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On analyti �ows on the torus whih aredisjoint from systems of probabilisti originbyMariusz Lema«zyk and Magdalena Wysoki«ska (Toru«)Abstrat. We desribe two methods of obtaining analyti �ows on the torus whihare disjoint from dynamial systems indued by some lassial stationary proesses.Introdution. In [9℄ the notion of ELF-�ows has been introdued. These�ows are de�ned as follows: We look at the set of time t automorphisms,
t ∈ R, of an ergodi �ow as Markov operators of the underlying L2-spae,and the �ow has the ELF property if the losure of this set in the weakoperator topology onsists of indeomposable Markov operators. The ELF-property is automatially satis�ed for all mixing systems, however in theweak mixing and non-mixing ase it seems to be a ommon property ofsystems that might be alled of probabilisti origin. Indeed, already in [9℄it was remarked that Gaussian systems enjoy the ELF-property. Moreover,in the reent paper [3℄ it is proved that systems indued by (symmetri) α-stable proesses as well as Poisson suspension �ows are also examples of ELF-systems. This is still generalized in [25℄ beause one of the main onsequenesof the developed theory of in�nitely divisible joinings for systems generatedby in�nitely divisible stationary proesses is that suh systems also have theELF-property.It is rather lear that the �ow indued by a stationary proess given bya funtion of a lassial stationary proess should also be regarded as oneof probabilisti origin. In other words, fators of systems of probabilistiorigin are also of probabilisti origin (note that the ELF-property is losedunder taking fators). Therefore if we want to exhibit systems di�erent fromELF-�ows, it is natural to require that suh systems are disjoint (in the senseof Furstenberg [12℄) from the ELF-lass. We reall that disjoint systems haveno nontrivial ommon fators.2000 Mathematis Subjet Classi�ation: 37A10, 37C10.Key words and phrases: analyti �ow on the torus, ELF-�ow, disjoint �ows, almostanalyti oyle.Researh partially supported by KBN grant 1P03A 03826.[97℄ © Instytut Matematyzny PAN, 2007



98 M. Lema«zyk and M. Wysoki«skaIn the series of papers [9℄�[8℄ some lasses of smooth �ows on surfaes areshown to be disjoint from ELF-�ows. However, no smooth �ow appearingin those papers was analyti. In the present paper we will show how toobtain analyti �ows on the torus whih are disjoint from the ELF-lass.Our �rst method is �generi��we show that given a positive analyti funtion(whih is not a trigonometri polynomial) on the irle, for a generi set ofirrational rotations the resulting speial �ows are disjoint from all ELF-�ows.Our analysis is similar to the one of A. Katok (see Theorem 5.7 in [15℄).The seond approah uses the a.a...p. method from [17℄. This method hasa presribed set of parameters and, over eah irrational α belonging to aertain residual subset of [0, 1), it leads to a onstrution of a real-valuedstep oyle ϕ whih is ohomologous to an analyti zero mean oyle.Assuming additionally that ϕ ∈ L2 and ϕ + C > 0 for a onstant C, asshown in [9℄, in order to obtain a speial �ow (under ϕ + C) disjoint fromthe ELF-lass we need two onditions to be satis�ed: along a ertain rigiditytime (wn) for the irrational rotation by α,(A) the sequene of distributions ((ϕ(wn))∗)n≥1 weakly onverges to anon-Dira measure on R,(B) the sequene (‖ϕ(wn)‖L2)n≥1 is bounded.This is the ondition (B) whih introdues a new restrition on the set of α'sover whih a given a.a...p. an be realized. We argue however that suh aset of α's is still residual.It should be notied that the approah when one deals with limit dis-tributions along a rigidity sequene is not an original one. For example theondition (A) is satis�ed for analyti onstrutions of oyles over irrationalrotations in [28℄ (see also [22℄). Also, onvergene towards partiular distri-butions inluding Gaussian distributions appears in [4℄. It might be expetedthat ertain modi�ations in [28℄ should also give ondition (B), and there-fore should also lead to onstrutions of analyti speial �ows disjoint fromthe ELF-lass.Our seond approah, whih uses the a.a...p. method, will allow usto onstrut an unountable family {T Fε}ε∈E of �ows obtained by analytihanges of times for the linear �ow on R2/Z2, i.e. T Fε , ε ∈ E, is deter-mined by 



dx

dt
=

α

Fε(x, y)
,

dy

dt
=

1

Fε(x, y)
,

(1)
suh that eah �ow of the family is disjoint from the ELF-lass. In fat,
E = {0, 1}N and on E we onsider the equivalene relation ∼:

ε ∼ ε′ ⇔ εi = ε′i eventually.



Analyti �ows on the torus 99The family {T Fε}ε∈E enjoys additionally the property that T Fε is disjointfrom T Fε′ whenever ε 6∼ ε′. Note that, by the Liouville theorem, eah �ow
T Fε preserves a �physial� measure, but this measure depends on ε. By on-sidering the whole family of suh �ows as non-singular �ows for the Lebesguemeasure on R2/Z2 we show that the map ε 7→ T Fε is Borel, whene we arein the situation whih �rst appeared in [5℄ (see also e.g. [6℄). Consequently,by [5℄, it is impossible to solve the problem of measure-theoreti lassi�a-tion of �ows on R2/Z2 preserving a �physial� measure by a ountable setof Borel invariants (in fat, we prove the same result also for the spetrallassi�ation).By further modi�ations of the a.a...p. method we will obtain weaklymixing analyti �ows (T f

t )t∈R suh that for every probability Borel measure
P on R the integral Markov operator T

R
T f

t dP (t) belongs to the weak losureof the time t automorphisms T f
t , t ∈ R. In partiular, using a result of Ageev([1℄), if we denote by σ the redued maximal spetral type of T = T f

1 , thenthe Gaussian automorphism determined by σ will have simple spetrum andin partiular, onvolutions of the redued maximal spetral type are pairwisesingular (see [15℄, [24℄, [27℄ for similar results on onvolutions). Suh Gaussianautomorphisms are interesting beause they have the GAG property whileFoia³�Str til 's theorem fails for them (see [20℄).The authors would like to thank K. Fr¡zek for useful disussions on thesubjet, and the referee for numerous remarks, omments, suggestions andfor orreting errors in the original version of the paper.1. Preliminaries. Throughout the paper we will identify R/Z with
[0, 1) (with addition mod 1). Eah funtion de�ned on [0, 1) will be treated asa 1-periodi funtion on R. The Lebesgue measure on [0, 1) will be denotedby µ. For the omplex irle {z ∈ C : |z| = 1} we will use the notation T.1.1. Continued fration expansion. We will now reall some basi fatsabout the ontinued fration expansion of an irrational number. Eah α ∈
(0, 1) has a representation as a ontinued fration

α = [0; a1, a2, . . . ],where the positive integers an are alled the partial quotients of α. Thisexpansion is in�nite whenever α is irrational. Put
q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1,

p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1.The rationals pn/qn are alled the onvergents of α and the following in-equality holds: ∣∣∣∣α − pn

qn

∣∣∣∣ <
1

qnqn+1



100 M. Lema«zyk and M. Wysoki«skafor n ≥ 0. Moreover, we have
qn+1‖qnα‖ + qn‖qn+1α‖ = 1,where ‖v‖ = dist(v, Z) for v ∈ R. The frational part of a real number vwill be denoted by {v}. Take now an irrational rotation by α on X = [0, 1),

Tx = x + α. Reall some fats (ontained e.g. in [17℄) about the dynamisof T . Fix n ∈ N even. Then the union of the disjoint Rokhlin towers
ζn = {[0, {qnα}), T [0, {qnα}), . . . , T qn+1−1[0, {qnα})},
ζn = {[{qn+1α}, 1), T [{qn+1α}, 1), . . . , T qn−1[{qn+1α}, 1)}oinides with [0, 1). For a subsequene (nk) ⊂ N de�ne

Ik = [0, {a2nk+1q2nk
α}), Jk

t = T (t−1)q2nk [0, {q2nk
α})for t = 1, . . . , a2nk+1. We get

Ik =

a2nk+1⋃

t=1

Jk
t ,and for all t = 1, . . . , a2nk+1,(2) lk := |Jk

t | <
1

a2nk+1q2nk

.Then {Ik, T Ik, . . . , T
q2nk

−1Ik} is a Rokhlin tower and if we put
Σk = [0, 1) \

q2nk
−1⋃

s=0

T sIkthen Σk =
⋃

ζ2nk
∪ ⋃q2nk+1−1

r=q2nk+1−q2nk−1
T rJk

1 , hene(3) µ(Σk) = q2nk
‖q2nk+1α‖ + q2nk−1‖q2nk

α‖ < 2/a2nk+1.We will also need the following lemma.Lemma 1 (see e.g. [17℄). Given an in�nite inreasing sequene (qn) ofnatural numbers and a positive real-valued funtion r = r(qn), the set
{α ∈ [0, 1) : for in�nitely many n we have |α − pn/qn| < r(qn),and pn/qn are onvergents of α}is residual.1.2. The lass of �ows with the ELF-property. Consider a measurable�ow S = (St)t∈R, that is, for eah t ∈ R, St is an automorphism on astandard probability Borel spae (X,B, µ) and the orresponding unitaryrepresentation of R on L2(X,B, µ) given by USt(f) = f ◦ St is (weakly)ontinuous. Depending on the ontext, St may denote USt . Assume S tobe ergodi and take another ergodi �ow R = (Rt)t∈R on (Y, C, ν). Nowwe de�ne a joining of S and R as an arbitrary probability measure ̺ on



Analyti �ows on the torus 101
(X × Y,B ⊗ C) whih is (St × Rt)t∈R-invariant and whose marginals are µand ν respetively. The set of all joinings between S and R will be denotedby J(S,R). In ase S = R we write J(S) and speak about self-joinings. Thesubset of ergodi joinings will be denoted by Je(S,R) (Je(S) for ergodiself-joinings).Having a joining ̺ ∈ J(S,R) we de�ne a map Φ̺ : L2(X,B, µ) →
L2(Y, C, ν) suh that for eah f ∈ L2(X,B, µ) and g ∈ L2(Y, C, ν),\

Y

Φ̺(f)g dν =
\

X×Y

f ⊗ g d̺.

