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Generi absoluteness under projetive foringbyJoan Bagaria (Barelona) andRoger Bosh (Oviedo)
Abstrat. We study the preservation of the property of L(R) being a Solovay modelunder projetive  foring extensions. We ompute the exat onsisteny strength of thegeneri absoluteness of L(R) under foring with projetive  partial orderings and, asan appliation, we build models in whih Martin's Axiom holds for Σ

∼

1
n partial orderings,but it fails for the Σ

∼

1
n+1.1. Introdution. In this paper we ontinue the systemati study of thepreservation of the property of L(R) being a Solovay model under variouslasses of foring notions. This work started in [2℄, where we onsidered thelass of projetive absolutely- foring notions and obtained an exat on-sisteny result for the preservation of the property of L(R) being a Solovaymodel under this lass of foring extensions. It turned out that the large ar-dinals involved were the de�nably Mahlo ardinals, a weak form of Mahloardinals that satisfy some de�nability onditions. As a orollary we obtainedthe equionsisteny of: (1) there exists a de�nably-Mahlo ardinal; and (2)

L(R)-absoluteness for projetive absolutely  posets.In [3℄ we showed that every projetive strongly proper foring notion pre-serves the property of L(R) being a de�nably Mahlo Solovay model. Hene,the onsisteny of L(R)-absoluteness under projetive strongly proper for-ing notions has the existene of a de�nably Mahlo ardinal as an upperbound. We also proved in [3℄ that the onsisteny strength of the preserva-tion of L(R) being a Solovay model under σ-linked foring notions is exatly
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96 J. Bagaria and R. Boshthat of a Mahlo ardinal, in ontrast with the general  ase, for whih aweakly ompat ardinal is required.Reall that a Solovay model over V is the L(R) of a modelM ⊇ V whihhas the following properties:(1) For every x ∈ R, ω1 is an inaessible ardinal in V [x].(2) Every x ∈ R is small-generi over V . That is, for some foring notion
P in V that is ountable in M , there is, in M , a P-generi �lter gover V suh that x ∈ V [g].The reason we all a model with properties (1) and (2) above a Solo-vay model is the following result of Woodin (see [2℄), whih says that it iselementarily equivalent to Solovay's model from [10℄.Lemma 1.1. Suppose that V ⊆ M are models of (a fragment of ) ZFCand M satis�es (1) and (2) above. Then there is a foring notion W in Mwhih does not add new reals and reates a generi �lter C for the Levyollapse of ωM

1 over V suh that M and V [C] have the same reals.Our interest in the preservation of the property of L(R) being a Solovaymodel under foring extensions that do not ollapse ω1 lies mainly in thefat (Lemma 1.3 below) that it implies a strong form of generi absolutenessfor the theory of the reals (see [2℄).Definition 1.2. Let V be a model of ZF. Let P ∈ V be a foring notionand let ϕ be a formula (possibly with parameters in V ). V is ϕ-absolute for
P i�

V |= ϕ i� V P |= ϕ.If Σ is a set of formulas, V is Σ-absolute for P i� for every ϕ ∈ Σ, V is
ϕ-absolute for P. Given a lass Γ of posets, V is Σ-absolute for Γ i� forevery P ∈ Γ , V is Σ-absolute for P in V .

V is L(R)-absolute for P i� there exists an elementary embedding
j : L(R)V → L(R)V Pthat �xes all the ordinals (and therefore all the reals). For Γ a lass of posets,

V is L(R)-absolute for Γ if it is L(R)-absolute for every P in Γ .The following lemma is proved in [2℄.Lemma 1.3. Suppose that L(R)M and L(R)N are Solovay models over
V suh that RM ⊆ RN and ωM

1 = ωN
1 . Then there exists an elementaryembedding j : L(R)M → L(R)N whih �xes all the ordinals.Reall that for Γ a point-lass, a Γ -poset is a triple P = 〈P,≤P ,⊥P 〉,where ≤P is a Γ -subset of ωω × ωω, P = field(≤P ), 〈P,≤P 〉 is a partialorder, and ⊥P is a Γ -subset of ωω × ωω ontained in P × P suh that forevery x, y ∈ P , x ⊥P y i� x, y are inompatible. P is a projetive poset i� it



Generi absoluteness under projetive foring 97is (isomorphi to) a Γ -poset for some projetive point-lass Γ . Notie thata poset P is projetive i� it is (isomorphi to a poset that is) �rst-orderde�nable in H(ω1), with parameters.In this paper we onsider the lass of projetive  foring notions. Weshow that the property of L(R) being a Σn-weakly ompat Solovay model(see de�nitions below) is preserved by foring with Σ
∼

1
n+1  posets, andthat the property of L(R) being a de�nably weakly ompat Solovay modelis preserved by all projetive  posets. We give an example of a ∆1

3 poset
P with the property K, hene , suh that Σ1

4 generi absoluteness underforing with P implies that ω1 is Σ1-weakly ompat in L. A generaliza-tion of this example to higher projetive levels shows that the onsistenystrength of L(R)-absoluteness under Σ
∼

1
n+1  foring is exatly the exis-tene of a Σn-weakly ompat ardinal. Further, the onsisteny strength of

L(R)-absoluteness under projetive  foring extensions is exatly that ofthe existene of a de�nably weakly ompat ardinal. In the last setion, andas an appliation of the previous results, we build models in whih Martin'saxiom holds for Σ
∼

1
n partial orderings but not for the Σ

∼
1
n+1.2. Projetive  foring extensions. We will address the questionof the preservation of the property of L(R) being a Solovay model underarbitrary projetive  foring notions. As we will see, we need to onsidera de�nable form of weakly ompat ardinals.2.1. Σn-weakly ompat ardinals. Reall that a Π1
1 sentene of the lan-guage of set theory is a sentene of the form ∀X ϕ(X), where ϕ(X) is a�rst-order formula of the language of set theory expanded with the predi-ate symbol X.Definition 2.1. Let κ be a ardinal and n ∈ ω. Then κ is Σn-weaklyompat (Σn-w.., for short) i� κ is inaessible and for every R ⊆ Vκ whihis de�nable by a Σn formula (with parameters) over Vκ and every Π1

1 sen-tene Φ, if
〈Vκ,∈, R〉 |= Φthen there is α < κ (equivalently, unboundedly many α < κ) suh that

〈Vα,∈, R ∩ Vα〉 |= Φ.That is, κ re�ets Π1
1 sentenes with Σn prediates. Moreover, κ being

Πn-weakly ompat (Πn-w.., for short) is de�ned analogously by substi-tuting Πn for Σn in the de�nition above. Thus, an inaessible ardinal κ is
Πn-w.. i� it re�ets Π1

1 sentenes with Πn prediates. An inaessible ar-dinal is ∆n-weakly ompat (∆n-w.., for short) i� it re�ets Π1
1 senteneswith ∆n prediates.



98 J. Bagaria and R. BoshDefinition 2.2 (A. Leshem, [9℄). A ardinal κ is Σω-weakly ompat(Σω-w.., for short) i� κ is Σn-w.. for every n ∈ ω.Proposition 2.3. For κ an inaessible ardinal , the following are equiv-alent :(1) κ is Σn-w..(2) κ is Πn-w..(3) κ is ∆n+1-w..(4) For every Π1
1 formula Φ(x0, . . . , xk) in the language of set theoryand every a0, . . . , ak ∈ Vκ, if Vκ |= Φ(a0, . . . , ak), then there is λ ∈

In := {λ < κ : λ is inaessible and Vλ 4n Vκ} suh that Vλ |=
Φ(a0, . . . , ak).Proof. (3)⇒(1) and (3)⇒(2) are trivial.(1)⇒(2): Suppose that R ⊆ Vκ. For every Π1

1 formula Ψ where R appearsas a prediate, let Ψ̃ be the formula obtained from Ψ by substituting everyourrene of the subformula Rx, where x is a �rst order variable, by ¬Rx.Note that Ψ̃ is also Π1
1.It is easily shown, by indution on the omplexity of formulas, that forevery formula Ψ and every α,

〈Vα,∈, R ∩ Vα〉 |= Ψ i� 〈Vα,∈, Vα \R〉 |= Ψ̃ .Suppose now that R ⊆ Vκ is de�nable by means of a Πn formula over Vκ and
Φ is a Π1

1 sentene. If 〈Vκ,∈, R〉 |= Φ, then 〈Vκ,∈, Vκ \ R〉 |= Φ̃. Sine κ is
Σn-w.., there is α < κ suh that 〈Vα,∈, (Vκ\R)∩Vα〉 = 〈Vα,∈, Vα\R〉 |= Φ̃,and therefore 〈Vα,∈, R ∩ Vα〉 |= Φ.(2)⇒(4): Suppose that Φ(x0, . . . , xk) = ∀X ϕ(X,x0, . . . , xk) is a Π1

1 for-mula and a0, . . . , ak ∈ Vκ are suh that Vκ |= Φ(a0, . . . , ak).Let Ψ be the Π1
1 sentene expressing that κ is inaessible, and let σ bethe �rst order sentene saying that the Πn-lub Cn := {α < κ : Vα 4n Vκ}is unbounded. Then
〈Vκ,∈, Cn〉 |= Φ(a0, . . . , ak) ∧ Ψ ∧ σ.Sine κ is Πn-w.., there is λ < κ suh that

〈Vλ,∈, Cn ∩ Vλ〉 |= Φ(a0, . . . , ak) ∧ Ψ ∧ σ.But then λ is inaessible, and sine Cn ∩ λ is unbounded, λ ∈ In.(4)⇒(3): Suppose that R is a ∆n+1 subset of Vκ and Φ is a Π1
1 sentenesuh that

〈Vκ,∈, R〉 |= Φ.Let ϕ(x, y0, . . . , yk) be a Σn+1 formula and ψ(x, z0, . . . , zl) a Πn+1 formulathat de�ne R in Vκ with parameters a0, . . . , ak and b0, . . . , bl, respetively.



