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Strong initial segments of models of I∆0byPaola D'Aquino (Caserta) and Julia F. Knight (Notre Dame, IN)
Abstrat. MAloon showed that if A is a nonstandard model of I∆0, then someinitial segment of A is a nonstandard model of PA. Sommer and D'Aquino haraterized,in terms of the Wainer funtions, the elements that an belong to suh an initial segment.The haraterization used work of Ketonen and Solovay, and Paris. Here we give onditionson a model A of I∆0 guaranteeing that there is an n-elementary initial segment that is anonstandard model of PA. We also haraterize the elements that an be inluded.1. Introdution. Let L be the usual language of arithmeti, with sym-bols +, ·, 0, 1, and ≤. Let I∆0 be the subsystem of Peano Arithmeti (PA)in whih indution applies only to formulas with bounded quanti�ers (∆0-formulas). A nonstandard model A of I∆0 satis�es overspill for ∆0-formulas;i.e., if ϕ(u, x) is ∆0, then for any tuple b̄ in A, if ϕ(b̄, x) is satis�ed by allstandard n, then it is satis�ed by some nonstandard ν.By a result of Parikh [14℄, any ∆0-de�nable funtion that is provablytotal in I∆0 is provably bounded by a polynomial. Bennett [1℄ found a

∆0-formula de�ning in N the graph of exponentiation. Later, Paris [16℄found a ∆0-formula E0(x, y, z) de�ning the relation xy = z, for whihthe reursive properties of exponentiation are provable in I∆0. The lakof exponentiation means that many lassial results of elementary num-ber theory are not known to be provable in I∆0. In partiular, it is anopen problem whether I∆0 proves Matijasevi's theorem (saying that ev-ery .e. set is Diophantine). A positive answer to this question would haveimportant onsequenes in omplexity theory. If we add to I∆0 the axiom
exp = (∀x > 1) (∀y) (∃z)E0(x, y, z), saying that the exponential funtion istotal, then the resulting theory is strong enough to prove all of the results ofelementary number theory. In partiular, Matijasevi's theorem is provablein I∆0 + exp (see [6℄).2000 Mathematis Subjet Classi�ation: 03H15, 03C62.Key words and phrases: nonstandard model, Peano arithmeti, Ramsey theory, large-ness. [155℄ © Instytut Matematyzny PAN, 2007



156 P. D'Aquino and J. F. KnightWithout exponentiation, we use known sequenes to show the existeneof others. Let A be a model of I∆0. Let ϕ(u, x, y) be a bounded formula suhthat for eah u and x, there is at most one y suh that A |= ϕ(u, x, y). For asequene v, we say that v is determined by ϕ(u, x, y) if for all z < length(v),
A |= ϕ(v↾z, z, v(z)). Let C be a sequene oded in A. If I is the set of
s ≤ length(C) suh that there exists v of length x determined by ϕ(u, x, y)with a ode bounded by that for C, then there is a greatest s ∈ I. We havea maximal sequene J determined by ϕ suh that the length of J , and theode for J , are bounded by those for C. We shall often take ϕ(u, x, y) suhthat this maximal sequene is a subsequene of C.The notion of �α-largeness� was de�ned by Ketonen and Solovay [8℄.They onneted it with the funtions in the Wainer hierarhy, and theyalso did some Ramsey theory. Sommer [20℄ developed the theory of ordinalsin I∆0, and proved many fats about α-largeness in I∆0 + exp, inludingthose needed for the onnetions with the Wainer funtions. Sommer did notdo the Ramsey theory. In a series of papers [9℄, [10℄, [2℄, [3℄, [4℄, [11℄, [22℄,Kotlarski, Ratajzyk, Bigorajska, Piekart, and Weiermann gave a thoroughdevelopment of Ramsey theory for α-largeness, in the setting of PA.There are some di�erenes in the de�nitions. Sommer's desription of thefundamental sequenes looks di�erent from Ketonen and Solovay's, but thede�nitions really are the same. Sommer's de�nition of the Wainer funtionsdi�ers slightly from that of Ketonen and Solovay. Kotlarski and his ollab-orators de�ned their fundamental sequenes in the same way as Sommer,but they hose a di�erent de�nition of α-largeness. This hoie of de�nitionsyields lean, appealing statements for Ramsey's theorem. We use Sommer'sde�nitions [20℄ so that we an appeal to the development of the ordinalsthat he arried out in I∆0. We also use fats about α-largeness that Sommerproved in I∆0 + exp. We give loal versions of these fats, always assumingthe existene of a large sequene that bounds the other sequenes we need.We take Ketonen and Solovay's de�nition of the Wainer hierarhy. At thepoint where we apply Ramsey's theorem for α-largeness, we have alreadyused the Wainer funtions to obtain a model of PA.In Setion 2, we give bakground from Ramsey theory, and we de�ne theWainer funtions and α-largeness. In Setion 3, we disuss diagonal indis-ernibles. In Setion 4, we reall MAloon's original result and the resultsof Sommer and D'Aquino. In Setion 5, we say when a model A of I∆0 hasa nonstandard n-elementary initial segment satisfying PA. We �rst onsiderthe ase where N ≤n A. Our result here is based on the standard versionof Ramsey's theorem. We then drop the assumption that N ≤n A. We saywhen a model of I∆0 has an n-elementary initial segment that is a model ofPA, and we haraterize the elements that an be inluded in suh an initialsegment. We work with α-large sets that �bound witnesses� for various sets



