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Level by level equivalence and

the number of normal measures over Pκ(λ)

by

Arthur W. Apter (New York)

Abstract. We construct two models for the level by level equivalence between strong
compactness and supercompactness in which if κ is λ supercompact and λ ≥ κ is regular,
we are able to determine exactly the number of normal measures Pκ(λ) carries. In the

first of these models, Pκ(λ) carries 22[λ]<κ

many normal measures, the maximal number.

In the second of these models, Pκ(λ) carries 22[λ]<κ

many normal measures, except if κ

is a measurable cardinal which is not a limit of measurable cardinals. In this case, κ (and
hence also Pκ(κ)) carries only κ

+ many normal measures. In both of these models, there
are no restrictions on the structure of the class of supercompact cardinals.

1. Introduction and preliminaries. One of the advantages of an in-
ner model for a particular type of measurable cardinal κ is that it provides
canonical structure for the universe in which κ resides. In particular, in
the usual sorts of inner models for measurability (see, e.g., the models con-
structed and analyzed in [12], [15], and [6]), if κ is a measurable cardinal, it
is possible to determine exactly the number of normal measures κ carries.

Because of the limited inner model theory currently available for super-
compactness, analogous results for κ-additive, fine, normal measures over
Pκ(λ) when λ ≥ κ is regular have been relatively few. Aside from the clas-
sical result (see [11]) that if κ is 2[λ]<κ

supercompact, then Pκ(λ) carries

exactly 22[λ]<κ

many κ-additive, fine, normal measures (the maximal num-
ber), and the more recent results of [4] that when λ ≥ κ is regular, it is
consistent relative to the appropriate assumptions for κ to be λ supercom-
pact and for Pκ(λ) to carry fewer than the maximal number of κ-additive,
fine, normal measures, not much has been known concerning models for
supercompactness and the number of normal measures Pκ(λ) can carry.
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The purpose of this paper is to rectify this situation by studying the
number of normal measures Pκ(λ) can carry when λ ≥ κ is regular in the
context of the “inner model like” property of level by level equivalence be-
tween strong compactness and supercompactness. Specifically, we prove the
following two theorems.

Theorem 1. Suppose V � “ZFC + GCH + K 6= ∅ is the class of super-

compact cardinals + Level by level equivalence between strong compactness

and supercompactness holds”. There is then a partial ordering P ⊆ V such

that V P � “ZFC + GCH + K 6= ∅ is the class of supercompact cardinals

+ Level by level equivalence between strong compactness and supercompact-

ness holds”. In V P, if κ is λ supercompact and λ ≥ κ is regular , then Pκ(λ)

carries exactly 22[λ]<κ

= 22λ

= λ++ many κ-additive, fine, normal measures.

Theorem 2. Suppose V � “ZFC + GCH + K 6= ∅ is the class of super-

compact cardinals + Level by level equivalence between strong compactness

and supercompactness holds”. There is then a partial ordering P ⊆ V such

that V P � “ZFC + GCH + K 6= ∅ is the class of supercompact cardinals +
Level by level equivalence between strong compactness and supercompactness

holds”. In V P, if κ is a measurable cardinal which is not a limit of measur-

able cardinals, then κ carries exactly κ+ many normal measures (and hence

Pκ(κ) carries exactly κ+ many κ-additive, fine, normal measures). If this

is not the case, i.e., if in V P, κ is a measurable cardinal which is a limit

of measurable cardinals, then for any regular λ ≥ κ such that κ is λ super-

compact , Pκ(λ) carries exactly 22[λ]<κ

= 22λ

= λ++ many κ-additive, fine,
normal measures.

In other words, there is a model for level by level equivalence between
strong compactness and supercompactness (the one provided by Theorem 1)
in which if κ is λ supercompact (and not necessarily more) and λ ≥ κ is
regular, then Pκ(λ) always carries the maximal number of κ-additive, fine,
normal measures. On the other hand, there is also a model for level by
level equivalence between strong compactness and supercompactness (the
one provided by Theorem 2) in which under most circumstances, if κ is
λ supercompact and λ ≥ κ is regular, then Pκ(λ) carries the maximal num-
ber of κ-additive, fine, normal measures. However, in this model, this is not
always the case. In particular, if κ is a measurable cardinal which is not a
limit of measurable cardinals, then both κ and Pκ(κ) carry fewer than the
maximal number of normal measures.

