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Abstract. A substitution ϕ is strong Pisot if its abelianization matrix is nonsingular
and all eigenvalues except the Perron–Frobenius eigenvalue have modulus less than one.
For strong Pisot ϕ that satisfies a no cycle condition and for which the translation flow
on the tiling space Tϕ has pure discrete spectrum, we describe the collection T

P
ϕ of pairs

of proximal tilings in Tϕ in a natural way as a substitution tiling space. We show that
if ψ is another such substitution, then Tϕ and Tψ are homeomorphic if and only if T P

ϕ

and T
P
ψ are homeomorphic. We make use of this invariant to distinguish tiling spaces

for which other known invariants are ineffective. In addition, we show that for strong
Pisot substitutions, pure discrete spectrum of the flow on the associated tiling space is
equivalent to proximality being a closed relation on the tiling space.

1. Introduction. Substitutions, and the tiling spaces associated with
them, are of fundamental interest in recent investigations in number theory
(numeration systems in various bases, diophantine approximation), physics
(modeling quasicrystals), and dynamical systems (coding hyperbolic attrac-
tors, generating Markov partitions) (see [BFMS] for an excellent introduc-
tion to these topics).

The subtle recurrence properties of words generated by a substitution
are expressed in the intricate details of the topology of the associated tiling
space. Of particular interest are those substitutions whose abelianizations
have a dominant eigenvalue that is a Pisot number, largely because of the
connection with pure discrete spectrum of the tiling flow and its conse-
quences. There are several algorithms that verify pure discrete spectrum,
some of which apply generally ([Sie], [BK], [SS]), and others in special cases
([HS], [ARS], [Sid], [BD2]). For strong Pisot substitutions (see §2), in all
known examples, the translation flow on the associated tiling space has
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pure discrete spectrum. The conjecture that strong Pisot substitutions al-
ways produce tiling flows with pure discrete spectrum is variously known as:
the Pure Discrete Spectrum Conjecture, the Geometric Coincidence Conjec-
ture, the Super Coincidence Conjecture, and, simply, the Pisot Conjecture.
(See [BeS] for a survey of the progress on this conjecture, and §4 for a
statement of the Geometric Coincidence Condition.)

Given a strong Pisot substitution ϕ whose tiling flow has pure discrete
spectrum, the tiling dynamics on Tϕ is measure theoretically and almost
topologically conjugate with Anosov dynamics on a torus or solenoid of
the appropriate dimension. This almost conjugacy is simply the quotient
map that glues together proximal points in the tiling space Tϕ. That is, for
such substitutions, the gross topology of the tiling space is that of a torus or
solenoid; the intricate details lie in the structure of the collection of proximal
points.

In this paper we isolate this proximal structure, symbolically encode
it, and demonstrate its use as a distinguishing invariant for the topological
type of Pisot tiling spaces. We also prove that, for strong Pisot substitutions,
pure discrete spectrum for the tiling flow is equivalent to proximality being
a closed relation.

Given a primitive and aperiodic substitution ϕ with associated tiling
space Tϕ, tilings T, T ′ ∈ Tϕ are asymptotic provided dist(T − t, T ′ − t)→ 0
as t → ∞ or t → −∞. In any such tiling space, there is a finite positive
number of arc components (i.e., composants), all of whose tilings are asymp-
totic to the tilings in some other arc component. Such arc components are
called the asymptotic composants of the tiling space, and any homeomor-
phism from one tiling space to another must take asymptotic composants
to asymptotic composants. In [BD1], we exploited this fact to develop a
complete topological invariant for 1-dimensional substitution tiling spaces.
Unfortunately, this invariant is difficult to use.

More computable (but far from complete) invariants have recently emer-
ged ([CE], [BSm], [BSw]). These are all cohomological in nature and depend,
in one way or another, on the interaction between some relative cocycles as-
sociated with asymptotic composants and the cocycles of the space itself.
The approach of this paper is to consider the less restrictive notion of proxi-
mal composants (tilings T, T ′ ∈ Tϕ are proximal if inft dist(T−t, T ′−t) = 0).
This typically provides a much richer collection of composants to consider.

For general tiling spaces, it is not clear how to formulate proximality
as a purely topological concept (that is, not tied to a particular flow). For
example, in the case that ϕ is primitive, for any two tilings T, T ′ ∈ Tϕ, one
can always find reparameterizations α, α′ of R so that inft dist(T − α(t),
T ′−α′(t)) = 0. However, in the case that tiling spaces Tϕ and Tψ are strong
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Pisot (with pure discrete spectrum tiling flows and a no cycle condition on
periodic words), we prove that proximality is topological in the following
sense: If h is a homeomorphism of Tϕ with Tψ, and C, C′ are composants of
Tϕ containing proximal tilings, then h(C) and h(C′) are composants of Tψ
that contain proximal tilings (Theorem 4.16).

Our approach is to link proximality under the tiling flow to a sym-
bolic analog that holds not only for tilings expressed in the language of
the given substitution ϕ but also in the language associated with any sub-
stitution obtained from ϕ by certain cuttings and rewritings. Once this is
accomplished, proximality becomes topological, since any homeomorphism
between Tϕ and Tψ can be isotoped to a homeomorphism that has a symbolic

interpretation in terms of substitutions ϕ̃ and ψ̃ obtained from ϕ and ψ by
suitable cutting and rewriting.

To achieve this symbolic linking, it is necessary to begin with a substitu-
tion ϕ that is strong Pisot and has a tiling flow with pure discrete spectrum.
For this linkage to persist through the cutting and rewriting that yields ϕ̃,
we will need to know that ϕ̃ is still (weakly) Pisot—the no cycle condition
on ϕ, the subject of §3, guarantees this.

Moreover, we are able to precisely identify the proximal tilings in Tϕ by
showing that

T P
ϕ = {(T, T ′) : T, T ′ are proximal in Tϕ}

is itself a substitution tiling space, with an algorithmically identifiable un-
derlying substitution ϕEBP. We obtain:

Theorem 4.15. Suppose that ϕ and ψ are strong Pisot , satisfy the no

cycle condition on periodic words, and have tiling flows with pure discrete

spectrum. Then Tϕ and Tψ are homeomorphic if and only if TϕEBP and TψEBP

are homeomorphic.

In §4, we give examples of substitutions ϕ and ψ for which the additional
structure in the proximal tiling spaces allows us to deduce that Tϕ and Tψ are
not homeomorphic. (In these examples, the known cohomological invariants
do not allow one to distinguish the two tiling spaces.) Section 2 contains
definitions and background material; §3 is devoted to the no cycle condition
and is technical in nature. The main results appear in §§4 and 5.

2. Notation and terminology. We introduce some of the notation
and terminology necessary for the paper.

Let A = {1, . . . , card(A)} and B = {1, . . . , card(B)} be finite alphabets;
A∗ will denote the collection of finite nonempty words with letters in A.
Given a map τ : A → B∗, there is an associated transition matrix Aτ =
(aij)i∈B, j∈A in which aij is the number of occurrences of i in the word τ(j);
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Aτ is called the abelianization of the map τ . A map τ : A → B∗ extends
naturally to τ : A∗ → B∗.

A substitution is a map ϕ : A → A∗; ϕ is primitive if ϕn(i) contains j
for all i, j ∈ A and sufficiently large n. Equivalently, ϕ is primitive if and
only if the matrix Aϕ is aperiodic, in which case Aϕ has a simple eigenvalue
λϕ larger in modulus than its remaining eigenvalues, called the Perron–

Frobenius eigenvalue of Aϕ (and ϕ).

A word w is allowed for ϕ if for each finite subword (i.e., factor) w′ of w,
there are i ∈ A and n ∈ N such that w′ is a subword of ϕn(i); the language

of ϕ, Lϕ, is the set of finite allowed words for ϕ. Let Wϕ denote the set of
allowed bi-infinite words for ϕ. We identify the 0th coordinate in a bi-infinite
word w either by an indexing, as in w = . . . w−1w0w1 . . . , or by use of a
decimal point (or both). Let σ : Wϕ →Wϕ denote the shift map:

σ(. . . w−1.w0w1 . . .) := . . . w−1w0.w1 . . . .

For w ∈Wϕ, the shift class of w is the equivalence class of bi-infinite words:

[w] := {w′ ∈Wϕ : w′ is in the shift orbit of w}.
The substitution ϕ : A → A∗ extends to ϕ : Wϕ →Wϕ where

ϕ(. . . w−1w0w1 . . .) := . . . ϕ(w−1).ϕ(w0)ϕ(w1) . . . ,

as well as to a map on equivalence classes:

ϕ([w]) := [ϕ(w)].

The word w is periodic for ϕ, or ϕ-periodic, if for some m ∈ N,

ϕm(w) = . . . ϕm(w−1).ϕ
m(w0)ϕ

m(w1) . . . = . . . w−1.w0w1 . . . .

Each primitive substitution ϕ has at least one allowed ϕ-periodic bi-
infinite word which is necessarily uniformly recurrent under the shift. A sub-
stitution ϕ with precisely one periodic, hence fixed, bi-infinite word is called
proper ; ϕ is proper if and only if there are b, e ∈ A such that for all suffi-
ciently large k and all i ∈ A, ϕk(i) = b . . . e.

A primitive substitution ϕ is aperiodic if at least one (equivalently, each)
ϕ-periodic bi-infinite word is not periodic under the natural shift map, in
which case (Wϕ, σ) is an infinite minimal dynamical system. If ϕ is aperiodic,
then the map ϕ : Wϕ → Wϕ is one-to-one ([Mo]). If ϕ is periodic (that is,
primitive and not aperiodic), then Wϕ is finite.

The substitution ϕ is weak Pisot if ϕ is primitive, aperiodic, and all
eigenvalues of A = Aϕ other than the Perron–Frobenius eigenvalue have
modulus strictly less than 1; ϕ is strong Pisot if any nondominant eigenvalue
for ϕ has modulus strictly between 0 and 1. If ϕ is strong Pisot, then ϕ is
necessarily primitive and aperiodic ([BFMS] and [HZ]). If ϕ is weak Pisot,
then the (hyperbolic) linear map on Rd defined by the matrix A has stable
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space Es of dimension d− 1 and unstable space Eu of dimension 1 spanned
by the positive right Perron–Frobenius eigenvector ωR for A. Also, if ϕ is
strong Pisot, neither Es nor Eu contain elements of the integer lattice other
than the origin. (See Chapter 1 of [BFMS], for instance.)

Given a primitive substitution ϕ : A → A∗ with card(A) = d ≥ 2,
let ωL,ϕ := ωL = (ω1, . . . , ωd) and ωR,ϕ := ωR be positive left and right
eigenvectors (respectively) for the Perron–Frobenius eigenvalue, λ = λϕ,
of A. The intervals Pi = [0, ωi], i = 1, . . . , d, are called prototiles for ϕ
(consider Pi to be distinct from Pj for i 6= j even if ωi = ωj). A tiling T of R
by the prototiles for ϕ is a collection T = {Ti}∞i=−∞ of tiles Ti for which⋃∞
i=−∞ Ti = R, each Ti is a translate of some Pj (in which case we say Ti is

of type j), and Ti ∩ Ti+1 is a singleton for each i. Generally we assume that
the indexing is such that 0 ∈ T0 \ T1.

There are occasions in this paper when we wish to define tilings by
prototiles for ϕ but ϕ is not primitive. In each such case, the matrix for ϕ
will have a unique Perron–Frobenius eigenvector, so prototiles and tilings
will be well-defined.

If ϕ(i) = i1 . . . ik(i), then λωi =
∑k(i)

j=1 ωij . Thus |λPi| =
∑k(i)

j=1 |Pij |,
and λPi is tiled by {Tj}k(i)j=1, where Tj = Pij +

∑j−1
k=1 ωik . This process is

called inflation and substitution and extends to a map Φ taking a tiling
T = {Ti}∞i=−∞ of R by prototiles to a new tiling, Φ(T ), of R by prototiles
defined by inflating, substituting, and suitably translating each Ti. More
precisely, for w = w1 . . . wn ∈ A∗, define

Pw + t =
{
Pw1 + t, Pw2 + t+ |Pw1 |, . . . , Pwn + t+

∑

i<n

|Pwi |
}
.

Then Φ(Pi + t) = Pϕ(i) + λt and Φ({Pki + ti}i∈Z) =
⋃
i∈Z

(Pϕ(ki) + λti).
There is a natural topology on the collection Σϕ of all tilings of R by

prototiles ({Ti}∞i=−∞ and {T ′
i}∞i=−∞ are “close” if there is an ǫ near 0 so

that {Ti}∞i=−∞ and {T ′
i + ε}∞i=−∞ are identical in a large neighborhood of 0;

see [AP] for details). The space Σϕ is compact and metrizable with this
topology and Φ : Σϕ → Σϕ is continuous. Given T = {Ti}∞i=−∞ ∈ Σϕ, let
w(T ) = . . . w−1w0w1 . . . denote the bi-infinite word with wi = j if and only
if Ti is of type j. The tiling space associated with ϕ, Tϕ, is defined as

Tϕ = {T : w(T ) is allowed for ϕ}.
There is a natural flow (translation) on Σϕ defined by ({Ti}∞i=−∞, t) 7→

{Ti − t}∞i=−∞. If ϕ is primitive and aperiodic, Φ : Tϕ → Tϕ is a homeo-
morphism (this relies on the notion of recognizability or invertibility for such
substitutions—see [Mo] and [So]). Each T ∈ Tϕ is uniformly recurrent under
the flow and has dense orbit (i.e., the flow is minimal on Tϕ). It follows that
Tϕ is a continuum.



196 M. Barge and B. Diamond

Recall that a composant of a point x in a topological space X is the
union of the proper compact connected subsets of X containing x. If ϕ is a
primitive substitution, composants and arc components in Tϕ are identical;
in this case we use the terms interchangeably. For any substitution ϕ, the
arc components of the tiling space Tϕ coincide with the orbits of the natural
flow (translation) on Tϕ. In particular, if C is an arc component of Tϕ, then

{w(T ) : T ∈ C} = [w(T )],

where [w(T )] is the shift class of w(T ). We also call [w(T )] the pattern of

the arc component (or composant) of T .
Tilings T, T ′ ∈ Tϕ are forward asymptotic if limt→∞ dist(T−t, T ′−t) = 0.

Equivalently, T = {Ti}∞i=−∞, T
′ = {T ′

i}∞i=−∞ are forward asymptotic if there
are N,M ∈ Z so that TN+k = T ′

M+k for all k ≥ 0. Composants are forward

asymptotic if they contain forward asymptotic tilings. Backward asymptotic
tilings and composants are defined similarly.

Given a primitive substitution ϕ : A → A∗ with card(A) = d ≥ 2, and

left Perron–Frobenius eigenvector ωL = (ω1, . . . , ωd), define Rϕ =
∨d
i=1 Si as

a wedge of d oriented circles S1, . . . , Sd with the circumference of Si = ωi,
and let fϕ : Rϕ → Rϕ be the “linear” map, with expansion constant λ, that
follows the pattern ϕ. That is, if ϕ(i) = i1 . . . ik(i), then fϕ maps the circle
Si around the circles Si1 , . . . , Sik(i) , in that order, preserving orientation and
stretching distances locally by a factor of λ. We call fϕ the map of the rose

associated with ϕ.
As with the case for tiling spaces, there are situations when we wish to

define Rϕ but ϕ is not primitive. In these situations, if Aϕ does not have
a unique left eigenvector, any positive left eigenvector will suffice to define
the circumferences of the circles.

If f : X → X is a map of a compact connected metric space X, then the
inverse limit space with single bonding map f is the space

lim←− f = {(x0, x1, . . .) : f(xi) = xi−1 for i = 1, 2, . . .}
with metric

d(x, y) =
∑

i≥0

d(xi, yi)

2i
;

f̂ : lim←− f → lim←− f will denote the natural (shift) homeomorphism

f̂(x0, x1, . . .) = (f(x0), x0, x1, . . .).