Strong initial segments of models of I∆0 157of formulas, and we de�ne some funtions, related to the Wainer funtions,that produe these large sets. We lose, in Setion 6, with a ouple of openproblems.2. Ramsey theory and largeness2.1. Basi Ramsey theory. We write I [n] for the set of subsets of I ofsize n. In our setting, I is a subset of some model of arithmeti, whih has anatural ordering, and we may identify sets of size n with inreasing n-tuples.A partition of I [n] is a funtion F from I [n] to a set c�we suppose that c hasthe form {0, 1, . . . , c− 1}. A set J ⊆ I is homogeneous for F if F is onstanton J [n]. Here is the standard version of Ramsey's theorem.Theorem 2.1 (Standard version of Ramsey's theorem). Let I be an in-�nite set , and let F be a partition of I [n] into �nitely many lasses. Thenthere is an in�nite set J ⊆ I that is homogeneous for F .The proof proeeds by indution on n. The base ase, where n = 1,is the standard pigeonhole priniple, saying that if F is a partition of anin�nite set into �nitely many lasses, then some lass is in�nite. There is anindutive lemma, whih says that for a partition F : I [n+1] → c, there is anin�nite set I ′ ⊆ I suh that for (x1, . . . , xn, xn+1) inreasing in I ′, the valueof F (x1, . . . , xn, xn+1) depends only on (x1, . . . , xn).The next version of Ramsey's theorem is also well-known (see [7, p. 213℄).Theorem 2.2 (In�nite Ramsey's theorem for PA). Let B be a modelof PA. Let I be a o�nal de�nable set , and let F : I [n] → c be a de�nablepartition of I [n], where n is standard and c ∈ B. Then there is a o�nalde�nable set J ⊆ I that is homogeneous for F .There is a well-known �nite version of Ramsey's theorem, whih we donot use. We want a seond �nite version, whih involves α-largeness [8℄.2.2. Largeness. Reall that ǫ0 is the least ordinal α suh that ωα = α.Eah α < ǫ0 an be expressed in Cantor normal form as ωβ1 ·x1+· · ·+ωβk ·xk,where α > β1 > · · · > βk. Sommer [20℄ formalized the whole theory ofordinals below ǫ0 in a ∆0-way, inluding the notion of fundamental sequene.In partiular, he provided a Cantor normal form for all those elements whihare ordinals in a model of I∆0.Definition 1. To eah ordinal 0 < α < ǫ0, we assign a fundamentalsequene {α}(x) as follows.
• For α = β + 1, {α}(x) = β for all x.
• For α = ωβ+1, {α}(x) = ωβ · x.
• For α = ωβ, where β is a limit ordinal, {α}(x) = ω{β}(x).
• For α = ωβ · (a+ 1), where a 6= 1, {α}(x) = ωβ · a+ {ωβ}(x).
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• For α with Cantor normal form ending in ωβ · a, say α = γ + ωβ · a,
{α}(x) = γ + {ωβ · a}(x).Below we de�ne a speial sequene (ωn)n∈ω of ordinals, o�nal in theinterval below ǫ0.Definition 2.