Generi absoluteness under projetive foring 99Thus,
〈Vκ,∈, R〉 |= ∀x (Rx↔ ϕ(x, a0, . . . , ak) ↔ ψ(x, b0, . . . , bl)).Let Φ′(y0, . . . , yk) be the Π1

1 formula (with y0, . . . , yk as the only free indi-vidual variables) obtained by substituting every ourrene of the formula
Rx in Φ by the formula ϕ(x, y0, . . . , yk). Then, learly, Vκ |= Φ′(a0, . . . , ak).Hene, there is λ ∈ In suh that

Vλ |= Φ′(a0, . . . , ak) ∧ ∀x (ϕ(x, a0, . . . , ak) ↔ ψ(x, b0, . . . , bl)).But sine Vλ 4n Vκ, R ∩ Vλ = {x : Vλ |= ϕ(x, a0, . . . , ak)}. Therefore,
〈Vλ,∈, R ∩ Vλ〉 |= Φ.Notie that in the proof of (4)⇒(3) above, we have not made use of thefat that λ was inaessible. Thus an inaessible ardinal κ is Σn-w.. i� κre�ets Π1

1 sentenes (in the language with ∈ only) to some λ < κ suh that
Vλ 4n Vκ.Leshem [9℄ has proved that if κ is Mahlo, then the set of Σω-w.. ardinalsbelow κ is stationary. So, all these ardinals are, onsisteny-wise, below aMahlo ardinal.Let us reall from [2℄ that a subset C of a ardinal κ is a Π

∼n-lub i� Cis a lub subset of κ that is de�nable over Vκ by means of a Πn formula,possibly with parameters. A subset S ⊆ κ is Π
∼n-stationary i� for every

Π
∼n-lub subset C of κ, S ∩ C 6= ∅. (Notie that we do not require that Sitself be Πn-de�nable.) Finally, κ is a Π

∼n-Mahlo ardinal i� it is inaessibleand the set of all inaessible ardinals below κ is Π
∼n-stationary. For moreinformation about Π

∼n-Mahlo ardinals see [2℄ and [4℄. The next fat showsthat Σn-w.. ardinals are Π
∼n-Mahlo, and that the least Π

∼n-Mahlo ardinalis not Σn-w..Fat 2.4. Every Σn-w.. ardinal κ is Π
∼n-Mahlo, and the set of Π

∼n-Mahlo ardinals below κ is Π
∼n-stationary.Proof. Suppose that κ is Σn-w.. Let C be a Π

∼n-lub of κ, i.e., C isa lub on κ whih is de�nable over Vκ by means of a Πn formula withparameters. Let Φ the Π1
1 sentene expressing that κ is inaessible. Let ̺be the �rst-order sentene expressing that C is unbounded. Then

〈Vκ,∈, C〉 |= Φ ∧ ̺.So, there is α < κ suh that
〈Vα,∈, C ∩ Vα〉 |= Φ ∧ ̺.Therefore α is inaessible, and sine C ∩ Vα = C ∩ α is unbounded in α,

α ∈ C.



100 J. Bagaria and R. BoshNote that �every Π
∼n-lub of κ ontains an inaessible ardinal� is ex-pressible by a �rst-order sentene. Therefore, the above argument shows thatthere is a Π

∼n-stationary set of Π
∼n-Mahlo ardinals below κ.Reall κ is a Σω-Mahlo ardinal i� it is Π

∼n-Mahlo for every n ∈ ω.In [4℄ it is shown that every Σω-w.. ardinal is Σω-Mahlo, and that the setof Σω-Mahlo ardinals below a Σω-w.. ardinal is Σω-stationary. However,also from [4℄, if κ is Πn+1-Mahlo, then the set of Σn-w.. ardinals below κis Πn+1-stationary.2.1.1. The tree propertyDefinition 2.5. Let κ be a ardinal and n ∈ ω. A tree T = 〈T,≤T 〉 with
T ⊆ Vκ is a Σn-tree (over Vκ) i� there are Σn formulas ϕT (x), ϕ≤T

(x, y) and
ϕhtT

(x, y), possibly with parameters in Vκ, suh that for every t, t′ ∈ Vκ andevery α < κ,
t ∈ T i� Vκ |= ϕT (t),

t ≤T t′ i� Vκ |= ϕ≤T
(t, t′),

t ∈ Tα i� Vκ |= ϕhtT
(t, α),where Tα denotes the αth level of the tree T . Similarly, we de�ne the notionof Πn-tree by substituting Πn for Σn in the above de�nition. Moreover, T isa ∆n-tree i� T is both a Σn-tree and a Πn-tree. Finally, T is a Σω-tree i� Tis a Σn-tree for some n ∈ ω.Definition 2.6. Let κ be a ardinal and n ∈ ω. κ has the Σn-treeproperty i� κ is inaessible and every κ-tree whih is a Σn-tree has a o�nalbranh. The Πn-tree property , ∆n-tree property , and Σω-tree property arede�ned analogously.Lemma 2.7. For every n ∈ ω, if κ is Σn-w.., then κ has the Σn-treeproperty.Proof. Suppose that κ is a Σn-w.. ardinal and let T be a κ-tree whihis a Σn-tree over Vκ. Suppose that T does not have a branh of length κ. So,sine κ is regular, every branh of T belongs to Vκ.Let Φ be the Π1

1 sentene expressing that κ is inaessible.Let Ψ be the following Π1
1 sentene:

∀B (B is a branh of T → ∃x B = x).Let F be the funtion with domain κ suh that F (α) = Tα, the αth levelof T . Sine t ∈ Tα is a Σn fat over Vκ, F is ∆n+1-de�nable over Vκ. Let ϕbe the following �rst-order sentene:
∀α (α is an ordinal → ∃x F (α) = x).



Generi absoluteness under projetive foring 101Thus,
〈Vκ,∈, T, F 〉 |= Φ ∧ Ψ ∧ ϕ.Hene, there is λ < κ suh that

〈Vλ,∈, T ∩ Vλ, F ∩ Vλ〉 |= Φ ∧ Ψ ∧ ϕ.Fix some t ∈ Tλ. Let pred(t) = {t′ ∈ T : t′ <T t}. It is lear that
pred(t) is a branh through T ∩ Vλ. So, pred(t) ∈ Vλ, and hene, sine λ isinaessible, |pred(t)| < λ. A ontradition.Corollary 2.8. If κ is Σω-w.., then κ has the Σω-tree property.2.1.2. The partition property. Reall that if κ is a ardinal and n > 0 isa natural number, [κ]n is the set of all subsets of κ with exatly n elements.Given a ardinal κ, natural numbers n,m (n > 0), and a funtion f :
[κ]n → m, a set H ⊆ κ is said to be f -homogeneous i� f”[H]n = {i} forsome i ∈ m.Definition 2.9. Let κ be a ardinal. Then κ has the Σn-partition prop-erty i� κ is an inaessible ardinal and for every funtion f : [κ]2 → {0, 1}that is Σn-de�nable over Vκ there exists an f -homogeneous set of ardinal-ity κ. We write κ Σn−−→ (κ)2 to indiate that κ has the Σn-partition property.The Σω-partition property is de�ned analogously, and we write κ Σω−−→ (κ)2.Lemma 2.10. For every n ∈ ω, n > 0, if κ has the Σn-tree property , then
κ

Σn−−→ (κ)2.Proof. Let F : [κ]2 → {0, 1} be Σn-de�nable over Vκ. Let ϕ(x, y, z) be a
Σn formula, possibly with parameters in Vκ, that de�nes it.For every β < κ, let fβ : β → {0, 1} be suh that for all α < β, fβ(α) =
F ({α, β}). Let T = {fβ↾γ : γ ≤ β < κ} be ordered by extension. Note that
T is Σn-de�nable over Vκ:
t ∈ T i� Vκ |= ∃β, γ(γ ≤ β∧dom(t) = γ∧ (∀α < γ)(∃i ∈ {0, 1})(ϕ(α, β, i))).It is lear that for every β < κ, we have: t ∈ Tβ i� t ∈ T and dom(t) = β.So, T is a Σn-tree. Moreover, ht(T ) = κ, and sine for every β < κ, Tβ ⊆ 2β,and κ is inaessible, |Tβ| < κ. Therefore T is a κ-tree.Sine κ has the Σn-tree property, there is a o�nal branh B through T .Let {tξ : ξ < κ} be an inreasing enumeration of B so that dom(tξ) = ξ forall ξ < κ. For every i ∈ {0, 1}, let

Hi = {ξ < κ : t⌢ξ 〈ξ, i〉 ∈ B}.We laim that for every i ∈ {0, 1}, Hi is a homogeneous subset of κ for F .Fix α, β, γ ∈ Hi with α < β < γ. Sine t⌢α 〈α, i〉 ⊆ tβ and t⌢β 〈β, i〉 ⊆ tγ ,
F ({α, β}) = tβ(α) = i = tγ(β) = F ({β, γ}).