We now define a second model of the tiling space called strand space.
A strand, γ, in Rd is a collection of segments (sometimes called edges),
γ = {Sn}Mn=N , with each segment Sn a translate of a unit interval parallel
to a coordinate axis: if {e1, . . . , ed} is the standard basis for Rd, and Ii :=
{tei : 0 ≤ t ≤ 1}, then Sn = Iin + vn for some in ∈ {1, . . . , d} and vn ∈ Rd.
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Moreover, we require that γ be “connected” in the sense that vn+1 = vn+ein ,
i = N, . . . ,M − 1. Two strands are equal if they are identical as collections
of segments. In particular, if Sn = S′

n+l for n = N, . . . ,M , then {Sn}Mn=N =

γ = γ′ = {S′
n}M+l

n=N+l. A strand γ = {Sn}∞n=−∞ is said to be bi-infinite. Let

Fd = {γ : γ is a bi-infinite strand in Rd}.
The endpoints of segments in a strand are called the vertices, and if

Sn = Iin + vn, then minSn := vn, maxSn := vn + ein . If γ = {Sn}Mn=N and

γ′ = {S′
n}M

′

n=N ′ are two strands with M,N ′ < ∞ and maxSM = minS′
N ′ ,

we can concatenate γ and γ′ (that is, union and reindex) to obtain a single
longer strand γ ∪ γ′.

Given a substitution ϕ on the alphabet A = {1, . . . , d}, define Φ({Ii}) to

be the strand {Sn,i}k(i)n=1 with Sn,i = Iin+(
∑n−1

j=1 eij ), where ϕ(i) = i1 . . . ik(i).
That is, Φ applied to the singleton strand Ii is the strand with the origin as
initial vertex that “follows the pattern” of the word ϕ(i). Now extend Φ to
arbitrary singleton strands by

Φ({Ii + v}) :=
{
Iin +

(n−1∑

j=1

eij

)
+Av

}k(i)
n=1

and to arbitrary strands by concatenation:

Φ({Sn}Mn=N) :=
M⋃

n=N

Φ({Sn}).

For R ∈ R, let FdR denote the subspace of Fd consisting of those strands
that lie in a cylinder of radius R centered on Eu. If ϕ is weak Pisot, then
for sufficiently large R, FdR is mapped into itself by Φ; choose R0 so that
Φ(FdR0

) ⊂ FdR0
. Define

Fdϕ = {γ = {Sn}∞n=−∞ ∈ FdR0
: if Sk ∩Es 6= ∅, then ik−1ikik+1 ∈ Lϕ}.

The strand space of ϕ is

T S
ϕ :=

⋂

n≥0

Φn(Fdϕ).

A metric can be defined on T S
ϕ that has the property: the distance be-

tween γ = {Sn}∞n=−∞ and γ′ = {S′
n}∞n=−∞ is small if there is v ∈ Rd,

|v| small, and N ∈ N, N large, so that Sn = S′
n + v for n = −N, . . . , N

(where the indexing is such that S0 ∩Es 6= ∅).
It is proved in [BK] that if ϕ is a strong Pisot substitution, then Φ : T S

ϕ →
T S
ϕ is a homeomorphism (referred to as the Z-action), (γ, t) 7→ γ+tωR defines

a flow on T S
ϕ (referred to as the R-action), and there is a homeomorphism
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h : T S
ϕ → Tϕ that conjugates to Z- and R-actions on these spaces (h is just

the projection of a strand onto Eu ≃ R along Es).

In what follows, we refer to rewriting a substitution, a notion developed
in [Dur]. We discuss rewriting with both starting and stopping rules in some
detail in [BD1] (see Example 3.2 and the preceding discussion in [BD1]). We
also include an example in §4 of this paper.

Finally, X ≃ Y will mean that X and Y are homeomorphic.

3. The no cycle condition. The main result of this section is Corollary
3.4, from which we eventually deduce that if ϕ is strong Pisot, and ϕ̃ is a
one-cut rewriting of ϕ (see §4), then ϕ̃ is weak Pisot. A reader willing to
accept Corollary 3.4 can safely proceed to §4.

Given a substitution ϕ, let ϕ+, ϕ− : A → A be defined by

ϕ+(a) = b if ϕ(a) = b . . . , ϕ−(a) = c if ϕ(a) = . . . c.

Let

S+ =
⋂

n≥0

(ϕ+)n(A) and S− =
⋂

n≥0

(ϕ−)n(A)

be the eventual ranges of ϕ+ and ϕ−, and let

Pϕ = {(a, b) ∈ S− × S+ : ab ∈ Lϕ}.
Define an equivalence relation ∼ on Pϕ by (a, b) ∼ (c, d) if a = c or b = d and
extending by transitivity. A cycle in Pϕ consists of a string of equivalences
(a1, a2) ∼ (a3, a2) ∼ (a3, a4) ∼ · · · ∼ (a1, a2n) with a1 6= a3 6= · · · 6= a2n−1,
a2 6= a4 6= · · · 6= a2n, and n ≥ 2.

No Cycle Condition. The substitution ϕ has no cycles of periodic

words if Pϕ has no cycles.

Note that if (a, b), (c, b) ∈ Pϕ, then the bi-infinite words obtained by it-
erating on a.b and c.b (limn→∞ ϕn(a).ϕn(b) and limn→∞ ϕn(c).ϕn(b) respec-
tively) are periodic under ϕ and represent asymptotic composants. That
is, a cycle in Pϕ represents a cycle of asymptotic composants {C1, . . . , Cn}
(C1, C2 are forward asymptotic, C2, C3 are backward asymptotic, etc.) of a
particular sort.

The existence of a cycle of asymptotic composants is a topological prop-
erty of a space. However, whether a cycle of asymptotic composants in Tϕ
is associated with a cycle in Pϕ is combinatorial and an artifact of the
symbolic presentation of the tiling space. For instance, the Fibonacci sub-
stitution (ψ(1) = 12, ψ(2) = 1) has a cycle of two composants asymptotic in
both directions but Pψ has no cycles. On the other hand, the Morse–Thue
substitution ϕ defined by ϕ(1) = 12, ϕ(2) = 21 has a cycle of four asymptotic
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composants, all associated with the four bi-infinite words periodic under ϕ:

. . . 1.1 . . . , . . . 1.2 . . . , . . . 2.1 . . . , . . . 2.2 . . . ,

which determine a cycle in Pϕ. There are several ways to rewrite ϕ to ob-
tain a proper substitution ϕ′ for which the tiling spaces Tϕ and Tϕ′ are
homeomorphic; since ϕ′ has a single bi-infinite periodic word, its cycle of
asymptotic composants is no longer associated with a cycle in Pϕ′ .

The cycle of asymptotic composants in the tiling space Tϕ (where ϕ is
the Morse–Thue substitution) is associated with a nontrivial element of the
cohomology of Tϕ that is periodic under the action induced by inflation
and substitution. That is, inflation and substitution has a root of unity
eigenvalue on the level of cohomology. Thus any proper rewriting of ϕ has
an abelianization that has a root of unity eigenvalue and hence is non-
Pisot. The non-Pisot nature of the rewriting destroys the connection between
the symbolic and the geometrical aspects of proximality that we exploit to
obtain the results of this paper. In the case of the Fibonacci substitution,
there is also a cohomology element associated with the cycle of asymptotic
composants, but it is trivial, and does not correspond to a root of unity
eigenvalue—in this case, our program can proceed.

For these reasons, in this paper we require that the substitutions we
consider have no cycles of periodic words.

Let Pϕ = P be defined as above.

Lemma 3.1. If ϕ is weak Pisot , then P consists of a single equivalence

class.

Proof. Suppose that there are k equivalence classes in P, where k ≥ 2.
Using the elements of P to define starting and stopping rules, we obtain a
rewriting ϕ̃ of ϕ with alphabet Ã consisting of certain elements of L(ϕ). Let
v1, . . . , vk denote the equivalence classes of ∼ in P. Define a graph Gϕ̃ = G

with vertices v1, . . . , vk and edges labeled by elements of Ã: the edge labeled
b . . . a ∈ Ã starts at vertex vi = [( , b)] and ends at vertex vj = [(a, )].
Let fϕ̃ : G → G follow pattern ϕ̃, Rϕ be the rose with vertex v and edges

labeled by A, and fϕ : Rϕ → Rϕ follow pattern ϕ. Let ̺ : Ã → A∗ be
the natural morphism, and f̺ : Gϕ̃ → Rϕ be the map following pattern ̺.
The maps fϕ, fϕ̃ and f̺ satisfy f̺ ◦ fϕ̃ = fϕ ◦ f̺. There is then an induced

surjection f̺̂ : lim←− fϕ̃ → lim←− fϕ. It is easily checked that f̺̂ is one-to-one
everywhere except at a single point: if vi := (vi, vi, . . .) for i = 1, . . . , k and

v := (v, v, . . .), then (f̺̂)
−1(v) = {v1, . . . , vk} := V. Thus

lim←− fϕ ≃ (lim←− fϕ̃)/V.
We have the commuting diagram derived from the long exact sequences

of pairs (the zeroth level is reduced and the coefficients are Q):
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0 - 0 - Ȟ1(lim←− fϕ, {v}) - Ȟ1(lim←− fϕ) - 0

0 - 0 - Ȟ1(lim←− fϕ, {v}) - Ȟ1(lim←− fϕ) - 0

0 - Ȟ0(V) - Ȟ1(lim←− fϕ̃,V) - Ȟ1(lim←− fϕ̃) - 0

0 - Ȟ0(V) - Ȟ1(lim←− fϕ̃,V) - Ȟ1(lim←− fϕ̃) - 0

�
�	

f̂∗ϕ �
�	

f̂∗ϕ

�
�	

f̂∗
ϕ̃

�
�	

f̂∗
ϕ̃

�
�	

f̂∗
ϕ̃

? ?

f∗̺

?

f∗̺

? ?

The bottom rows split since all the homomorphisms are linear maps of finite-
dimensional vector spaces. Let f̂ϕ̃|V := f̂ϕ̃,1. Then f̂nϕ̃,1 = id for n = k!. We
extract the commuting square

h h

f̂∗ϕ

f̂∗
ϕ̃,1⊕f̂

∗

ϕ̃,2

Ȟ1(lim←− fϕ, {v}) Ȟ1(lim←− fϕ, {v})

Ȟ0(V)⊕ Ȟ1(lim←− fϕ̃) Ȟ0(V)⊕ Ȟ1(lim←− fϕ̃)
?

-
?

-

of vector space isomorphisms. Since dim Ȟ0(V) = k − 1 ≥ 1 and all eigen-

values of f̂∗ϕ,1 are root of unity, f̂∗ϕ has root of unity eigenvalues.

Finally, by continuity of the Čech theory,

Ȟ1(lim←− fϕ, {v}) ≃ Ȟ
1(lim←− fϕ) ≃ lim−→(Atr

ϕ : Qd → Qd) ≃ ERϕ,

where ERϕ is the eventual range of Atr
ϕ , and f̂∗ϕ is conjugated to Atr

ϕ : ERϕ →
ERϕ by this isomorphism. Thus Aϕ also has root of unity eigenvalues, con-
tradicting the assumption that ϕ is weak Pisot.

Remark. The proof of the above lemma only requires that ϕ is hyper-
bolic.

Suppose that ψt : X → X is a flow on the compact metric space X, and
that for each j = 1, . . . ,m, X1,j , . . . , Xnj ,j are asymptotic (forward, say)
under ψt: that is, d(ψt(Xi,j), ψt(Xl,j)) → 0 as t → ∞ for i, l ∈ {1, . . . , nj}
and j ∈ {i, . . . ,m}. Define X to be the quotientX = X/∼, where ψt(Xi,j) ∼
ψt(Xl,j) for t ≥ 0, i, l ∈ {1, . . . , nj} and j ∈ {i, . . . ,m}.

Lemma 3.2. The quotient map p : X → X induces an isomorphism

p∗ : Ȟk(X)→ Ȟk(X) for all k.

Proof. To avoid excessive notation, we assume m = 1. Let ψt be the
semi-flow on X defined by ψt(p(x)) = p(ψt(x)) for t ≥ 0. Define
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lim←−ψt := {γ : R→ X : ψt(γ(s)) = γ(t+ s) for all t ≥ 0, s ∈ R}
with the compact-open topology. Because the glued arcs are asymptotic,
X is compact and Hausdorff, hence lim←−ψt is compact and Hausdorff. Let
p̂ : X → lim←−ψt be defined by p̂(x) = p(ψ (x)) : R → X. Then p̂ is clearly
continuous.

To see that p̂ is a surjection, consider ψt(p
−1(γ(−t))) for γ ∈ lim←−ψt.

Either this is a singleton or γ(−t) ∈ α := {p(ψs(xi)) : s ≥ 0}. In the latter
case, p−1(γ(−t)) = {ψs(xi) : i = 1, . . . , n} for some s ≥ 0. Then

ψt(p
−1(γ(−t))) = {ψt+s(xi) : i = 1, . . . , n}

for some s ≥ 0, and the diameter of this set goes to 0 as t→∞, uniformly
in s ≥ 0. In any event, diam(ψt(p

−1(γ(−t))))→ 0 as t→∞. Note also that

p(ψt(p
−1(γ(−t)))) = ψt(γ(−t)) = γ(0),

so x := limt→∞ ψt(p
−1(γ(−t))) is well-defined. Moreover, p̂(x) = p(ψ (x))

and

p(ψt(x)) = pψt( lim
s→∞

ψs(p
−1(γ(−s)))) = lim

s→∞
p(ψt+s(p

−1(γ(−s))))

= lim
s→∞

ψt+s(γ(−s)) = lim
s→∞

γ(t) = γ(t).

Thus p̂ is surjective.

If p̂(x) = p̂(y) = γ, then p(ψt(x)) = p(ψt(y)) = γ(t) for all t. Then
ψt(x), ψt(y) ∈ p−1(γ(t)) and x, y ∈ ψ−t(p

−1(γ(t))) for all t. But since

diam(ψ−t(p
−1(γ(t))))→ 0 as t→ −∞,

we get x = y. Since X is compact and lim←−ψt is Hausdorff, p̂ is a homeomor-
phism.

Now let ψ1 : X → X be the time-one map of ψ. If h : lim←−ψ1 → lim←−ψt is
defined by h(x0, x1, . . .) = γ, where γ(t) = ψn+t(xn) for n ≥ −t, then h is a
homeomorphism. By continuity of the Čech theory,

Ȟk(X)
p̂∗≃ Ȟk(lim←−ψt)

h∗≃ Ȟk(lim←−ψ1) ≃ lim−→ψ∗
1 : Ȟ1(X)→ Ȟ1(X).

Finally, since ψ1 is homotopic to ψ0 = id (where ψt, 0 ≤ t ≤ 1, provides
the homotopy), ψ∗

1 = id and lim−→ψ∗
1 ≃ Ȟ1(X) (by projection onto the first

coordinate). The composition of these isomorphisms is p∗.

Recall that Φ : Tϕ → Tϕ is the inflation and substitution map.

Proposition 3.3. Suppose that ϕ is weak Pisot and has no cycles of

periodic words. Then the linear map on lim−→(Atr
ϕ : Qd → Qd) induced by Atr

ϕ

is conjugate to the isomorphism Φ∗ : Ȟ1(Tϕ)→ Ȟ1(Tϕ).

Proof. By Lemma 3.1, P consists of a single equivalence class. For each
(a, b) ∈ P, let T(a,b) be the corresponding (periodic under Φ) tiling in Tϕ.
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Let
P+ := {b ∈ A : there are a 6= c with (a, b), (c, b) ∈ P}

= {b1, . . . , bk}.

For each bj ∈ P+, let {ai,j}lji=1 be a list of the letters for which (ai,j , bj)

∈ P. Let X+ be the quotient space obtained from Tϕ by the identifications
T(ai,j ,bj) − t ∼ T(am,j ,bj) − t for t ≥ 1, 1 ≤ i,m ≤ lj , and j = 1, . . . , k.