Notie that we get a Markov operator Φ̺ : L2(X,B, µ) → L2(Y, C, ν), i.e. abounded linear operator satisfying
Φ̺1 = Φ∗

̺1 = 1 and Φ̺f ≥ 0 whenever f ≥ 0.Conversely, having a Markov operator Φ : L2(X,B, µ) → L2(Y, C, ν) we anobtain a unique measure on (X × Y,B ⊗ C) whose projetions on X and Yare equal to µ and ν respetively: indeed, we put
̺(A × B) =

\
B

Φ(χA) dν

for all A ∈ B and B ∈ C. Moreover, the (St × Rt)t∈R-invariane of ̺ isequivalent to
Φ ◦ USt = URt ◦ Φ(4)for eah t ∈ R. Thus we an identify the set of all Markov operators satisfying(4) (denoted by J (S,R)) with the set J(S,R). The set of Markov operatorsorresponding to ergodi joinings will be denoted by J e(S,R) (suh Markovoperators are indeomposable, that is, they are extremal elements of the sim-plex J (S,R)). The notation J (S) and J e(S) is used for self-joinings. Notethat USt ∈ J e(S), t ∈ R. Denote by Tthe Markov operator orrespondingto the produt measure, i.e. T(f) =

T
X f dµ.Following [12℄, S and R are alled disjoint (in the sense of Furstenberg)if J(S,R) = {µ ⊗ ν}.Reall also (see [13℄) that whenever the maximal spetral types σS and σRof the orresponding Koopman representations on L2

0(X,B, µ) and
L2

0(Y, C, ν) are mutually singular then S and R are disjoint.Finally, following [9℄, we say that an ergodi �ow S = (St)t∈R has theELF-property (brie�y, is an ELF-�ow) if {USt : t ∈ R} ⊂ J e(S) (the losurein the weak operator topology).1.3. Speial �ows and ELF-property. Denote by P(R) the spae of allBorel probability measures on R. Reall that a sequene (σn) of measures



102 M. Lema«zyk and M. Wysoki«skaonverges weakly in P(R) to a measure σ if for eah funtion h ∈ CB(R),\
R

h dσn →
\
R

h dσ.Let (X,B, µ) be a standard probability Borel spae. Given a measurablefuntion f : X → R, we denote by f∗µ the image of µ via f , i.e. f∗µ(A) =
µ(f−1(A)) for an arbitrary Borel set A in R.Note that whenever (fk), (gk) are sequenes of real measurable funtionson X satisfying (fk)∗µ → σ as k → ∞ for some σ ∈ P(R) and µ{x ∈ X :
fk(x) 6= gk(x)} → 0 as k → ∞, then (gk)∗µ → σ as k → ∞.Now we reall basi fats onerning speial �ows.Let T be an ergodi automorphism of (X,B, µ). We will denote by λLebesgue measure on R. Assume f : X → R to be a measurable positivefuntion with TX f dµ < ∞.We de�ne an R-ation, denoted by T f , on the spae (Xf ,Bf , µf ) where

Xf = {(x, t) ∈ X × R : 0 ≤ t < f(x)},
Bf is the restrition of B ⊗ B(R) and µf is the restrition to Xf of theprodut measure µ ⊗ λ of X × R. This ation, denoted by T f = ((T f )t)t∈R,will be alled the speial �ow built from T and the roof funtion f and itis as follows. Eah point from Xf moves vertially upwards with unit speedand as soon as it reahes the graph of f , the point (x, f(x)) is identi�ed with
(Tx, 0) (see e.g. [2, Chapter 11℄). Put

f (k)(x) =





f(x) + f(Tx) + · · · + f(T k−1x) for k > 0,

0 for k = 0,

−(f(T kx) + · · · + f(T−1x)) for k < 0.

(5)
Only funtions f satisfying f ≥ c > 0 will be onsidered. It follows thatfor a.e. x ∈ X,

f (k)(x) ≥ ck, k ∈ N.Reall that a sequene (qn) is said to be a rigidity time for the auto-morphism T if U qn

T → Id as n → ∞ in the weak (or, equivalently, strong)operator topology.We now reall some results from [9℄ that will be needed in what follows.Proposition 1 ([9℄). Suppose that T = (Tt)t∈R is an ergodi �ow on
(Y, C, ν) suh that for a sequene (tn) ⊂ R with tn → ∞,

Ttn →
\
R

Ts dP (s),where P ∈ P(R). Then(i) T is disjoint from all mixing �ows,



Analyti �ows on the torus 103(ii) T is disjoint from all weakly mixing ELF-�ows whenever P is not aDira measure.Proposition 2 ([9℄). Let (qn) be a rigidity sequene for T . Supposethat f ∈ L2(X, µ), f ≥ c > 0 and TX f(x) dµ(x) = d < ∞. Put f0 =

f − d. Moreover , suppose that the sequene (f
(qn)
0 ) is bounded in L2(X, µ)and (f

(qn)
0 )∗µ → P weakly in P(R). Then

(T f )dqn
→
\
R

(T f )−t dP (t).From the above propositions we obtain the following.Corollary 1 ([9℄). Under the assumptions of Proposition 2 supposeadditionally that T f is weakly mixing and that the limit measure P is not aDira measure. Then the speial �ow T f is disjoint from all ELF-�ows.Reall also that if (qn) is a rigidity time for T and (f
(qn)
0 )∗µ → P with

P ontinuous then the speial �ow T f is weakly mixing (see [21℄).We will need some disjointness results onerning �ows having integralMarkov operators in the weak losure of their time t automorphisms, t ∈ R.Lemma 2. Let T = (Tt)t∈R and S = (St)t∈R be R-ations on (X,B, µ)and (Y, C, ν) respetively. Assume additionally that T is weakly mixing and
S is ergodi. Moreover , suppose that for a sequene (tn) ⊂ R with tn → ∞,

Ttn →
\
R

Tt dP (t) and Stn →
\
R

St dQ(t).If P 6= Q then the �ows T and S are disjoint in the sense of Furstenberg.Proof. Let J : L2(X,B, µ) → L2(Y, C, ν) be the Markov operator orre-sponding to an ergodi joining between T and S. Thus
J ◦ Tt = St ◦ J for all t ∈ R.(6)By taking t = tn and passing to the limits we obtain

J ◦
\
R

Tt dP (t) =
(\

R

St dQ(t)
)
◦ J.Hene from (6) we have\

R

J ◦ Tt dP (t) =
\
R

J ◦ Tt dQ(t).(7)
Suppose that J 6=

T. Denote by P ′ and Q′ the images via the (ontinuous)mapping
t 7→ J ◦ Tt(8)



104 M. Lema«zyk and M. Wysoki«skaof the measures P and Q respetively. We obtain\
R

J ◦ Tt dP (t) =
\

J e(S,T )

ΦdP ′(Φ),\
R

J ◦ Tt dQ(t) =
\

J e(S,T )

ΦdQ′(Φ).