We now very briefly give some preliminary information concerning no-
tation and terminology. For anything left unexplained, readers are urged to
consult [4]. When forcing, q ≥ p means that q is stronger than p. For κ a
regular cardinal and λ ≥ κ any cardinal, Add(κ, 1) is the standard partial
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ordering for adding a single Cohen subset of κ, and Coll(κ, λ) is the stan-
dard collapse partial ordering (originally used by Cohen) for collapsing λ

to κ. For κ a cardinal, the partial ordering P is κ-directed closed if every
directed set of conditions of size less than κ has an upper bound. If G is
V -generic over P, we will abuse notation slightly and use both V [G] and V P

to indicate the universe obtained by forcing with P. We will, from time to
time, confuse terms with the sets they denote and write x when we actually
mean ẋ or x̌, especially if x is in the ground model V , or x is a variant of
the generic set G.

Suppose V is a model of ZFC in which for all regular cardinals κ < λ,
κ is λ strongly compact iff κ is λ supercompact, except possibly if κ is a
measurable limit of cardinals δ which are λ supercompact. Such a model
will be said to witness level by level equivalence between strong compactness

and supercompactness. We will also say that κ is a witness to level by level
equivalence between strong compactness and supercompactness iff for every
regular cardinal λ > κ, κ is λ strongly compact iff κ is λ supercompact. Note
that the exception is provided by a theorem of Menas [14], who showed that
if κ is a measurable limit of cardinals δ which are λ strongly compact, then
κ is λ strongly compact but need not be λ supercompact. Models in which
level by level equivalence between strong compactness and supercompact-
ness holds nontrivially were first constructed in [5]. Note that this property
is considered to be “inner model like” in the sense that, like GCH and a
combinatorial property such as ♦, it is the sort of regularity phenomenon
one might expect in a “nice inner model” for supercompactness.

We assume familiarity with the large cardinal notions of measurability,
strong compactness, and supercompactness. Readers are urged to consult
[11] for further details. We do wish to mention, however, that we will use
“supercompact ultrafilter over Pκ(λ)” and “κ-additive, fine, normal mea-
sure over Pκ(λ)” synonymously. In addition, we state explicitly that κ is
κ supercompact iff κ is κ strongly compact iff κ is measurable, and if κ is
measurable, there is a canonical correspondence between normal measures
over κ and κ-additive, fine, normal measures over Pκ(κ). This has as an
immediate consequence that if κ is measurable, the number of normal mea-
sures over κ and the number of κ-additive, fine, normal measures over Pκ(κ)
is the same.

We conclude Section 1 by mentioning that there is one result critical to
the proofs of Theorems 1 and 2 which will be taken as a “black box”. For the
convenience of readers, we provide a brief discussion of this fact here. The
result is a corollary of Theorems 3 and 31 and Corollary 14 of Hamkins’ pa-
per [8]. This theorem is a generalization of Hamkins’ Gap Forcing Theorem
and Corollary 16 of [9] and [10] (and we refer readers to [9], [10], and [8] for
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further details). We therefore state the theorem we will be using now, along
with some associated terminology. Suppose P is a partial ordering which can
be written as Q∗Ṙ, where |Q| ≤ δ, Q is nontrivial, and Q “Ṙ is δ+-directed
closed”. In Hamkins’ terminology of [8], P admits a closure point at δ. In
Hamkins’ terminology of [9] and [10], P is mild with respect to a cardinal κ

iff every set of ordinals x in V P of size below κ has a “nice” name τ in V of
size below κ, i.e., there is a set y in V , |y| < κ, such that any ordinal forced
by a condition in P to be in τ is an element of y. Also, as in the terminology
of [9], [10], [8], and elsewhere, an embedding j : V → M is amenable to V

when j↾A ∈ V for any A ∈ V . The specific corollary of Theorems 3 and 31
and Corollary 14 of [8] we will be using is then the following.

Theorem 3 (Hamkins). Suppose that V [G] is a forcing extension ob-

tained by forcing that admits a closure point at some regular δ < κ. Sup-

pose further that j : V [G] → M [j(G)] is an embedding with critical point

κ for which M [j(G)] ⊆ V [G] and M [j(G)]δ ⊆ M [j(G)] in V [G]. Then

M = V ∩M [j(G)] (so M ⊆ V ). If the full embedding j is amenable to V [G],
then the restricted embedding j↾V : V → M is amenable to V . If j is de-

finable from parameters (such as a measure or extender) in V [G], then the

restricted embedding j↾V is definable from the names of those parameters

in V . Finally , if P is mild with respect to κ and κ is λ strongly compact in

V [G] for any λ ≥ κ, then κ is λ strongly compact in V .