By Lemma 3.2, the quotient map p+ : Tϕ → X+ induces a vector space
isomorphism p∗+ : Ȟ1(X+)→ Ȟ1(Tϕ) (here and in what follows, coefficients
are Q). Furthermore, the inflation and substitution map, Φ, induces a map
F+ : X+ → X+ so that

p∗+ p∗+

F ∗

+

Φ∗

Ȟ1(X+) Ȟ1(X+)

Ȟ1(Tϕ) Ȟ1(Tϕ)
?

-
?

-

is a commuting diagram of vector space isomorphisms.

Let S : X+ → [0,∞) be a continuous map with

S−1(0) = {[Tai,j ,bj − 1] : j = i, . . . , k}.
That is, S vanishes exactly at the branch points of X+. Moreover, using the
local product structure of Tϕ, we may choose S so that if (a, b), (a, c) ∈ P,
then

S(p+(T(a,b) + t)) = S(p+(T(a,c) + t)) for all t ≥ 0.

Let τ : Tϕ × R→ R be the solution to

dτ

dt
(T, t) = S ◦ p+(T − τ(T, t)), τ(T, 0) = 0.

Then (T, t) 7→ T − τ(T, t) is a flow on Tϕ that descends to a flow ψt on X+

with rest points at exactly the branch points {[Tai,j ,bj ] : j = i, . . . , k}.
Now let

P− := {a ∈ A : there are b 6= c ∈ A with (a, b), (a, c) ∈ P}
= {a1, . . . , al}.

For each ai ∈ P−, let {bi,j}kij=1 be a list of the letters for which (ai, bi,j)

∈ P. Let X be the quotient space obtained from X+ by the identifications
ψ−t(p+(T(ai,bi,j))) ∼ ψ−t(p+(T(ai,bi,m))) for t ≥ 1, 1 ≤ j,m ≤ ki, and i =

1, . . . , l, with quotient map p− : X+ → X. Then there is an induced map
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F : X → X with p− ◦ F+ = F ◦ p− and, from Lemma 3.2, we have a
commuting diagram of vector space isomorphisms:

p∗
−

p∗
−

F ∗

F ∗

+

Ȟ1(X) Ȟ1(X)

Ȟ1(X+) Ȟ1(X+)
?

-
?

-

Letting p = p− ◦ p+, and combining the above diagrams, we have

p∗ p∗

F ∗

Φ∗

Ȟ1(X) Ȟ1(X)

Ȟ1(Tϕ) Ȟ1(Tϕ)
?

-
?

-

(1)

Let q : Tϕ → Rϕ denote the map that takes a tiling to the location of its
origin (that is, if the ith petal Pi of the rose Rϕ is identified with the ith
prototile [0, λi], and [0, λi] − t is the tile of T containing 0, then q(T ) =
t ∈ Pi). Let fϕ : Rϕ → Rϕ be the rose map and q̂ : Tϕ → lim←− fϕ the
continuous surjection defined by

q̂(T ) = (q(T ), q(f−1
ϕ (T )), q(f−2

ϕ (T )), . . .).

There is then q : X → lim←− fϕ so that

q ◦ p = q̂ and q ◦ F = f̂ϕ ◦ q.
Let

B = {T(ai,j ,bj) − t : 0 ≤ t ≤ 1, i = 1, . . . , lj , j = 1, . . . , k}
∪ {T(ai,bi,j) + t : 0 ≤ t ≤ 1, j = 1, . . . , ki, i = 1, . . . , l}

(where S must be adjusted so that S ◦ p+(T(ai,bi,j) + t) := 1 for 0 ≤ t
≤ 1, j = 1, . . . , ki, i = 1, . . . , l), and let

B = p(B)

and

B̂ = q(B) = q̂(B).

The fact that P is one equivalence class means that B is connected, and
the assumption that P has no cycles means that B is acyclic; that is, B is
a finite tree and is contractible.
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Since F (B) ⊃ B, we may homotope F to G with G(B) = B. Similarly,

we may homotope f̂ϕ to g so that g(B̂) = B̂ and q ◦ G = g ◦ q. One can
further check that q is one-to-one except on B. We have the commuting
diagram

q∗ q∗

g∗

G∗

Ȟ1(lim←− fϕ, B̂) Ȟ1(lim←− fϕ, B̂)

Ȟ1(X,B) Ȟ1(X,B)
?

-
?

-

Since q : X/B → lim←− fϕ/B̂ is a homeomorphism, q∗ is an isomorphism. Thus

q∗ q∗

g∗

G∗

Ȟ1(lim←− fϕ) Ȟ1(lim←− fϕ)

Ȟ1(X) Ȟ1(X)
?

-
?

-

is a commuting diagram of isomorphisms. Replacing g∗ by f̂∗ϕ and G∗ by
F ∗ (to which they are equal, respectively), and combining this last diagram
with (1), we have the commuting diagram of vector space isomorphisms

q∗ q∗

f̂∗ϕ

Φ∗

Ȟ1(lim←− fϕ) Ȟ1(lim←− fϕ)

Ȟ1(Tϕ) Ȟ1(Tϕ)
?

-
?

-

By continuity of the Čech theory, there exists an isomorphism between
Ȟ1(lim←− fϕ) and lim−→ f∗ϕ (where f∗ϕ : H1(Rϕ) → H1(Rϕ)) that conjugates f̂∗ϕ
with f̂∗ϕ : lim−→ f∗ϕ → lim−→ f∗ϕ defined by

f̂∗ϕ([(γ, n)]) = [(f∗ϕ(γ), n)].

Finally, identifyingH1(Rϕ) with the dual ofH1(Rϕ) and choosing as ordered
basis for H1(Rϕ) the oriented petals of Rϕ, the matrix for (fϕ)∗ is Aϕ, and

Atr
ϕ represents f∗ϕ (where Atr is the transpose of A). Thus f̂∗ϕ is conjugate to

Atr
ϕ : lim−→(Atr

ϕ : Qd → Qd)→ lim−→(Atr
ϕ : Qd → Qd).

Corollary 3.4. If ϕ is weak Pisot and has no cycles of periodic words,
and ψ is a proper substitution with the property that Φ and Ψ are conjugate,
then ψ is weak Pisot.
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Proof. Since ψ is proper, there is a homeomorphism of Tψ with lim←− fψ
that conjugates Ψψ with f̂ψ. We have a conjugacy between Atr

ϕ on lim−→(Atr
ϕ :

Qd → Qd) and Atr
ψ on lim−→(Atr

ψ : Qd → Qd). But lim−→(Atr
ϕ : Qd → Qd) and

lim−→(Atr
ψ : Qd → Qd) are naturally isomorphic to the eventual ranges of

Atr
ϕ : Qd → Qd and Atr

ψ : Qd′ → Qd′ respectively, hence the nonzero spectra

of Atr
ϕ and Atr

ψ are the same.

4. Balanced pairs and proximality. The main result of this section
is Theorem 4.16, in which we show that if ϕ and ψ are strong Pisot substi-
tutions that satisfy both GCC and the no cycle condition on periodic words,
and h : Tϕ → Tψ is a homeomorphism, then h carries composants containing
proximal tilings in Tϕ to composants containing proximal tilings in Tψ.

Suppose that ϕ is weak Pisot. Recall that A = {1, . . . , d} is the alphabet,
A = Aϕ the incidence matrix, and Lϕ = L ⊆ A∗ the language of ϕ. Let ωL =
(ω1, . . . , ωd) and ωR be positive left and right Perron–Frobenius eigenvectors
(respectively) for A. For i ∈ A, let |i|g := ωi, and for w = w1 . . . wn ∈ A∗,
let |w|g :=

∑n
i=1 |wi|g, |w| := n and l(w) := (a1, . . . , ad)

tr, where ai is the
number of occurrences of the letter i in w and vtr is the transpose of v. A
balanced pair for ϕ is a pair

(
u
v

)
with u, v ∈ L and l(u) = l(v). A geometrically

balanced pair for ϕ is a pair
(
u
v

)
with u, v ∈ L and |u|g = |v|g. Trivially,

any balanced pair is geometrically balanced. If ϕ is strong Pisot, then the
entries of ωL are independent over Q, so that if |u|g = |v|g, then l(u) = l(v),
and any geometrically balanced pair for ϕ is balanced. As the Morse–Thue
substitution (1 → 12, 2 → 21) shows, a geometrically balanced pair need
not be balanced in general.

Define

BP(ϕ) =

{(
u

v

)
:

(
u

v

)
is a balanced pair for ϕ

}
,

GBP(ϕ) =

{(
u

v

)
:

(
u

v

)
is a geometrically balanced pair for ϕ

}
.

If x =
(
u
v

)
∈ BP(ϕ), the dual of x, written x, denotes the balanced pair(

v
u

)
. If

(
u
v

)
∈ BP(ϕ) and there are

(
u1
v1

)
,
(
u2
v2

)
∈ BP(ϕ) so that u = u1u2,

v = v1v2, then
(
u
v

)
is reducible and we write

(
u
v

)
=

(
u1
v1

)(
u2
v2

)
. Otherwise,

(
u
v

)

is irreducible. We make similar definitions for elements of GBP(ϕ). Note
that any balanced pair (geometrically balanced pair, respectively) factors
uniquely as a finite product of irreducible balanced pairs (geometrically
balanced pairs, respectively). Let ABP be the (possibly infinite) alphabet
of irreducible balanced pairs, and let the substitution ϕBP : ABP → (ABP)∗
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be given by

ϕBP

((
u

v

))
=

(
ϕ(u)

ϕ(v)

)
,

factored as a word in (ABP)∗. One can define AGBP and ϕGBP similarly for
irreducible geometrically balanced pairs. An irreducible balanced pair

(
u0

v0

)

is essential if, for each n ∈ N, there is
(
u−n

v−n

)
∈ ABP so that

(
u0

v0

)
is a factor

of ϕnBP

((
u−n

v−n

))
. An essential geometrically balanced pair is defined similarly.

Since ϕ is primitive, the trivial pair
(
i
i

)
is essential for any i ∈ A.

Let AEBP be the alphabet consisting of essential balanced pairs for ϕ.
Note that if

(
u
v

)
is an essential balanced pair, then ϕBP

((
u
v

))
is a product of

essential factors. That is, ϕBP restricted to AEBP determines a substitution
ϕEBP : AEBP → (AEBP)∗.

Example 4.1 (Essential balanced pairs). Define the substitution ϕ as
follows:

ϕ(1) = 11122, ϕ(2) = 12.

The balanced pairs
(
12
21

)
,
(
112
211

)
, and

(
1122
2121

)
(and their duals) are all essential:

ϕ

((
12

21

))
=

(
1

1

)(
112

211

)(
21

12

)(
2

2

)
,

ϕ

((
112

211

))
=

(
1

1

)(
112

211

)(
21

12

)(
112

211

)(
21

12

)(
2

2

)
,

ϕ

((
1122

2121

))
=

(
1

1

)(
112

211

)(
21

12

)(
1122

2121

)(
1

1

)(
21

12

)(
2

2

)
.

Let a, b, c (and a, b, c) denote the nontrivial essential balanced pairs above
in the order given, and denote the trivial balanced pairs by the associated
letter of Aϕ. Then ϕEBP must include at least the information:

ϕEBP(a) = 1ba2, ϕEBP(b) = 1baba2, ϕEBP(c) = 1bac1a2,

along with the definitions ϕEBP(a) = 1ba2, etc.

In Example 4.2, we provide, for a rewriting of ϕ, an essential geometri-
cally balanced pair that is not balanced.

Suppose that T ∈ Tϕ is fixed by Φ and the tile T0 of T containing 0 is
a translate of the prototile Pa = [0, ωa), say T0 = Pa − t0. We will use the
location of 0 in T0 to define a one-cut rewriting of ϕ in the letter a according
to the two cases below:

Case 1: t0 > 0 (0 is in the interior of T0). In this case, ϕ(a) = pas for
some (unique) nonempty p, s in A∗ with |p|g < λt0 and |s|g < λ(ωa−t0). We
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modify the alphabet A by “splitting” the letter a into two letters a1 and a2.
Let A′ = A∪{a1, a2} \ {a}, and let α : A → A′ be the morphism that takes
a to a1a2 and b to b if b 6= a. Define the substitution ϕ′ : A′ → (A′)∗ as
follows:

ϕ′(a1) = α(p)a1, ϕ′(a2) = a2α(s), ϕ′(b) = α(ϕ(b)) if b 6= a1, a2.

Finally, let ϕ̃ be the substitution obtained from ϕ′ by rewriting, using start-
ing rule {a2} and stopping rule {a1}.
Case 2: t0 = 0. Let the tile type of T−1 be b. In this case, there are

s, p ∈ A∗ such that ϕ(a) = as, ϕ(b) = pb. Let ϕ̃ denote the substitution
obtained from ϕ by rewriting, using starting rule {a} and stopping rule {b}.

Example 4.2 (One-cut rewriting). Again, let ϕ be given by

ϕ(1) = 11122, ϕ(2) = 12.

The bi-infinite word . . . 11122 11122 11122 12 12 . . . is associated with a tiling
T where 0 occurs in the interior of the tile associated with the underlined 1
and T is fixed under Φ.

We use the location of 0 to split 1 into 1112. Then A′ = {11, 12, 2}, and
ϕ′ is defined by

ϕ′(11) = 111211, ϕ′(12) = 12111222, ϕ′(2) = 11122.

In rewriting using the starting rule 12 and the stopping rule 11, one obtains
the three words/letters

a := 1211, b := 12211, c := 122211.

The one-cut rewriting ϕ̃ is defined by

ϕ̃(a) := ϕ′(1211) = 12111222111211 := aca, ϕ̃(b) = acba, ϕ̃(c) = acbba.

The geometrically balanced pair
(
ac
bb

)
for ϕ̃ is not balanced. The substitution

ϕ is strong Pisot, with eigenvalues of 2 +
√

3 and 2 −
√

3, while ϕ̃ is weak
Pisot, with eigenvalues of 2 +

√
3, 2−

√
3 and 0.

There is a natural map that takes an arbitrary tiling T ∈ Tϕ to a tiling

T̃ ∈ Tϕ̃, where T̃ is obtained by marking T as follows. In Case 1, T is marked
at the cut point in each tile of type a. In Case 2, T is marked at the beginning
of each tile of type a that is preceded by a tile of type b. Either marking
can be associated naturally with a tiling in Tϕ′ (Case 1) or Tϕ (Case 2).
These tiles are then amalgamated and relabeled, according to the rewriting
(as seen in Example 4.2). The correspondence T 7→ T̃ is a homeomorphism
that commutes with inflation and substitution as well as the flow on both
spaces. That is, Φ̃(T ) = Φ̃(T̃ ) (where Φ̃ denotes inflation and substitution

in Tϕ̃) and T̃ − t = T̃ − t.
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Lemma 4.3. If ϕ̃ is obtained from ϕ by a one-cut rewriting , then ϕ̃ is

proper. If , in addition, ϕ is weak Pisot and satisfies the no cycle condition,
then ϕ̃ is weak Pisot.

Proof. The first statement follows directly from the definition of one-cut
rewriting. Since there is a homeomorphism of Tϕ and Tϕ̃ that conjugates Φ

and Φ̃, the second statement then follows from Corollary 3.4.

Furthermore, if
(
ũ
ṽ

)
is a geometrically balanced pair for ϕ̃, there is an

associated pair
(
u
v

)
with u, v ∈ Lϕ. Specifically, if ϕ̃ is determined by Case 2,

then u and v begin with a and end with b, and ũ, ṽ result from rewriting
u, v. If ϕ̃ is determined by Case 1, then ũ and ṽ are rewritings of u′ = a2x

′a1

and v′ = a2y
′a1 with x′ = α(x), y′ = α(y) for some x, y ∈ Lϕ; let u = ax,

v = ay.

Lemma 4.4. Let ϕ be strong Pisot. If ϕ̃ is a one-cut rewriting of ϕ, and(
ũ
ṽ

)
∈ GBP(ϕ̃), then the associated pair

(
u
v

)
is a balanced pair for ϕ (not

necessarily irreducible).

Proof. Since |u|g = |v|g, and ϕ is strong Pisot, l(u) = l(v).