In view of (7) and from the uniqueness of the ergodi deomposition we have
P ′ = Q′. Now using weak mixing of T , we onlude that the ontinuous map(8) is an injetion, so (by the Suslin theorem) P = Q. The result follows.Lemma 3. Under the assumptions of Lemma 2, if P 6= δ0 and Q = δ0,then the �ows T and S are spetrally disjoint.Proof. Assume that the (redued) maximal spetral types σUT

and σUS
of

T and S are not mutually singular. Then there exists a probability measure
σ suh that σ ≪ σUT

and σ ≪ σUS
. We have σ = σf,UT

= σg,US
for somefuntions f ∈ L2

0(X,B, µ) and g ∈ L2
0(Y, C, ν) and ‖f‖ = ‖g‖ = 1. From theassumptions we obtain

σ̂(tn) = 〈Ttnf, f〉 →
\
R

〈Ttf, f〉 dP (t),

σ̂(tn) = 〈Stng, g〉 →
\
R

〈Stg, g〉 dδ0(t) = ‖g‖2 = 1.A onvexity argument shows immediately that 〈Ttf, f〉 = 1 for P -a.e. t ∈ R.Now the equality in the Shwarz inequality and the weak mixing of T yield
f = 0.Remark 1. Note that the proof of Corollary 5.2 from [9℄ gives rise tothe following: If for �ows T = (Tt)t∈R, S = (St)t∈R, one of whih is weaklymixing, we have

Ttn →
\
Tt dP (t), Stn →

\
St dQ(t)for some tn → ∞, P 6= Q and P and Q have ompat supports then T and

S are spetrally disjoint.Indeed, otherwise, as in the proof of the above lemma, we obtain
σ̂(tn) →

\
R

〈Ttf, f〉 dP (t) =
\
R

〈Stg, g〉 dQ(t).But \
R

〈Ttf, f〉 dP (t) =
\
R

P̂ (s) dσf,UT
(s) =

\
R

P̂ (s) dσ(s)

and hene T
R

P̂ (s) dσ(s) =
T
R

Q̂(s) dσ(s). Moreover, we an repeat the samereasoning for eah probability measure η ≪ σ and therefore P̂ (s) = Q̂(s)for σ-a.e. s ∈ R. Sine P and Q have ompat supports, P̂ and Q̂ have



Analyti �ows on the torus 105analyti extensions to the whole omplex plane. Sine σ is ontinuous, P̂ = Q̂everywhere, and hene P = Q.Finally, notie that the set of integral Markov operators is losed underthe weak onvergene of measures: if Pn onverges weakly to P in P(R) then\
R

Tt dPn(t) →
\
R

Tt dP (t).(9)Indeed, we only need to hek that for eah f, g ∈ L2(X,B, µ),
〈(\

R

Tt dPn(t)
)
f, g

〉
=
\
R

〈Ttf, g〉 dPn(t)

→
\
R

〈Ttf, g〉 dP (t) =
〈(\

R

Tt dP (t)
)
f, g

〉
,whih is immediate as the funtion R ∋ t 7→ 〈Ttf, g〉 is ontinuous andbounded.2. Analyti speial �ows disjoint from the ELF-lass2.1. Generi method. Let f : [0, 1) → R be a real-analyti funtion.Consider its Fourier expansion

f(x) =
∞∑

n=−∞

bne2πinx

where bn = o(A|n|) for some 0 < A < 1, n ∈ Z. We additionally require thatT
f = 0 (b0 = 0) and that #{n ∈ Z : bn 6= 0} = ∞ (so that f is not atrigonometri polynomial).Lemma 4. There exists an in�nite sequene (qn) suh that bqn 6= 0 and

lim
n→∞

|bqn |
|bqn | + |b2qn | + · · · = 1.Proof. Choose q1 ≥ 1 and δ1 > 0 so that

|bq1 |
Aq1

≥ δ1 and |bs|
As

< δ1 for all s > q1.(10)Then
∞∑

i=2

|biq1 | <
∞∑

i=2

Aiq1δ1 = δ1A
q1

Aq1

1 − Aq1
≤ |bq1 |

Aq1

1 − Aq1
.Now hoose q2 > q1 and δ2 > 0 so that (10) holds with q2 instead of q1 and

δ2 instead of δ1. It follows that we an hoose an inreasing sequene (qn)for whih ∞∑

i=2

|biqn | ≤ |bqn |
Aqn

1 − Aqn
= o(|bqn |),and the proof is omplete.



106 M. Lema«zyk and M. Wysoki«skaFor a �xed integer q ≥ 1 onsider now a 1/q-periodi funtion fq : [0, 1) →
R given by

fq(x) = f(x) + f

(
x +

1

q

)
+ · · · + f

(
x +

q − 1

q

)
.By the Koksma inequality, fq → 0 uniformly as q → ∞, in partiular

(fq)∗µ → δ0 as q → ∞.Moreover,
fq(x) = q

∞∑

l=−∞

blqe
2πilqx.We will onsider funtions of the form sfq for some positive integer s.We have

sfq(x) = sq2Re(bqe
2πiqx) + sq2Re(b2qe

2πi2qx + b3qe
2πi3qx + · · · ).Sine bq → 0 exponentially fast, qbq → 0 as q → ∞. Hene qnbqn → 0, where

(qn) is the sequene from Lemma 4. We now selet a sequene (sn) of naturalnumbers so that
snqn|bqn | → 1 as n → ∞.(11)It follows from (11) and Lemma 4 that

snqn(|b2qn | + |b3qn | + · · · ) → 0 as n → ∞.(12)Proposition 3. The sequene of distributions (snfqn)∗µ onvergesweakly to σ, where σ is an absolutely ontinuous measure on [−2, 2]. Fur-thermore
‖snfqn‖C([0,1)) ≤ 3 for n ≥ n0.Proof. Sine |snqnbqn | → 1 as n → ∞, the sequene of distributions

(snqnbqne2πiqnx)∗µ tends to Lebesgue measure on T. It follows that
(2Re(snqnbqne2πiqnx))∗µ → σ̃, where σ̃ is the image of Lebesgue measurefrom T via the map z 7→ 2Re z. In view of (12),

2Re(snqnb2qne2πi2qnx + snqnb3qne2πi3qnx + · · · ) → 0 as n → ∞(13)uniformly, so the orresponding sequene of distributions onverges to theDira measure δ0. In partiular snfqn and 2Re(snqnbqne2πiqnx) have the samelimit distributions as their di�erene tends to zero in measure. Therefore
(snfqn)∗µ → σ̃. The uniform bound of snfqn is obvious from (13) and (11).In view of Lemma 1 the set of α's for whih |α − pn/qn| < r(qn) forin�nitely many n's, where r(qn) = o(|bqn |2) and pn/qn are the onvergentsof α, is residual. For an irrational α in this set, (snqn) is a rigidity time for
Tx = x + α. Moreover, for some in�nite subsequene (nk) we get

|snk
fqnk

(x) − f (snk
qnk

)(x)| → 0 as k → ∞(14)



Analyti �ows on the torus 107uniformly in x ∈ [0, 1). Indeed (to simplify notation we write q and s insteadof qnk
and snk

respetively),
sfq(x) − f (sq)(x) =

s∑

j=1

([
f(x) + f

(
x +

1

q

)
+ · · · + f

(
x +

q − 1

q

)]

− [f(x + (j − 1)qα) + f(x + (j − 1)qα + α)

+ · · · + f(x + (j − 1)qα + (q − 1)α)]

)
.Given 1 ≤ j ≤ s and 0 ≤ k ≤ q − 1, for some i ∈ {(j − 1)q, . . . , jq − 1} wehave k/q = ip/q (mod1) and then

∣∣∣∣f
(

x +
k

q

)
− f(x + iα)

∣∣∣ ≤ ‖f ′‖C([0,1)) i

∣∣∣∣
p

q
− α

∣∣∣∣ ≤ ‖f ′‖C([0,1))sqr(q).Now in view of (11),
|sfq(x) − f (sq)(x)| ≤ sq‖f ′‖C([0,1))sqr(q) = ‖f ′‖C([0,1))(sq|bq|)2

r(q)

|bq|2
→ 0as q → ∞, whih ompletes the proof of (14).Thus we have proved the following.Proposition 4. There exists a residual subset of [0, 1) suh that when-ever an irrational α belongs to this set there exists a sequene (qn) (a sub-sequene of denominators of α) suh that for some sequene (sn), (snqn) isa rigidity time for T , the sequene of distributions (f (snqn))∗µ tends toan absolutely ontinuous measure on [−2, 2] and the sequene of norms

(‖f (snqn)‖C([0,1))) is bounded.Take now the funtion f̃ = f + d for some d so that f̃ > 0. Then f̃0 = fand f̃ (with the sequene (snqn)n) satis�es the assumptions of Corollary 1.2.2. The a.a...p. (�almost analyti oyle onstrution proedure�).First, we brie�y reall the a.a...p. from [17℄, with a small modi�ationfor the purpose of this paper (see Remark 2 below).The aim of an a.a...p. is to onstrut a (non-trivial) oyle of the form
ϕ =

∑∞
k=1 ϕk, where ϕk's are step-oyles whih are oboundaries and ϕ isohomologous to some analyti oyle f .We are given a olletion of the following parameters: a sequene (Mk)

⊂ N and an array ((dk1, . . . , dkMk
))k≥1 with dki ∈ R suh that for eah k,

Mk∑

i=1

dki = 0(15)
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Mk ≥ 2

( k−1∑

i=1

DiMi

)2(16)where Dk = max1≤i≤Mk
|dki|. Then we hoose a sequene (εk) ⊂ R+ suhthat ∑∞

k=1

√
εk Mk < ∞, ∑∞

k=1 εk < 1 and εk < 1/D2
k for k = 1, 2, . . . . Thelast needed parameter is a real number A > 1.Having olleted the above parameters, we say that the a.a...p. is re-alized over an irrational number α = [0; a1, a2, . . . ] if there exists a stritlyinreasing sequene (nk) ⊂ N satisfying