It immediately follows from Theorem 3 that any cardinal κ measurable in
a generic extension obtained by forcing that admits a closure point below κ

must also be measurable in the ground model V . In addition, Theorem 3
implies that if V P � “κ is λ strongly compact”, P is mild with respect to κ,
and P admits a closure point below κ, then V � “κ is γ strongly compact”
for any ordinal γ such that V P � “|γ| = λ”. Similarly, Theorem 3 implies
that if V P � “κ is λ supercompact” and P admits a closure point below κ,
then V � “κ is γ supercompact” for any ordinal γ such that V P � “|γ| = λ”.

2. The proofs of Theorems 1 and 2

Proof of Theorem 1. Suppose V � “ZFC + GCH + K 6= ∅ is the class of
supercompact cardinals + Level by level equivalence between strong com-
pactness and supercompactness holds”. The partial ordering P which will
be used to prove Theorem 1 is the same one used in the proof of Theorem 3
of [1]. More specifically, P is the proper class reverse Easton iteration which
does nontrivial forcing only at those stages δ which are V -regular cardinals.
At such a stage, we force with Add(δ, 1). By Theorem 3 of [1], V P � “ZFC
+ GCH + K 6= ∅ is the class of supercompact cardinals + Level by level
equivalence between strong compactness and supercompactness holds”. We
must therefore show that V P � “If κ is λ supercompact and λ ≥ κ is reg-
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ular, then Pκ(λ) carries exactly 22[λ]<κ

= 22λ

= λ++ many κ-additive, fine,
normal measures”.

Towards this end, assume that V P � “κ is λ supercompact and λ ≥ κ

is regular”. Clearly, V � “λ is regular”. Since if λ is regular and we write
P = Pλ+1 ∗ Ṗλ+1, then Pλ+1

“Ṗλ+1 is λ+-directed closed”, we know that

V P � “κ is λ supercompact” iff V Pλ+1 � “κ is λ supercompact”. Further, any
normal measure over Pκ(λ) in V Pλ+1 is also a normal measure over Pκ(λ)
in V P. It thus suffices to show that V Pλ+1 � “If κ is λ supercompact and

λ ≥ κ is regular, then Pκ(λ) carries exactly 22[λ]<κ

= 22λ

= λ++ many
κ-additive, fine, normal measures”.

To show this last fact, we begin by noting that as in Theorem 3 of [1],
by Theorem 3 of this paper, it must be the case that V � “κ is λ super-
compact”. We now use a standard analysis found, e.g., in Lemma 1.1 of [3]
or Lemma 6 of [7] in tandem with the usual argument (originally due to
Silver) for lifting a supercompactness embedding after a reverse Easton it-
eration. Specifically, let j : V → M be an elementary embedding witnessing
the λ supercompactness of κ generated by a supercompact ultrafilter over
Pκ(λ). Write Pλ+1 = Pκ∗Q̇, where Q̇ is a term for the partial ordering which
adds Cohen subsets of each regular cardinal in the closed interval [κ, λ].
Then j(Pλ+1) = Pκ ∗ Q̇ ∗ Ṙ∗ j(Q̇), where Ṙ is a term for the partial ordering
which adds Cohen subsets of each regular cardinal in M in the open interval
(λ, j(κ)). Let G be V -generic over Pκ, and let H be V [G]-generic over Q.
Silver’s standard arguments, as given, e.g., in the proof of Lemma 1.2 of [1],
show that j lifts in V [G][H] to j∗ : V [G][H] → M [G][H][H ′][H ′′], where
H ′ and H ′′ are built in V [G][H], H ′ is M [G][H]-generic over R, and H ′′ is
M [G][H][H ′]-generic over j∗(Q) and contains a master condition for j∗′′H.