In the following, if T ∈ Tϕ, γ(T ) will denote the corresponding strand
in T S

ϕ , and Φ will denote the inflation and substitution map in both Tϕ
and T S

ϕ . The flow in Tϕ will be denoted by (T, t) 7→ T − t, and we assume
that ωR has been normalized so that γ(T − t) = γ(T )− tωR.

By a state I, we mean a line segment of length one, parallel to a coor-
dinate axis and meeting Es. We take I to be half-open, including its initial
vertex but not its terminal vertex. If I is a state, Φ̂(I) will denote the unique

state contained in Φ(I). Thus Φ̂ maps states to states. If γ ∈ T S
ϕ or γ is a

finite strand that intersects Es, the state determined by γ is the segment
(that is, edge) of γ that meets Es.

Given tilings T and T ′ in Tϕ with strands γ = γ(T ) and γ′ = γ(T ′), we
say that γ and γ′ are coincident at zero if the states determined by γ and
γ′ are identical; γ and γ′ are coincident if there is t ∈ R so that γ − tωR

and γ′ − tωR are coincident at zero.

Geometric Coincidence Condition (GCC). If I, J are states whose
vertices are equivalent mod Zd, then for every ε > 0, there is t ∈ R such that
|t| < ε, I + tωR and J + tωR are states, and for some n ≥ 0, Φ̂n(I + tωR) =

Φ̂n(J + tωR) (equivalently, for some n ≥ 0, Φn(I + tωR) and Φn(J + tωR)
are coincident at 0).

If ϕ is strong Pisot, and γ ∈ T S
ϕ , let v(γ) be any vertex of γ. Define

g : T S
ϕ → Td by g(γ) = v(γ) (mod Zd). Then g is a continuous surjection

and g(γ − tωR) = g(γ)− tωR (mod Zd) for all t ∈ R. Also, if FA : Td → Td

is defined by FA(p) = Ap (mod Zd), where A is the transition matrix for ϕ,
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then g ◦ Φ = FA ◦ g. If ϕ is unimodular, the map g is called geometric

realization.
If ϕ is not unimodular, define ĝ : T S

ϕ → lim←−FA by

ĝ(γ) = (g(γ), g(Φ−1(γ)), g(Φ−2(γ)), . . .);

in this case, ĝ is geometric realization. Let (z)t denote the flow on lim←−FA
defined by

(z0, z1, . . .)t = (z0 − tωR, z1 − (t/λ)ωR, z2 − (t/λ2)ωR, . . .),

where all coordinates are taken mod Zd, and let f̂A be the shift homeomor-
phism on lim←−FA given by

F̂A(z0, z1, . . .) = (FA(z0), z0, z1, . . .).

Then ĝ ◦ Φ = F̂A ◦ ĝ, and ĝ(γ − tωR) = (ĝ(γ))t for all t ∈ R.
Note that if ϕ is unimodular, then FA : Td → Td is a homeomorphism,

so that projection onto the first coordinate, π0, yields a homeomorphism of
lim←−FA with Td that conjugates the R- and Z-actions on lim←−FA to those on
Td and produces the commuting diagram

π0

Td

g

T S
ϕ lim←−FA

@
@

@R

-ĝ

�
�

�	

For efficiency in the following, we will denote geometric realization in the
unimodular case by ĝ as well.

For a strong Pisot substitution ϕ, the coincidence rank of ϕ is defined as

crϕ = max{n : there are γ1, . . . , γn ∈ T S
ϕ and x ∈ lim←−FA such that

γi ∈ ĝ−1(x) for 1 ≤ i ≤ n and γi, γj are not coincident if i 6= j}.
A balanced pair B for ϕ terminates with coincidence provided there is a
finite collection {B1, . . . , Bk} of irreducible balanced pairs so that (1) for
each n ∈ N ∪ {0}, the pair ϕnBP(B) factors as a product of the elements of
{B1, . . . , Bk}, and (2) for each i ∈ {1, . . . , k}, there is n ∈ N so that ϕnBP(Bi)
has a trivial balanced pair factor.

Proofs of the following results in the case ϕ is unimodular can be found
in [BK]; for the nonunimodular case, see [BBK].

Theorem 4.5. Suppose that ϕ is strong Pisot. Then ĝ is bounded-to-

one and #ĝ−1(x) = crϕ for (Haar) almost every x ∈ lim←−FA. Moreover , the

following are equivalent :

(i) ϕ satisfies GCC ,
(ii) crϕ = 1,
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(iii) #ĝ−1(x) = 1 for (Haar) almost every x ∈ lim←−FA,
(iv) every balanced pair B for ϕ terminates with coincidence,
(v) there are a, b ∈ A with a 6= b so that the balanced pair

(
a b
b a

)
termi-

nates with coincidence,
(vi) the tiling flow , (T, t) 7→ T − t, has pure discrete spectrum.

If any of (i)–(vi) holds, then {γ ∈ T S
ϕ : #ĝ−1(g(γ)) = 1} is a set of full

measure (with respect to the unique ergodic flow-invariant measure on T S
ϕ )

that contains a dense Gδ.

Tilings T, T ′ ∈ Tϕ are said to be forward proximal if there is a se-
quence {tk} of real numbers so that tk →∞ and limk→∞ d(T − tk, T ′ − tk)
= 0. If there is a sequence {tk} so that tk → −∞ and limk→∞ d(T − tk,
T ′ − tk) = 0, then T and T ′ are said to be backward proximal. If T and T ′

are either forward or backward proximal, they are proximal. Note that if T
and T ′ are proximal, so are: T − t and T ′− t for each t ∈ R; Φ(T ) and Φ(T ′);
and Φ−1(T ) and Φ−1(T ′) (since Φ−1(T − t) = Φ−1(T )− t/λ).

Example 4.6 (Proximality). Let ϕ be defined by ϕ(1) = 11122, ϕ(2) =
12. The following three bi-infinite words (given in pairs) represent tilings
that are fixed under Φ. In one case, the origin of the tiling is at an endpoint
of a tile and the corresponding word is fixed under ϕ. The origin of each
of the remaining two tilings is in the interior of the tile, and the associated
words can be obtained by iterating around a fixed point associated with
the underlined symbol. All three are (pairwise) proximal in both directions.
Spacing is used to indicate the balanced pair structure for each pair of words.

. . . 1 112 21 112 21 2 1 211 . . .

. . . 1 211 12 211 12 2 1 112 . . .

. . . 1 112 21 1122 1 21 2 1 1 . . .

. . . 1 211 12 212.1 1 12 2 1 1 . . .

. . . 1 211 12 2 1 112 21 112 . . .

. . . 1 211 12 2 1 2.11 12 211 . . .

Note that each pair could also be generated by iterating under ϕBP (or
ϕEBP) the balanced pair in which the fixed points of the bi-infinite words
appear. (See Example 4.1 for ϕEBP.)

Proposition 4.7. Suppose that ϕ is strong Pisot , and let T, T ′ ∈ Tϕ.
If T and T ′ are either forward or backward proximal , then γ(T ) and γ(T ′)
have the same geometric realization. If ϕ satisfies GCC and γ(T ) and γ(T ′)
have the same geometric realization, then T and T ′ are proximal in both

directions.
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Proof. Suppose that T and T ′ are either forward or backward proximal.
Then so are the images of γ(T ) and γ(T ′) under the irrational flow on Td

(or lim←−FA, in the nonunimodular case). Since irrational flow is an isometry,
this implies that g(γ(T )) = g(γ(T ′)) (or ĝ(γ(T )) = ĝ(γ(T ′)), respectively).

Suppose that ϕ satisfies GCC, and that γ = γ(T ) and γ′ = γ(T ′) have the
same geometric realization. Choose nk →∞ so that Φ−nk(γ) and Φ−nk(γ′)
converge, say to η and η′ respectively. Then η and η′ have the same geometric
realization and, using GCC, there are t > 0 and n0 ∈ N so that if I and I ′

are the states determined by η + tωR and η′ + tωR, then Φ̂n0(I) = Φ̂n0(I ′).
Moreover, we may choose t so that neither I nor I ′ has a vertex on Es. Then,
for sufficiently large k, the states Ink and I ′nk determined by Φ−nk(γ) + tωR

and Φ−nk(γ′)+ tωR satisfy I = Ink +uk and I ′ = I ′nk +uk with uk ∈ Rd and
uk → 0 as k →∞. Thus

Φ̂n0(Ink − uk) = Φ̂n0(I ′nk − uk) for sufficiently large k.

That is, Φn0(Φ−nk(γ)) and Φn0(Φ−nk(γ′)) share an edge, call it Lk, whose
initial vertex, minLk, satisfies 〈minLk, ωR〉 < 0, provided k is large enough
so that 〈tωR+uk, ωR〉 > 0 (here 〈 , 〉 is the usual Euclidean inner product). It
follows that γ and γ′ coincide along Φnk−n0(Lk). Since 〈Ank−n0(minLk), ωR〉
goes to −∞ as k →∞ and the length of Φnk−n0(Lk) goes to ∞ as k →∞,
T and T ′ are backward proximal. Choosing t as above but with t < 0 shows
that T and T ′ are forward proximal.

Corollary 4.8. Suppose that ϕ is a strong Pisot substitution that sat-

isfies GCC. Then proximality is an equivalence relation, and if T and T ′

are either forward or backward proximal , they are proximal in both direc-

tions. The proximality equivalence class of T is exactly the collection of T ′

for which γ(T ) and γ(T ′) have the same geometric realization.

Suppose that T and T ′ in Tϕ are proximal, and that ϕ is a strong Pisot
substitution satisfying GCC. If γ = γ(T ) and γ′ = γ(T ′), there are times tk
(for k ∈ Z) such that limk→−∞ tk = −∞, limk→∞ tk =∞, and γ− tkωR and
γ′ − tkωR are coincident at zero for all k. Let

NC = {t : γ − tωR and γ′ − tωR are not coincident at zero}.
If D is a component of NC, then D is a bounded interval of the form D =
[a, b) (recall that we take the segments defining states to be closed on the
left and open on the right). Let

γ[a,b) = γ ∩
⋃

t∈[a,b)

(Es + tωR),

and let u be the word in Lϕ determined by γ[a,b). Similarly, let v be the word

determined by γ′[a,b). Then
(
u
v

)
is a geometrically balanced, hence balanced

pair for ϕ. If γ[a,b) and γ′[a,b) do not intersect in their interiors,
(
u
v

)
is irre-
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ducible. In this case we say that
(
u
v

)
is obtained from a bubble in a proximal

pair.

Proposition 4.9. Suppose that ϕ is strong Pisot and satisfies GCC. Let(
u
v

)
be an irreducible balanced pair for ϕ. Then

(
u
v

)
is an essential balanced

pair for ϕ if and only if
(
u
v

)
is obtained from a bubble in a proximal pair or

is a trivial pair
(
i
i

)
.

Proof. Suppose that
(
u
v

)
is obtained from a bubble in the proximal pair

T, T ′. For each n ∈ N, Φ−n(T ) and Φ−n(T ′) are also proximal. There is then
a “geometrical bubble” in γ(Φ−n(T )) and γ(Φ−n(T ′)) that maps, under Φn,
over the geometrical bubble that determines

(
u
v

)
. Thus there is an irreducible

balanced pair
(
u−n

v−n

)
(the linguistic equivalent of the geometrical bubble in

γ(Φ−n(T )) and γ(Φ−n(T ′))) that maps, under ϕnBP, into a word having
(
u
v

)

as a factor, thus
(
u
v

)
is essential.

Conversely, if
(
u
v

)
is essential, for each n ∈ N, let

(
u−n

v−n

)
be an irreducible

balanced pair with
(
u
v

)
a factor of ϕnBP

((
u−n

v−n

))
. For each n, let γ−n, γ

′
−n be

a pair of finite strands that realize the patterns u−n and v−n and have the
same initial and terminal points (so that γ−n∪γ′−n is a geometrical bubble)
located a bounded (minimum) distance from the origin in Rd. By adjusting
by translation in the Eu direction, we can ensure that Φn(γ−n) ∪ Φn(γ′−n)
contains a bubble linguistically equivalent to

(
u
v

)
that meets Es. There is a

subsequence {ni} so that the increasingly long strands Φni(γ−ni) converge
to a strand γ ∈ T S

ϕ . There is a further subsequence so that the strands

Φ
nij (γ′−nij

) converge to a strand γ′ ∈ T S
ϕ . It is clear that γ and γ′ have

the same geometric realization, so that if T and T ′ satisfy γ = γ(T ) and
γ′ = γ′(T ′), then T and T ′ are proximal. Finally,

(
u
v

)
is obtained from a

bubble in the proximal pair T, T ′.

Recall that AEBP is the alphabet consisting of essential balanced pairs
for ϕ. According to the following result, if ϕ is strong Pisot and satisfies
GCC, the substitution ϕEBP : AEBP → (AEBP)∗ is on a finite alphabet.

Lemma 4.10. If ϕ is strong Pisot and satisfies GCC , then AEBP is finite.

Proof. If AEBP is infinite, then according to Proposition 4.9, there are
Tn, Sn ∈ Tϕ so that Tn and Sn are proximal and γ(Tn), γ(Sn) determine an
irreducible geometrical bubble of length at least 2n|ωR|. By translating, we
may assume that these geometric bubbles extend at least from Es−nωR to
Es +nωR. Choose a subsequence {ni} so that Tni → T ∈ Tϕ and Sni → S ∈
Tϕ. Since Tni has the same geometric realization as Sni for each i, T and S
have the same geometric realization, hence T and S must be proximal. But
γ(T ) and γ(S) do not intersect, so T and S cannot be proximal.
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Suppose that Ã = {e1, . . . , em} is a collection of balanced pairs for ϕ that
contains the trivial balanced pairs ei =

(
i
i

)
, i = 1, . . . , d. Suppose also that

ϕ̃(ej) := ϕBP(ej) factors as a product of elements of Ã for each j = 1, . . . ,m.
The matrix for ϕ̃ then has block triangular form

Aϕ̃ =

(
Aϕ B

0 C

)
.

(In particular, ϕ̃ is not primitive if m > d.)

For the tiling space Tϕ̃, let the length of the prototile corresponding to
a balanced pair ei =

(
ui
vi

)
be given by |ui|g = ωi, let

|ei1 . . . eik |g =
t∑

s=1

ωis

be the geometrical length of a word in Ã∗, and let Φ̃ denote the inflation
and substitution homeomorphism on Tϕ̃. (Ordinarily, the invertibility of a
substitution ϕ or associated map Φ on strand space is recognizability, which
depends on primitivity. But in this case, Φ is invertible, so Φ̃ is invertible.)

Then |Φ̃(ei)|g = λ|ei|g for i = 1, . . . ,m, so that ωL,ϕ̃ := (ω1, . . . , ωm) is a
positive left eigenvector for Aϕ̃ with eigenvalue λ.

From the primitivity of ϕ, it follows that the positive right Perron–
Frobenius eigenvector ωR = (f1 . . . , fd)

tr of Aϕ, normalized so that |ωR|1 =∑d
i=1 |fi| = 1, has entries fi equal to the frequency of occurrence of the tiles

of type i in any tiling T = {Tn}∞n=−∞ ∈ Tϕ: for i = 1, . . . , d,

fi = lim
N→∞

1

2N + 1
#{n : −N ≤ n ≤ N and Tn has type i}.

We extend this result to Tϕ̃.

Lemma 4.11. Assume that ϕ is strong Pisot and let Ã = {e1, . . . , em}
be any finite collection of balanced pairs for ϕ with ei =

(
i
i

)
, i = 1, . . . , d,

the trivial balanced pairs. Suppose that Ã satisfies: (i) ϕBP(ei) factors as

a product of elements of Ã for each i ∈ {1, . . . ,m}, and (ii) each ei ∈ Ã
terminates with coincidence. Let ϕ̃ be the restriction of ϕBP to Ã. Let fi be

as above for i = 1, . . . , d, and for i = d+ 1, . . . ,m, let fi = 0. Then, for any

tiling T = {Tn}∞n=−∞ ∈ Tϕ̃,

fi = lim
N→∞

1

2N + 1
#{n : −N ≤ n ≤ N and Tn has type ei}

for all i = 1, . . . ,m, and the limit is uniform in T .