ω0 = 1, ωn+1 = ωωn .It is also onvenient to have a name for a tower of n ω's, with α on top.Definition 3.
ω0(α) = α, ωn+1(α) = ωωn(α).We are ready to de�ne α-largeness. We identify a set X, �nite or in�nite,with the sequene of elements of X, given in inreasing order.Definition 4. The set X is α-large, for α < ǫ0, if there is a sequene

C = (α0, x0, α1, x1, . . . , αr−1, xr−1, αr) suh that
• α0 = α,
• αr = 0,
• x0 is the �rst element of X,
• for 0 < i < r, xi is the �rst element of X that is > xi−1,
• for i < r, αi+1 = {αi}(xi).We say that C witnesses that X is α-large.
Example. The set {3, 4, 5, 6} is ω-large, witnessed by the sequene

C = (ω, 3, 3, 4, 2, 5, 1, 6, 0).We an easily see the following.Proposition 2.3. A set X is ω-large if the ardinality of X is greaterthan the least element.In the standard setting, an in�nite subset of ω is α-large for all α < ǫ0.The following is not di�ult to prove.Proposition 2.4. Let A be a model of PA, and let X be a o�nal de�n-able set. Then X is α-large for all α < ǫ0.Sommer [20℄ developed the notion of α-largeness in I∆0 + exp. Throughmost of the present paper, we work in I∆0, not assuming that exp is total. Wework loally, making sure that the sequenes we atually need are boundedby some known element, usually a sequene C witnessing that some set is
α-large. Suppose J is α-large, witnessed by the sequene C. Suppose theordinal β ours in C. Let C ′ be the tail of C that begins with β, and let J ′be the orresponding tail of J , onsisting of the elements of J that do notour before β in C. Then C ′ witnesses that J ′ is β-large. The sequene C ′is de�ned by reursion using a bounded formula. Eah initial segment of C ′



Strong initial segments of models of I∆0 159is bounded by the orresponding initial segment of C (with the same lastterm).Lemma 2.5. Let J be α-large, witnessed by C. Suppose α has Cantornormal form
ωβ1x1 + · · · + ωβnxn.Then J = Jnˆ · · ·ˆJ1, where Ji is an ωβixi-large segment of J . The elementsof Jn ome �rst , those in J1 ome last , and , in general , the elements of Ji+1ome before those of Ji.Proof. We indiate what happens with the initial segment Jn. The wit-nessing sequene C for J starts with ordinals of the form

αk = ωβ1x1 + · · · + ωβn−1xn−1 + γk,with Cantor normal form mathing that of α through the �rst n− 1 terms.The last part, whih we all γk, starts with the value ωβnxn and dereasesto 0. The witnessing sequene Cn for Jn is obtained from this initial segmentof C by replaing eah ordinal αk by γk. The sequene Cn an be de�ned byreursion, using a bounded formula. The initial segments of Cn are boundedby the orresponding initial segments of C.It is tempting to think that if X is α-large and β < α, then X shouldbe β-large. However, this need not be true. For example, suppose X is an
ω-large set onsisting of standard numbers, and let c be nonstandard. Then,thinking of c as a �nite ordinal, we have c < ω, but X is not c-large. Thefollowing result of Sommer (see [20, p. 149℄) says that if X is α-large, thenfor eah x ≤ min(X), there is a subsequene X ′ that is {α}(x)-large.Proposition 2.6. Suppose C witnesses that J is α-large. If x ≤ min(J),then {α}(x) ours in C.Proof. We do not need exp here. We show by indution on the ordinals
β that appear in C that if β is followed in C by j (where j ∈ J), then forall numbers x ≤ j (not neessarily in J), {β}(x) appears in C. Everythingis bounded by C.The next two lemmas are proved simultaneously.Lemma 2.7. Suppose C witnesses that J is ωα-large. Then there exists
J ′ ⊆ J with C ′ bounded by C witnessing that J ′ is α-large.Lemma 2.8. If J is ωα · x-large, witnessed by C, then for all y < x, theordinal ωα · y appears in C.Proof of Lemmas 2.7 and 2.8. We proeed by indution on ordinals ap-pearing in the given sequene C.
Case 1. For α = 0, the statements are trivially true.
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Case 2. Consider α = β+1, where both statements hold for β. First, weprove Lemma 2.7 for β + 1. Let x be the �rst term of J . The next ordinal is