It is, though, the construction of H ′ here which is critical for our pur-
poses. We therefore examine this more carefully. Since R has cardinality j(κ)
in M [G][H], by GCH in both V and M , there are 2j(κ) = j(κ+) many dense
open subsets of R present in M [G][H]. Again by GCH in both V and M ,
V [G][H] � “|j(κ+)| ≤ |{f | f : Pκ(λ) → κ+}| = |{f | f : λ → κ+}| = 2λ =
λ+”. This means, since M [G][H] remains λ closed with respect to V [G][H],
that H ′ is constructed in V [G][H] by meeting each member of an enumer-
ation 〈Dα | α < λ+〉 ∈ V [G][H] of the dense open subsets of R present in
M [G][H]. However, it is possible to build a tree T of height λ+ which gives

22[λ]<κ

= 22λ

= λ++ many distinct possible values for H ′. More explicitly,
the root of T is the empty condition. If p is an element at level α < λ+ of T ,
then the successors of p at level α + 1 are a maximal incompatible subset
of Dα extending p. Note that by the definition of P, there will be at least two
successors of p at level α+1. Finally, if δ < λ+ is a limit ordinal, then the el-
ements of T at height δ are upper bounds to any path through T of height δ.
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Since M [G][H] remains λ closed with respect to V [G][H] and M [G][H] � “R

is λ+-directed closed”, T is well-defined. In addition, by the fact that each

node of T splits, there are 2λ+
= λ++ = 22λ

= 22[λ]<κ

many distinct paths
through T . As each path through T generates an M [G][H]-generic object

over R, there are 22[λ]<κ

= 22λ

= λ++ many distinct possible values for H ′.
Hence, since for any lift of j : V → M to j∗ : V [G][H] → M [G][H][H ′][H ′′],
j∗(G ∗H) = G ∗H ∗H ′ ∗H ′′, each distinct value of H ′ generates a different
value of j∗ and consequently, a distinct normal ultrafilter U over Pκ(λ) given

by X ∈ U iff 〈j(α) | α < λ〉 ∈ j∗(X). Thus, there are 22[λ]<κ

= 22λ

= λ++

many different normal ultrafilters over Pκ(λ) in V [G][H]. This completes
the proof of Theorem 1.

Proof of Theorem 2. Suppose V � “ZFC + GCH + K 6= ∅ is the class of
supercompact cardinals + Level by level equivalence between strong com-
pactness and supercompactness holds”. Without loss of generality, by The-
orem 1, we assume in addition that V � “If κ is λ supercompact and λ ≥ κ

is regular, then Pκ(λ) carries exactly 22[λ]<κ

= 22λ

= λ++ many κ-additive,
fine, normal measures”.

For δ any ordinal, define γδ = ω if δ is less than or equal to the least mea-
surable cardinal, and γδ as the least inaccessible cardinal above the supre-
mum of all of the measurable cardinals below δ otherwise. The partial order-
ing P used in the proof of Theorem 2 will be defined as P0∗ Ṗ1, where P0 and
P1 are two reverse Easton iterations. P0 does nontrivial forcing only at those
stages δ which are V -measurable cardinals which are not in V limits of mea-
surable cardinals. At such a stage, we force with Add(γδ, 1) ∗ ˙Coll(δ+, δ++).
If there are only set many measurable cardinals in V , we let Ω be their
supremum, and conclude the definition of P0 by forcing with Add(γΩ, 1)
(if there are any inaccessibles above Ω). Terminology we will use later at
a nontrivial stage of forcing δ is that P0 (or some portion thereof) acts
nontrivially on the ordinals γδ, δ+, and δ++. At all other ordinals, P0 acts
trivially.

We observe that P0 is either a set or a proper class, depending upon
whether the collection of measurable cardinals in V is a set or a proper
class. Regardless if P0 is a set or a proper class, routine arguments show
that V P0

� “ZFC + GCH” and that the only cardinals collapsed in V P0

have the form (δ++)
V

, where δ is in V a measurable cardinal which is not
a limit of measurable cardinals.

Lemma 2.1. If V P0
� “κ is a measurable cardinal which is not a limit

of measurable cardinals”, then V � “κ is a measurable cardinal which is not

a limit of measurable cardinals”.
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Proof. Suppose V P0
� “κ is a measurable cardinal which is not a limit

of measurable cardinals”. Note that it is possible to write P0 as Q∗ Ṙ, where
|Q| = ω, Q is nontrivial, and Q “Ṙ is ℵ1-directed closed”. Hence, as we
observed at the end of Section 1, since any cardinal which is measurable in
V P0

had to have been measurable in V , V � “κ is measurable”. Thus, to
prove Lemma 2.1, it suffices to show that V � “κ is not a limit of measurable
cardinals”.