Proof. Since ϕ is primitive and the elements of Ã terminate with coin-
cidence, (Aϕ̃)n has the form

(
(Aϕ)n Bn

0 Cn

)
with Bn strictly positive for large
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enough n, say n ≥M . Then

AlMϕ̃ =

(
AlMϕ [

∑l
i=1A

(l−i)M
ϕ BMC

(i−1)M ]

0 C lM

)

for l = 1, 2, . . . . Let ωL = (ω1, . . . , ωd) and v = (ωd+1, . . . , ωm) so that
(ωL, v)Aϕ̃ = (λωL, λv). Then

ωL

( l∑

i=1

A(l−i)M
ϕ BMC

(i−1)M
)

+ vC lM = λlmv.

That is,

(∗)
( l∑

i=1

λ(l−i)MωLBMC
(i−1)M

)
+ vC lM = λlmv,

with ωLBM and v strictly positive.

Let β be the spectral radius of C. Since C ≥ 0, β is a real eigenvalue
of C and since ωLBM , v are strictly positive, there is a constant K > 0 so
that |ωLBMC

(i−1)M |1 ≥ Kβ(i−1)M and |vC lM |1 ≥ KβlM for all l ∈ N. Thus,
from (∗),

λlm|v|1 ≥
(
βlm +

l∑

i=1

λ(l−i)Mβ(i−1)M
)
K

for all l ∈ N. This implies that β < λ. It follows (again using the fact that
Bn > 0 for n ≥M) that, up to scale, ωR,ϕ̃ := (ωR, 0) = (f1, . . . , fd, 0, . . . , 0)
is the unique eigenvector for Aϕ̃ with all entries nonnegative and that

Anϕ̃w

|An
ϕ̃
w| → ωR,ϕ̃

for any nonnegative w ∈ Rm with at least one nonzero entry. In particular,
for any ei ∈ Aϕ̃ and k ∈ {1, . . . ,m},

(l(ϕ̃n(ei)))k
|l(ϕ̃n(ei))|

→ fk,

where the numerator represents the kth component of the abelianization
vector l of the word ϕ̃n(ei). Thus, for each k ∈ {1, . . . ,m} and j ∈ N, there
is εj > 0 so that for all i ∈ {1, . . . ,m},

∣∣∣∣
(l(ϕ̃j(ei)))k
|l(ϕ̃j(ei))|

− fk
∣∣∣∣ < εj

and εj → 0 as j →∞.

Now for N ∈ N, let w = w−N . . . wN be the word in A∗
ϕ̃ corresponding

to the central portion of a tiling T = {Tn}∞n=−∞ (that is, Tn has type wn).
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For any j ∈ N, w can be factored as w = uϕ̃j(ei1) . . . ϕ̃
j(eit)v with |u|, |v|

bounded independently of T and N . It follows that

−εj −
|u|+ |v|∑t

s=1 |l(ϕ̃j(eis))|
fk

|u|+ |v|∑t
s=1 |l(ϕ̃j(eis))|

+ 1

≤

∑t
s=1(l(ϕ̃

j(eis)))k∑t
s=1 |l(ϕ̃j(eis))|

− fk −
|u|+ |v|∑t

s=1 |l(ϕ̃j(eis))|
fk

|u|+ |v|∑t
s=1 |l(ϕ̃j(eis))|

+ 1

≤
∑t

s=1(l(ϕ̃
j(eis)))k

|u|+ |v|+ ∑t
s=1 |l(ϕ̃j(eis))|

− fk

≤ 1

2N + 1
#{n : −N ≤ n ≤ N and Tn has type ek} − fk

≤ |u|+ |v|+
∑t

s=1(l(ϕ̃
j(eis)))k∑t

s=1 |l(ϕ̃j(eis))|
− fk ≤

|u|+ |v|∑t
s=1 |l(ϕ̃j(eis))|

+ εj.

Since
∑t

s=1 |l(ϕ̃j(eis))| → ∞ as N →∞, we have

lim sup
N→∞

∣∣∣∣
1

2N + 1
#{n : −N ≤ n ≤ N and Tn has type ek} − fk

∣∣∣∣ ≤ εj .

Since εj → 0 as j →∞, we have the desired result.

We have just proved that if ϕ satisfies GCC, then in the tiling space
TϕEBP , the tile types corresponding to nontrivial essential balanced pairs
occur with zero frequency in any tiling. Equivalently, if T, T ′ is a proximal
pair in Tϕ, then

µ{t : t0 ≤ t ≤ t0 + τ, t ∈ NC}/τ → 0,

uniformly in t0, as τ → ∞ (where µ is Lebesgue measure, and NC is the
previously defined set of noncoincident times).

Lemma 4.12. Suppose that ϕ is strong Pisot and satisfies both GCC and

the no cycle condition. If ϕ̃ is derived from ϕ by a one-cut rewriting , then

Aϕ̃,EGBP :=

{(
ũ

ṽ

)
:

(
ũ

ṽ

)
is an essential geometrically balanced pair for ϕ̃

}

is finite.

Proof. Suppose that
(
ũ−n

ṽ−n

)
is a sequence of irreducible geometrically bal-

anced pairs for ϕ̃ with
(
ũ
ṽ

)
a factor of ϕ̃nGBP

((
ũ−n

ṽ−n

))
for n ∈ N. Then the cor-
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responding balanced pairs
(
u
v

)
and

(
u−n

v−n

)
for ϕ have the property that

(
u
v

)

is a factor of ϕnBP

((
u−n

v−n

))
for n ∈ N. It follows that the irreducible factors

of
(
u
v

)
are all essential. Now, the cut letter a (or the word ba, in the case ϕ̃

is obtained from ϕ as in Case 2 of the definition of ϕ̃) occurs with bounded
gap. That is, there is an N ∈ N so that if W ∈ Lϕ has length at least N ,
then W contains a (ba, respectively) as a factor. It follows from Lemma 4.11
that there is a K ∈ N so that if W ∈ LϕEBP with |W | ≥ K, then W contains
a factor that is itself a product of N trivial balanced pairs. Thus, if

(
ũ
ṽ

)
is

an essential geometrically balanced pair for ϕ̃ that is long enough so that
the corresponding

(
u
v

)
factors into a product of at least K essential balanced

pairs for ϕ, then (
u

v

)
= . . .

(
i1

i1

)
. . .

(
iN

iN

)
. . .

with ij ∈ A for j = 1, . . . , N . There must be j with ij = a (or ijij+1 = ba, re-
spectively), hence

(
ũ
ṽ

)
is not irreducible and thus not essential. It follows that

there are only finitely many essential geometrically balanced pairs for ϕ̃.

Suppose, for the remainder of this section, that ϕ is strong Pisot and

satisfies GCC and the no cycle condition on periodic words. In addition, ϕ̃
is obtained from ϕ by a one-cut rewriting. Let

T P
ϕ =

{(
T

T ′

)
: T, T ′ ∈ Tϕ and T, T ′ are proximal

}

have the natural (product) topology. It follows from Proposition 4.9 and
Lemma 4.10 that T P

ϕ ≃ TϕEBP . Let ϕ̃EGBP : Aϕ̃,EGBP → (Aϕ̃,EGBP)∗ be the
substitution (on a finite alphabet, by Lemma 4.12) given by

ϕ̃EGBP

(
ũ

ṽ

)
=

(
ϕ̃(ũ)

ϕ̃(ṽ)

)
,

factored as a product of essential geometrically balanced pairs. Let Aϕ̃ =

{1, . . . , d̃}. (Note that the symbol i ∈ Aϕ is not equal to the symbol i ∈ Aϕ̃,
since ϕ̃ is a one-cut rewriting of ϕ and not an extension of ϕ.) If we order

the elements of Aϕ̃,EGBP as {ẽ1, . . . , ẽn}, where for i = 1, . . . , d̃, ẽi denotes
the trivial geometrically balanced pair

(
i
i

)
for ϕ̃, then the matrix for ϕ̃EGBP

has the form
(
Ã B̃

0 C̃

)
where Ã = Aϕ̃. Again, if

(
Ã B̃

0 C̃

)n

=

(
Ãn B̃n

0 C̃n

)
,

then B̃n is strictly positive for sufficiently large n. Thus (see Lemma 4.11) if

S̃ = {S̃k}∞k=−∞∈Tϕ̃EGBP
, the tiles S̃k are predominantly of types {ẽ1, . . . , ẽd̃}.
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In fact, there must be {km}∞m=−∞ with limm→−∞ km = −∞, limm→∞ km
=∞, and S̃km , S̃km+1, . . . , S̃km+|m| all of trivial type for each m.

We can interpret S̃ as a pair
(
T̃

T̃ ′

)
of tilings in Tϕ̃: if S̃k is a tile of type

ẽi =
(
ũ
ṽ

)
, tiling the interval [a, b), then in T̃ and T̃ ′, the interval [a, b) is tiled

following the patterns ũ and ṽ, respectively. Under this interpretation, T̃ and
T̃ ′ are proximal. Conversely, if T̃ and T̃ ′ are proximal in Tϕ̃, then the corre-
sponding T, T ′ in Tϕ are proximal and the pair

(
T
T ′

)
determines S ∈ TϕEBP .

The tiling S in turn uniquely determines S̃ ∈ Tϕ̃EGBP
[for instance, any two

consecutive occurrences of
(
a
a

)
in S (or

(
b
b

)(
a
a

)
in the case ϕ̃ is constructed as

in Case 2) uniquely determine the decomposition of the associated section

of
(
T̃

T̃ ′

)
into essential geometrically balanced pairs].

Thus T P
ϕ̃ ≃ Tϕ̃EGBP

and, since the homeomorphism T → T̃ takes proxi-
mal pairs to proximal pairs, we have

Proposition 4.13. Suppose that ϕ is strong Pisot and satisfies GCC

and the no cycle condition. Then

TϕEBP ≃ T P
ϕ ≃ T P

ϕ̃ ≃ Tϕ̃EGBP
.

The definition of weak equivalence for substitutions appears in [BD1]. For

substitutions ϕ̃ and ψ̃, this reads as follows: ϕ̃ and ψ̃ are weak equivalent,
denoted by ϕ̃ ∼w ψ̃, if for i ∈ N, there are ni,mi ∈ N and morphisms
τi : Aϕ̃ → (A

ψ̃
)∗, σi : A

ψ̃
→ (Aϕ̃)∗ so that ϕ̃mi = σiτi and ψ̃ni = τiσi+1:

σ1 τ1 σ2 τ2 σ3

(ϕ̃)m1 (ϕ̃)m2

(ψ̃)n1 (ψ̃)n2

. . .

@
@

@I �
�

�	 @
@

@I �
�

�	 @
@

@I
�

� �

�

(2)

The next result follows immediately from known results. However, we
make use of the details of the argument in the proof of Theorem 4.15 and
include them for completeness.

Lemma 4.14. Suppose that ϕ and ψ are strong Pisot and satisfy both

GCC and the no cycle condition. Let h : Tϕ → Tψ be a homeomorphism.

There are one-cut rewritings ϕ̃ of ϕ and ψ̃ of ψ so that ϕ̃ ∼w ψ̃ and

lim←− fϕ̃ ≃ Tϕ̃ ≃ Tϕ ≃ Tψ ≃ Tψ̃ ≃ lim←− fψ̃.
Proof. Let h : Tϕ → Tψ be a homeomorphism. Assume that h is orien-

tation preserving; otherwise replace h by its reverse (see [BD1]). Also, we
may assume that ϕ and ψ are such that all asymptotic composants in Tϕ
and Tψ are fixed by inflation and substitution ([BD1]). Since h takes asymp-
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totic composants to asymptotic composants, and any composant fixed under
inflation and substitution contains a tiling fixed under inflation and substi-
tution, we may modify h by an isotopy to a homeomorphism h′ so that (1)
for T ∈ Tϕ, h′(T ) = h(T ) + t, where t = t(T ), and (2) for some T ∈ Tϕ,
Φ(T ) = T and Ψ(h′(T )) = h′(T ). To simplify notation, we assume that h
itself has this property.

We use these fixed tilings to determine the one-cut rewritings ϕ̃ of ϕ and
ψ̃ of ψ. The roses Rϕ̃ and R

ψ̃
are formed by taking the disjoint unions of

the collections of prototiles and identifying all of the endpoints to a single
branch point b. The prototiles Pa, for a ∈ Aϕ̃ or a ∈ A

ψ̃
, then become the

petals of the roses. The rose maps fϕ̃ : Rϕ̃ → Rϕ̃ and f
ψ̃

: R
ψ̃
→ R

ψ̃
fix

b and map the petals following the patterns described by ϕ̃ and ψ̃, locally
stretching arc length by a factor of λ = λϕ̃ or λ = λ

ψ̃
. Since ϕ̃ and ψ̃ are

proper, it follows from Theorem 4.3 of [AP] that

lim←− fϕ̃ ≃ Tϕ̃ ≃ Tϕ ≃ Tψ ≃ Tψ̃ ≃ lim←− fψ̃.
The homeomorphism p̂ϕ̃ : Tϕ̃ → lim←− fϕ̃ is defined by

p̂ϕ̃(T ) = (pϕ̃(T ), pϕ̃(Φ̃−1(T )), pϕ̃(Φ̃−2(T )), . . .),

where pϕ̃(T ) = s ∈ Pa ⊆ Rϕ̃ provided T0, the tile in T containing 0, is the
translated prototile Pa with T0 = Pa−s. It follows that the homeomorphism
of lim←− fϕ̃ with lim←− fψ̃ takes (b, b, . . .) to (b, b, . . .), where b denotes the branch

point in both Rϕ̃ and R
ψ̃
. According to the proof of Theorem 1.16 of [BJV],

ϕ̃ is weakly equivalent to ψ̃.

Theorem 4.15. Suppose that ϕ and ψ are strong Pisot and satisfy both

GCC and the no cycle condition. Then Tϕ ≃ Tψ if and only if TϕEBP ≃ TψEBP
.

Proof. Suppose that TϕEBP ≃ TψEBP
. The original tiling spaces Tϕ and Tψ

sit in TϕEBP and TψEBP
as distinguished subspaces; for example, they are the

unique subspaces irreducible with respect to the property of being indecom-
posable. It follows that Tϕ ≃ Tψ.

Now suppose that Tϕ ≃ Tψ. According to Proposition 4.13, in order to
show that TϕEBP ≃ TψEBP

, it is enough to show that Tϕ̃EGBP
≃ T

ψ̃EGBP
for an

appropriate choice of ϕ̃, ψ̃. We take ϕ̃ and ψ̃ to be as in the proof of Lemma
4.14, so that ϕ̃ is weakly equivalent to ψ̃.

Let si and ti be the matrices (abelianizations) of the morphisms σi and τi
(see (2)), so that (Aϕ̃)mi = siti and (A

ψ̃
)ni = tisi+1.

Suppose that
(
ũ
ṽ

)
is a geometrically balanced pair for ϕ̃, and let ωL,ϕ̃

denote a left Perron–Frobenius eigenvector for Aϕ̃. Then |ũ|g = |ṽ|g, so∑ |ũi|g =
∑ |ṽi|g and 〈l(ũ), ωL,ϕ̃〉 = 〈l(ṽ), ωL,ϕ̃〉 (where 〈 , 〉 denotes the usual

Euclidean inner product). That is, 〈l(ũ)− l(ṽ), ωL,ϕ̃〉 = 0, which implies that
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l(ũ)− l(ṽ) ∈ Es
ϕ̃ and (Aϕ̃)n(l(ũ)− l(ṽ))→ 0 as n→∞. But l(ũ)− l(ṽ) ∈ Zd̃,

so (Aϕ̃)n(l(ũ)− l(ṽ)) = 0 for some n, and l(ũ)− l(ṽ) ∈ Nϕ̃, the generalized
null space of Aϕ̃.

Choose j large enough so that m :=
∑j

i=2mi ≥ d̃, and define n =∑j−1
i=1 ni. The fact that t1(Aϕ̃)m = (A

ψ̃
)ntj implies that tj(Nϕ̃) ⊆ N

ψ̃
.