ωβ ·x. By the indution hypothesis for Lemma 2.8, ωβ appears later in C. Thepart of J after this is ωβ-large. By the indution hypothesis for Lemma 2.8,there is a β-large subset J ′. Then x Ĵ ′ is (β+1)-large. Next, we prove Lemma2.8 for α. We show by indution on x that for all y ≤ x, ωα · y appears in C.The statement is lear for x = 0. Supposing the statement for x, we show itfor x+ 1. We have ωα · (x+ 1) = ωα · x+ ωα. If this appears in C, followedby the element z, then the next term is ωα · x+ ωβ · z. The next few termshave the form ωα · x + γ, where γ < ωβ · z. We see the γ parts redue.By Lemma 2.8 for β, we arrive at γ = 0. So, we have ωα · x in C, and byindution, we get all ωα · y for all y < x.
Case 3. Let α be a limit ordinal, where both statements hold for β < αappearing in C. First, we prove Lemma 2.7 for α. In C, suppose that after ωα,we have x. The next ordinal is ωβ, where β = {α}(x). Let J ′ be the resultof removing x from the front of J . Then J ′ is ωβ-large. By the indutionhypothesis, there is a subsesquene J ′′ of J ′ that is β-large. Then x Ĵ ′′ is

α-large. Next, we prove Lemma 2.8 for α. We show that if ωα · x appearsin C, then ωα · y appears for all y < x. The statement is lear for x = 0.Supposing that it holds for x, we show it for x + 1. Let z be the �rst termin J . The next ordinal is ωα ·x+ωβ, where β = {α}(z). Let J ′ be the resultof removing x from the front of J . Then J ′ is ωα ·x+ωβ-large. Wathing thenext few terms in C, we see ordinals ωα · x+ γ, for γ < ωβ, with γ reduingto 0. Sine we have ωα · x, we also have ωα · y for all y < x.Looking at the proof above, we obtain the following further result.Lemma 2.9. Suppose J is ωα-large, witnessed by C. Then there is an
α-large subsequene J ′ = (x0, x1, . . . , xr). Moreover , there is a subsequeneof C of the form

(ωα, x0, ω
β1 , x1, . . . , ω

βr−1xr, 1),where the orresponding sequene
C ′ = (α, x0, β1, x1, . . . , βr−1, xr, 0)witnesses that J ′ is α-large.By iterating Lemma 2.9, we obtain the following.Lemma 2.10. Suppose J is ωn(α)-large, witnessed by C. Then there is asubsequene J ′ that is α-large.2.3. Conneting largeness with Ramsey theory. Ketonen and Solovay [8℄developed Ramsey theory for α-largeness. Their results an be formalizedin PA. We do not need anything more. Given a standard n and α < ǫ0, wewant a standard β < ǫ0 suh that if J is β-large and F : [J ]n → c, where
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c ≤ min(J), then there is an α-large I ⊆ J suh that I is homogeneousfor F . We do not need a sharp result.Theorem 2.11 (Ramsey theorem for α-largeness). Suppose n ≥ 1. Foreah k there exists m suh that if F : J [n] → c, where J is ωm-large and
c ≤ min(J), then there is an ωk-large, or even (ωk + 1)-large, homogeneousset I ⊆ J .Ketonen and Solovay [8℄ did not state Theorem 2.11. They were primarilyinterested in the ase where the homogeneous set I is ω-large, and theygave a pigeonhole priniple for that ase. However, their indutive lemma isperfetly general. To state it, we need one more de�nition.Definition 5. For α < ǫ0, the norm of α, denoted by ‖α‖, is de�nedindutively as follows:

• ‖0‖ = 0.
• If α = ωα1m1 + · · · + ωαkmk, then ‖α‖ =

∑k
j=1mj · (‖αj‖ + 1).Here is Ketonen and Solovay's indutive lemma (see also [15℄).Theorem 2.12 (Indutive lemma). Let n ≥ 1 and let ω ≤ α < ǫ0.Suppose F : J [n+1] → c. If J is θ-large, where θ = ωα+ω3+max{c, ‖α‖}+3,then there is an α-large set I ⊆ J suh that for inreasing tuples x, y and

x, z in Jn+1, F (x, y) = F (x, z); i.e., the value depends only on the �rst nelements of the tuple.Theorem 2.12 yields the following version of the pigeonhole priniple.Proposition 2.13 (Pigeonhole priniple). Let F : J → c. If J is θ-large,where θ = ωα+1 + ω3 + max{c, ‖α‖} + 3, then there is an α-large set I ⊆ Jon whih F is onstant.Proof. For x, y ∈ J suh that x < y, let G(x, y) = F (y). Theorem 2.12yields an (α + 1)-large set I ⊆ J suh that for pairs in I, the value of Gdepends only on the �rst omponent. For x, y, y′ ∈ I, if x < y, y′, then
F (y) = G(x, y) = G(x, y′) = F (y′).Let I ′ be the result of removing the �rst element from I. Then I ′ is α-large,and F is onstant on I ′.Ketonen and Solovay's pigeonhole priniple gives a muh better boundthan Proposition 2.13 in the speial ase. If J is ω · c-large, they get an

ω-large homogeneous set I.Lemma 2.14. Let n ≥ 1. If J is ωn+2-large, with �rst element ≥ c, then
• there exists J ′ ⊆ J that is (ωn+1 + ω3 + c+ 3)-large,
• there exists J ′ ⊆ J that is (ω(ωn+1) + ω3 + c+ 3)-large.