102 J. Bagaria and R. BoshSo, the Hi are homogeneous for i ∈ {0, 1}. Sine |B| = κ, either |H0| = κ or
|H1| = κ. Therefore, κ Σn−−→ (κ)2.Corollary 2.11. If κ has the Σω-tree property , then κ Σω−−→ (κ)2.Lemma 2.12 (E. Kranakis, [8℄). Assume V = L. For every n > 0, κ Σn−−→
(κ)2 implies that for every Π1

1 formula Φ(x0, . . . , xk) and a0, . . . , ak ∈ Lκsuh that Lκ |= Φ(a0, . . . , ak), there is λ < κ with Lλ 4n Lκ suh that
Lκ |= Φ(a0, . . . , ak).Finally, we have:Theorem 2.13. (V = L) Let κ be a ardinal. Then for every n ≥ 1 thefollowing are equivalent :(1) κ is a Σn-w.. ardinal.(2) κ has the Σn-tree property.(3) κ Σn−−→ (κ)2.Proof. (1)⇒(2) follows from Lemma 2.7.(2)⇒(3) follows from Lemma 2.10.Sine L |= κ

Σn−−→ (κ)2, by de�nition, κ is inaessible in L. The rest ofimpliation (3)⇒(1) follows from Lemma 2.12 (this is the only plae where
V = L is used) and Proposition 2.3.Corollary 2.14. (V = L) Let κ be a ardinal. Then the following areequivalent :(1) κ is Σω-w..(2) κ has the Σω-tree property.(3) κ Σω−−→ (κ)2.2.2. Generi absoluteness for projetive  posetsDefinition 2.15. L(R)M is a Σn-w.. (resp. Σω-w..) Solovay modelover V ⊆M i� M satis�es:(1) For every x ∈ R, ω1 is a Σn-w.. (resp. Σω-w..) ardinal in V [x].(2) Every x ∈ R is small-generi over V .Notie that sine every Σn-w.. (resp. Σω-w..) ardinal is inaessible,Lemma 1.1 also holds for Σn-w.. (resp. Σω-w..) Solovay models.We will make use of the following property of Σn-w.. ardinals:Lemma 2.16. Let n ≥ 1. Suppose that κ is a Σn-w.. ardinal and Pis a κ- poset that is Σn-de�nable (with parameters) over Vκ. If X ⊆ Phas ardinality less than κ, then there is a omplete subposet Q of P, also ofardinality less than κ, suh that X ⊆ Q.



Generi absoluteness under projetive foring 103Proof. LetX ⊆ P with |X| < κ. Sine κ is inaessible, there is a ardinal
λ < κ with X ⊆ Vλ.Let R = {D : D is a maximal antihain of P}. Sine P is κ-, R ⊆ Vκ.For all D ∈ Vκ, D ∈ R i� Vκ satis�es:
D ⊆ P ∧ ∀x, y ∈ D (x 6= y → x ⊥P y) ∧ ∀z (z ∈ P → ∃y ∈ D (¬z ⊥P y)).Note that the formula above is the onjuntion of a Σn formula and a Πnformula. Hene, R is a ∆n+1 prediate in Vκ.Let Φ be the onjuntion of the following sentenes of the seond-orderlanguage of type {∈,P,≤P,⊥P, R}:(1) ≤P is a partial order with �eld(≤P) = P.(2) ⊥P is the inompatibility relation of 〈P,≤P〉.(3) ∀Y (Y ⊆ P ∧ ∀xy (Y x ∧ Y y ∧ x 6= y → x ⊥P y)

∧ ∀z (Pz → ∃y (Y y ∧ ¬y ⊥P z)) → ∃x (Rx ∧ Y = x)), i.e, everymaximal antihain of P belongs to R.Notie that (1) and (2) are �rst-order, and (3) is Π1
1.We have

〈Vκ,∈,P,≤P,⊥P, R〉 |= Φ.So, sine κ is Σn-w.., there is α < κ with λ < α suh that
〈Vα,∈,P ∩ Vα,≤P ∩ Vα,⊥P ∩ Vα, R ∩ Vα〉 |= Φ.Let Q = 〈P ∩ Vα,≤P ∩ Vα,⊥P ∩ Vα〉. So, |Q| < κ. By (1) and (2), Q is asubposet of P that preserves the inompatibility relation of P. Sine λ < α,we have X ⊆ P ∩ Vα. Finally, let D be a maximal antihain of Q. Then, by

(3), D ∈ R ∩ Vα. So sine D ∈ R, it follows that D is a maximal antihainof P. This shows that Q is a omplete subposet of P of ardinality less than
κ whih inludes X.For α an ordinal, we shall write Collα for the Levy ollapse below α,instead of the usual and more umbersome Coll(ω,<α).Theorem 2.17. Let n ≥ 1. Suppose L(R)M is a Σn-w.. Solovay modelover V and P is a  poset whih is, in M , Σn-de�nable (with parame-ters) over H(ω1). Then the L(R) of any P-extension of M is also a Σn-w..Solovay model over V .Proof. Let κ = ωM

1 . Fore overM with Woodin's partial ordering W (seeLemma 1.1) to obtain a Collκ-generi C over V so that RM = RV [C]. Notiethat for a generi �lter G ⊆ P, G is P-generi over M i� it is P-generi over
V [C] and, moreover, RM [G] = RV [C][G]. Thus, to prove the theorem it will beenough to show that every real in V [C][G] is generi over V for some foringnotion P in V that is ountable in V [C][G].



104 J. Bagaria and R. BoshLet Ṗ be a Collκ-name for P in V . By the Fator Lemma for the Levyollapse, we may assume that the parameters of the de�nition of P are in V .Further, sine the Levy ollapse is homogeneous, we may assume that Collκ

“Ṗ is a poset�. Notie that Collκ is de�nable by means of a Σ1 and a Π1formula without parameters over Vκ (see [2℄). Hene, for n ≥ 1, Collκ ∗ Ṗ isa poset whih is Σn-de�nable over Vκ, possibly with parameters.Let x be a real in V [C][G]. Let ẋ be a simple Collκ ∗ Ṗ-name for x in V ,and let X be the set of all onditions of Collκ ∗ Ṗ in TC(ẋ). Sine Collκ ∗ Ṗ is
κ-, |X| < κ. So, by Lemma 2.16, there is a omplete subposet Q of Collκ∗Ṗsuh that X ⊆ Q and Q has ardinality less than κ. Let H = (C ∗ G) ∩ Q.Then H is Q-generi over V and ẋ[H] = ẋ[C ∗ G] = x. This ompletes theproof of the theorem sine it shows that x is generi over V for the ountableposet Q.Corollary 2.18.(1) For every n ≥ 1, Con(ZFC+ there exists a Σn-w.. ardinal) implies

Con(ZFC + L(R)-absoluteness for Σ
∼

1
n+1  posets).(2) Con(ZFC+ there exists a Σω-w.. ardinal) implies Con(ZFC+L(R)-absoluteness for projetive  posets).Proof. (1): Suppose κ is Σn-w.. Fore with Collκ so that the L(R) ofthe generi extension M is a Σn-w.. Solovay model over V . By Theorem2.17 and Lemma 1.3, L(R)-absoluteness holds in M for  posets that are

Σn de�nable, with parameters, in H(ω1), and hene, for Σ
∼

1
n+1  posets.Reall that for Γ a lass of posets, a poset P is Γ -produtive- i� it is and for every  poset Q in Γ , P × Q is .Let Γn be the lass of all Σ

∼
1
n+1  posets, and let Γω be the lass of allprojetive  foring notions. Then, as in [2℄, we an show:Theorem 2.19.(1) If L(R)M is a Σn-w.. Solovay model , then in L(R)M every  posetis Γn-produtive-.(2) If L(R)M is a Σω-w.. Solovay model , then in L(R)M every  posetis Γω-produtive-.Proof. (1): Suppose L(R)M is a Σn-w.. Solovay model over V , and in