To do this, assume to the contrary that V � “κ is a limit of measur-
able cardinals”. In particular, V � “κ is a limit of measurable cardinals δ

which themselves are not limits of measurable cardinals”. For any such mea-
surable cardinal δ, write P0 = P0

δ ∗ ˙Add(γδ, 1) ∗ ˙Coll(δ+, δ++) ∗ Q̇′. Since

|P0
δ ∗

˙Add(γδ, 1)| < δ, by the Lévy-Solovay results [13], V P0
δ
∗ ˙Add(γδ,1) � “δ is

measurable”. Since 
P0

δ
∗ ˙Add(γδ,1) “ ˙Coll(δ+, δ++) ∗ Q̇′ is δ+-directed closed”,

V P0
δ
∗ ˙Add(γδ,1)∗ ˙Coll(δ+,δ++)∗Q̇′

= V P0
� “δ is measurable”. Thus, V P0

� “κ is a
measurable cardinal which is a limit of measurable cardinals”. This contra-
diction completes the proof of Lemma 2.1.

Lemma 2.2. V P0
� “If κ is a measurable cardinal which is not a limit

of measurable cardinals, then κ carries exactly κ+ many normal measures”.

Proof. Suppose V P0
� “κ is a measurable cardinal which is not a limit

of measurable cardinals”. By Lemma 2.1, V � “κ is a measurable cardi-
nal which is not a limit of measurable cardinals”. Therefore, in analogy to
the proof of Lemma 2.1, write P0 = P0

κ ∗ ˙Add(γκ, 1) ∗ ˙Coll(κ+, κ++) ∗ Q̇′,
where |P0

κ| < κ and 
P0

κ∗
˙Add(γκ,1)∗ ˙Coll(κ+,κ++) “Forcing with Q̇′ adds no

bounded subsets of the least inaccessible cardinal above κ”. Thus, since
by the results of [13], P0

κ
“κ is a measurable cardinal which is not a limit

of measurable cardinals”, the proof of Lemma 2.2 will be complete once we
have shown that 

P0
κ∗

˙Add(γκ,1)∗ ˙Coll(κ+,κ++) “κ is a measurable cardinal which

is not a limit of measurable cardinals carrying exactly κ+ many normal
measures”.

To do this, we use an argument due to Cummings, which also appears
in the proof of the Main Theorem of [4] and the proof of Lemma 2.1 of [2].
First, note that by our assumptions on V , V � “κ carries exactly κ++ = 22κ

many normal measures”. Let V = V P0
κ . By the results of [13], V � “κ carries

exactly κ++ many normal measures” as well. Suppose G0 is V -generic over
Add(γκ, 1) and G1 is V [G0]-generic over Coll(κ+, κ++). Again by the results
of [13], since |Add(γκ, 1)| < κ, V [G0] � “κ is a measurable cardinal carrying
exactly κ++ many normal measures”. These remain normal measures over κ

in V [G0][G1], since no additional subsets of κ are added by the collapse
forcing. Thus, since (κ+)V is preserved to V [G0][G1], there are at least κ+

many normal measures over κ in V [G0][G1].
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Conversely, suppose that U is a normal measure over κ in V [G0][G1],
with the associated ultrapower embedding j : V [G0][G1] → M [G0][j(G1)].
In particular, X ∈ U iff κ ∈ j(X) for all X ⊆ κ in V [G0][G1]. By The-
orem 3, it follows that the restriction j↾V : V → M is a definable class
in V . Once more by the results of [13], since |Add(γκ, 1)| < κ, j↾V lifts
uniquely to V [G0], and so j↾V [G0] : V [G0] → M [G0] is a definable class
in V [G0]. The key observation is now that because V [G0] and V [G0][G1]
have the same subsets of κ, one can reconstruct U inside V [G0] by observ-
ing X ∈ U iff κ ∈ j(X), using only j↾V [G0]. Thus, U ∈ V [G0]. Conse-
quently, every normal measure over κ in V [G0][G1] is actually in V [G0].

The number of such normal measures, therefore, is at most (κ++)V [G0],

which is κ+ in V [G0][G1], because (κ++)V [G0] was collapsed by G1. Hence,
in V [G0][G1], there are exactly κ+ many normal measures over κ, as de-
sired. Since forcing with Add(γκ, 1)∗ ˙Coll(κ+, κ++) does not change the fact
that κ is not a limit of measurable cardinals, this completes the proof of
Lemma 2.2.

For any (measurable) cardinal κ, define θκ as the least cardinal such that
κ is not θκ strongly compact.

Lemma 2.3. Suppose in V , κ is λ+ strongly compact and θκ = λ++,
where λ > κ is a measurable cardinal which is not a limit of measurable

cardinals. Then V P0
� “κ is not λ+ strongly compact”.