162 P. D'Aquino and J. F. KnightThe proof of Lemma 2.14 uses various fats on α-largeness. Using thelemma, we get the following relatively simple, although wasteful, version ofTheorem 2.12.Proposition 2.15 (Indutive lemma). Suppose F : J [n+1] → c, where Jis ωk+2-large and min(J) ≥ c. Then there is an ωk-large I ⊆ J suh that forinreasing tuples x, y and x, z in Jn+1, F (x, y) = F (x, z). There is also onethat is (ωk + 1)-large.Similarly, we get the following simple but wasteful version of Proposi-tion 2.13.Proposition 2.16 (Pigeonhole priniple). Suppose F : J → c, where Jis ωk+2-large and min(J) ≥ c. Then there is an ωk-large I ⊆ J on whih Fis onstant. There is also one that is (ωk + 1)-large.By ombining Propositions 2.15 and 2.16, we obtain Theorem 2.11.2.4. Wainer funtions. We de�ne the Wainer hierarhy as Ketonen andSolovay [8℄ did.Definition 6 (Wainer hierarhy). For α < ǫ0, Fα(x) is de�ned as fol-lows:
• F0(x) = x+ 1,
• Fα+1(x) = F

(x+1)
α (x),

• for a limit ordinal α, Fα(x) = max{F{α}(j)(x) : j ≤ x}.Ketonen and Solovay related the notion of α-largeness to the funtionsof the Wainer hierarhy. They introdued the funtion
Gα(x) = µy([x, y] is α-large),and they proved the following.Theorem 2.17. For any α < ǫ0,

Fα(n) ≤ Gωα(n+ 1), Gωα(n) ≤ Fα(n+ 1).Sommer [20℄ proved Theorem 2.17 in I∆0. (Of ourse, Sommer used hisde�nitions, and Ketonen and Solovay used theirs.)3. Diagonal indisernibles. We use the following lassi�ation of for-mulas.Definition 7.
• The B0 formulas are just the ∆0-formulas.
• The Σn+1 formulas have the form (∃u)ϕ, where ϕ is a Bn formula.
• The Bn+1 formulas are obtained from the Σn+1 formulas by takingBoolean ombinations and adding bounded quanti�ers.
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Notation. For eah n ∈ N, BT

n denotes the set of triples (ϕ, u, x), where
ϕ is a Bn formula and u and x are the free variables of ϕ, partitioned intotwo disjoint parts. We identify these triples with their odes. When we write
ϕ(u, x), indiating a split of the variables, we are identifying the formulawith the triple (ϕ, u, x), whih is in BT

n for some n.
Notation. We write a ≤ b, a < b, b ≤ a, b < a to mean that all elementsof a are ≤ b, < b, ≥ b, > b, respetively.In results of Paris and his o-authors [15℄, [17℄�[19℄, and in MAloon'stheorem, and other more reent results, we obtain a model of PA from aspeial set of indisernibles.Definition 8. Let I be a subset of a model A. We say that I is diagonalindisernible for ϕ(u, x)�identi�ed with the triple (ϕ, u, x)�if for all i < j, kin I,

A |= (∀u ≤ i) [ϕ(u, j) ↔ ϕ(u, k)].The next lemma says how a model of PA is obtained from a set that isdiagonal indisernible for all bounded formulas.Proposition 3.1. Let A be a model of I∆0. Suppose I has order type
ω under the ordering of A, and(i) for i, j ∈ I, A |= i < j → i2 < j,(ii) I is diagonal indisernible for all elements of BT

0 .If B is the downward losure of I, then B is a model of PA.Proof. Condition (i) guarantees that B is losed under addition and mul-tipliation, so it is a model of I∆0. Condition (ii) lets us onvert arbitraryformulas into bounded formulas, using the following lemma.Lemma 3.2. For eah formula ϕ(u), there is a bounded formula ϕ∗(u, v)suh that if k, i is stritly inreasing in I, and b ≤ k, then A |= ϕ(b) ↔
ϕ∗(b, i).Idea of proof. We illustrate in an example. Suppose