ANk
DkMk

a2nk+1q2nk

<
1

2k
,(17)where Nk is the degree of a real trigonometri polynomial

Pk(t) =

Nk∑

s=−Nk

b(k)
s e2πist

suh that T10 Pk(t) dt = 1, Pk ≥ 0, and Pk(t) < εk for t ∈ (ηk/2, 1) (notie that
|b(k)

s | ≤ ‖Pk‖L1 = 1), where the ηk's satisfy 4Mkηk < εk/q2nk
. Furthermore,we require that a2nk+1 > 2 and 1/a2nk+1q2nk

< 1
2ηk.Now we an de�ne a oyle ϕ =

∑∞
k=1 ϕk in the following way. In theinterval Ik = [0, {a2nk+1q2nk

α}) we will hoose pairwise disjoint intervals
ωk1, . . . , ωkMk

of the same length λk ∈ (ηk, 2ηk) suh that eah ωki onsistsof ek ≥ 3 (odd) onseutive subintervals Jk
t . For i = 1, . . . , Mk − 1 theinterval ωk,i+1 follows ωki in the natural ordering of [0, 1) and, in general, theyare separated by a ertain number of onseutive subintervals Jk

j . Denotingby Jk
sk,i

the entral subinterval in ωki de�ne
ϕk(x) =

{
dki for x ∈ Jk

sk,i
, i = 1, . . . , Mk,

0 otherwise.Sine Ik+1 ⊂ Jk
1 , the ϕk's have disjoint supports and ϕ =

∑∞
k=1 ϕk is wellde�ned.Remark 2. In omparison with [17℄ we slightly redued the number ofonditions imposed on a.a...p. (for example (8) in [17℄ follows from (7)and (10) there, ‖Pk‖F = 1), however we added a new ondition (16). Inwhat follows we will still add some extra onditions on Mk and dki. It ishowever lear that the argument ontained in the proof of Proposition 1 in[17℄ persists, and the set of α's over whih an a.a...p. (in the sense of thepresent paper) is realized is a Gδ and dense subset of [0, 1). Reall that theargument used in [17℄ was a simple observation that the a.a...p. an be



Analyti �ows on the torus 109arried out over an α = [0; a1, a2, . . . ] whenever for a subsequene (nk) the
a2nk+1's are su�iently large. This also says that we an �nd an α for whihwe an require the a2nk+1's to have a speial form (for example be multiplesof Mk, et.)Remark 3. Assume that an a.a...p. with an array (dki) is realizedover an irrational α. We now take another a.a...p. whih has the samesequenes of parameters exept for an array (dki) whih is now (d′ki). Thenthe seond a.a...p. is realized over the same α provided that D′

k ≤ Dk,
k ≥ 1. In other words, to de�ne α we need the sequene (Dk) rather thanthe sequene ((dk1, . . . , dkMk

)).Moreover, the following theorem holds true.Theorem 1 ([17℄). Suppose that for an irrational α an a.a...p. is re-alized. Then there exists an analyti oyle f : [0, 1) → R whih is α-ohomologous to ϕ.Remark 4. In the proof of Theorem 1 in [17℄ an expliit form of theanalyti oyle f (ohomologous to ϕ) has been given. Namely
f(t) =

∞∑

k=1

lk

Mk∑

r=1

dkrPk(t − mkrα),(18)where mkr is determined by Jk
sk,r

= TmkrJk
1 . Reall that lk = |Jk

1 |. Thus theFourier expansion of f is given by
f(t) =

∞∑

s=−∞

( ∑

{k : |s|≤Nk}

b(k)
s lk

Mk∑

r=1

dkre
−2πismkrα

)
e2πist.(19)

This allows us to show (see the lemma below) that the analyti funtions
f obtained from the a.a...p. enjoy a universal bound whih depends onlyon A > 1.Lemma 5. For eah f given by (18), |f(t)| ≤ 2/(A − 1) for eah t∈ [0, 1).Proof. From (19), (2) and (17), for s 6= 0 we have

|f̂s| =
∣∣∣

∑

{k : |s|≤Nk}

lkb
(k)
s

Mk∑

r=1

dkre
−2πismkrα

∣∣∣

≤
∑

{k : |s|≤Nk}

lkMkDk
ANk

ANk
≤ 1

A|s|

∞∑

k=1

1

2k
=

1

A|s|
.

Thus
|f(t)| ≤

∞∑

s=−∞

|f̂s| ≤ 2
∞∑

s=1

1

As
=

2

A − 1
.



110 M. Lema«zyk and M. Wysoki«skaWe will also need the following property of the a.a...p.Lemma 6 ([17℄). For an arbitrary a.a...p., an arbitrary α over whihit is realized and for any k, the oyle ϕ is onstant on eah interval T i(Ik),
i = 1, . . . , q2nk

− 1. Moreover , if we put bk,i = ϕ|T i(Ik) then
q2nk

−1∑

i=1

bk,i = 0.Now, we will arry out an a.a...p., seleting the parameters so thatthe sequene of distributions (ϕ(bkq2nk
))∗µ tends to a ontinuous measure on

[−1, 1], where (bkq2nk
) is a ertain rigidity time for T .Fix an arbitrary probability ontinuous measure ν on [−1, 1]. We will putsome extra onditions on Mk, dki:

(20) |dki| ≤ 1, i = 1, . . . , Mk, k ≥ 1;

(21) M−1
k

Mk∑

i=1

δdki
→ ν weakly in P([−1, 1]) as k → ∞,in partiular (from (21))
Mk → ∞ as k → ∞.(22)Let α be an irrational over whih the a.a...p. is arried out. We requireadditionally that a2nk+1 is a multiple of Mk, more preisely

a2nk+1 = Mkbk,(23)where bk is odd, k ≥ 1.We now de�ne ϕk's by putting
sk,i = (i − 1)bk +

bk + 1

2
, i = 1, . . . , Mk,and then de�ning

ϕk(x) = dki if x ∈ Jk
sk,i

, i = 1, . . . , Mk,and 0 elsewhere (notie that bklk is of order
a2nk+1

Mk
· 1

a2nk+1q2nk

=
1

Mkq2nkwhile ηk is at most of order εk/Mkq2nk
, so the intervals ωk1, . . . , ωkMk

aredisjoint).Set ξj = Jk
(j−1)bk+1 ∪ · · · ∪ Jk

jbk
, j = 1, . . . , Mk (that is, ξ1, . . . , ξMk

areonseutive intervals of equal length bklk partitioning Ik).Consider now the union
q2nk⋃

s=1

T s−q2nk
(bk+1)/2ξj =: Uk,j , j = 1, . . . , Mk.
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ϕ

(bkq2nk
)

k (x) = dkj , x ∈ Uk,j , j = 1, . . . , Mk.(24)Reall that Σk = [0, 1)\⋃q2nk
−1

s=0 T sIk and from (3) and (22),
µ(Σk) → 0 as k → ∞.(25)Observe that ϕ

(bkq2nk
)

k = 0 on the omplement of the set ⋃Mk

j=1 Uk,j whihhas the same measure as Σk.Consider now the sequene of distributions (ϕ
(bkq2nk

)

k )∗µ. We will showthat (ϕ
(bkq2nk

)

k )∗µ → ν as k → ∞. Indeed, observe that
(ϕ

(bkq2nk
)

k )∗µ =

Mk∑

j=1

µ(Uk,j)δdkj
+ µ(Σk)δ0,where µ(Uk,j) = (1 − µ(Σk))/Mk. Now using (25) and (21) we get

(ϕ
(bkq2nk

)

k )∗µ =
1 − µ(Σk)

Mk

Mk∑

j=1

δdkj
+ µ(Σk)δ0 → ν as k → ∞.So we have onstruted a oyle ϕ =

∑∞
k=1 ϕk for whih the sequeneof distributions (ϕ

(bkq2nk
)

k )∗µ onverges weakly to ν.We will now show that
µ({x ∈ [0, 1) : ϕ

(bkq2nk
)

k (x) 6= ϕ(bkq2nk
)(x)}) → 0 as k → ∞.(26)Indeed, putting wk = bkq2nk

we get
ϕ(wk)(x) =

∞∑

i=1

ϕ
(wk)
i (x).Notie that the support of ∑

i≥k+1 ϕi is ontained in Ik+1 ⊂ Jk
1 , therefore itfollows from (2) and (22) that

µ
({

x ∈ [0, 1) :
∑

i≥k+1

ϕ
(wk)
i (x) 6= 0

})
≤ lkbkq2nk

<
bk

a2nk+1
→ 0 as k → ∞.

On the other hand, ∑k−1
i=1 ϕi is zero on Ik, whih ombined with Lemma 6implies

µ
({

x∈ [0, 1) :

k−1∑

i=1

ϕ
(wk)
i (x) 6= 0

})
≤ µ(Σk)+µ

( wk−1⋃

s=0

T sJk
a2nk+1−bk+1

)
,(27)hene

µ
({

x ∈ [0, 1) :

k−1∑

i=1

ϕ
(wk)
i (x) 6= 0

})
→ 0 as k → ∞.



