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Finite-to-one continuous s-covering mappings

by

Alexey Ostrovsky (München)

Abstract. The following theorem is proved. Let f : X → Y be a finite-to-one map
such that the restriction f |f−1(S) is an inductively perfect map for every countable com-
pact set S ⊂ Y . Then Y is a countable union of closed subsets Yi such that every restriction
f |f−1(Yi) is an inductively perfect map.

All spaces in this paper are supposed to be separable and metrizable and
all the mappings f : X → Y to be continuous and “onto”.

We recall the following definitions:

f is inductively perfect if there exists a closed subset X ′ ⊂ X such that
f(X ′) = Y and the restriction f |X ′ is perfect, i.e. f |X ′ is a closed map with
compact fibers f−1(y).

f is s-covering if f |f−1(S) is inductively perfect for every countable and
compact set S ⊂ Y (1).

The following main theorem is an obvious corollary of Theorem 6 below:

Theorem 1. If f : X → Y is a finite-to-one s-covering mapping ,
then Y is a countable union of closed subsets Zi such that every restric-

tion f |f−1(Zi) is an inductively perfect mapping. If Y ⊂ 2ω, then the Zi

are pairwise disjoint.

Under the assumption that for some integer n all the fibers have at
most n points G. Debs and J. Saint Raymond proved that f is inductively
perfect, but the finiteness of the fibers does not suffice to ensure the same
conclusion [1].
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(1) Since the inverse image of a compact set under a perfect mapping is always com-
pact, a mapping f : X → Y is s-covering if and only if every countable compact subset
S ⊂ Y is the image of some compact B ⊂ X.

[89]
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1. Some properties of s-covering mappings. In this section, we use
the following property of s-covering mappings, which was proved by W. Just
and H. Wicke [2], as well as independently by the author [3].

Proposition 2. A mapping f is s-covering if and only if in every fiber

f−1(y) there exists a nonempty family εy of nonempty compact subsets such

that every open set containing K ∈ εy also contains a set K ′ ∈ εy′ for any

point y′ from a neighborhood of y (2).

Throughout the paper, we keep the notation εy, y ∈ Y , for the above
families of compact subsets of the fibers f−1(y) of an s-covering map f :
X → Y .

Lemma 3. Let f : X → Y be an s-covering mapping. Set

My =
⋂

{K : K ∈ εy}, X0 =
⋃

y∈Y

My, Y0 = f(X0).

Then the restriction f |X0 is a perfect mapping.

Proof. Let y ∈ f(X0) and V ⊃ My be an open set. We will prove that
f0 = f |X0 is a closed mapping by applying the following characterization:
f0 : X0 → Y0 is closed if and only if for every y ∈ Y0 and every open
V ⊃ f−1

0
(y) there is an open O ∋ y such that f−1

0
(y′) ⊂ V for every y′ ∈ O.

Since My is compact, there are finitely many Ki ∈ εy such that
⋂

i Ki⊂V.

It follows from the normality of X that there are open sets Vi ⊃ Ki \V such
that

⋂

i Vi = ∅.

Since Vi ∪ V ⊃ Ki are open sets, for every i there exists an open set
Oi(y) such that for every y′ ∈ Oi(y) there is B′

i ∈ εy′ with B′

i ⊂ Vi ∪ V .

Let O(y) =
⋂

i Oi(y). If y′ ∈ O(y) ∩ f(X0), then

My′ =
⋂

{K : K ∈ εy′} ⊂
⋂

i

B′

i ⊂
⋂

i

(Vi ∪ V ) =
(

⋂

i

Vi

)

∪ V = V,

and hence f |X0 is a closed mapping with compact fibers My.

Lemma 4. Let f : X → Y be an s-covering mapping , let X0, Y0 be as in

Lemma 3, and define inductively

Yi =
{

y ∈ Y \
i−1
⋃

k=0

Yk : ∃K1
y , . . . , Ki+1

y ∈ εy

such that K1
y ∩ · · · ∩ Ki+1

y = ∅
}

for i ≥ 1.

Then Y =
⋃

∞

i=0
Yi and Yi are pairwise disjoint Fσ-sets.

(2) It is easy to see that |εy| = 1 for all y ∈ Y if and only if f is inductively perfect.
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Proof. Note that if y ∈
⋃n

i=1
Yi, then there exist i ∈ {1, . . . , n} and

K1
y , . . . , Ki+1

y ∈ εy such that K1
y ∩ · · · ∩ Ki+1

y = ∅. By the normality of X,

there are open sets Oj ⊃ K
j
y (j = 1, . . . , i + 1) such that

⋂

j Oj = ∅, and
by the definition of εy (Proposition 2) there is an open set O ∋ y such that

for every y′ ∈ O one has K
j
y′ ⊂ Oj for some K

j
y′ ∈ εy′ . Since

⋂

j Oj = ∅

we obtain
⋂

j K
j
y′ = ∅ and hence y′ ∈

⋃n
i=1

Yi for y′ ∈ O. This implies that
⋃n

i=1
Yi is open in Y and Yn =

⋃n
i=0

Yi \
⋃n−1

i=0
Yi is of type Fσ, for each

n > 0.
Suppose y ∈ Y \ Y0. Then

⋂

{K : K ∈ εy} = ∅. Since the sets K are
compact, there are finitely many Kj ∈ εy such that

⋂

j Kj = ∅. Hence, y

belongs to some Yi and Y =
⋃

∞

i=0
Yi.