Proof. By the definition of P0, we may write P0 = P0
κ ∗ Q̇∗ ˙Coll(λ+, λ++)

∗ Ṙ, where 
P0

κ∗Q̇∗ ˙Coll(λ+,λ++) “Forcing with Ṙ adds no bounded subsets

of the least inaccessible cardinal above λ”. It thus suffices to show that
V P0

κ∗Q̇∗ ˙Coll(λ+,λ++) � “κ is not λ+ strongly compact”.

To do this, note that P0
κ ∗ Q̇ ∗ ˙Coll(λ+, λ++) may be written as R0 ∗ Ṙ1,

where |R0| = ω, R0 is nontrivial, and R0 “Ṙ1 is ℵ1-directed closed”. In
addition, by its definition, P0

κ ∗ Q̇ ∗ ˙Coll(λ+, λ++) is easily seen to be mild

with respect to κ. Since V P0
κ∗Q̇∗ ˙Coll(λ+,λ++) � “|(λ++)V | = λ+” and θκ =

(λ++)V , by Theorem 3, V P0
κ∗Q̇∗ ˙Coll(λ+,λ++) � “κ is not λ+ strongly compact”.

This is because otherwise, as we observed at the end of Section 1, κ would
have had to have been λ++ strongly compact in V , which contradicts the
fact that θκ = (λ++)V . This completes the proof of Lemma 2.3.

We remark that the exact same proof as given in Lemma 2.3 (without the
reference to mildness, which is unnecessary in the context of supercompact-
ness) shows that if V � “κ is λ+ supercompact but not λ++ supercompact
and λ > κ is a measurable cardinal which is not a limit of measurable car-
dinals”, then V P0

� “κ is not λ+ supercompact”. This observation will be
used later.



Level by level equivalence 261

Lemma 2.4. Suppose in V , κ is λ supercompact for λ ≥ κ a regular

cardinal and κ is a measurable cardinal which is a limit of measurable car-

dinals. Suppose further that for any cardinal γ > κ which is a measurable

cardinal which is not a limit of measurable cardinals, if V � “κ is γ+ super-

compact”, then V � “κ is γ++ supercompact” as well. Then V P0
� “κ is λ

supercompact”.

Proof. Write P0 = P0
κ ∗ Q̇ ∗ Q̇′, where Q̇ is forced to act (either trivially

or nontrivially) on ordinals in the closed interval [κ, λ], and Q̇′ is a term
for the rest of P0. If λ is a nontrivial stage of the forcing, i.e., if λ is a
measurable cardinal which is not a limit of measurable cardinals, then 

P0
κ∗Q̇

“Forcing with Q̇′ adds no bounded subsets of λ+”. If λ is a trivial stage of the
forcing, then 

P0
κ∗Q̇

“Forcing with Q̇′ adds no bounded subsets of the least

inaccessible cardinal above λ”. Thus, to show V P0
� “κ is λ supercompact”,

it suffices to show that V P0
κ∗Q̇ � “κ is λ supercompact”.

To do this, let j : V → M be an elementary embedding witnessing
the λ supercompactness of κ generated by a supercompact ultrafilter over
Pκ(λ). Note that by hypothesis, if λ = γ+ where γ is a measurable cardinal
which is not a limit of measurable cardinals, then κ is actually λ+ = γ++

supercompact in V (so under these circumstances, M may be taken as being
λ+ closed). Consequently, regardless if this is the case, M has enough closure
so that j(P0

κ ∗ Q̇) = P0
κ ∗ Q̇ ∗ Ṙ ∗ j(Q̇), where the first ordinal at which Ṙ is

forced to act nontrivially is above λ. Silver’s standard lifting arguments, as
given, e.g., in the proof of Lemma 1.2 of [1] (and mentioned in the proof of
Theorem 1), once again show that if G is V -generic over P0

κ and H is V [G]-
generic over Q, then j lifts in V [G][H] to j∗ : V [G][H] → M [G][H][H ′][H ′′]
which witnesses the λ supercompactness of κ, where H ′ and H ′′ are the
generic objects constructed in V [G][H] for R and j∗(Q), and H ′′ contains

a master condition for j∗′′H. Hence, V P0
κ∗Q̇ � “κ is λ supercompact”. This

completes the proof of Lemma 2.4.

Lemma 2.5. V P0
� “K is the class of supercompact cardinals”.