112 M. Lema«zyk and M. Wysoki«skaThus (26) follows. We hene proved that
(ϕ(bkq2nk

))∗µ → ν as k → ∞.Clearly
‖bkq2nk

α‖ ≤ bk

q2nk+1
≤ a2nk+1

Mk
· 1

a2nk+1q2nk

→ 0so (bkq2nk
) is a rigidity sequene for Tx = x + α. For all assumptions ofCorollary 1 to be satis�ed we need to hek that (‖ϕ(wk)‖L2)k is bounded.Notie that sine |ϕi| ≤ 1 for eah i ∈ N and the ϕi's have disjointsupports, we have(28) ∥∥∥

∑

i≥k+1

ϕi

∥∥∥
∞

≤ 1.We have
ϕ(wk)(x) =

( k−1∑

i=1

ϕi

)(wk)
(x) + ϕ

(wk)
k (x) +

( ∑

i≥k+1

ϕi

)(wk)
(x).From the onstrution it follows that

|ϕ(wk)
k (x)| ≤ 1 for all x ∈ [0, 1).Taking into aount (28) and the fats that supp(

∑
i≥k+1 ϕi) ⊂ Ik+1 andthat card({x, x + α, . . . , x + (wk − 1)α} ∩ Ik+1) ≤ 1 for all x ∈ [0, 1), we get

∥∥∥
( ∑

i≥k+1

ϕi

)(wk)∥∥∥
∞

≤ 1.

Consider (
∑k−1

i=1 ϕi)
(wk). Notie that beause of (15), given i ≥ 1 and x ∈

[0, 1), we have |ϕ(n)
i (x)| ≤ ∑Mi

j=1 |dij| ≤ DiMi for all n ≥ 0. Hene in view of(27), (3) and (16), we obtain
∥∥∥
( k−1∑

i=1

ϕi

)(wk)∥∥∥
L2

≤
( k−1∑

i=1

DiMi

)
·
(
µ
({

x ∈ [0, 1) :
k−1∑

i=1

ϕ
(wk)
i (x) 6= 0

}))1/2

≤
( k−1∑

i=1

DiMi

)
·
(
µ(Σk) + µ

( wk−1⋃

s=0

T sJk
a2nk+1−bk+1

))1/2

≤
( k−1∑

i=1

DiMi

)
·
(

2

a2nk+1
+

bk

a2nk+1

)1/2

≤
( k−1∑

i=1

DiMi

)√
2

Mk
≤ 1.We have obtained a zero mean oyle ϕ : [0, 1) → R with |ϕ| ≤ 1 satis-fying (ϕ(bkq2nk

))∗µ → ν, where (bkq2nk
) is a rigidity time for the rotation Tand moreover (‖ϕ(bkq2nk

)‖L2) is bounded. Moreover, from Theorem 1 suh a



Analyti �ows on the torus 113oyle is ohomologous to some real-analyti funtion f . Sine Tϕdµ = 0,we have Tf dµ = 0. Let d > 0 be suh that ϕ̃ = ϕ+d > 0 and f̃ = f +d > 0.Then Tϕ̃ dµ = d and Tf̃ dµ = d. Note that ϕ̃0 = ϕ̃ −
T
ϕ̃ = ϕ and similarly

f̃0 = f .Thus we have proved the following.Corollary 2. The speial �ow T ϕ̃ built from the rotation T and theroof funtion ϕ̃ is disjoint from all ELF-�ows.Sine f̃ and ϕ̃ are ohomologous, T f̃ and T ϕ̃ are isomorphi. In partiular
T f̃ is disjoint from an arbitrary ELF-�ow.3. Analyti �ows on the torus whih are disjoint in the senseof Furstenberg from all ELF-�ows. In Setion 2 we have presented twodi�erent methods to obtain a speial �ow T f̃ with an analyti roof funtion f̃and over an irrational rotation T , whih is disjoint in the sense of Furstenbergfrom an arbitrary ELF-�ow. We will now show that whenever d > π/(A − 1)then T f̃ (f̃ = f + d) is a natural speial representation of some �ow T =
(Tt)t∈R on the torus [0, 1)2 given by

Tt(x, y) = (x(t), y(t))where (x(t), y(t)) is the only solution of the system of di�erential equations




dx

dt
=

α

F (x, y)
,

dy

dt
=

1

F (x, y)
.

(29)
Here F : [0, 1)2 → R+ is analyti and (x(0), y(0)) = (x, y) and the funtion
F will be preisely de�ned by (30) below. Reall �rst some fats onerning�ows arising from (29) (see [2, Chapter 16℄ for details).Let us assume that the funtion F in (29) is smooth. Notie that fromthe Liouville theorem, the �ow T preserves the measure F (x, y)dxdy. Fur-thermore T is ergodi sine it arises from a hange of time of the linear �owwhih is ergodi. Moreover, the following holds.Proposition 5 ([2℄). The �ow T = (Tt)t∈R orresponding to the system(29) is isomorphi to the speial �ow T h, where

h(x) =

1\
0

F (x + sα, s) ds.Conversely, having a speial �ow T h, where h is smooth, we an �nd asmooth funtion F : [0, 1)2 → R+ suh that T h is isomorphi to T = (Tt)t∈Roming from (29).
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∑∞

k=−∞ ĥke
2πikx is analyti and T10 h dµ =

ĥ0 > (π/2)
∑

k 6=0 |ĥk|, then as shown in [2, proof of Lemma 1, p. 435℄ thefuntion F given by
F (x, y) = ĥ0 +

∑

s6=0

2πi(sα + ls)

e2πi(sα+ls) − 1
ĥse

2πi(sx+lsy),(30)
where ls is the integer nearest to −sα, is analyti. Observe that

∣∣∣∣
2πi(sα + ls)

e2πi(sα+ls) − 1

∣∣∣∣ ≤
π

2
(31)and hene

F (x, y) ≥ F̂0,0 −
∑

(k,l) 6=(0,0)

|F̂k,l| ≥ ĥ0 −
π

2

∑

s6=0

|ĥs| > 0.(32)
We end up this setion by the observation that there exists a universal

d (depending only on A > 1) suh that all funtions f obtained from thea.a...p. (and given by (18)) satisfy
d >

π

2

∑

s6=0

|f̂s|.(33)
Indeed, from the proof of Lemma 5 it follows that whenever d > π/(A − 1)then for eah f given by (18) the inequality (33) holds.4. An unountable family of analyti �ows. Put E = {0, 1}N. Inthis setion we will onstrut an unountable family of oyles {ϕε}ε∈E sothat for some equivalene relation ∼ ⊂ E × E the orresponding speial�ows over an irrational rotation Tx = x + α are disjoint whenever ε 6∼ ε′and isomorphi whenever ε ∼ ε′.De�ne now a oyle ϕε in the following way. Given ε = (εi)i≥1 ∈ E put

ϕε =
∞∑

i=1

ϕ̃i,where ϕ̃i = εiϕi and for εi = 1 we arry out the ith step of the a.a...p. fromSubsetion 2.2. The unountable family of a.a...p.'s is now realized overa ommon α (indeed, reall that in view of Remark 3 we an replae someof the dki's by 0 and the a.a...p. will be realized over the same α). Usingsimilar arguments to those proving (26) we get µ({x ∈ [0, 1) : ϕ̃
(bkq2nk

)

k (x) 6=
ϕ

(bkq2nk
)

ε (x)}) → 0 as k → ∞. Therefore
(ϕ

(bkq2nk
)

ε )∗µ → ν as k → ∞, k ∈ {i : εi = 1}
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(ϕ

(bkq2nk
)

ε )∗µ → δ0 as k → ∞, k ∈ {i : εi = 0}if #{i : εi = 0} = ∞.De�ne ∼ ⊂ E × E by putting
ε ∼ ε′ whenever εi = ε′i for i large enough.Assume now that ε 6∼ ε′. So we an assume that the set {i ≥ 1 : εi = 1,

ε′i = 0} is in�nite. Take a positive d so that ϕ̃ε = ϕε + d > 0 and ϕ̃ε′ =
ϕε′ + d > 0. In view of Proposition 2,

(T ϕ̃ε)dbkq2nk
→
\
R

(T ϕ̃ε)−t dν(t), (T ϕ̃ε′ )dbkq2nk
→
\
R

(T ϕ̃ε′ )−t dδ0(t),when εk = 1, ε′k = 0 and k → ∞.By Lemma 3 the speial �ows (T ϕ̃ε

t )t∈R and (T
ϕ̃ε′

t )t∈R are spetrally dis-joint, hene they are disjoint in the sense of Furstenberg. Note that if ε ∼ ε′then ϕε and ϕε′ are ohomologous and hene the orresponding speial �owsare isomorphi.Remark 5. Now, the argument used to prove (33) and the fat that
|ϕ| ≤ 1 imply that whenever d > max (1, π/(A − 1)),

ϕε + d > 0 and d >
π

2

∑

s6=0

|(fε)
∧
s |for eah ε ∈ E. Notie that the seond inequality immediately implies that

fε + d > 0 for eah ε ∈ E.Put now f̃ε = fε +d and f̃ε′ = fε′ +d and observe that the orrespondingspeial �ows also have the property that they are isomorphi if ε ∼ ε′ anddisjoint (even spetrally disjoint) if ε 6∼ ε′.Remark 6. In view of Setion 3 and Remark 5 for every (analyti)funtion f̃ε = fε + d we obtain an analyti funtion Fε : [0, 1)2 → R+ suhthat the speial �ow T f̃ε and the �ow T Fε oming from (29) are isomorphi.Remembering that the funtion Fε is given by (30) we dedue that for all
ε ∈ E,

Fε(x, y) > d − π

A − 1
> 0.(34)On the other hand, from (30) and (31) we get, for all (x, y) ∈ [0, 1)2 and forall ε ∈ E,

|Fε(x, y)| ≤ 2d.(35)From now on we �x d > max (1, π/(A − 1)).