Therefore tj(l(ũ))− tj(l(ṽ)) ∈ Nψ̃
for sufficiently large j. That is, 〈tj(l(ũ))−

tj(l(ṽ)), ωL,ψ̃
〉 = 0, so that |τj(ũ)|g = |τj(ṽ)|g. In other words, for sufficiently

large j, τj takes geometrically balanced pairs for ϕ̃ to geometrically balanced

pairs for ψ̃.

Similarly, for large enough j, sj(Nψ̃
) ⊆ Nϕ̃, and σj takes geometrically

balanced pairs for ψ̃ to geometrically balanced pairs for ϕ̃. Thus we have a
weak equivalence between ϕ̃GBP and ψ̃GBP. It is clear that this restricts to a

weak equivalence between ϕ̃EGBP and ψ̃EGBP. A weak equivalence between
substitutions induces a homeomorphism between their tiling spaces ([BD1]),
so that Tϕ̃EGBP

≃ T
ψ̃EGBP

.

Theorem 4.16. Suppose that ϕ and ψ are strong Pisot substitutions

that satisfy both GCC and the no cycle condition, and let h : Tϕ → Tψ be

a homeomorphism. If T, T ′ are proximal in Tϕ, there is t0 so that h(T ) and

h(T ′) + t0 are proximal in Tψ.

Proof. Suppose that h : Tϕ → Tψ is a homeomorphism, and let ϕ̃ and ψ̃
be one-cut rewritings of ϕ and ψ associated with h defined as in the proof
of Lemma 4.14. We also use h : Tϕ̃ → Tψ̃ to denote the homeomorphism

between Tϕ̃ and T
ψ̃

induced by the homeomorphisms T → T̃ associated

with each of ϕ and ψ. Other notation in the following argument will serve
to avoid confusion.

Recall that the homeomorphism p̂ϕ̃ : Tϕ̃ → lim←− fϕ̃ is defined by

p̂ϕ̃(T ) = (pϕ̃(T ), pϕ̃(Φ̃−1(T )), pϕ̃(Φ̃−2(T )), . . .),

where pϕ̃(T ) = s ∈ Pa ⊆ Rϕ̃ if T0, the tile in T containing 0, is the trans-
lated prototile Pa with T0 = Pa − s. Given T = {Ti}∞i=−∞, let w(T ) =
. . . w−1w0w1 . . . denote the bi-infinite word representing T (that is, wi = j
if and only if Ti is of type j). Recall that [w(T )], the shift class of w(T ),
is the pattern of the composant of T . Define the kth projection map πk :
lim←− fϕ̃ → Rϕ̃ by πk(x0, x1, . . .) = xk. Then the path t 7→ πk(p̂(T + t)) winds

around Rϕ̃ following the pattern of the composant of Φ̃−k(T ).

The weak equivalence between ϕ̃ and ψ̃ induced by the homeomorphism
ĥ := p̂

ψ̃
◦ h ◦ p̂−1

ϕ̃
arises as follows (see [BJV] for details). For a ∈ Aϕ̃,

let Pa
◦

= Pa \ {b} ⊆ Rϕ̃. For each k ∈ N and a ∈ Aϕ̃, the set π−1
k (Pa

◦

) is
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homeomorphic to the product of a Cantor set (π−1
k ({x}), where x ∈ Pa

◦

)
and an arc. The larger is k, the longer and skinnier is this product and the

closer are all of its endpoints π−1
k (Pa

◦

)∩ π−1
k ({b}) to the point b = (b, b, . . .).

A similar statement can be made for lim←− fψ̃.

Thus, there is an l1 large enough so that, for each a ∈ A
ψ̃
, the points

π0(ĥ
−1(π−1

l1
(Pa

◦

) ∩ π−1
l1

({b}))) in Rϕ̃ are all close to b, and all the arcs of

ĥ−1(π−1
l1

(Pa
◦

)) map under π0 aroundRϕ̃ in the same pattern, which we denote
by σ1(a) ∈ A∗

ϕ̃.
There is now an m1 large enough so that for each a ∈ Aϕ̃, the points

πl1(ĥ(π
−1
m1(Pa

◦

)∩π−1
m1

({b}))) are all close to b inR
ψ̃
, and the arcs of ĥ(π−1

m1(Pa
◦

))

all map in the same well-defined pattern, which we label τ1(a) ∈ A∗
ψ̃
,

around R
ψ̃
, etc. We see from this description that if [w] is the pattern of

the composant of Φ̃−m1(T ), then [τ1(w)] is the pattern of the composant of

Ψ̃−l1(h(T )).

Suppose that T and T ′ are proximal in Tϕ. Then T̃ and T̃ ′ are proximal

in Tϕ̃, and hence so are Φ̃−m1(T̃ ) and Φ̃−m1(T̃ ′). Thus the pair of words
( Φ̃−m1(T̃ )

Φ̃−m1 (T̃ ′)

)
factors as a bi-infinite product of essential geometrically balanced

pairs for ϕ̃. Apply τ1 to this product; the result factors as a bi-infinite
product of essential geometrically balanced pairs for ψ̃ (see the proof of

Theorem 4.15). Thus the patterns [τ1w(Φ̃−m1(T̃ ))] and [τ1w(Φ̃−m1(T̃ ′))],

appropriately shifted, balance geometrically. This means that Ψ̃−l1(h(T ))

and Ψ̃−l1(h(T ′)) + t1 are proximal in T
ψ̃

for some t1, and hence so are h(T )

and h(T ′) + t0, where t0 = (λ
ψ̃
)l1t1.

Example 4.17 (Using proximality to distinguish tiling spaces). Define
ϕ and ψ as follows:

ϕ(1) = 1112211122111221212, ϕ(2) = 1112212,

ψ(1) = 1112211121212121212, ψ(2) = 1112212.

The substitution ϕ is the second iterate of that considered in Examples
4.1, 4.2 and 4.6, and the substitution ψ is obtained by modifying ϕ slightly.

The basic structure of the asymptotic composants is the same: A proper
substitution on two symbols can have at most four asymptotic composants
([BDH]), and Tϕ and Tψ both have a pair of backward asymptotic and a
pair of forward asymptotic composants. For ϕ, these are represented by the
bi-infinite words (spaced to indicate balanced pairs)

. . . 1 2 1 1 1 2 2 1 112 21 112 21 2 . . .

. . . 1 2 1 1 1 2 2 1 2.11 12 211 12 2 . . .



Proximality in Pisot tiling spaces 221

and
. . . 2 211 12 2 1 112 21 2 1 2 1 1 1 . . .

. . . 1 112 21 2 1 211 12 2 1 2 1 1 1 . . .

and for ψ by

. . . 1 1 1 2 2 1 112 1 2 12 1 21 2 . . .

. . . 1 1 1 2 2 1 2.11 1 2 21 1 12 2 . . .

and
. . . 1 12 12 1 21 2 1 2 1 1 1 . . .

. . . 1 21 21 1 12 2 1 2 1 1 1 . . .

It is easy to check that ϕ and ψ are strong Pisot. All strong Pisot sub-
stitutions on two symbols satisfy GCC (see [BD2], [HS], and [BK] for the
unimodular case).

Tilings, asymptotic composants, and essential balanced pairs are identi-
cal for all iterates of a substitution, and we saw in Examples 4.1 and 4.6 that
ϕ has at least three essential balanced pairs which generate the backward
asymptotic (and forward proximal) tilings, T and T ′, and a third tiling T ′′

proximal in both directions with each of the first two. This can be seen from
ϕEBP, which includes at least the information (recall that ϕ is the second
iterate of the substitution in Example 4.1):

ϕEBP(a) = 111221baba21ba212,

ϕEBP(b) = 111221baba21ba21baba21ba212,

ϕEBP(c) = 111221baba21ba21bac111221ba212,

along with the definition of ϕEBP on duals. In particular, ϕEBP has two
additional backward asymptotic composants indicating that T ′′ is proximal
to T and T ′ in Tϕ:

. . . 1baba21 . . .

. . . 1bac1a2 . . .

along with the three that capture the two original backward asymptotic
composants:

. . . 1112211122 . . .

. . . 1112212.122 . . .

. . . 111221baba . . . .

Suppose that Tϕ ≃ Tψ. According to Theorem 4.15, TϕEBP ≃ TψEBP
. As

in the proof of Lemma 4.14, we assume the homeomorphism is orientation
preserving. Since such a homeomorphism must take backward asymptotic
composants to backward asymptotic composants, TψEBP

must have at least
five backward asymptotic composants.
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The proof of the next lemma appears in the Appendix.

Lemma 4.18. The balanced pairs
(
1
1

)
,
(
2
2

)
,
(
21
12

)
,
(
211
122

)
, and their duals are

the only essential balanced pairs for ψ.

It follows from Lemma 4.18 that the substitution ψEBP is entirely given
by

ψEBP(a) = 111221b12a1a a1a212,

ψEBP(b) = 111221b12a1a a a1a21b12a1a a a1a212

and the implied definition on trivial balanced pairs and the duals of a, b.
The only backward asymptotic words for ψEBP are

. . . 1112211121 . . .

. . . 111221b12a . . .

. . . 1112212111 . . .

which code the original backward asymptotic composants. That is, TψEBP

has only three backward asymptotic composants, and Tϕ ≁ Tψ.

Suppose that ϕ and ψ are strong Pisot and satisfy both GCC and the
no cycle condition. If Tϕ ≃ Tψ, then T P

ϕ is homeomorphic to T P
ψ under

a homeomorphism that maps Tϕ to Tψ, hence T P
ϕ /Tϕ ≃ T P

ψ /Tψ (we are

identifying Tϕ and Tψ with the “diagonals” in T P
ϕ and T P

ψ ). The space T P
ϕ /Tϕ

has a local product structure everywhere but at [Tϕ]. The element [Tϕ] itself
is the center of an m-od, where m = 2(# asymptotic pairs). Let RϕEBP be
the rose associated with T P

ϕ ≃ TϕEBP , and let fϕEBP : RϕEBP → RϕEBP be the
rose map. Collapsing Rϕ (which is embedded in RϕEBP) to the branch point
induces a substitution ϕP on just the symbols in AEBP that correspond to
nontrivial essential balanced pairs and the map fϕP : RϕP := RϕEBP/Rϕ →
RϕP . Furthermore, T P

ϕ /Tϕ ≃ lim←− fϕP .

Assuming still that ϕ and ψ are strong Pisot and satisfy both GCC
and the no cycle condition, suppose that Tϕ ≃ Tψ. Any homeomorphism of
T P
ϕ with T P

ψ not only takes Tϕ to Tψ but must also take arc components

of T P
ϕ that are asymptotic to asymptotic composants of Tϕ to arc compo-

nents of T P
ψ that are asymptotic to asymptotic composants of Tψ (again,

Tϕ and Tψ are identified with the “diagonals” in T P
ϕ and T P

ψ ). Let T A
ϕ be

the minimal subcontinuum of T P
ϕ that contains all arc components of T P

ϕ

that are asymptotic to asymptotic composants of Tϕ. Thus Tϕ ≃ Tψ implies
T A
ϕ ≃ T A

ψ .

Note that
(
T ′

T ′′

)
∈ T P

ϕ is asymptotic to
(
T
T

)
∈ Tϕ ⊂ T P

ϕ if and only if

T, T ′, T ′′ are all asymptotic (in the same direction). Thus the pairs
(
T ′

T ′′

)
∈

T A
ϕ are precisely those proximal pairs all of whose bubbles come from asymp-
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totic pairs (see Proposition 4.9). More precisely, let

ABPϕ =

{(
u

v

)
:

(
u

v

)
is a trivial balanced pair for ϕ

or

(
u

v

)
is obtained from a bubble in an asymptotic pair for ϕ

}
.

As Φ takes asymptotic pairs to asymptotic pairs, for
(
u
v

)
∈ ABPϕ,

(ϕ(u)
ϕ(v)

)

can be factored as a product of elements of ABPϕ; this defines ϕABP :
ABPϕ → (ABPϕ)∗. We see that TϕABP ≃ T A

ϕ . Letting ϕA be the substitution
on the nontrivial elements of ABPϕ that is the composition of ϕABP with the
morphism that forgets the trivial balanced pairs, and letting fϕA : RϕA →
RϕA be the associated rose map, we see (just as in the preceding paragraph)
that T A

ϕ /Tϕ ≃ lim←− fϕA . We have almost completed the proof of

Proposition 4.19. Suppose that ϕ and ψ are strong Pisot and satisfy

both GCC and the no cycle condition. If Tϕ ≃ Tψ, then

(i) lim←− fϕP ≃ lim←− fψP
,

(ii) lim←− fϕA ≃ lim←− fψA
.

Moreover , (i) is equivalent to ϕP ∼w ψP and (ii) is equivalent to ϕA ∼w ψA.

(The definition of ∼w precedes Lemma 4.14.)

Proof. (i) and (ii) follow from the discussion preceding this proposition.
The branch points of lim←− fϕP , lim←− fψP

, lim←− fϕA and lim←− fψA
are distinguished,

so by [BJV], lim←− fϕP ≃ lim←− fψP
if and only if ϕP ∼w ψP, and lim←− fϕA ≃

lim←− fψA
if and only if ϕA ∼w ψA.

Remark. It can be tedious to identify all essential balanced pairs, even
for relatively simple substitutions. At the same time, the alphabet for the
substitution ϕA on nontrivial balanced pairs arising from bubbles formed by
asymptotic pairs is no more difficult to determine than the asymptotic pairs
themselves. As a result, the use of (ii) of Proposition 4.19 to distinguish
nonhomeomorphic tiling spaces Tϕ and Tψ is more straightforward when it
applies. We illustrate this with the next example.

Example 4.20 (Distinguishing tiling spaces using the reduced substi-
tution on balanced pairs). As part of his program to classify hyperbolic
one-dimensional attractors (up to topological conjugacy), R. F. Williams
([Wil]) sought to determine the shift equivalence classes of all (there are 46)
substitutions on two letters that are proper and whose abelianizations have
characteristic polynomial x2 − 3x − 2. Shift equivalence of proper substi-
tutions is equivalent to topological conjugacy of the corresponding inflation
and substitution homeomorphisms of the tiling spaces. Williams reduced the



224 M. Barge and B. Diamond

problem to the consideration of four particular substitutions, two of which:

ϕ(1) = 11221, ϕ(2) = 1,

and

ψ(1) = 112222, ψ(2) = 12,

were finally shown in [DA] not to be shift equivalent. We show here that Tϕ
and Tψ are not even homeomorphic. This completes the topological classifi-
cation of the spaces arising from the characteristic polynomial x2 − 3x− 2:
two of these spaces are homeomorphic if and only if their inflation and
substitution homeomorphisms are conjugate, and there are exactly three
topological equivalence classes (see [BSw]).

Each of Tϕ and Tψ has one pair of forward and one pair of backward
asymptotic composants. Since a tiling space for a proper substitution on
two letters has at most four asymptotic composants ([BDH]), there are no
others.

A proper substitution has no cycles of periodic words. Also, since ϕ
and ψ are strong Pisot substitutions on two letters, they satisfy GCC (see
[BD2], [HS], and [BK] for the unimodular case—the nonunimodular case is
a straightforward generalization). It is tedious to ensure that all essential
balanced pairs have been identified for either of ϕ and ψ, so we make use
of Proposition 4.19 and work only with essential balanced pairs associated
with asymptotic composants.

For ϕ, the only essential balanced pair associated with asymptotic com-
posants is a :=

(
1122
2211

)
and its dual a. If 1 :=

(
1
1

)
and 2 :=

(
2
2

)
, then

ϕABP(i) = ϕ(i) for i = 1, 2, and

ϕABP(a) = 11a1a1, ϕABP(a) = 11a1a1.

The reduced substitution is

ϕA(a) = aa, ϕA(a) = aa,

and the inverse limit of the rose map, lim←− fϕA , is homeomorphic to a pair of
dyadic solenoids joined at a point.