ϕ(u) = (∀x) (∃y) δ(u, x, y),where δ(u, x, y) is quanti�er-free. We take ϕ∗(u, v, v′) to be
(∀x ≤ v) (∃y ≤ v′) δ(u, x, y).If b ≤ k < i < j, where k, i, j ∈ I, then we have

B |= (∀x) (∃y) δ(b, x, y) i� B |= (∀x ≤ i) (∃y ≤ j) δ(b, x, y).Using Lemma 3.2, we an show that B satis�es indution for all formulas.Suppose B |= ϕ(b, 0) and B |= (∀y) [ϕ(b, y) → ϕ(b, y + 1)]. We must show



164 P. D'Aquino and J. F. Knightthat B |= ϕ(b, c) for all c. Let ϕ∗(u, x, v) be as in Lemma 3.2, and take k, i,inreasing in I, with b, c ≤ k. Then
B |= ϕ∗(b, 0, i) and B |= (∀y < k) [ϕ∗(b, y, i) → ϕ∗(b, y + 1, i)].Therefore, B |= ϕ∗(b, c, i), so B |= ϕ(b, c).The lemma below gives existene of diagonal indisernibles in the stan-dard model N.Lemma 3.3. If I ⊆ N is in�nite, then for any formula ϕ(u, x), there isan in�nite set J ⊆ I that is diagonal indisernible for ϕ(u, x). The same istrue for any �nite set of formulas.Proof. Suppose u has length m and x has length n. For any standard c,and any in�nite set S ⊆ I, we partition the inreasing n-tuples in S suhthat tuples b and b′ lie in the same lass provided that for all m-tuples

a ≤ c, A |= ϕ(a, b) ↔ ϕ(a, b′). Theorem 2.1 yields an in�nite set S′ ⊆ Ssuh that all n-tuples in S′ lie in the same lass in the partition. We iteratethis to produe a nested sequene (Sk)k∈ω of in�nite sets, where S0 = I,and Sk+1 is obtained as above with c = k and S = Sk. Now, we hoose aninreasing sequene (ak)k∈ω of numbers suh that a0 ∈ S0, and ak+1 ∈ Sak
,with ak < ak+1. Then J = {ak : k ∈ ω} is the desired set of diagonalindisernibles for ϕ(u, x).The next lemma is similar to Lemma 3.3, exept that N is replaed byan arbitrary model of PA, and the sets of indisernibles that we obtain are�nite.Lemma 3.4. Let A be a model of PA, and let I be a o�nal de�nable set.For any �nite r and any �nite set Γ of formulas (with free variables split),there is a set J ⊆ I of size at least r that is diagonal indisernible for all

ϕ(u, x) ∈ Γ .Proof. Say the elements of Γ are ϕi(ui, xi) for 1 ≤ i ≤ K. For any c andany o�nal de�nable set S ⊆ I, we partition the inreasing ni-tuples in Sso that tuples b and b′ lie in the same lass provided that for all mi-tuples
a ≤ c, A |= ϕ(a, b) ↔ ϕ(a, b′). Theorem 2.2 yields a o�nal set S′ ⊆ Ssuh that all n-tuples in S′ lie in the same lass in the partition. We saythat S′ is homogeneous for ϕi(u, x) over c. Let a be �rst in I. Applying theproedure above K times, we get a o�nal de�nable set J1 ⊆ I homogeneousfor all ϕi(ui, xi) over a0. Let a1 be �rst in J1 greater than a0. Applyingthe proedure above K more times, we get a o�nal de�nable set J2 ⊆ J1homogeneous for all ϕi(ui, xi) over a1. Let a2 be �rst in J2 greater than a1.We ontinue until we have a1, . . . , ar. This is the desired set of diagonalindisernibles.



Strong initial segments of models of I∆0 165Lemma 3.3 is based on Theorem 2.1, while Lemma 3.4 is proved usingTheorem 2.2. Using ideas from the proof of the MaDowell�Speker theorem(see [13℄) instead of Theorem 2.2, we ould obtain the following strongerstatement. (We do not atually use this result.)Proposition 3.5. Let A be a model of PA, and let I be a o�nal de-�nable set. For any �nite set Γ of formulas (with the free variables split),there is a o�nal de�nable set J ⊆ I that is diagonal indisernible for all
ϕ(u, x) ∈ Γ .We give one more result on existene of diagonal indisernibles. We needsome further de�nitions.Definition 9. Let A be a model of PA. Let Γ be a �nite set of formulas
ϕ(u, x) with the free variables split into two parts, and let a be an elementof A. Say the formulas of Γ are ϕi(ui, xi) for 1 ≤ i ≤ K, where ui has length
mi and xi has length ni.