116 M. Lema«zyk and M. Wysoki«skaRemark 7. Observe that the family {T Fε : ε ∈ E} of analyti �ows on
[0, 1)2 obtained as above has the property that T Fε and T Fε′ are isomorphiwhenever ε ∼ ε′, and disjoint (in fat, spetrally disjoint) for ε 6∼ ε′.5. Non-existene of a ountable set of Borel invariants in thelass of �ows on R2/Z2. The aim of this setion is to show that a onse-quene of the results from the previous setion is that it is not possible to�nd a ountable omplete set of Borel invariants for the measure-theoretilassi�ation in the lass of �ows oming from (29). Suh �ows in general donot preserve Lebesgue measure, but they are non-singular with respet toit. Therefore we �rst reall some basi fats about topology of non-singular�ows.For a standard probability Borel spae (X,B, λ) (we assume that X isa ompat spae with a metri ̺) onsider the spae Ãut(X,B, λ) of allinvertible non-singular automorphisms on X, i.e. S ∈ Ãut(X,B, λ) if S isinvertible, bimeasurable and the measures λ and λS are equivalent, where
λS(A) = λ(SA) for every Borel set A ⊂ X.We now de�ne a Polish topology in Ãut(X,B, λ) (see [23℄ for details).For S ∈ Ãut(X,B, λ) de�ne

ŨSf =
dλS

dλ
f ◦ S, f ∈ L1(X,B, λ).(36)We then observe that ŨS belongs to the set Iso(L1(X, λ)) of invertible isome-tries of L1(X,B, λ). Then by the Lamperti theorem the mapÃut(X,B, λ) ∋ S 7→ ŨS ∈ Iso(L1(X, λ))(37)is injetive. On Iso(L1(X, λ)) we onsider the strong operator topology.We endow Ãut(X,B, λ) with a topology whih makes the map (37)a homeomorphism. This topology is metrisable with a (omplete) metrigiven by

d(S, T ) =
∞∑

n=1

2−n(‖ŨSfn − ŨT fn‖1 + ‖ŨS−1fn − ŨT−1fn‖1),where {f ′
n}n≥1 is a dense family in L1(X,B, λ) and fn = f ′

n/‖f ′
n‖.Remark 8. Assume that S preserves the measure Fdλ, where F : X →

R+ is measurable and in L1(λ). Observe that this is equivalent to
F ◦ S dλS = Fdλ.(38)Indeed, putting µ = Fdλ we have

µ(A) = µ(SA) =
\

SA

F dλ =
\
X

χA ◦ S−1 · F dλ =
\
A

F ◦ S dλS .



Analyti �ows on the torus 117It follows that in the ontinuous ase to show the onvergene in the metri
d it is enough to show the uniform onvergene of both: automorphisms anddensities. Indeed, assume that Fn → F > 0, Fn, F ontinuous and Sn → S,
S−1

n → S−1 (uniformly) and that for eah n ∈ N, Sn preserves the measure
Fndλ (whih by (38) is equivalent to the ondition dλSn/dλ = Fn/Fn ◦ Sn).Then Fn/Fn ◦ Sn → F/F ◦ S uniformly and hene d(Sn, S) → 0, as n → ∞.Put now X = [0, 1)2, B = B([0, 1)2) and let λ stand for Lebesgue measureon [0, 1)2. Denote by NF([0, 1)2, λ) the spae of all �ows non-singular withrespet to λ, that is, for eah �ow T = (Tt)t∈R ∈ NF([0, 1)2, λ) and all
t ∈ R, we have Tt ∈ Ãut([0, 1)2,B([0, 1)2), λ). Moreover, we require thatthe unitary representation t 7→ ˜̃

UTt given by ˜̃
UTtf =

√
dλTt/dλ · f ◦ Tt,

f ∈ L2([0, 1)2, λ), is strongly ontinuous. The spae NF([0, 1)2, λ) with themetri
D(T ,S) = sup

t∈[0,1]
d(Tt, St)beomes a Polish spae (see [26℄ for the measure preserving ase).Consider now the subspae NF ′([0, 1)2, λ) ⊂ NF([0, 1)2, λ) of all �owsarising from the systems of di�erential equations of the form (29) where

F ∈ C1([0, 1)2). Denote by NFω([0, 1)2, λ) the spae (ontained in
NF ′([0, 1)2, λ)) of �ows arising from (29) with F analyti. OnNF ′([0, 1)2, λ)and NFω([0, 1)2, λ) we onsider the restrition of the metri D.Remark 9. Observe that eah element T F = (TF

t )t ∈ NF ′([0, 1)2, λ)preserves a measure equivalent to Lebesgue measure λ, namely Fdλ. Heneusing similar arguments to those in Remark 8 we �nd that the onvergenein this spae follows from the uniform onvergene of densities and time tautomorphisms. In other words, to obtain D(T Fn , T F ) → 0 as n → ∞ itsu�es to show that TFn
t (x, y) → TF

t (x, y) uniformly with respet to (t, x, y),
t ∈ [−1, 1] and that Fn(x, y) → F (x, y) uniformly with respet to (x, y).Reall that α de�nes the ommon rotation for the whole family {Fε}ε∈Eobtained in Setion 4. Without hanging the notation let us go bak tothe onstrution in whih we have obtained the family {T Fε : ε ∈ E} of(analyti) �ows on [0, 1)2. Consider the map

E = {0, 1}N ∋ ε
Θ7−→ T Fε ∈ NFω([0, 1)2, λ).We equip E = {0, 1}N with the produt topology (whih is metrisable with,for instane, the produt metri dE((xn), (yn)) =

∑
k≥1 2−k|xk−yk|) so that

E beomes a ompat topologial spae.Put
A = Θ(E) = {T Fε : ε ∈ E}.The main result of this setion is the following.



118 M. Lema«zyk and M. Wysoki«skaTheorem 2. The set A ⊂ NFω([0, 1)2, λ) is a Borel subset of
NF([0, 1)2, λ). Moreover , if ϕ̃ : A → R∞ is an arbitrary Borel funtion suhthat ϕ̃(T ) = ϕ̃(S) whenever T ∈ A and S ∈ A are isomorphi, then thereexist spetrally disjoint �ows T ′ ∈ A and S ′ ∈ A suh that ϕ̃(T ′) = ϕ̃(S ′).From Theorem 2 we immediately get the following.Corollary 3. There does not exist a Borel map ϕ̃ : NF([0, 1)2, λ) →
R∞ whih is onstant on the (spetral) isomorphism lasses and simultane-ously takes di�erent values for (spetrally) non-isomorphi arguments.In other words, it is not possible to �nd a ountable omplete set of Borelinvariants in NF([0, 1)2, λ) for the problem of (spetral) isomorphism.Proof of Theorem 2. It is su�ient to show that(i) Θ is ontinuous (hene A is ompat),(ii) if ϕ̃ : A → R∞ is a Borel funtion onstant on isomorphism lasses,then there exist non-isomorphi �ows T Fε and T Fε′ suh that ϕ̃(T Fε)

= ϕ̃(T Fε′ ).First observe that (ii) follows from the 0-1 Kolmogorov law (by onsid-ering properties of ϕ̃ ◦ Θ).It remains to show (i). Assume that εn → ε, as n → ∞. In view ofRemark 9, to show that D(T Fεn , T Fε) → 0 it is enough to show that
T

Fεn
t (x, y) → TFε

t (x, y)(39)uniformly with respet to (t, x, y), t ∈ [−1, 1] and that
Fεn(x, y) → Fε(x, y)(40)uniformly with respet to (x, y).To see (40) we will prove the ontinuity of the map

E ∋ ε 7→ Fε ∈ C([0, 1)2).This an be replaed by a stronger ondition that the mapping E ∋ ε 7→
F̂ε ∈ l1(Z2) is ontinuous. Furthermore in view of (30) and (31) it is enoughto show the ontinuity of the map E ∋ ε 7→ f̂ε ∈ l1(Z), and this latterondition is proved in muh the same way as Lemma 5.To prove (39) reall that a di�erential equation on [0, 1)2 may be liftedto an equation on R2 simply by periodi extension. For ε ∈ E onsider thena di�erential equation of the form (29), that is,

dX
dt

= Γε(X ),(41)where X = (x, y), Γε : R2 → R2 and Γε(X ) = (α/Fε(X ), 1/Fε(X )).