As for ψ, there are ten essential balanced pairs associated with asymp-
totic composants: a :=

(
12
21

)
, b :=

(
2221
1222

)
, c :=

(
1211222
2212121

)
, d :=

(
22121
11222

)
,

e :=
(
1122
2211

)
, and their duals. A computation yields

ψA(a) = ab, ψA(b) = ac, ψA(ac) = adaec,

ψA(d) = aec, ψA(e) = aed

(and the dual statements). A quick check shows that ψA is primitive and ape-
riodic, so lim←− fψA

is an indecomposable continuum, thus lim←− fϕA ≁ lim←− fψA
.
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(Alternatively, Ȟ1(lim←− fϕA) ≃ lim−→
(
02
20

)
≃ Z ⊕ Z, while Ȟ1(lim←− fψA

) is hom-
eomorphic to the direct sum of ten copies of Z, as A is nonsingular.) Thus,
by Proposition 4.19(ii), Tϕ ≁ Tψ.

5. GCC if and only if proximality is closed. The main result of this
section is Theorem 5.4, in which we show that a strong Pisot substitution
ϕ satisfies GCC if and only if proximality is a closed relation on Tϕ.

Lemma 5.1. Suppose that A is a nonsingular , hyperbolic, integer d × d
matrix and FA : Td → Td is the associated Anosov endomorphism. Sup-

pose also that there is a compact metric space X with homeomorphism F :
X → X and a covering map c : X → lim←−FA that semi-conjugates F with

the shift homeomorphism f̂A : lim←−FA → lim←−FA. Then there are d×d integer

matrices B and R with RB = AR and a homeomorphism h : X → lim←−FB
so that the diagram

F̂R

lim←−FA

c

X lim←−FB
@

@
@R

-h

�
�

�	

commutes, where F̂R is induced by FR : Td → Td.

Proof. Let c be an m-to-one covering map and let r = degFA = |detA|.
Let πk : lim←−FA → Td be projection onto the kth coordinate. Given δ > 0,
let {Ui} be a finite cover of Td by open δ/4-balls with the property that if

Ui∩Ul = ∅, then U i∩U l = ∅. For each k ∈ N, F−k
A (Ui) = U1

i ∪ · · · ∪U r
k

i is a

disjoint union of topological balls. For large enough k, diam(π−1
k (U ji )) < δ

for all i, j. Then, for sufficiently small δ,

c−1(π−1
k (U ji )) = W j,1

i ∪ · · · ∪W
j,m
i

is a disjoint union with c|W j,s
i : W j,s

i → π−1
k (U ji ) a homeomorphism for all

i, j, s. Define the relation ∼ on X by x ∼ y if and only if x, y ∈ W j,s
i for

some i, j, s and πk ◦ c(x) = πk ◦ c(y). Note that if x ∈W j,s
i ∩W

t,q
l , y ∈W j,s

i

and πk ◦ c(x) = πk ◦ c(y), then y ∈W t,q
l . It follows that ∼ is an equivalence

relation. Let X1 = X/∼, and define p1 : X1 → Td by

p1([x]) = πk(c(x)).

Then p1 is exactly m-to-one everywhere, and if p1([x]) = p1([y]) with [x] 6=
[y], then there are s, i, j, q, t, l with x ∈W j,s

i , y ∈W t,q
l , and W j,s

i ∩W
t,q
l = ∅.

Since W j,s
i ∩W

t,q
l = ∅ by the assumption on Ui and Ul, the distance between

[x] and [y] must be at least as large as the minimum of all the minimum
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distances between pairs of disjoint compact sets W c,a
b and W f,g

e . That is,
there is η > 0 so that if p1([x]) = p1([y]) and [x] 6= [y], then d([x], [y]) > η.
Thus p1 is a covering map and since X1 is compact, X1 ≃ Td.

Now if x ∼ y, say x, y ∈W j,s
i with πk ◦ c(x) = πk ◦ c(y), then

πk ◦ c(F (x)) = πk ◦ f̂A(c(x)) = FA(πk(c(x)))

= FA(πk(c(y))) = πk ◦ f̂A(c(y))

= πk ◦ c(F (y)).

We show that F (x), F (y) ∈ W t,q
l for some q, t, l, so that F (x) ∼ F (y).

In order to guarantee this, we will adjust δ (and k correspondingly): Let
̺ = inf{d(u, v) : u 6= v, c(u) = c(v)} > 0, and choose ε > 0 small enough
so that if d(x, y) < ε, then d(F (x), F (y)) < ̺/2. Now, for δ > 0 sufficiently

small, diam(W j,s
i ) < ε for all i, j, s. With this δ and k, let πk ◦ c(F (x)) ∈ U tl .

Then πk ◦c(F (x)) = πk ◦c(F (y)) ∈ U tl , hence for some p, q, F (x) ∈W t,p
l and

F (y) ∈ W t,q
l . Since x, y ∈ W j,s

i , d(x, y) < ε. It follows that d(F (x), F (y)) <
̺/2, hence p = q and F (x) ∼ F (y).

Thus there is an induced map F1 : X1 → X1, and

p1 ◦ F1([x]) = p1([F (x)]) = πk ◦ c(F (x))

= πk ◦ f̂A(c(x)) = FA ◦ πk(c(x))
= FA ◦ p1([x]).

That is, we have a commuting diagram of toral endomorphisms

p1 p1

F1

FA

X1 X1

Td Td
?

�
?

�

It now follows that there are integer matrices R and B (with |detR| = m)
which satisfy RB = AR and a homeomorphism h1 : X1 → Td so that
FB = h1 ◦ F1 ◦ h−1

1 , FR ◦ h1 = p1 and the diagram

FR FR

FB

FA

Td Td

Td Td
?

�
?

�

commutes.

Claim. lim←−F1 ≃ X.
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The commuting diagram

c c

F

f̂A

X X

lim←−FA lim←−FA
?

�
?

�

��	 ��	

��	 ��	

π π

πk πk

F1

FA

p1

p1

X1 X1

Td Td
?

�

?
�

in which π : X → X/∼ = X1 is the quotient map, induces the commuting
diagram

ĉ ĉ

F

f̂A

X X

lim←−FA lim←−FA
?

�
?

�

��	 ��	

��	 ��	

π̂ π̂

π̂k π̂k

f̂1

f̂A

p̂1

p̂1

lim←−F1 lim←−F1

lim←−FA lim←−FA
?

�

?
�

Here π̂k = (f̂A)−k, ĉ is exactly m-to-one, and p̂1 is exactly m-to-one. Thus
π̂ is a homeomorphism. Moreover,

ĥ1 ĥ1

f̂1

f̂B

F̂R F̂R

π̂ π̂

c c

F

f̂A

X

lim←−FA

X

lim←−FA

lim←−F1 lim←−F1

lim←−FB lim←−FB
? - ?

-

--

? ?

-

-

@@R ��	

��	 @@R

commutes. Letting h = ĥ1 ◦ π̂, we have the desired result.
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Auslander proves under fairly general hypotheses that if ∼p is a closed
relation, then it is an equivalence relation ([Aus]). We require this fact in
Theorem 5.4 and include a brief proof in (3) of Lemma 5.2 for completeness.

Lemma 5.2. Suppose that ϕ is strong Pisot and that ∼p is a closed

relation on Tϕ ≃ T S
ϕ . Then:

(1) γ ∈ T S
ϕ is forward proximal to γ′ ∈ T S

ϕ if and only if γ is backwards

proximal to γ′.
(2) If {Bi} = B is the collection of all irreducible balanced pairs formed

by proximal pairs in T S
ϕ , then B is finite and each Bi terminates with

coincidence.

(3) ∼p is an equivalence relation.

(4) If γ ≁p γ
′ and ĝ(γ) = ĝ(γ′), then γ and γ′ do not share an edge.

Proof. (1) Suppose that γ and γ′ are forward proximal, so that there is a
sequence {tn} with d(γ−tnωR, γ

′−tnωR)→ 0 as tn →∞. If γ and γ′ are not
backward proximal, there are t0 ∈ R and ε > 0 with d(γ− tωR, γ

′− tωR) ≥ ε
for t ≤ t0. Choose {sn} so that sn → −∞ and γ−snωR → η, γ−snωR → η′.
Since ∼p is closed, η ∼p η′. There is t ∈ R so that d(η − tωR, η

′ − tωR) < ε.
Then, for sufficiently large n, d(γ − (sn + t)ωR, γ

′ − (sn + t)ωR) < ε and
sn + t ≤ t0, a contradiction. The converse can be proved by a symmetric
argument.

(2) By (1), proximal pairs determine a bi-infinite product of irreducible
balanced pairs. Suppose that there are arbitrarily long products of non-
trivial balanced pairs that arise in such factorizations. Let γi ∼p γ′i with
γi and γ′i forming the products Wi of nontrivial irreducible balanced pairs,
where Wi is centered on Es with |Wi|g → ∞. Without loss of generality,
γi → η and γ′i → η′. The relation ∼p is closed, hence η ∼p η′. But the
definition of γi and γ′i implies that η ≁p η

′, a contradiction. Thus B is finite.
Since γ ∼p γ′ implies that Φ(γ) ∼p Φ(γ′), each Bi ∈ B terminates with
coincidence.

(3) Let ϕ̃ be the restriction of the substitution on balanced pairs, ϕBP :
BP(ϕ) → BP(ϕ), to the set of irreducible (trivial and nontrivial) balanced
pairs associated with proximal pairs. According to Lemma 4.11, tiles of type
corresponding to trivial balanced pairs have frequency 1 in every element
of Tϕ̃. That is, coincidence in proximal pairs of T S

ϕ occurs with frequency 1,
hence proximality is transitive.

(4) Suppose that ĝ(γ) = ĝ(γ′) and that γ and γ′ coincide along some seg-
ment I. Let m = crϕ. By Theorem 4.5, for some x ∈ lim←−FA, ĝ−1(x) consists
of m strands, any two of which are nowhere coincident. By minimality of
the flow on lim←−FA, in every preimage ĝ−1(y), there are at least m pairwise
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nowhere coincident strands. It follows that

G := {y : ĝ−1(y) contains exactly m pairwise nowhere coincident strands}

is a set of full measure, as is
⋂
n≥0 F̂

−n
A (G), since F̂A is measure preserving.

Pick y ∈ ⋂
n≥0 F̂

−n
A (G) and let ĝ−1(y) = {η1, . . . , ηm}. Then Φn(ηi) and

Φn(ηj) are nowhere coincident for all n ≥ 0 and i 6= j. Choose {tk} so that

η1 − tkωR → γ := γ1 and ηi − tkωR → γi ∈ T S
ϕ for i ∈ {2, . . . ,m}.

Then γ1, . . . , γm are pairwise nowhere coincident and {γ1, . . . , γm, γ} ⊂
ĝ−1(ĝ(γ)). Using minimality again, choose sk →∞ so that γi−skωR → ηj(i)
and γ′ − skωR → η′ with i 7→ j(i) a bijection on {1, . . . ,m}. Then η′ = ηj(i)
for some i0, so that γ′ is proximal to γi0 . Either γi0 coincides with γ′ along
the segment I, in which case γi0 is coincident with γ1 along I, so that
γi0 = γ1 = γ and we have γ′ ∼p γ, or the segment I occurs in a bubble
formed by γi0 and γ′. By (2), this bubble must terminate with coincidence.
That is, there is t ∈ R so that Es + tωR meets I in its interior, and there
is n ∈ N so that Φn(γi0 − tωR) and Φn(γ′ − tωR) are coincident along a
common strand meeting Es. But so are Φn(γ′− tωR) and Φn(γ− tωR). Thus
Φn(γi0) and Φn(γ1) = Φn(γ) are coincident along a common strand J meet-
ing Es +λntωR. Now Φn(ηi0 − tkωR) and Φn(η1− tkωR) converge to Φn(γi0)
and Φn(γ) respectively, so for large k, Φn(ηi0−tkωR) and Φn(η1−tkωR) must
coincide along J as well. Thus Φn(ηi0) and Φn(η1) coincide along J+λntkωR,
so that i = 1 and γ ∼p γ′.

The next result for the case in which ϕ is unimodular is Theorem 12.1
of [BK]. We need a generalization to the nonunimodular case. Because the
proof is somewhat technical, we include it in an appendix.

Theorem 5.3 (Asubharmonicity). Suppose that ϕ is strong Pisot with

abelianization A. If B and R are nonsingular integer matrices with AR =
RB, p is a continuous surjection so that the diagram

F̂R

lim←−FA

ĝ

T S
ϕ lim←−FB
@

@
@R

-p

�
�

�	

commutes, and p, F̂R, and ĝ semi-conjugate the R- and Z-actions on the

various spaces, then F̂R is a homeomorphism.

Theorem 5.4. Suppose that ϕ is strong Pisot. Then ϕ satisfies GCC if

and only if proximality is a closed relation on Tϕ, in which case Tϕ/∼p ≃
lim←−FA.
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Proof. If ϕ satisfies GCC, then ∼p is a closed equivalence relation whose
equivalence classes are precisely the preimages of points under the geometric
realization ĝ (Corollary 4.8), so that

Tϕ/∼p ≃ lim←−FA.
Suppose that ∼p is a closed relation. According to Lemma 5.2, ∼p is

an equivalence relation. Using the strand space model T S
ϕ of Tϕ, we have a

commuting diagram of continuous surjections

c

lim←−FA

ĝ

Tϕ ≃ T S
ϕ T S

ϕ /∼p
@

@
@R

-p

�
�

�	

in which p is the quotient map γ → [γ] := {γ′ : γ′ ∼p γ}, ĝ is geometric
realization, and c([γ]) := ĝ(γ) is well-defined by Proposition 4.7. Note that
the maps in the diagram also commute with the Z- and R-actions on the
various spaces (which, on T S

ϕ /∼p, are [γ] 7→ [Φ(γ)] := Φ[γ] and ([γ], t) 7→
[γ]t := [γ − tωR], respectively).

Claim. c is a covering map.

According to Theorem 4.5, ĝ, and hence c, is bounded-to-one. Choose
x ∈ lim←−FA with m = #c−1(x) < ∞ maximal. Let c−1(x) = {[γ1], . . . , [γm]}
and choose x′ ∈ lim←−FA. Since the flow on lim←−FA is minimal, there is {tn} ⊂
R with (x)tn → x′. For some subsequence (which without loss of generality,
and to simplify notation, we assume to be {tn} itself), {γi−tnωR} converges
for each i ∈ {1, . . . ,m}, say to γ′i ∈ T S

ϕ . Since γi and γj are not proximal for
i 6= j, there is δ > 0 so that

d(γi − tωR, γj − tωR) ≥ δ
for all t ∈ R and for all i 6= j ∈ {1, . . . ,m}. It follows that

d(γ′i − tωR, γ
′
j − tωR) ≥ δ

for all t ∈ R and i 6= j, so that [γ′i] 6= [γ′j ] for i 6= j. Thus #c−1(x′) ≥ m. By

maximality of m, #c−1(x′) = m and c is m-to-one everywhere.

Suppose that for some γ ∈ T S
ϕ , c is not one-to-one on any neighborhood

of [γ]. There are then {[γn]}, {[γ′n]} converging to [γ] with [γn] 6= [γ′n] and
c([γn]) = c([γ′n]) for all n ∈ N. Without loss of generality, γn → η and
γ′n → η′. Since ∼p is closed, η, η′ ∈ [γ], i.e., η, η′ are proximal. According
to (4) of Lemma 5.2, there is δ > 0 so that d(γn − tωR, γ

′
n − tωR) ≥ δ for

all t ∈ R and all n ∈ N. On the other hand, if t ∈ R is chosen so that
d(η− tωR, η

′− tωR) < δ, then for large enough n, d(γn− tωR, γ
′
n− tωR) < δ.
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This contradiction proves that c is locally one-to-one and hence an m-to-one
covering map.

By Lemma 5.1, there are d × d nonsingular integer matrices B,R with
RB = AR and a homeomorphism h so that the diagram

F̂R

lim←−FA

c

T S
ϕ /∼p lim←−FB

@
@

@R

-h

�
�

�	

commutes. As B = R−1AR, B is also Pisot: Let ωR,B be the right eigenvector
of B with R(ωR,B) = ωR,A, the right Perron–Frobenius eigenvector of A.