L(R)M , P is a  poset and Q is a poset in the lass Γn.It is known (see [7℄) that there is a  poset Q∗ in Γn suh that Qompletely embeds into Q∗, and if G is Q∗-generi over some modelM , then
M [G] is of the form M [g] for some real g.Let Q∗ be as above, and suppose τ is a Q∗-name for an unountableantihain of P, τ ∈ L(R)M . Let ϕP(x), ϕ≤P

(x, y) and ϕ⊥P
(x, y) be formu-las with only reals and ordinals as parameters that de�ne, respetively, P,
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≤P, and ⊥P in L(R)M , and let ϕQ∗(x), ϕ≤Q∗

(x, y), and ϕ⊥Q∗
(x, y) be Σ1

n+1formulas with real parameters that de�ne, respetively, Q∗, ≤Q∗ , and ⊥Q∗ .Thus, there is a formula ϕ(x, y) with only reals and ordinals as parameterssuh that the following holds in L(R)M :(i) For all p, a, if ϕ(p, a), then ϕQ∗(p) and ϕP(a).(ii) For all p, q, a, b, if ϕ(p, a), ϕ(q, b), and not ϕ⊥Q∗
(p, q), then ϕ⊥P

(a, b).(iii) For all p, a, ϕ(p, a) i� 〈p, ǎ〉 ∈ τ .Suppose G is Q∗-generi over L(R)M . So, G is also generi over M . Let
N be the L(R) of L(R)M [G]. Clearly, sine M [G] and L(R)M [G] have thesame reals, N = L(R)M [G]. Thus, by Lemma 1.3 and Theorem 2.17, (i) and(ii) above hold in N . Sine G is easily oded by a real, G ∈ N . In N , let
A = {a : ∃p ∈ G ϕ(p, a)}. Notie that, by (iii) above, τ [G] ⊆ A, and so A isan unountable set in N . Also, for every a ∈ A, N |= ϕP(a). Let PN and ≤N

Pbe the sets de�ned in N by the formulas ϕP(x) and ϕ≤P
(x, y), respetively.Then N |= “〈PN ,≤P

N 〉 is a  poset”. So, sine
N |= “A is an unountable subset of PN”,we have

N |= “∃p, q, a, b (ϕ(p, a) ∧ ϕ(q, b) ∧ ¬ϕ⊥Q∗
(p, q) ∧ ¬ϕ⊥P

(a, b))”.Therefore, by 1.3 and 2.17,
L(R)M |= “∃p, q, a, b (ϕ(p, a) ∧ ϕ(q, b) ∧ ¬ϕ⊥Q∗

(p, q) ∧ ¬ϕ⊥P
(a, b))”,whih ontradits (ii) above.Now suppose H is Q-generi over L(R)M . Let G be Q∗-generi over

L(R)M suh that
L(R)M [H] ⊆ L(R)M [G].Sine P is  in L(R)M [G], it is also  in L(R)M [H].Corollary 2.20. If L(R)M is a Σn-w.. Solovay model over V , then in

M there are no Σ
∼

1
n+1 Suslin trees. And if L(R)M is a Σω-w.. Solovay modelover V , then in M there are no projetive Suslin trees.Proof. If T is a Σ
∼

1
n+1 Suslin tree, then T × T with the produt orderingis a Σ

∼
1
n+1 poset whih is not  (see [6℄).3. The strength of generi absoluteness under projetive foring notions. In this setion we shall prove the following:Theorem 3.1. If Σ1

4-absoluteness holds for ∆1
3  foring notions , then

ω1 is a Σ1-w.. ardinal in L.Proof. Suppose towards a ontradition that ω1 is not Σ1-w.. in L. Weknow (see [2℄) that ω1 is inaessible in L and, in fat, ω1 is inaessible to
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1 is ountable for every real x. Hene, by Theorem 2.13, thereis, in L, an Aronszajn tree T = 〈T,≤T 〉 whose nodes are elements of 2<ω1and whih is a Σ1-tree over Lω1

.We need the following version of the Silver tree ST for T (See [5℄): Forevery set M and every X ⊆ M , let HM (X) denote the Skolem hull of Xin M . Then the Silver tree ST for T is de�ned as follows:(1) 〈α, β, a〉 ∈ ST i�(a) α < β < ω1,(b) a ∈ Lβ is a funtion with α ⊆ dom(a),() Lβ = HLβ (α ∪ {a}),(d) a↾α ∈ T .(2) 〈α, β, a〉 ≤ST
〈γ, δ, c〉 i�(a) α ≤ γ,(b) Lβ = µ”HLδ(α∪{c}), where µ is Mostowski's transitive ollapsefuntion, and µ(c) = a.Note that if 〈α, β, a〉 ∈ ST , then 〈α, β, a〉 is a node of height α.Lemma 3.2 (J. H. Silver, see [5℄). ST is an Aronszajn tree in L suh thatin any model of ZFC (extending L), if there is a branh of length ω1 through

ST , then cf(ω1) = ω.An important fat for our purposes is that the omplexity of ST is thesame as that of T . That is:Lemma 3.3. For all n ≥ 1, if T ⊆ 2<ω1 is a Σn-tree (resp. Πn-tree) over
Lω1

, then ST is also a Σn-tree (resp. Πn-tree) over Lω1
.Proof. Fix some reursive enumeration 〈ϕi : i ∈ ω〉 of all formulas ofthe language of set theory of the form ∃x ϕ(y, z, x), where y, z, x are �nitesequenes of variables and x is non-empty. We use the following notationalonventions: given a formula ϕi, we denote by ϕ′

i the formula resulting fromthe removal of the �rst blok of existential quanti�ers of ϕi. Also, ∃y ϕidenotes the formula resulting by adding the blok of existential quanti�ers
∃y to the formula ϕi. Note that the maps ϕi 7→ ϕ′

i and ϕi 7→ ∃y ϕi arereursive.If x is an ordered pair, then let (x)0 and (x)1 denote, respetively, the�rst and seond oordinates of x.For every set M ∈ L, we de�ne the funtion rM from ω × M<ω to
M<ω ×M<ω as follows: for all i ∈ ω and every b ∈M<ω,

rM (i, b) =





the <L -least a ∈M<ω ×M<ω suh that
M |= ϕ′

i((a)0, b, (a)1) if M |= ∃y ϕi(b),

〈∅, ∅〉 if M 2 ∃y ϕi(b).



Generi absoluteness under projetive foring 107Let SkM be the funtion from ω ×M<ω into M<ω de�ned by SkM (i, b) =
(rM (i, b))0 for every i ∈ ω and b ∈M<ω.Claim 3.4. (V = L) For every set M , the funtions rM and SkM are
∆1 with M as a parameter.Proof. We only need to show that rM is ∆1. Let Sat(x, y, z) denote thesatisfation relation for sets, i.e., Sat(x, y, z) i� the set x satis�es the formula
y with the sequene z of elements of x. Notie that this is a ∆1 relation.For every i ∈ ω, and every b ∈M<ω, rM (i, b) = a i�(1) a is an ordered pair, and (a)0, (a)1 ∈M<ω.(2) Either Sat(M, ∃y ϕi, b) and(a) Sat(M,ϕ′

i, (a)
⌢
0 b

⌢(a)1),(b) (∀c, d ∈M)(Sat(M,ϕ′
i, c

⌢b⌢d) → a <L 〈c, d〉),(3) or ¬Sat(M, ∃y ϕi, b) and (∀c, d ∈M)(a ≤L 〈c, d〉).Sine <L is a ∆1 relation, (1), (2), and (3) an be written as both Σnand Πn sentenes. Hene, rM is a ∆1 funtion.Therefore, the funtions M 7→ rM and M 7→ SkM are ∆1 de�nable in Lwithout parameters.Claim 3.5. (V = L) For every set M and every X ⊆ M , HM (X) is a
∆1 de�nable set with M and X as parameters.Proof. Given M and X ⊆ M , de�ne a sequene (HM (X,n))n<ω reur-sively by:

HM (X, 0) = SkM”(ω ×X<ω),

HM (X,n+ 1) = SkM”(ω ×HM (X,n)<ω).Sine SkM is ∆1 de�nable, with M as parameter, the map n 7→ HM (X,n)is also ∆1 de�nable with parameters M and X. Note that HM (X) =⋃
n∈ω H

M (X,n). Thus, for all a,
a ∈ HM (X) i� (∃n ∈ ω)(a ∈ HM (x, n)),and so HM (X) is ∆1-de�nable with M and X as parameters.We ontinue with the proof of Lemma 3.3. Reall that T is a tree whihis de�nable over Lω1

with Σn formulas ϕT (x) and ϕ≤T
(x, y), possibly withparameters. Then, for all α, β < ω1 and every b ∈ Lω1

, 〈α, β, b〉 ∈ ST i� Lω1satis�es:(1) α and β are ordinals and α < β.(2) b is a funtion suh that (∀γ ∈ α)(γ ∈ dom(b)) and b ∈ Lβ.(3) (∀x ∈ Lβ)(x ∈ HLβ (α ∪ {b})) and (∀x ∈ HLβ (α ∪ {b}))(x ∈ Lβ).(4) ϕT (b↾α).
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(1) is ∆0. Sine the maps β 7→ Lβ, and (X,M) 7→ HM (X) are ∆1, (2) and
(3) are ∆1. Finally, it is lear that (4) is Σn.Note that µ, the Mostowski ollapsing map, is ∆1. So, for all α, β, γ, δ
< ω1 and every b, d ∈ Lω1