Analyti �ows on the torus 119Sine Fε is analyti, it is Lipshitz (with a onstant Lε), whih impliesthat Γε is also Lipshitz with the onstant
L̃ε =

√
α2 + 1

(d − π
A−1)2

Lε,i.e. for all (x, y) ∈ R2 and (x′, y′) ∈ R2,
‖Γε(x, y) − Γε(x

′, y′)‖R2 ≤ L̃ε‖(x, y) − (x′, y′)‖R2 .Then the equation (41) has a solution de�ned for all t ∈ R, of the form
TFε

t (x, y) = (x, y) +

t\
0

Γε(x(τ), y(τ)) dτfor eah (x, y) ∈ R2. Observe that for the �ows given by solutions of (41)and (29) we have
‖TFε

t (x, y) − T
Fε′

t (x, y)‖[0,1)2 ≤ ‖TFε
t (x, y) − T

Fε′

t (x, y)‖R2,(42)beause TFε
t = π ◦ TFε

t , where π : R2 → [0, 1)2 is the natural quotient map.Now from the Gronwall inequality it follows that(43) ‖TFε′

t (x, y)−TFε
t (x, y)‖R2 ≤

√
α2+1

(
d− π

A−1

)−2

‖Fε−Fε′‖∞eL̃ε′ .Indeed, observe that
‖TFε′

t (x, y) − TFε
t (x, y)‖R2 =

∥∥∥
t\
0

(Γε′(T
Fε′
τ (x, y)) − Γε(T

Fε
τ (x, y))) dτ

∥∥∥
R2

≤
t\
0

‖Γε′(T
Fε′
τ (x, y)) − Γε′(T

Fε
τ (x, y))‖R2 dτ

+

t\
0

‖Γε′(T
Fε
τ (x, y)) − Γε(T

Fε
τ (x, y))‖R2 dτ

≤
t\
0

L̃ε′‖TFε′

τ (x, y) − TFε
τ (x, y)‖R2 dτ + t

√
α2 + 1

∥∥∥∥
1

Fε′
− 1

Fε

∥∥∥∥
∞

≤
t\
0

L̃ε′‖TFε′
τ (x, y) − TFε

τ (x, y)‖R2 dτ +
√

α2 + 1

(
d− π

A−1

)−2

‖Fε−Fε′‖∞.Hene (43) follows. And from (43) we immediately get (39).6. Weak losure of time t automorphisms of an analyti �ow.In this setion we will onstrut a weakly mixing �ow T ϕ̃ with the followingproperty:



120 M. Lema«zyk and M. Wysoki«ska(44) for eah P ∈ P(R) the Markov operator T
R

T ϕ̃
t dP (t) belongs to theweak losure of {T ϕ̃

t : t ∈ R}.This �ow will be isomorphi to an analyti �ow on [0, 1)2. By (9) to prove(44) we only need to onsider P running over a dense subset of P(R), forexample measures of the form ∑Q
j=1 Bjδrj

, where rj ∈ Q, Bj ∈ Q+ and
∑Q

j=1 Bj = 1. Our goal is to onstrut a �ow T ϕ̃ satisfying:(45) For eah M̃ ∈ N+, s ∈ N, rj ∈ Q, Aj ∈ Q+, j = 1, . . . , M̃ , Ã :=
∑M̃

j=1 Aj < 1, the Markov operator T
R

T ϕ̃
t dP (t) with

P =

M̃∑

j=1

Ajδrj
+

1 − Ã

2
(δ

s− 2

1−Ã

∑M̃
j=1 rjAj

+ δ−s)belongs to the weak losure of the set {T ϕ̃
t : t ∈ R}.The onstrution goes as follows. Consider the set

{
((r1, . . . , rM̃

), (A1, . . . , AM̃
), s) : rj ∈ Q, Aj ∈ Q+,

M̃∑

j=1

Aj < 1, s ∈ N, M̃ ∈ N+

}
.

Note that this set is ountable and denote by (Uk)k≥1 a sequene
Uk = ((r1k, . . . , rM̃kk

), (A1k, . . . , AM̃kk
), sk)in whih for eah element ((r1, . . . , rM̃

), (A1, . . . , AM̃
), s) of the above set wehave #{k ∈ N+ : Uk = ((r1, . . . , rM̃

), (A1, . . . , AM̃
), s)} = ∞. We need morenotation: Ajk = gjk/fjk (gjk, fjk ∈ N+), j = 1, . . . , M̃k, Ãk =

∑M̃k

j=1 Ajk,
(1 − Ãk)/2 = g

Ãk
/f

Ãk
, g

Ãk
, f

Ãk
∈ N+, m̃k = LCM(f1k, . . . , fM̃kk

, f
Ãk

),
Njk = min{m ∈ N+ : |rjk/m| < 1},

Ñk = min

{
m ∈ N+ :

∣∣∣∣
sk − 2

1−Ãk

∑M̃k

j=1 rjkAjk

m

∣∣∣∣ < 1

}
.We will now arry out an a.a...p. with extra onditions on the param-eters; namely, we require that Dk ≤ 1 (see Remark 3) and that

Mk > mk

(
N1kA1k + · · · + N

M̃kk
A

M̃kk
+

1 − Ãk

2
(Ñk + sk + 1)

)
,(46)where mk = ckm̃k, ck ∈ N, ck → ∞ and

( k−1∑

i=1

Mi

)√
2

mk
≤ const.(47)



Analyti �ows on the torus 121Observe that
N1kA1k + · · · + N

M̃kk
A

M̃kk
+

1 − Ãk

2
(Ñk + sk + 1) ≥ 1,hene mkεk → 0 as k → ∞ (reall that ∑∞

k=1

√
εk · Mk < ∞). As mk → ∞,we have Mk → ∞. Let α be an irrational over whih the a.a...p. is arriedout. We require additionally that a2nk+1 is a multiple of mk, more preisely

a2nk+1 = mkbk,where bk ≥ 1 for all k ≥ 1. Reall that
λkMk <

εk

2q2nk

,(48)so λkMk = o(µ(Ik)). Denote by ξ1, . . . , ξmk
the onseutive subintervals of

Ik of length µ(Ik)/mk. This means that any suh subinterval onsists of bkintervals Jk
t . We now de�ne ϕk as follows. If εkmk > 2/3 we put arbitrary

dki aording to general rules for a.a...p. Assume now that εkmk ≤ 2/3.Notie that
λkMk ≤ 3

2
· εk

3q2nk

≤ 3

2
εkµ(Ik) ≤

1

mk
µ(Ik) = |ξi|,(49)

i = 1, . . . , mk. Given j = 1, . . . , M̃k, in eah interval ξ(A1k+···+Aj−1,k)mk+v,
v = 1, . . . , Ajkmk, we hoose Njk onseutive intervals ωki so that the in-terval ⋃

ωki is plaed �entrally�, i.e. in the middle of ξ(A1k+···+Aj−1,k)mk+v.In the entral interval Jsk
k,i

⊂ ωki we put the value rjk/Njk. Analogouslyin eah interval ξ
Ãkmk+v

, v = 1, . . . , (1 − Ãk)mk/2, we selet �entrally� Ñkonseutive intervals ωki and in the entral subintervals we put the value
sk − 2

1−Ãk

∑M̃k

j=1 rjkAjk

Ñk

.Finally, in eah of ξ
(Ãk+1)mk/2+v

, v = 1, . . . , (1 − Ãk)mk/2, we selet �en-trally� sk + 1 onseutive ωki on whih in the entral subintervals we put
−sk/(sk + 1). In order to omplete the a.a...p. we hoose ωki arbitrarilyand put dki = 0 for the remaining

i ∈
{

mk

( M̃k∑

i=1

NikAik +
1 − Ãk

2
(Ñk + sk + 1)

)
+ 1, . . . , Mk

}
,whih is possible by (49). Notie that ∑Mk

i=1 dki = 0.Now, we �x U = ((r1, . . . , rM̃
), (A1, . . . , AM̃

), s) and onsider only k suhthat Uk = U . First notie that mkεk < 2/3 for su�iently large suh k.Moreover,
max(N1, . . . , NM̃

, Ñk, s + 1)λkmk

µ(Ik)
→ 0



122 M. Lema«zyk and M. Wysoki«skaas k → ∞ with Uk = U (Ñk = Ñ) by (48). Thus
(ϕ

(bkq2nk
)

k (x))∗µ →
M̃∑

j=1

Ajδrj
+

1 − Ã

2
(δ

s− 2

1−Ã

∑M̃
j=1 rjAj

+ δ−s)as k → ∞ with Uk = U .Now using similar arguments to those showing (26) and the fat that
mk → ∞ as k → ∞, we obtain