2. s-covering mappings with finite families εy

Lemma 5. Let f : X → Y be an s-covering mapping with finite families

εy, and let Yi be as in Lemma 4. Then for every y ∈ Yi (i = 1, 2, . . .) there is

an open subset O(y) of Y such that the restriction of f to f−1(O(y)∩Yi) is

an s-covering map onto O(y) ∩ Yi with a family ε1
y ( εy, hence, card(ε1

y) ≤
card(εy) − 1.

Proof. As in the proof of Lemma 4 there are open sets Oj ⊃ K
j
y ∈ εy

such that
⋂i+1

j=1
Oj = ∅ and, hence,

O1 ∩
i+1
⋂

j=2

Oj = ∅.(1)

Let O(y) be an open set such that for every y′ ∈ O(y) ∩ Yi and every Oj

there is K
j
y′ ⊂ Oj for which K

j
y′ ∈ εy′ (j = 1, . . . , i + 1). Since y′ ∈ Yi, and

hence y′ 6∈ Yi−1, we have
i+1
⋂

j=2

K
j
y′ 6= ∅.(2)

Claim. There is j > 1 such that K
j
y′ 6⊂ O1.

Suppose not; then K
j
y′ ⊂ O1 for all j = 2, . . . , i + 1, and hence

i+1
⋂

j=2

K
j
y′ ⊂ O1.(3)

Since K
j
y′ ⊂ Oj , it follows that

i+1
⋂

j=2

K
j
y′ ⊂

i+1
⋂

j=2

Oj .(4)

The conditions (2), (3), (4) contradict (1).
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For every y′ ∈ O(y)∩Yi, there is j such that K
j
y′ 6⊂ O1. It follows that the

restriction of f to O1 ∩ f−1(O(y) ∩ Yi) is an s-covering map onto O(y) ∩ Yi

with a family ε1
y such that card(ε1

y) ≤ card(εy) − 1.

Theorem 6. Let f : X → Y be an s-covering mapping with finite fam-

ilies εy. Then Y is a countable union of closed subsets Zi such that every

restriction f |f−1(Zi) is an inductively perfect mapping.

Indeed, it follows from Lemma 4 that every set O(y) ∩ Yi is Fσ in Y .
If Y ⊂ 2ω, it is well known that the open cover {O(y)}y∈Yi

of the zero-
dimensional space Yi has a refinement consisting of clopen (in Yi) pairwise
disjoint sets Fir . Hence, Yi =

⋃

ir
Fir is a countable union of pairwise disjoint

subsets closed in Y . In the general case (Y 6⊂ 2ω), the open cover {O(y)}y∈Yi

has a locally finite open refinement and the sets Fir are only closed in Y

and not pairwise disjoint.
Now Theorem 6 results from step-by-step application of Lemma 5 to the

sets Fir , etc.

3. Application to Borel sets

Theorem 7. If f : X → Y is an s-covering finite-to-one mapping of

a Borel set X ⊂ 2ω of additive or multiplicative class α ≥ 1 onto Y ⊂ 2ω,
then Y is a Borel set of the same class.

Proof. If X is of additive class α, then, by Theorem 1 and by the theorem
on preservation of the Borel class under perfect mappings (3), every Zi is of
additive class α. It is obvious that Y is of additive class α because it is the
countable union of the Zi.

Let X be of multiplicative class α. If α = 1, then by [4, Main result], Y

is of multiplicative class 1.
For α > 1 we consider in C = 2ω according to Theorem 1 the sets

Li = [Zi]C \ Zi of additive class α. Obviously,

Y =
⋃

i

Zi =
⋃

i

([Zi]C \ Li) =
⋃

i

[Zi]C \
⋃

i

Li,

where
⋃

i[Zi]C is of multiplicative class 2 and
⋃

i Li is of additive class α.

This implies that Y is of multiplicative class α.

Question. I do not know whether the conclusion of Theorem 6 is still
true if the condition that f is an s-covering mapping with finite families εy

is replaced by the condition that f is an s-covering mapping with compact
fibers and each set in any family εy is finite.

(3) A. D. Taimanov proved [6, Theorem 6] that the image of a Borel set of class ξ

under a perfect mappings is of the same class if ξ ≥ ω0, and of class ξ + 1 if 1 < ξ < ω0.
J. Saint Raymond proved the preservation in the case 1 < ξ < ω0 [5].
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[5] J. Saint Raymond, Fonctions boréliennes sur un quotient, Bull. Sci. Math. 100 (1976),

141–147.
[6] A. D. Taimanov, On closed mappings. II, Mat. Sb. 52 (1960), 579–588 (in Russian).

Bundeswehr University Munich
D-85577 Neubiberg, Germany
E-mail: Alexey.Ostrovskiy@UniBw.de

Received 25 April 2006;

in revised form 23 November 2006