Note that h and F̂R semi-conjugate the flows on T S
ϕ /∼p and lim←−FA with

(y, t) 7→ (y1 − tωR,B, y2 − (t/λ)ωR,B, . . .) = (y)t on lim←−FB, and that h semi-

conjugates the action [γ] 7→ [Φ(γ)] on T S
ϕ /∼p with f̂B on lim←−FB. Now we

have the commuting diagram

F̂R

lim←−FA

ĝ

T S
ϕ lim←−FB

@
@

@R

-h◦p

�
�

�	

of surjections that semi-conjugate all of the Z- and R- actions. By the “asub-
harmonicity theorem” (Theorem 6.1 of [BK] in the unimodular case, and

Theorem 5.3 of this paper for the general case), F̂R is one-to-one. Thus c is
a homeomorphism and Tϕ/∼p ≃ lim←−FA.

If ĝ(γ) = ĝ(γ′), then c(p(γ)) = c(p(γ′)), so that p(γ) = p(γ′). That is,
γ and γ′ are proximal, hence γ and γ′ share an edge. Then crϕ = 1, and, by
Theorem 4.5, ϕ satisfies GCC.

Example 5.5 (Proximality not closed). As the Morse–Thue example
(ϕ(1) = 12, ϕ(2) = 21) shows, proximality need not be a closed relation,
even for a weak Pisot substitution. Also, the fixed words represent tilings
that are proximal in one direction but not the other.

6. Appendix. We now complete the proofs of Lemma 4.18 and Theo-
rem 5.3.

We first prove

Lemma 4.18. The balanced pairs
(
1
1

)
,
(
2
2

)
,
(
21
12

)
,
(
211
122

)
, and their duals are

the only essential balanced pairs for ψ.
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To this end, we prove a slightly stronger statement:

Lemma 4.18 ′. Given any balanced pair
(
u
v

)
for ψ,

(ψ(u)
ψ(v)

)
is the concate-

nation of the irreducible balanced pairs
(
1
1

)
,
(
2
2

)
,
(
21
12

)
,
(
211
122

)
,
(
21211
11212

)
, and their

duals.

Since
(ψ(21)
ψ(12)

)
,
(ψ(211)
ψ(112)

)
and

(ψ(21211)
ψ(11212)

)
are concatenations of

(
1
1

)
,
(
2
2

)
,
(
21
12

)
,

(
211
122

)
, and their duals, it follows that for any balanced pair

(
u
v

)
,

(ψ2(u)

ψ2(v)

)
is

also such a concatenation, and Lemma 4.18 is proved.

Proof of Lemma 4.18 ′. The following proof consists of demonstrating

that for any irreducible balanced pair
(
u
v

)
=

(
u1...un
v1...vn

)
, the balanced pair

(ψ(u)
ψ(v)

)

can be factored into a product of irreducible balanced pairs by first reducing(ψ(u1)
ψ(v1)

)
(with remainder), then reducing

(ψ(u1u2)
ψ(v1v2)

)
(with remainder), etc.; each

step in this sequence is represented by an edge (and the adjoining vertices)

in a finite graph G. The complete factorization of
(ψ(u)
ψ(v)

)
is then represented

by a path of length n in G with the ith edge of the path labeled
(
ui
vi

)
, and

the adjoining vertices indicating, in part, remainders in the reductions of(
ψ(u1 . . . ui)

ψ(v1 . . . vi)

)
and

(
ψ(u1 . . . ui+1)

ψ(v1 . . . vi+1)

)
.

The proof will be completed by noting that for any
(
u
v

)
, only the vertices

and edges of the graph G will be visited, and the irreducible balanced pairs
arising in each step of the factorization are included in those listed in Lemma
4.18′ above.

Given two words u, v of the same length allowed for the substitution ψ,
we define the discrepancy vector of u and v to be the difference of the content
vectors of u and v, l(u) − l(v). The discrepancy vector has integer entries,
and since ψ is on a two-letter alphabet, it is of the form (m,−m), where
m ∈ Z. Let dis(u, v) = |m| be the discrepancy number of u and v. In the case
of ψ, |m| = 0, 1 or 2. Note that dis(u, v) = 0 if and only if

(
u
v

)
is balanced.

Let
(
u
v

)
=

(
u1...un
v1...vn

)
be an irreducible balanced pair for ψ. Without loss

of generality, u1 = 2, v1 = 1. Since |ψ(2)| = 7 while |ψ(1)| = 19, and(
u
v

)
is irreducible, |ψ(u1 . . . ui)| < |ψ(v1 . . . vi)| for all 1 ≤ i < n, and

dis(u1 . . . ui, v1 . . . vi) indicates how many more 2’s appear in u1 . . . ui than in
v1 . . . vi. In the graph G below, each edge is labeled by a pair of symbols

[
a1
a2

]
.

Each vertex has two components: an integer representing a discrepancy num-
ber, and a pair of words

[
w1
w2

]
representing, under the right circumstances,

the remainder in the reduction of a particular pair of words. As described

above, for an irreducible balanced pair
(
2u2...un
1v2...vn

)
, the reduction of

(ψ(2u2...un)
ψ(1v2...vn)

)

is represented by a path of length n through G that begins and ends at (0, 0);
the ith vertex in the path indicates both dis(u1 . . . ui, v1 . . . vi) and the re-
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mainder upon writing
(ψ(u1...ui)
ψ(v1...vi)

)
in irreducible balanced pairs. The edge to

the (i + 1)st vertex is labeled with
[
a1
a2

]
=

[ui+1
vi+1

]
, and the (i + 1)st vertex

consists of dis(u1 . . . ui+1, v1 . . . vi+1) and the remainder in the reduction of(ψ(u1...ui+1)
ψ(v1...vi+1)

)
.

To simplify the writing of remainders, we use the notation x+
i (y+

i , re-
spectively) to denote the subword xi . . . x19 of ψ(1) (yi . . . y7 of ψ(2), respec-
tively). In the following diagram, a, b, c and d denote

[
1
1

]
,
[
1
2

]
,
[
2
1

]
, and

[
2
2

]
,

respectively:

d a b

c

c

c

a

0, 0

1,

[
2

1y+
3 ψ(2)

]

6

b

1,

[
2

1x+
8

]....... ......
.....

.....

......

......

......

......

......

......

......

.....

......

......

..................

....
..

...
...

..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.. �
a

2,

[
2

1x+
15ψ(1)

].
......

......

.....

.....

......

......

......

......

......

......

......

.....

......

......

..................

....
..

...
...

..

..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.. �
a

2,

[
2

1x+
3 ψ(2)

]

2,

[
212

112x+
10ψ(2)ψ(2)

]

1,

[
2

1x+
15ψ(2)

]

C
C
C
C
C
C
C
CO

CC

b

2,

[
2

1y+
3 ψ(1)

]?

6

?

6

-

-

�
�

�	

�
b

����������1
c

�
�
�
�
�
�
�
��

a

@
@R@

@I
b

�	d

�
�	

d�
��

a

d

@
@R

d

@
@Ia

�
�

�
��

�
��

b

Some transitions between vertices are not allowed. For instance, the edge
c =

[
2
1

]
cannot leave a vertex with discrepancy 2, since this would result in

a discrepancy of 3, not allowed for ψ. Also, the edges b =
[
1
2

]
and d =

[
2
2

]

cannot leave the vertices with terminal factors of ψ(2)ψ(2) or y+
3 ψ(2) in

their remainders, since the subword 222 is not allowed for ψ. Since every
other edge appears in G, every irreducible balanced pair is represented by a
path in G.

We illustrate the use of G with the balanced pair
(
211
112

)
. The path rep-

resenting the reduction of
(ψ(211)
ψ(112)

)
will involve edges labeled by c =

[
2
1

]
,

a =
[
1
1

]
, and b =

[
1
2

]
, in that order, discrepancy numbers of 1, 1, and 0, and

remainders of
[ 2
1x+

8

]
,
[ 2
1x+

8

]
, and 0.

We invite the reader to verify some of the calculations. Note that move-
ment from one vertex to another can be checked independently of the re-
mainder of the graph.

We leave the reader to check that all reductions except that involving

the single edge from 2,
[ 2
112v+10ψ(2)ψ(2)

]
involve only the irreducible balanced
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pairs described in the statement of Lemma 4.18; this exception also in-
cludes

(
21211
11212

)
in its reduction. It is easy to verify that the reduction of(ψ(21211)

ψ(11212)

)
also involves only the balanced pairs of Lemma 4.18. This proves

Lemma 4.18′.

We now prove Theorem 5.3.

Theorem 5.3 (Asubharmonicity). Suppose that ϕ is strong Pisot with

abelianization A. If B and R are nonsingular integer matrices with AR =
RB, p is a continuous surjection so that the diagram

F̂R

lim←−FA

ĝ

T S
ϕ lim←−FB

@
@

@R

-p

�
�

�	

commutes, and p, F̂R, and ĝ semi-conjugate the R- and Z-actions on the

various spaces, then F̂R is a homeomorphism.

Proof. Given a strand (finite or infinite) γ that meets Es, let γ̂ denote
the state determined by γ (i.e., the edge of γ, closed on the initial end and
open on the terminal end, that meets Es). We write γ ∼0 η if γ and η are

strands that meet Es for which Φ̂n(γ) = Φ̂n(η) for some n ∈ N. Note that

Φ̂(γ̂) = Φ̂(γ). Given γ ∈ T S
ϕ , let

Fγ =
{
v ∈

⋃

n≥0

A−nZd : γ ∼0 γ + v
}
.

Recall that ωR is the right eigenvector for A. Define

W s(γ) = {η ∈ T S
ϕ : d(Φn(γ), Φn(η))→ 0 as n→∞}

and let prA denote the projection of Rd onto Eu
A along Es

A. Letting

ret(γ) = {t ∈ R : γ − tωR ∈W s(γ)}
be the set of return times for γ, we see that, as long as Φn(γ) does not have
a vertex on Es for any n ≥ 0, v ∈ Fγ if and only if prAv = tωR for some
t ∈ ret(γ). Let

G = {γ ∈ T S
ϕ : Φn(γ) does not have a vertex on Es for any n ≥ 0}.

Then G has full measure in T S
ϕ . Let H = 〈⋃γ∈G Fγ〉 be the subgroup of⋃

n≥0A
−nZd generated by

⋃
γ∈G Fγ .
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Since (Φn+1(Φ−1(γ) +A−1v))∧ = (Φn(γ + v))∧, and γ ∈ G if and only if
Φ−1(γ) ∈ G, we can conclude that

(A.1) A−1(H) ⊂ H.
For i ∈ {1, . . . , d}, let

Θ(i) = {v ∈ Zd : for some (and hence any) γ ∈ T S
ϕ , there are edges

I, J of γ, both of type i, with min(J)−min(I) = v}
be the set of return vectors for type i. Note that for v ∈ Θ(i) and γ ∈ T S

ϕ ,
γ and γ + v share an edge, say I. It follows that if Es + tωR meets I in
its interior, and γ − tωR ∈ G (as will be the case for most such t), then
(γ − tωR) ∼0 (γ − tωR) + v, hence v ∈ Fγ−tωR. Thus

(A.2) Θ(i) ⊂ H for all i ∈ {1, . . . , d}.
Now fix γ ∈ G, and define

[v +H]+ = {i : i is the type of an edge I of γ with min I ∈ v +H},
[v +H]− = {i : i is the type of an edge I of γ with max I ∈ v +H}.

If i ∈ [v+H]+ ∩ [u+H]+, then min I +H = v+H and minJ +H = u+H
for some edges I, J of γ of type i. Then u−v+H = minJ−min I+H = H,
since minJ −min I ∈ Θ(i) ⊂ H, hence u− v ∈ H. A similar statement can
be made if i ∈ [v +H]− ∩ [u+H]−, so that

(A.3) If [v +H]+ ∩ [u+H]+ 6= ∅ or [v +H]− ∩ [u+H]− 6= ∅,
then u− v ∈ H.

Recall that the flow on T S
ϕ is uniquely ergodic, and that if for each

i ∈ {1, . . . , d}, fi denotes the frequency of occurrence of tiles of type i in
γ ∈ T S

ϕ ,

fi := lim
N→∞

1

2N
µ{t ∈ [−N,N ] : (γ − tωR)∧ has type i},

then (f1, . . . , fd)
tr is a right Perron–Frobenius eigenvector for A. Since the

characteristic polynomial of A is irreducible over Q, the entries of (f1, . . . , fd)
are independent over Z. It follows from (A.2) that an edge of type [v+H]− in
γ must be followed by an edge of type [v+H]+, and an edge of type [v+H]+

must be preceded by an edge of type [v + H]−. Thus occurrences in γ of
edges of type [v+H]− are in one-to-one correspondence with occurrences of
edges of type [v +H]+. That is, the frequency of type [v +H]+ equals the
frequency of type [v +H]−:∑

i∈[v+H]+

fi =
∑

i∈[v+H]−

fi.

As the fi are linearly independent over Z, it must be that

(A.4) [v +H]+ = [v +H]−.
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Now fix i ∈ {1, . . . , d}, and let ei = (0, . . . , 1, . . . , 0) be the unit vector
in the i direction. Let I be an edge of γ of type i, u = min I and v = max I.
Then i ∈ [u+H]+ = [u+H]− and i ∈ [v+H]−. Thus v−u ∈ H by (A.3) so
that ei ∈ H and thus Zd ⊂ H. From (A.1) we now have

⋃
n≥0A

−nZd ⊂ H.
Thus

(A.5) H =
〈 ⋃

n≥0

A−nZd
〉
.

Suppose that t ∈ ret(γ) (i.e., t is a return time for γ). Then t is also a
return time for p(γ) ∈ lim←−FB , since p semi-conjugates the R- and Z-actions
on T S

ϕ with those on lim←−FB . That is, if t ∈ ret(γ), then

tωR,B ∈ prB

( ⋃

n≥0

B−nZd
)
,

where prB is the projection of Rd onto Eu
B along Es

B and ωR,B := R−1(ωR,A)
is a right eigenvector of B corresponding to the Perron–Frobenius eigenvalue
λ of A.

Choose γ ∈ G and v ∈ Fγ . Then for t ∈ ret(γ) and u ∈ ⋃
n≥0B

−nZd,

prA(v) = tωR,A = RtωR,B = R prB(u).

But R prB(u) = prA(Ru) since R−1AR = B and, by irreducibility of the
characteristic polynomial of A, v = Ru. That is, Fγ ⊂ R(

⋃
n≥0B

−nZd).
Thus

H =
〈 ⋃

γ∈G

Fγ
〉
⊂ R

( ⋃

n≥0

B−nZd
)
.

In addition, since RB = AR, it follows that R(B−nZd) ⊂ A−nZd, so that
by (A.5),

(A.6)
⋃

n≥0

A−nZd = R
( ⋃

n≥0

B−nZd
)
.

Since F̂R is a covering map and lim←−FB is compact, F̂−1
R (0 := (0, 0, . . .))

is finite. Let x ∈ F̂−1
R (0). As F̂R semi-conjugates f̂B with f̂A, x must be

periodic under f̂B ; without loss of generality, assume x = (x, x, . . .) is fixed,

say x = y + Zd ∈ Td. Since F̂R(x) = 0, Ry = v ∈ Zd. Also, x ∈ lim←−FB,
hence B(y) = y + w, where w ∈ Zd. We have

R R

B

A

y + w y

Av v
?

�
?

�
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That is, Av = R(y + w). Since R(y + w) ∈ Zd,

v = A−1(R(y + w)) ∈
⋃

n≥0

A−nZd.

Thus, by (A.6), there are n ∈ N and u ∈ Zd so that RB−nu = v. Now
y = R−1v = B−nu, so that

By = B−n+1u = y + w,

y = B−n+1u− w,
By = B−n+2u−Bw = y + w,

y = B−n+2u−Bw − w.
Continuing, we obtain

y = u−Bn−2u−Bn−3u− · · · −Bw − w ∈ Zd.

That is, x = 0. Hence #f̂−1
R (0) = 1. Since F̂R is a covering map, and lim←−FB

is connected, F̂R is a homeomorphism.
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