, 〈α, β, b〉 ≤ST
〈γ, δ, d〉 i� Lω1

satis�es:(1) 〈α, β, b〉, 〈γ, δ, d〉 ∈ ST .(2) α ≤ γ.(3) (∀x ∈ Lβ)(x ∈ µ(HLδ(α∪{d}))) and (∀x ∈ µ(HLδ(α∪{d}))(x ∈ Lβ).(4) µ(d) = b.
(1) is Σn in Lω1

, (2) is ∆0, and (3) and (4) are ∆1 in Lω1
.Therefore 〈ST ,≤ST

〉 is a tree whih is Σn-de�nable over Lω1
.It only remains to show that the relation t ∈ (ST )α is Σn over Lω1

. Butthis is lear, sine t ∈ (ST )α i� t ∈ ST and t0 = α. This �nishes the proof ofLemma 3.3.Remark 3.6. Notie that the arguments above show that in L, if (T,≤T )is a tree where both T and ≤T are Σn-de�nable over Lκ and, possibly, thelevels of T are not Σn-de�nable over Lκ, where κ is an unountable ardinal,then ST is a Σn-tree over Lκ. Thus, if V = L, then the onlusion of Lemma2.7 an be strengthened to: every κ-tree that is Σn-de�nable over Lκ has ao�nal branh. Hene, in Theorem 2.13 we an add the following as a furtherequivalene: κ is inaessible and every κ-tree that is Σn-de�nable over Vκhas a o�nal branh.Continuing now with the proof of Theorem 3.1, reall that WO is the
Π1

1 set of elements of the Baire spae ωω that ode well-orderings of ω.If a ∈ WO, let ‖a‖ be the order-type of the well-ordering oded by a (see [6℄).For x ⊆ ω, let x be the element of ωω oded by x, via some reursive bijetionbetween P(ω) and ωω.Lemma 3.7. If C is a Collω1
-generi �lter over V , then there is a funtion

π ∈ V [C] from WO into WO suh that :(1) For every x ∈ WO, π(x) is a ode for the ordinal ‖x‖.(2) For every x, y ∈ WO, if ‖x‖ = ‖y‖, then π(x) = π(y).(3) π has a Collω1
-name that an be oded by a ∆1

3 subset of ωω.Proof. Let ẆO be the set of all simple Collω1
-names σ for a subset of ωsuh that Collω1

“σ ∈ ẆO”.Note that, sine Collω1
∈ L, every Collω1

-generi �lter over V is alsogeneri over L. So, for every γ < ω1 let τγ be the <L-least simple Collω1
-namefor a subset of ω suh that Collω1

“‖τγ‖ = γ̆”. Let Bω1
= {τγ : γ < ω1} andlet Ḃ = Collω1

×Bω1
.De�ne the funtion πω1

from ẆO into Bω1
as follows: for every σ ∈ ẆO,

πω1
(σ) = τ i�
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,(2) Collω1
“‖σ‖ = ‖τ‖.Let π̇ = Collω1
× πω1

.We an now easily hek that if C is Collω1
-generi over V , then in V [C],

π := π̇[C] is a funtion satisfying: if π(a) = b, then ‖a‖ = ‖b‖ and b is theunique ode in Ḃ[C] oding the ordinal ‖a‖. Thus π satis�es (1) and (2) ofthe lemma, modulo a reursive oding of elements of the Baire spae ωω bysubsets of ω.To prove (3) we need to ompute the omplexity of the sets and namesinvolved in the de�nition of π.First observe that Collω1
is a ∆1

2 poset (see [2℄).Let WO∗ be the set of odes of elements of ẆO. Then WO∗ is a ∆1
2 setof reals (f. [1℄).Claim 3.8. Let B∗ be the set of all odes of elements of Bω1

. Then B∗is a ∆1
3 set of reals.Proof. Let <∗

L be the following relation: for every x, y ∈ ωω, x <∗
L y i�

x, y ode simple Collω1
-names in L for subsets of ω and the name odedby x is <L-less than the name oded by y. Sine every simple Collω1

-namefor a subset of ω is hereditarily ountable, the prediate “x odes a simple
Collω1

-name in L for a subset of ω” is Σ1 in H(ω1). Hene, as <L is also Σ1over H(ω1), <∗
L is a Σ1

2 relation.Reall that Bω1
is the range of a funtion that assigns to eah γ < ω1the <L-least Collω1
-name for a subset of ω that is fored by Collω1

to be aode for γ. Thus, x ∈ B∗ i�(1) x odes a simple Collω1
-name in L for a subset of ω and Collω1

“x ∈

ẆO”,(2) for every w, if w odes a simple Collω1
-name for a subset of ω, and

w <∗
L x, then 1Collω1

“‖w‖ = ‖x‖”.Sine (1) is a Σ1
2 sentene and (2) is Π1

2, B∗ is a ∆1
3 set.Let π∗ be the relation given by: π∗(x, y) i� x and y ode simple Collω1

-names σ and τ , respetively, for subsets of ω, and πω1
(σ) = τ .We will �nish the proof of (3) of Lemma 3.7 by showing that π∗ is a ∆1

3relation.Let S(v, x, y) i� v odes a ondition p ∈ Collω1
, x and y ode simple

Collω1
-names σ and τ , respetively, for subsets of ω, and p Collω1

“‖σ‖ =

‖τ‖”. Sine the relation ‖σ‖ = ‖τ‖ is Σ1
1, and Collω1

is a ∆1
2  poset, S isa ∆1

2 relation.So, for every x, y ∈ ωω, π∗(x, y) i�(1) x ∈ WO∗,



110 J. Bagaria and R. Bosh(2) y ∈ B∗,(3) ∀v S(v, x, y).Sine (1) is ∆1
2, (2) is ∆1

3 and (3) is Π1
2, we see that π∗ is ∆1

3. This onludesthe proof of Lemma 3.7.Reall that WF denotes the Π1
1 set of all reals that ode a well-foundedrelation on ω (see [6℄). Every set in H(ω1) an be oded by some x ∈ WFas follows: x ∈ ωω odes a ∈ H(ω1) i� 〈ω,Ex〉 ∼= 〈TC(a),∈〉, where for

n,m ∈ ω, nExm i� x(J(n,m)) = 0, where J is some reursive one-to-onepairing funtion from ω×ω onto ω. Moreover, every x ∈ WF odes one andonly one set in H(ω1). So, given x ∈ WF, denote by [x] the set oded by x.Note that the map x 7→ [x] is ∆1 over H(ω1). Let [x] ∼ [y] i� x /∈ WF or
y /∈ WF or 〈ω,Ex〉 ∼= 〈ω,Ey〉. Thus, [x] ∼ [y] is a Σ1

1 relation on the reals.Hene, we may ode every funtion f ∈ H(ω1) by a real so that the set Fof all suh odes is a ∆1
2 set of reals: for every x ∈ ωω, x ∈ F i�(1) x odes 〈xn : n ∈ ω〉,(2) ∀n (xn odes 〈x0
n, x

1
n〉 ∧ x

0
n, x

1
n ∈ WF),(3) ∀n,m ([x0

n] ∼ [x0
m] → [x1

n] ∼ [x1
m]).Bak to the proof of Theorem 3.1, reall that we have a tree T whosenodes are funtions in 2<ω1 and whih is Σ1-de�nable in Lω1

. By Lemma 3.3,
ST is also Σ1-de�nable in Lω1

. And by Lemma 3.2, ST is still an Aronszajntree in V , and in any generi extension of V that preserves ω1. Fore with
Collω1

over V . In the generi extension V [C], and using the funtion π fromLemma 3.7, we may ode the nodes of ST by reals to obtain an isomorphitree S∗
T on the reals. Namely: for all x, y, z ∈ ωω, 〈x, y, z〉 ∈ S∗

T i�(1) x, y ∈ WO,(2) π(x) = x ∧ π(y) = y,(3) ∃f (〈‖x‖, ‖y‖, f〉 ∈ ST ∧ z odes the <L-least Collω1
-name σ for areal suh that σ[C] odes f).Thus, S∗

T is Σ1-de�nable in H(ω1) with π and C as additional prediates.We will now de�ne a version of the speializing foring of Harrington�Shelah ([5℄) whih will ode, using S∗
T , any given ω1-sequene of reals into asingle real. So, let X be a �xed sequene of reals of length ω1, and let Xαdenote the αth element of X.Let the foring notion P(S∗

T , X) be de�ned as follows:
• q ∈ P(S∗

T , X) i� q is a �nite funtion from S∗
T into Q suh that(1) (∀s, t ∈ dom(q))(s <S∗