• Let nΓ be the greatest ni.
• For a given Γ , n = nΓ , and a, let FΓ,a be the partition of A[n] suhthat tuples x and y lie in the same lass if for all i and all mi-tuples
ui ≤ a, for all ni-tuples xi ⊆ x and orresponding yi ⊆ y,

A |= ϕi(ui, xi) ↔ ϕi(ui, yi).Note that for a given Γ , there is a funtion g, de�nable in PA, suh thatfor all a, g(a) bounds the number of equivalene lasses under the partition
FΓ,a. We may let g(a) = 2M(a), where

M(a) =
K
∏

i=1

(

a+ 1

mi

)

·

(

n

ni

)

.

Notation. Let gΓ be the �xed funtion g desribed above.Proposition 3.6. Let A be a model of PA. Let Γ be a �nite set offormulas with the free variables split , and let nΓ and gΓ be as above. Let
r be a standard number. There is a standard number m suh that if I is
(ωm + 1)-large, and for i, j ∈ I,

A |= i < j → gΓ (i) < j,then there is a subset of Ir of size r that is diagonal indisernible for allelements of Γ .Proof. Let n = nΓ and let g = gΓ . Let m1, . . . ,mr be a dereasingsequene of standard numbers suh that mr−1 = 1 and if J is ωmi
-large and

F : J [n] → c, where min(J) ≥ c, then there is a homogeneous set J ′ ⊆ J thatis (ωmi+1
+1)-large. We pass frommi+1 to mi by applying Theorem 2.11. Let

m = m1, and let I be (ωm+1)-large. Let a be the �rst element of I. Let I1 be



166 P. D'Aquino and J. F. Knightthe result of removing a from I. Then I1 is ωm1
-large. We restrit to I [n]

1 thepartition FΓ,a desribed above. Then g(a) bounds the number of equivalenelasses. Let J1 ⊆ I1 be a homogeneous set that is (ωm2
+ 1)-large, and let

a1 be the �rst element. Let I2 be the result of removing a1 from J1. Then
I2 is ωm2

-large. We restrit the partition FΓ,a1 to I [n]
2 . Then g(a1) boundsthe number of equivalene lasses. Let J2 ⊆ I2 be a homogeneous set thatis (ωm3

+ 1)-large, and let a2 be the �rst element. Let I3 be the result ofremoving a2 from J2. Then I3 is ωm3
-large. We restrit to I [n]

3 the partition
FΓ,a2 . Then g(a2) bounds the number of equivalene lasses. Let J3 ⊆ I3 bea homogeneous set that is (ωm4

+ 1)-large, and let a3 be the �rst element.We ontinue in this way until we ome to Jr−1 that is (ω+ 1)-large, and welet ar−1 and ar be the �rst two elements. Then {a1, . . . , ar} is the desiredsubset of J that is diagonal indisernible for all elements of Γ .4. Initial segments satisfying PA. Here is the original result ofMAloon [12℄.Theorem 4.1 (MAloon). Let A be a nonstandard model of I∆0. Thenthere is an initial segment B that is a nonstandard model of PA.Proof. We may suppose that N is an initial substruture of A. Let b be anonstandard element. Let J be an in�nite subset of N suh that for i, j ∈ J ,if i < j, then i2 < j. For any �nite Γ ⊆ BT
0 and any r, we an apply Lemma3.3 to get an in�nite set I ⊆ J that is diagonal indisernible for the elementsof Γ . There are inreasing sequenes of elements of I of arbitrarily large�nite length.We have a bounded formula ψ(b, u), with parameter b, saying that thereis an inreasing sequene σ of length u, with ode ≤ b, suh that if i < jin ran(σ), then i2 < j, and σ is diagonal indisernible for all ϕ(u, x) ∈ BT

0suh that ϕ ≤ u. For all standard n, A |= ψ(b, n). Then by overspill, thereis some some nonstandard ν suh that A |= ψ(b, ν). Let σ be the witnessingsequene. The restrition of σ to standard terms yields a set I, ordered intype ω, that is diagonal indisernible for all σ ∈ BT
0 . By Proposition 3.1,the downward losure of I is the desired nonstandard initial segment of Asatisfying PA.Next, we summarize the known results saying whih elements of a model