µ({x ∈ [0, 1) : ϕ
(bkq2nk

)

k (x) 6= ϕ(bkq2nk
)(x)}) → 0as k → ∞. Thus

(ϕ(bkq2nk
)(x))∗µ →

M̃∑

j=1

Ajδrj
+

1 − Ã

2
(δ

s− 2

1−Ã

∑M̃
j=1 rjAj

+ δ−s)as k → ∞ with Uk = U .Obviously |ϕ(x)| ≤ 1 for x ∈ [0, 1). Take now a onstant d suh that
ϕ̃ = ϕ + d > 0. Using similar arguments to those in Subsetion 2.2 (with(47) instead of (16)) we will show that along the subsequene (bkq2nk

) where
k ∈ {i : Ui = U = ((r1, . . . , rM̃

), (A1, . . . , AM̃
), s)}, ‖ϕ(bkq2nk

)‖L2 < const.Indeed, the only thing to notie is that for all x ∈ [0, 1) and k ∈ {i : Ui =
U = ((r1, . . . , rM̃

), (A1, . . . , AM̃
), s)},

|ϕ(bkq2nk
)

k (x)|

≤ max

{
e + f : e, f ∈

{
|r1|, . . . , |rM̃

|,
∣∣∣∣s −

2

1 − Ã

M̃∑

j=1

rjAj

∣∣∣∣, |s|
}}

= const.The onstrution of T ϕ̃ is omplete, and by Proposition 2, (45) has beenproved.In this way we see that for eah k ≥ 1 there exists an inreasing sequene
(q

(k)
n ) suh that

T ϕ̃

dq
(k)
n

→
\
R

T ϕ̃
−t dPk(t),where {Pk} is a dense subset in P(R).Now in view of (9) we get (44):Corollary 4. For eah measure P ∈ P(R) there exists a sequene

(q
(P )
n ) ⊆ N suh that

T ϕ̃

dq
(P )
n

→
\
R

T ϕ̃
−t dP (t).Assume now that d ∈ N. Then we obtain the following.



Analyti �ows on the torus 123Corollary 5. For eah measure P ∈ P(Z) there exists a sequene
(q

(P )
n ) ⊆ N suh that

(T ϕ̃
1 )q

(P )
n →

∞∑

j=−∞

P (j)(T ϕ̃
1 )−j .Remark 10. Reall (see e.g. [15℄) that a �ow (St)t∈R is alled κ-weaklymixing (0 ≤ κ ≤ 1) if there exists a sequene (tn) with tn → ∞ suh that

Stn → κ Id+(1 − κ)
\
.By taking Pn = 1

4δ−n + 1
2δ0 + 1

4δn and onsidering n = nk so that T ϕ̃
nk

→
T(whih is justi�ed by weak mixing of T ϕ̃), by Corollary 5, 1

2 Id+1
2

Tbelongsto the weak losure of the set {(T ϕ̃)t : t ∈ R}, i.e. T ϕ̃ is 1
2 -weakly mixing.This implies mutual singularity of onvolutions of maximal spetral type (see[15℄, [24℄, [27℄).However, using a result of O. N. Ageev (see [1℄) we an obtain muh more.If T ϕ̃ satis�es the assumptions of Corollary 5 then the maximal spetraltype of T ϕ̃

1 , denoted by σ
T ϕ̃
1
, is a ontinuous measure suh that the Gaussiansystem S determined by it has a simple spetrum. In partiular, onvolutionsof the redued maximal spetral type of T ϕ̃

1 are mutually singular. Sine T ϕ̃
1 isdisjoint from all ELF-automorphisms (see [3℄), it is disjoint from all Gaussianautomorphisms. Hene the Gaussian system S has the GAG property, butit annot satisfy the Foia³�Str til  theorem (indeed, if a system satis�es theFoia³�Str til  theorem then it is Gaussian; see [20℄ for details).

Referenes[1℄ O. N. Ageev, On ergodi transformations with homogeneous spetrum, J. Dynam.Control Systems 5 (1999), 149�152.[2℄ I. P. Cornfeld, S. W. Fomin and Ya. G. Sinai, Ergodi Theory , Springer, Berlin,1982.[3℄ Y. Derrienni, K. Fr¡zek, M. Lema«zyk and F. Parreau, Ergodi automorphismswhose weak losure of o�-diagonal measures onsists of ergodi self-joinings,preprint.[4℄ B. Fayad and A. Windsor, A dihotomy between disrete and ontinuous spetrumfor a lass of speial �ows over rotations, J. Modern Dynamis 1 (2007), 107�122.[5℄ J. Feldman, Borel strutures and invariants for measurable transformations, Pro.Amer. Math. So. 46 (1974), 383�394.[6℄ M. Foreman, A desriptive view of ergodi theory , in: Desriptive Set Theory andDynamial Systems, London Math. So. Leture Note Ser. 277, Cambridge Univ.Press, 2000.[7℄ K. Fr¡zek, On ergodiity of some ylinder �ows, Fund. Math. 163 (2000), 117�130.[8℄ K. Fr¡zek and M. Lema«zyk, On symmetri logarithm and some old examples insmooth ergodi theory, Fund. Math. 180 (2003), 241�255.



124 M. Lema«zyk and M. Wysoki«ska[9℄ K. Fr¡zek and M. Lema«zyk, A lass of speial �ows over irrational rotationswhih is disjoint from mixing �ows, Ergodi Theory Dynam. Systems 24 (2004),1083�1095.[10℄ �, �, On disjointness properties of some smooth �ows, Fund. Math. 185 (2005),117�142.[11℄ �, �, On mild mixing of speial �ows over irrational rotations under pieewisesmooth funtions, Ergodi Theory Dynam. Systems 26 (2006), 719�738.[12℄ H. Furstenberg, Disjointness in ergodi theory, minimal sets and diophantine ap-proximation, Math. Systems Theory 1 (1967), 1�49.[13℄ F. Hahn and W. Parry, Some harateristi properties of dynamial systems withquasi-disrete spetra, Math. Systems Theory 2 (1968), 179�190.[14℄ A. del Juno and M. Lema«zyk, Generi spetral properties of measure-preservingmaps and appliations, Pro. Amer. Math. So. 115 (1992), 725�736.[15℄ A. B. Katok, Construtions in Ergodi Theory, unpublished leture notes.[16℄ L. Kuipers and H. Niederreiter, Uniform Distribution of Sequenes, Wiley, NewYork, 1974.[17℄ J. Kwiatkowski, M. Lema«zyk and D. Rudolph, A lass of real oyles having ananalyti oboundary modi�ation, Israel J. Math. 87 (1994), 337�360.[18℄ M. Lema«zyk and E. Lesigne, Ergodiity of Rokhlin oyles, J. Anal. Math. 85(2001), 43�86.[19℄ M. Lema«zyk and F. Parreau, Rokhlin extensions and lifting disjointness, ErgodiTheory Dynam. Systems 23 (2003), 1525�1550.[20℄ M. Lema«zyk, F. Parreau and J.-P. Thouvenot, Gaussian automorphisms whoseergodi self-joinings are Gaussian, Fund. Math. 164 (2000), 253�293.[21℄ M. Lema«zyk, F. Parreau and D. Volný, Ergodi properties of real oyles andpseudo-homogeneous Banah spaes, Trans. Amer. Math. So. 348 (1996), 4919�4938.[22℄ P. Liardet and D. Volný, Sums of ontinuous and di�erentiable funtions in dynam-ial systems, Israel J. Math. 98 (1997), 29�60.[23℄ M. G. Nadkarni, Spetral Theory of Dynamial Systems, Birkhäuser, Basel, 1998.[24℄ A. Prikhod'ko and V. V. Ryzhikov, Disjointness of the onvolutions for Chaon'sautomorphism, Colloq. Math. 84/85 (2000), 67�74.[25℄ E. Roy, Mesures de Poisson, in�nie divisibilité et propriétés ergodiques, PhD thesis.[26℄ T. de la Rue and J. de Sam Lazaro, Une transformation générique peut être inséréedans un �ot, Ann. Inst. H. Poinaré Probab. Statist. 39 (2003), 121�134.[27℄ A. M. Stepin, On properties of spetra of ergodi dynamial systems with loallyompat time, Dokl. Akad. Nauk SSSR 169 (1966), 773�776 (in Russian).[28℄ D. Volný, Construtions of smooth and analyti oyles over irrational irle rota-tions, Comment. Math. Univ. Carolin. 36 (1995), 745�764.[29℄ R. J. Zimmer, Ergodi Theory and Semisimple Groups, Birkhäuser, Boston, 1984.Faulty of Mathematis and Computer SieneNiolaus Copernius UniversityChopina 12/18, 87-100 Toru«, PolandE-mail: mlem�mat.uni.torun.plmwysokin�mat.uni.torun.plReeived 11 May 2005;in revised form 28 June 2006


