindelöf.

Proof. Let U be a cover of G by τ0-basic open sets. (The argument for
τ1 will be similar.) Note that for all x, y ∈ Xω1 , there exist β < ω1 and
f ∈ Fβ,ω1 such that x, y ∈ ran f∗, and moreover if f, g ∈

⋃

β<ω1
Fβ,ω1 , then

there exist γ < ω1 and h ∈ Fγ,ω1 such that ran f, ran g ⊆ ranh.

Let µ be a large enough cardinal. Then the set of all sets M ∩ ωn such
that M is a countable elementary substructure of Hµ containing any given
countable selection of sets, is closed unbounded in [ωn]ω.

Accordingly, since our flat morass M has Covering at Limits, there exist
α < ω1 and f ∈ Fα,ω1 such that

• α is a limit in the morass structure (by consideration of elementarity
and the first paragraph of this proof),

• pUq ∩ [f∗(Xα) × {0, 1}]<ω codes a cover f∗(Xα).
Equivalently, Uα is a cover of Xα, where pUαq is defined as above so
that

pUq ∩ [ran f∗ × {0, 1}]<ω = {{〈f∗(x), ǫ〉 : 〈x, ǫ〉 ∈ A} : A ∈ pUαq}.

Now, G = Gω1 reflects to ran f∗. Since Hα reflects to Gα, it follows that
the family V coded by pUq ∩ [ran f∗ × {0, 1}]<ω is a cover of Xω1.

For, suppose x ∈ Xω1 . Let z be an image of x in Xα. Then for all y ∈ Xα,
G(f∗(y), x) = Gα(y, z).

Without loss of generality, z = z0, because if w 6∼ z, then Gα(w, z0) =
Gα(w, z1); while Gα(zi, zj) = i; so z0 and z1 are both images of x.
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Now Uα covers Xα; say

z ∈ B =
n
⋂

i=1

Uwi,0,ji
∈ Uα.

If wi 6∼ z, then since z ∈ Uwi,0,ji
, we have Gα(wi, z) = ji, so G(f∗(wi), x)

= ji, and thus x ∈ Uf∗(wi),0,ji
.

If wi ∼ z, then in fact ji = 0, and without loss of generality wi = z, since
Uz0,0,ji

= Uz1,0,ji
. Now Gα(z, z) = 0 since z = z0, so G(f∗(z), x) = 0 since z

is an image of z, and hence x ∈ Uf∗(z),0,0 = Uf∗(wi),0,ji
.

It follows that

x ∈
n
⋂

i=1

Uf∗(wi),0,ji
,

and this set is an element of V.

Now Uα is obviously countable, since Xα is countable; hence V is count-
able, and U has a countable subcover.

3.6. Conclusion. So, to summarise:

Theorem 3.6.1. Suppose that there exists an gap-(n− 1) flat morass of

height ω1. Then there is a Lindelöf Tikhonov space with points Gδ of size ℵn.

The following now follows trivially:

Theorem 3.6.2. Suppose that for all n, there exists a gap-(n − 1) flat

morass of height ω1. Then there is a Lindelöf Tikhonov space with points

Gδ of size ℵω.

Proof. Take the disjoint union of spaces Xn, where Xn is a Lindelöf
Tikhonov space with points Gδ.

Since the condition of the above theorem holds in L, it is easy to see the
following:

Theorem 3.6.3. It is consistent that there is a Lindelöf Tikhonov space

with points Gδ of size iω.

The obvious next question is whether this can be improved: for instance,
whether, for all countable α, it is consistent that there is a Lindelöf Tikhonov
space with points Gδ of size iα. The author does not know whether this
could be done for α < ω1 using the methods of this paper; it seems reason-
ably clear that it would fail for α ≥ ω1.

We repeat here a question we stated in the introduction:

Question 3.6.4. Can it be proved from ZFC together with GCH that

there is a Lindelöf space with countable pseudocharacter having cardinal-

ity ℵω?
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[3] I. Gorelić, The Baire category and forcing large Lindelöf spaces with points Gδ,
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