T
t→ q(s) < q(t)),(2) (∀s = 〈x, y, z〉 ∈ dom(q))((z odes σ ∧ σ[C] odes f ∧

dom(f) = ω · α ∧ q(s) ∈ ω) → q(s) ∈ Xα).
• q ≤ q′ i� q′ ⊆ q.
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T , X) is Σ1-de�nable in H(ω1) with π, C, and X asadditional prediates. And as in [5℄ one an show that P(S∗

T , X) has theproperty K, i.e., every unountable subset ontains an unountable subsetof pairwise ompatible onditions. Hene it is . Foring with P(S∗
T , X)adds an order-preserving and ontinuous funtion FX : S∗

T → Q, with theproperty that for every n ∈ ω, n ∈ Xα i� F (t) = n for some t ∈ S∗
T ofheight ω ·α. Moreover, FX speializes S∗

T , i.e., for every a ∈ Q, F−1
X (a) is anantihain of S∗

T .Now let X0 = range(π) = {x ∈ ωω : ∃y (y ∈ WO ∧ π(y) = x)}, orderedby x ≤X0 x′ i� x, x′ ∈ X0∧‖x‖ ≤ ‖x′‖. Clearly, (X0,≤X0) is a well-orderingof reals of order-type ω1. By using some �xed reursive oding of elementsof ωω by subsets of ω, we may assume that X0
α ∈ P(ω) for all α < ω1.We next desribe a �nite-support iteration of length ω, ∆2-de�nable over

H(ω1), with π, C, and X0 as additional prediates. Let P0 = P(S∗
T , X

0).Given Pn, whih is ∆2-de�nable over H(ω1), with π, C, and X0 as additionalprediates, we de�ne Pn+1:For β < ω1, let (S∗
T )<β denote the set of nodes of S∗

T of height < β.Notie that the prediate x ∈ (S∗
T )<β is Σ1 in the parameter β over H(ω1).Let ḞXn be the Pn-name for the generi speializing funtion FXn . Thus,

ḞXn↾(S∗
T )<ω·(α+1) = {〈p, 〈t, r〉〉 : p ∈ Pn, 〈t, r〉 ∈ p, t ∈ (S∗

T )<ω·(α+1)}.Sine Pn is ∆2-de�nable over H(ω1), with π, C, and X0 as additional pred-iates, so is the set displayed above, with α as a parameter. Let Ẋn+1 be a
Pn-name for a ode for ḞXn . i.e., Ẋn+1 = 〈Ẋn+1

α : α < ω1〉, where for every
α < ω1,

Pn
“Ẋn+1

α ⊆ ω odes ḞXn↾(S∗
T )<ω·(α+1)”.So, Pn fores that Ẋn+1

α odes 〈x, ẏ〉, where x = 〈xk : k ∈ ω〉 odes
(S∗

T )<ω·(α+1), ẏ = 〈ẏk : k ∈ ω〉, and ẏk = {〈p, r〉 : 〈xk, r〉 ∈ p}. Notiethat the sentene �x odes (S∗
T )<ω·(α+1)� is ∆2.Now let 〈p, q̇〉 ∈ Pn+1 i� p ∈ Pn and p Pn

“q̇ ∈ P(S∗
T , Ẋ

n+1)”. Let ushek that Pn+1 is ∆2-de�nable over H(ω1), with π, C, and X0 as additionalprediates.First notie that the prediate �N(q̇) i� q̇ is a Pn-name for a �nite funtionfrom S∗
T into Q� is ∆2. Indeed, N(q̇) i� q̇ is a �nite set of triples 〈q, s, r〉,where q ∈ Pn, s ∈ S∗

T , and r ∈ Q, and for every 〈q0, s0, r0〉, 〈q1, s1, r1〉 ∈ q̇, if
s0 = s1 and r0 6= r1, then q0 ⊥ q1.Thus, we have: p Pn

“q̇ ∈ P(S∗
T , Ẋ

n+1)” i� p ∈ Pn, N(q̇), and(1) ∀〈q0, s0, r0〉, 〈q1, s1, r1〉 ∈ q̇(s0 <S∗

T
s1 ∧ r1 ≥ r0 → q0 ⊥ q1),(2) ∀〈q0, s0, r0〉 ∈ q̇ (s0 = 〈x, y, z〉 ∧ z odes σ ∧ σ[C] odes f ∧

dom(f) = ω · α ∧ p ≤ q0 ∧ r0 ∈ ω → q0 Pn
“r0 ∈ Ẋn+1

α ”).
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“r0 ∈ Ẋn+1

α ” i� r0 = 〈k, r〉 and there exists q1 ≤ q0 suh that
〈xk, r〉 ∈ q1, where x = 〈xk : k ∈ ω〉 is the ode for (S∗

T )<ω·(α+1).This shows that Pn+1 is also ∆2 over H(ω1), with π, C, and X0 asadditional prediates.Let P be the diret limit of the iteration 〈Pn : n < ω〉. Sine the supportof the iteration is �nite, it is easily seen that P is ∆2-de�nable over H(ω1)with π, C, andX0 as additional prediates (see Lemma 4.1 below). Moreover,every P-generi �lter G over V [C] adds a real c suh that X0 ∈ L[c] (see [5℄),and so V [C][G] � “∃x (L[x] has unountably many reals)�.It is interesting to observe that P (and, in fat, P(S∗
T , X)) is not projetivein V [C], as there are no unountable projetive sequenes of reals in V [C].However, we laim that the two-step iteration Collω1
∗ P is ∆1

3.It will be enough to show that the relation R(x, y) given by:�x ∈ Collω1
, y is a Collω1

-name for a real, and x Collω1
y ∈ Ṗ �is ∆2 in H(ω1), without parameters.But sine Collω1

is a ∆1
2 foring notion, it will be enough to see that theformula �x Collω1

y ∈ Ṗ � is equivalent both to a Σ2 and a Π2 formula in
H(ω1). For this, it is su�ient to show that the formula y ∈ Ṗ is equivalentboth to a Σ2 and a Π2 formula inH(ω1). This is learly so in the Collω1

-namefor π as a parameter. But sine by Lemma 3.7, π has a Collω1
-name that is

∆2-de�nable in H(ω1) without parameters, we are done.Sine “∃x (L[x] has unountably many reals)� is a Σ1
4 sentene, andit holds in a Collω1

∗ P-generi extension of V , by Σ1
4-absoluteness for ∆1

3 posets, it holds in V . Therefore, there exists a real x ∈ V suh that
ω

L[x]
1 = ω1, ontraditing the fat that ω1 is inaessible to reals. This �nishesthe proof of 3.1.Theorem 3.1 an be easily generalized:Corollary 3.9. Let n ≥ 2. If Σ

∼
1
4 absoluteness holds for Σ

∼
1
n+1  for-ing notions , then ω1 is a Σn-w.. ardinal in L.Proof. As in Theorem 3.1, if ω1 is not a Σn-w.. ardinal in L, thenthere exists an Aronszajn tree T on 2<ω1 whih is a Σn-tree over Lω1

. As inLemmas 3.2 and 3.3, we an �nd ST , a version of the Silver tree for T , whihis an Aronszajn tree de�nable over Lω1
and has the same omplexity as T .Using ST , we may de�ne the poset P as in Theorem 3.1 in suh a way that

Collω1
∗ P is a Σ

∼
1
n+1 and  poset that adds a real x suh that ω1 = ω

L[x]
1 ,yielding a ontradition.We �nish with two orollaries that summarize our results:



Generi absoluteness under projetive foring 113Corollary 3.10. For every n ≥ 2, the following are equionsistent :(1) L(R)-absoluteness under Σ
∼

1
n+1  posets.(2) There exists a Σn-w.. ardinal.Corollary 3.11. The following are equionsistent :(1) L(R)-absoluteness under projetive  posets.(2) There exists a Σω-w.. ardinal.4. On iterations of projetive  posets. We will show that afterthe Levy ollapse of a Σn-w.. ardinal, the property of L(R) being a Σn-w..Solovay model is preserved under �nite-support iterations of Σ

∼
1
n+1  foringnotions.Reall that if P is a foring notion, a simple P-name for a real, i.e., for afuntion from ω to ω, is a set τ of triples 〈p,m, n〉 suh that p ∈ P, n,m ∈ ω,and for every m, the set of all p suh that 〈p,m, n〉 ∈ τ for some n ∈ ω, is amaximal antihain of P.Observe that if P is  and its onditions are real numbers, then forevery simple P-name τ for a real, |TC(τ)| is ountable. Further, if P is a�nite-support iteration of  foring notions whose onditions are reals,then it an be easily shown, by indution on the length of the iteration, thatevery simple P-name for a real has ountable transitive losure.Lemma 4.1. Let n ≥ 1. Suppose L(R)M is a Σn-w.. Solovay model over

V and P ∈M is the diret limit of an iteration 〈Pα, Q̇α : α < λ〉 of ountablelength and with �nite support suh that for every α < λ,
Pα

� Q̇α is a Σ
∼

1
n+1  poset�.Then the L(R) of any P-extension of M is also a Σn-w.. Solovay modelover V .Proof. Let κ = ωM

1 . Fore over M to obtain a Collκ-generi C over Vwith RM = RV [C] (see Lemma 1.1).In M , for eah α < λ, �x a simple Pα-name τα for a real that odes theparameters in some �xed Σ1
n+1 de�nition of Q̇α.Sine the iteration is of ountable length and , all the τα, α < λ,belong to V [C] and P = PV [C], where PV [C] is the iteration in V [C] de�nedin the same way as P is de�ned in M . Moreover, a �lter G ⊆ P is P-generioverM i� it is P-generi over V [C], and RM [G] = RV [C][G]. Thus, it is enoughto show that for every real x in V [C][G] and every X ⊆ Collκ ∗P of size lessthan κ there is a omplete subposet Q of Collκ ∗ Ṗ suh that Q is ountablein V [C][G], X ⊆ Q and x is Q-generi over V .We proeed by indution on λ. So we assume that for every α < λ andevery X ⊆ Collκ ∗ Pα of size less than κ, there is a omplete subposet Q of

Collκ ∗ Pα, also of size less than κ, suh that X ⊆ Q.