Proof. As in the proof of Lemma 2.1, we may write P0 = Q ∗ Ṙ, where
|Q| = ω, Q is nontrivial, and Q “Ṙ is ℵ1-directed closed”. Hence, by The-

orem 3, any cardinal supercompact in V P0
had to have been supercompact

in V . However, by Lemma 2.4, any cardinal supercompact in V remains su-
percompact in V P0

. Thus, V P0
� “K is the class of supercompact cardinals”.

This completes the proof of Lemma 2.5.

Lemma 2.6. V P0
� “Level by level equivalence between strong compact-

ness and supercompactness holds”.
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Proof. Suppose V P0
� “κ < λ are such that κ is λ strongly compact and

λ is a regular cardinal”. By its definition, P0 is mild with respect to κ. There-
fore, by the factorization of P0 given in Lemmas 2.1 and 2.5 and Theorem 3,
it must be true that V � “κ is λ strongly compact”. By level by level equiv-
alence between strong compactness and supercompactness, V � “Either κ

is λ supercompact, or κ is a measurable limit of cardinals δ which are λ

supercompact”. By Lemma 2.3 and the paragraph immediately following, it
cannot be the case that V � “λ = γ+, γ is a measurable cardinal which is
not a limit of measurable cardinals, and either strong compactness or super-
compactness first fails at γ++ for any cardinal δ which is either λ strongly
compact or λ supercompact”. Hence, by Lemma 2.4, V P0

� “Either κ is λ su-
percompact, or κ is a measurable limit of cardinals δ which are λ supercom-
pact”, i.e., V P0

� “Level by level equivalence between strong compactness
and supercompactness holds”. This completes the proof of Lemma 2.6.

Because λ++ is collapsed if κ is exactly λ supercompact and λ is in V

a measurable cardinal which is not a limit of measurable cardinals, we need
to do an additional forcing to ensure that if κ is λ supercompact, λ ≥ κ is
regular, and κ is a limit of measurable cardinals, then Pκ(λ) carries exactly

22[λ]<κ

= 22λ

= λ++ many κ-additive, fine, normal measures. To this end,
let V = V P0

. The partial ordering P1 ∈ V we use to complete the proof of
Theorem 2 is the reverse Easton iteration which begins by adding a Cohen
subset of ω and then does nontrivial forcing only at those stages δ which are
V -measurable cardinals which are not in V limits of measurable cardinals.

At such a stage δ, we force with Add(δ∗, 1), where δ∗ is (in either V or V
P1

δ )
the least inaccessible cardinal above δ. Regardless if P1 is a set or a proper
class, routine arguments show that forcing with P1 preserves all cardinals

and cofinalities and V
P1

� “ZFC + GCH”.

Lemma 2.7. If V
P1

� “κ is a measurable cardinal which is not a limit

of measurable cardinals”, then V � “κ is a measurable cardinal which is not

a limit of measurable cardinals”.

Proof. We mimic to a certain extent the proof of Lemma 2.1. The exact
same arguments as in Lemma 2.1 show that V � “κ is measurable”. Thus,
it once again suffices to show that V � “κ is not a limit of measurable car-
dinals”. As before, to do this, we assume to the contrary that V � “κ is a
limit of measurable cardinals”, so that in particular, V � “κ is a limit of
measurable cardinals which themselves are not limits of measurable cardi-
nals”. For any such measurable cardinal δ, write P1 = P1

δ ∗ Q̇. Since |P1
δ | < δ,

by the results of [13], V
P1

δ � “δ is measurable”. Since P1
δ

“Q̇ is δ+-directed

closed”, V
P1

δ
∗Q̇

= V
P1

� “δ is measurable”. Hence, V
P1

� “κ is a measurable
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cardinal which is a limit of measurable cardinals”, a contradiction which
then completes the proof of Lemma 2.7.

Lemma 2.8. V
P1

� “If κ is a measurable cardinal which is not a limit of

measurable cardinals, then κ carries exactly κ+ many normal measures”.

Proof. Suppose V
P1

� “κ is a measurable cardinal which is not a limit
of measurable cardinals”. By Lemma 2.7, V � “κ is a measurable cardinal
which is not a limit of measurable cardinals”. Therefore, in analogy to the
proof of Lemma 2.7, write P1 = P1

κ ∗ Q̇. By Lemma 2.2, V � “κ carries
exactly κ+ many normal measures”. Hence, since |P1

κ| < κ, by the results of

[13], V
P1

κ � “κ is a measurable cardinal which is not a limit of measurable
cardinals and κ carries exactly κ+ many normal measures”. Consequently,
as P1

κ
“Forcing with Q̇ adds no bounded subsets of the least inaccessible

cardinal above κ”, V
P1

κ∗Q̇
= V

P1

� “κ is a measurable cardinal which is
not a limit of measurable cardinals and κ carries exactly κ+ many normal
measures”. This completes the proof of Lemma 2.8.