114 J. Bagaria and R. BoshWe may assume that λ is a limit ordinal, sine the suessor ase followsdiretly from the proof of Theorem 2.17.Now �x a subset X of Collκ ∗ P of size less than κ, and �x a real xin V [C][G]. Let ẋ ∈ V be a simple Collκ ∗ Ṗ-name for x, and let Y =
Collκ ∗ Ṗ∩TC(ẋ). Sine Collκ ∗ Ṗ is κ-, Y has ardinality less than κ. Let
Z = X ∪ Y .For every α < λ, let Zα = Z∩Collκ∗Pα. By indutive hypothesis, we an�nd a ⊆-inreasing hain 〈Qα : α < λ〉 suh that Qα is a omplete subposetof Collκ ∗Pα, hene also a omplete subposet of Collκ ∗P, suh that Zα ⊆ Qαfor all α < λ. Let Q =

⋃
α<λ Qα. Sine the iteration has �nite support, Qis a omplete subposet of Collκ ∗ P. Moreover, Q has size less than κ and

Z ⊆ Q. Furthermore, letting H = C ∗G ∩ Q, we have ẋ[H] = ẋ[C ∗G] = x,and so x is Q-generi over V .For oniseness, in what follows we will use the notation P <◦ Q to expressthat P is a omplete subposet of Q.Theorem 4.2. Let κ be a Σn-w.. ardinal , n ≥ 1, and let λ > 0.Suppose that P = Pλ ∈ V is the diret limit of an iteration 〈Pα, Q̇α : α < λ〉with �nite support suh that P0 = Collκ and for every α < λ,
Pα

� Q̇α is a Σ
∼

1
n+1  poset�.Then the L(R) of any P-generi extension of V is a Σn-w.. Solovay modelover V .Proof. Suppose G is a P-generi �lter over V . Notie that ωV [G]

1 = κ, andso ωV [G]
1 is a Σn-w.. ardinal in V . We only need to prove that every realin V [G] is small-generi over V , for then it will learly follow that for everyreal x in V [G], ωV [G]

1 is a Σn-w.. ardinal in V [x].The proof is by indution on λ. So, suppose that for every β < λ, writing
Pβ for the iteration up to β and letting Gβ = G∩Pβ , we �nd that L(R)V [Gβ ]is a Σn-w.. Solovay model over V .Let P1 = 〈P1

α, Q̇
1
α : α < λ〉 ∈ V [G0] be the remaining part of the iteration

〈Pα, Q̇α : α < λ〉, i.e., P1
0 = Q̇0[G0], P1

n+1 = P1
n ∗ Q̇n+1 for n < ω, and

P1
α+1 = P1

α ∗ Q̇α for α ≥ ω. We may assume that for every α,
P1

α
“Q̇1

α has a largest element 1�,and 1 is some �xed real that does not depend on α. Moreover, we mayassume that for every p ∈ P1 and every α < λ, p(α) is a simple P1
α-name fora real.In V [G0], for eah α < λ, α > 0, �x a simple P1

α-name τα for a real thatodes the parameters in a �xed Σ1
n+1 de�nition of Q̇1

α, so that for some Σ1
n+1



Generi absoluteness under projetive foring 115formulas ϕα(x, y), ψα(x, y, z), and θα(x, y, z),
Pα

“Q̇α = {x : ϕα(x, τα)}′′,

Pα
“≤

Q̇1
α

= {〈x, y〉 : ψα(x, y, τα)}”,

Pα
“⊥

Q̇1
α

= {〈x, y〉 : θα(x, y, τα)}”.Let x be a real in V [G] and let ẋ ∈ V [G0] be a simple P1-name for x.Work in V [G0]. Sine P1 is , |TC(ẋ)| is ountable. Let µ be a largeenough regular ardinal, and let N 4 H(µ) be suh that:(1) P1, 〈τα : α < λ〉, ẋ ∈ N ,(2) TC(ẋ) ⊆ N ,(3) |N | = ℵ0.Notie that if α ∈ OR∩N , then τα ∈ N , and sine |TC(τα)| is ountable,
TC(τα) ⊆ N .Now let P∗ be the diret limit of the �nite-support iteration 〈P∗

α, Q̇
∗
α :

α < λ〉 de�ned as follows: P∗
0 = P1

0, and P∗

α
“Q̇∗

α = {x : ϕα(x, τα)}” if
α ∈ OR ∩N , and P∗

α
“Q̇∗

α = {1}” otherwise, i.e., Q̇∗
α is the trivial poset.We need to hek that the iteration is well-de�ned, i.e., if P∗

α
“Q̇∗

α =
{x : ϕα(x, τα)}”, then τα is a P∗

α-name. We will show muh more:Claim 4.3.(1) If p ∈ P∗
α, then p ∈ P1

α. And if p ∈ N , then the onverse also holds.(2) If σ is a simple P∗
α-name for a real , then it is also a simple P1

α-namefor a real. And if σ ∈ N , then the onverse also holds.(3) If p ∈ P∗
α and σ, σ′, τα are simple P∗

α-names for reals, then:(a) If p P∗

α
ϕα(σ, τα), then p P1

α
ϕα(σ, τα).(b) If p P∗

α
ψα(σ, σ′, τα), then p P1

α
ψα(σ, σ′, τα).() If p P∗

α
θα(σ, σ′, τα), then p P1

α
θα(σ, σ′, τα).And if α, p, σ, σ′ ∈ N , then the onverses of (a), (b), and () alsohold.(4) P∗

α <◦ P1
α.Proof. By indution on α. For α = 0 it is lear. So, let α = β + 1.(1) Fix p ∈ P∗

α. Then p = 〈p↾β, σ′〉, where p↾β ∈ P∗
β, σ′ is a simple P∗

β-name, and either p↾β P∗

β
“σ′ = 1”, or p↾β P∗

β
ϕβ(σ′, τβ). So, by indutionhypothesis on (1), (2), and (3)(a), we dedue that p↾β ∈ P1

β, σ′ is a simple
P1

β-name, and either p↾β P1
β

“σ′ = 1”, or p↾β P1
β
ϕβ(σ′, τβ). This showsthat p ∈ P1

α.Fix now p = 〈p↾β, σ′〉 ∈ P1
α ∩N . Thus, p↾β ∈ P1

β, σ′ is a simple P1
β-name,and p↾β P1

β
ϕβ(σ′, τβ). Sine p ∈ N , we also know that p↾β, σ′ ∈ N . So,



116 J. Bagaria and R. Boshagain by indution hypothesis on (1), (2), and (3)(a), we infer that p↾β ∈ P∗
β,

σ′ is a simple P∗
β-name, and p↾β P∗

β
ϕβ(σ′, τβ), whih shows that p ∈ P∗

α.(2) Now suppose that σ is a simple P∗
α-name for a real. If q ∈ P∗

α∩TC(σ),we an onlude as before in the ase of p that q ∈ P1
α. This implies that σis a simple P1

α-name.If σ is a simple P1
α-name for a real and σ ∈ N , then TC(σ) ⊆ N . So,if q ∈ P1

α ∩ TC(σ), we an onlude as before in the ase of p that q ∈ P∗
α.This implies that σ is a simple P∗

α-name. In partiular, if α ∈ N , then τα isa P∗
α-name.(3) Suppose now that p ∈ P∗

α, σ, τα are simple P∗
α-names for reals, and

p P∗

α
ϕα(σ, τα). We have already shown that p ∈ P1

α and σ is a simple
P1

α-name. Sine by the indution hypothesis of the theorem, L(R)V [G0]
P∗
βand L(R)V [G0]

P1
β are both Σn-w.. Solovay models over V , with the same

ω1, and sine, by indution hypothesis on (4), P∗
β <◦ P1

β, we also have
RV [G0]

P∗
β
⊆ RV [G0]