Lemma 2.9. If V � “κ is λ supercompact and λ > κ is regular”, then

V
P1

� “κ is λ supercompact”.

Proof. We mimic to a certain extent the proof of Lemma 2.4. Write
P1 = P1

κ ∗ Q̇∗ Q̇′, where Q̇ is forced to act (either trivially or nontrivially) on
ordinals in the closed interval [κ, λ], and Q̇′ is a term for the rest of P1. Since


P1

κ∗Q̇
“Q̇′ is λ+-directed closed”, to show V

P1

� “κ is λ supercompact”, it

suffices to show that V
P1

κ∗Q̇
� “κ is λ supercompact”.

To do this, let j : V → M be an elementary embedding witnessing the λ

supercompactness of κ generated by a supercompact ultrafilter over Pκ(λ).
Then M has enough closure so that j(P1

κ ∗ Q̇) = P1
κ ∗ Q̇∗ Ṙ∗ j(Q̇), where the

first ordinal at which Ṙ is forced to act nontrivially is above λ. As before,
Silver’s standard lifting arguments, as given, e.g., in the proof of Lemma 1.2
of [1] (and mentioned in the proof of Theorem 1 and Lemma 2.4), once
again show that if G is V -generic over P1

κ and H is V [G]-generic over Q,
then j lifts in V [G][H] to j∗ : V [G][H] → M [G][H][H ′][H ′′] which witnesses
the λ supercompactness of κ, where H ′ and H ′′ are the generic objects
constructed in V [G][H] for R and j∗(Q), and H ′′ contains a master condition

for j∗′′H. Hence, V
P1

κ∗Q̇
� “κ is λ supercompact”. This completes the proof

of Lemma 2.9.

Lemma 2.10. V
P1

� “Level by level equivalence between strong compact-

ness and supercompactness holds”.
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Proof. We mimic to a certain extent the proof of Lemma 2.6. Suppose

V
P1

� “κ < λ are such that κ is λ strongly compact and λ is a regular
cardinal”. By its definition, P1 is mild with respect to κ. In addition, it is
possible to factor P1 as Q ∗ Ṙ, where |Q| = ω, Q is nontrivial, and Q “Ṙ

is ℵ1-directed closed”. Therefore, by Theorem 3, it must be the case that
V � “κ is λ strongly compact”. By level by level equivalence between strong
compactness and supercompactness in V , V � “Either κ is λ supercompact,
or κ is a measurable limit of cardinals δ which are λ supercompact”. Hence,

by Lemma 2.9, V
P1

� “Either κ is λ supercompact, or κ is a measurable

limit of cardinals δ which are λ supercompact”, i.e., V
P1

� “Level by level
equivalence between strong compactness and supercompactness holds”. This
completes the proof of Lemma 2.10.

The proof of Theorem 1 now applies almost verbatim to show that

V
P1

� “If κ is λ supercompact, λ ≥ κ is regular, and κ is a limit of mea-

surable cardinals, then Pκ(λ) carries exactly 22[λ]<κ

= 22λ

= λ++ many
κ-additive, fine, normal measures”. The same proof as in Lemma 2.5 (re-
placing a reference to Lemma 2.4 with a reference to Lemma 2.9) shows

that V
P1

� “K is the class of supercompact cardinals”. Therefore, by letting
P = P0 ∗ Ṗ1, Lemmas 2.1–2.10 and the intervening remarks complete the
proof of Theorem 2.

As we remarked at the beginning of this paper, if κ exhibits enough su-
percompactness, it will be the case that Pκ(λ) carries the maximal number
of κ-additive, fine, normal measures. However, since this may not always be
the case, we conclude by asking what the other possibilities are for the num-
ber of normal measures over Pκ(λ) in a universe containing supercompact
cardinals in which level by level equivalence between strong compactness
and supercompactness holds. In particular, if κ is λ supercompact, λ ≥ κ is
regular, and κ is not λ+ supercompact, is it possible, in a model satisfying
GCH and level by level equivalence between strong compactness and super-
compactness, for Pκ(λ) to carry exactly 1 normal measure? What about δ

many normal measures, where δ is an arbitrary cardinal less than 22[λ]<κ

?
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