P1
β . So, by Lemma 1.3, there exists a anonial embeddingfrom L(R)V [G0]

P∗
β into L(R)V [G0]

P1
β . We laim that p P1

α
ϕα(σ, τα). Indeed,suppose G1

α = G1
β ∗ Ḣ is P1

α-generi over V [G0], with p = p↾β ∗ q̇ ∈ G1
α. Sine

p P∗

α
ϕα(σ, τα), and P∗

β <◦ P1
β , we dedue that G∗

β := G1
β ∩ P∗

β is P∗
β-generiover V [G0] with p↾β ∈ G∗

β. Hene,
V [G0][G

∗
β] |= “iG∗

β
(q̇) Q∗

β
ϕα(σ, τα)”.Sine we have iG1

β
(q̇) = iG∗

β
(q̇), by the anonial elementary embedding of

L(R)V [G0][G∗

β
] into L(R)V [G0][G1

β
], we obtain

V [G0][G
1
β] |= “iG1

β
(q̇) Q1

β
ϕα(σ, τα)”.Hene, V [G0][G

1
α] |= ϕα(σ, τα). This proves (a), and similar arguments prove(b) and ().Suppose now that α, p, σ ∈ N , and p P1

α
ϕα(σ, τα). We have alreadyshown that p ∈ P∗

α and σ, τα are P∗
α-names. To see that p P∗

α
ϕα(σ, τα),suppose G∗

α = G∗
β ∗ Ḣ is P∗

α-generi over V [G0] with p = p↾β ∗ q̇ ∈ G∗
α. Sine

P∗
β <◦ P1

β, we an extend G∗
β to a P1

β-generi �lter G1
β over V [G0] suh that

V [G0][G
1
β] |= “iG1

β
(q̇) Q1

β
ϕα(σ, τα)”.Sine iG1

β
(q̇) = iG∗

β
(q̇) and sine β ∈ N , by the anonial elementary embed-ding we have
V [G0][G

∗
β] |= “iG∗

β
(q̇) Q∗

β
ϕα(σ, τα)”.Hene, V [G0][G

∗
α] |= ϕα(σ, τα). This proves the onverse of (a), and similararguments prove the onverses of (b) and ().



Generi absoluteness under projetive foring 117(4) Finally, suppose P∗
β <◦ P1

β. By (3), P∗
α is a subposet of P1

α and theinompatibility relation is preserved. Now suppose A ∈ V [G0] is a maximalantihain of P∗
α. Then A↾β := {p↾β : p ∈ A} is a maximal antihain of P∗

βand, by indution hypothesis, it is also a maximal antihain of P1
β . If β 6∈ N ,then learly A is maximal in P1

α. So, suppose β ∈ N . Then every p ∈ A isof the form 〈p↾β, σ〉, where p↾β Q∗

β
ϕβ(σ, τβ). Let A(β) := {p(β) : p ∈ A}.Then P∗

β
“A(β) is a maximal antihain of Q̇∗

β”. Notie that, sine P∗

β
“A(β)is ountable�, A(β) ∈ L(R)V [G0]

P∗
β . Thus, by the anonial embedding from

L(R)V [G0]
P∗
β into L(R)V [G0]

P1
β , we onlude that P1

β
“A(β) is a maximalantihain of Q̇1

β”.If α is a limit ordinal, then the laim follows by indution, using the fatthat the iterations have �nite support. This �nishes the proof of the laim.Sine the iterations have �nite support, it follows from the laim abovethat P∗ <◦ P. Moreover, sine ẋ ∈ N , ẋ is a P∗-name. Notie that P∗ is a iteration.Let P = 〈Pβ, Q̇β : β < ot(On ∩ N)〉 be the iteration onsisting of allnon-trivial iterands of P∗, i.e., P0 = P∗
0 and for every β < ot(On ∩ N),

Pβ
“Q̇β = {x : ϕα(x, τα)}”, where α ∈ N and β = ot(α ∩ N). For eah

p ∈ P∗, let p ∈ P be the result of deleting the oordinates of p that orrespondto the trivial iterands of P∗. Clearly, the map e : p 7→ p is a dense ompleteembedding of P into P∗. Notie that ẋ is a P-name.Reall that G is P-generi over V , and x is a real in V [G]. Let us write Gas G0 ∗G
1, where G0 is P0-generi over V and G1 is P1-generi over V [G0].Then ẋ is a P1-name in V [G0] and iG1(ẋ) = x. Let g = e−1[G1 ∩ P∗]. Then

g is P-generi over V [G0] and ig(ẋ) = x. This shows that x belongs to aountable �nite-support iteration over V [G0] of Σ
∼

1
n+1  foring notions.So, by Lemma 4.1, x is small-generi over V . This proves the theorem.Corollary 4.4. Suppose that L(R)M is a Σω-w.. Solovay model over

V and P ∈ M is the diret limit of an iteration 〈Pα, Q̇α : α < λ〉 with �nitesupport suh that for every α < λ,
α � Q̇α is a projetive  poset�.Then the L(R) of any P-generi extension of M is also a Σω-w.. Solovaymodel over V .4.1. Two appliations to Martin's Axiom for projetive posets. The �rstappliation will show, modulo the onsisteny of de�nable weakly ompatardinals, that Martin's Axiom restrited to posets in a given projetivepoint-lass does not imply Martin's Axiom for posets in higher point-lasses.



118 J. Bagaria and R. BoshDefinition 4.5. Let Γ be a lass of posets.Martin's Axiom for Γ , hene-forth denoted by MA(Γ ), is the following statement:For every  poset P ∈ Γ and for every family 〈Ai : i < κ〉, κ < 2ℵ0 ,of maximal antihains of P, there exists G ⊆ P direted suh that for every
i < κ, G ∩Ai 6= ∅.For every n ≥ 1, MA(Σ

∼
1
n) is Martin's Axiom for Σ

∼
1
n posets. MA(Proj) isMartin's Axiom for projetive posets.Theorem 4.6. Let n ≥ 1, and suppose that there exists a Σn-w.. ardi-nal in L. Then there exists a poset P suh that for every P-generi �lter Gover L,

L[G] |= MA(Σ
∼

1
n+1) ∧ ¬MA(Σ1

n+2).Proof. Let κ be the least Σn-w.. ardinal in L. Let P be the diret limitof an iteration 〈Pα, Q̇α : α < κ+〉, with �nite support, where P0 = Collκ andfor every α < κ+,
α “Q̇α is a Σ

∼
1
n+1  foring notion� ,so that for every P-generi �lter G over L,

L[G] |= MA(Σ
∼

1
n+1) ∧ 2ℵ0 = ℵ2(see [1, Theorem 3.10℄).Now assume, towards a ontradition, that

L[G] |= MA(Σ1
n+2).Then, sine ωL[G]

1 = κ is not a Σn+1-w.. ardinal in L, there is, in L, a
κ-Aronszajn tree T whih is Σn+1-de�nable over Lκ. As in the proof ofTheorem 3.1 we may de�ne a Σ1

n+2  poset of the form Collω1
∗P suh that

MA(Collω1
∗ P) implies that there exists a real x suh that ωL[G]

1 = ω
L[x]
1 .But then L(R)L[G] is not a Σn-w.. Solovay model over V , in ontraditionwith Theorem 4.2.Corollary 4.7. Let n ≥ 1 and suppose that the existene of a Σn-w..ardinal is onsistent with ZFC. Then ZFC + MA(Σ

∼
1
n+1) does not imply

MA(Σ1
n+2).It is known that if ZFC is onsistent, then ZFC+MA(Σ

∼
1
1) does not imply

MA(Σ1
2) (see [1, Setion 5℄).For the seond appliation, let ϕ be the statement �Every set of reals in

L(R) is Lebesgue measurable, has the property of Baire, is Ramsey, and hasthe perfet set property�.



Generi absoluteness under projetive foring 119Theorem 4.8. Let n ≥ 1, and suppose that there exists a Σn-w.. ardi-nal. Then there exists a poset P suh that for every P-generi �lter G over V ,
V [G] |= MA(Σ

∼
1
n+1) ∧ ¬CH + ϕ.Proof. Let κ be a Σn-w.. ardinal, and let P be the diret limit of a�nite-support iteration 〈Pα, Q̇α : α < κ+〉, where P0 = Collκ and for every

α < κ+,
α “Q̇α is a Σ

∼
1
n+1  foring notion� ,so that for every P-generi �lter G over V ,

V [G] |= MA(Σ
∼

1
n+1) ∧ 2ℵ0 = ℵ2(see [1, Theorem 3.10℄). By Theorem 4.2, L(R)V [G] is a Σn-w.. Solovaymodel over V . Thus,

V [G] |= ϕ.Corollary 4.9.(1) For every n ≥ 1, Con(ZFC+ there exists a Σn-w.. ardinal) implies
Con(ZFC + MA(Σ

∼
1
n+1) + ¬CH + ϕ).(2) Con(ZFC + there exists a Σω-w.. ardinal) implies Con(ZFC +

MA(Proj) + ¬CH + ϕ).
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