A of I∆0 an be inluded in an initial segment that is a nonstandard modelof PA. One way to haraterize these elements a is to say that a lies belowan in�nite set I, of order type ω, suh that I is diagonal indisernible for allelements of BT
0 . A seond haraterization says that there are �nite approx-imations to suh a set I, where these are all bounded in suh a way that wean apply overspill to get an in�nite set. Sommer [20℄ and D'Aquino [5℄ gave



Strong initial segments of models of I∆0 167a third haraterization, in terms of the Wainer funtions [21℄. These fun-tions were used by Ketonen and Solovay [8℄ and Paris [15℄ in haraterizingthe provably reursive funtions of PA and IΣn.Theorem 4.2 (MAloon, Sommer, D'Aquino, Paris, Dimitraopoulos).Let A be a model of I∆0, and let a be a nonstandard element. Then thefollowing are equivalent :(i) There is an initial segment B of A suh that a ∈ B and B is a modelof PA.(ii) There is an in�nite set I of order type ω, onsisting of elementsgreater than a, suh that if i < j in I, then A |= i2 < j, and I isdiagonal indisernible for all ϕ(u, x) in BT
0 .(iii) There exist b and c suh that c odes satisfation of bounded formulasby tuples ≤ b, and for all �nite r, there is a sequene Ir of size r,with a < Ir < b, suh that if i < j in Ir, then A |= i2 < j, and Ir isdiagonal indisernible for the �rst r elements of BT

0 .(iv) There exists b suh that for all α < ǫ0, Fα(a) ↓< b.Remarks on proof. It seems to us natural to try to prove Theorem 4.2 byshowing (i)⇒(iv)⇒(iii)⇒(ii)⇒(i). However, we have not found a publishedproof that proeeds in this way. We get (iii)⇒(ii) by applying overspill to abounded formula ψ(u, a, b, c) saying that there is an inreasing sequene σ <
b of length u with �rst term > a, suh that for suessive terms i, j, i2 < j,and σ is diagonal indisernible for all ϕ(u, x) ≤ u in BT

0 . Proposition 3.1 givesthe impliation (ii)⇒(i). It is not di�ult to show (i)⇒(iv). To ompletethe proof, it is enough to show (iv)⇒(iii). Sommer [20℄ and D'Aquino [5℄showed, in a quite ompliated proof, that (iv)⇒(i). It is not di�ult toshow (i)⇒(iii), so we get the impliation (iv)⇒(iii).5. n-elementary initial segments satisfying PA. We turn to ourmain results, on n-elementary initial segments. Let A and B be struturesfor the language of arithmeti, where B is a substruture of A.Definition 10. Let A and B be strutures for the language of arith-meti. We say that B is an n-elementary substruture of A, and we write
B ≤n A, if for all Bn formulas ϕ(x) and all b in B, B |= ϕ(b) i� A |= ϕ(b).Note that if B is an initial substruture of A, then B ≤0 A.The following is a version of the familiar Tarski riterion for n-elementarysubstruture.Lemma 5.1 (Tarski riterion). Let B ≤0 A, and let n > 0. Suppose thatfor all Bn−1 formulas ϕ(x, u), and for all b in B (appropriate to substitutefor x), if there exists d suh that A |= ϕ(b, d), then there exists d ′ in B suhthat A |= ϕ(b, d ′). Then B ≤n A.



168 P. D'Aquino and J. F. KnightProof. Let S be the set of formulas ϕ(x) suh that for b in B, B |= ϕ(b)i� A |= ϕ(b). We show that S inludes all Bn formulas. Clearly, S is losedunder Boolean ombinations and bounded quanti�ers. It is straightforwardto show by indution on k ≤ n that all Bk formulas are in S.Our goal is to produe initial segments B of a model A of I∆0 suh that
B ≤n A and B satis�es full PA. Let A be a model of I∆0. One way to obtainan n-elementary initial substruture is to take the downward losure of theset of elements de�nable by Σn formulas from a set of parameters (see [7,p. 135℄). Alternatively, we may produe an n-elementary initial substrutureby taking the downward losure of a set I of order type ω suh that I �boundswitnesses� for Bn−1 formulas. We give the de�nition below.Definition 11. Let A be a struture for the language of arithmeti andlet ϕ(u, x) be a formula with the free variables separated into u and x. Wesay that I bounds witnesses for ϕ(u, x) if for all i, j ∈ I suh that A |= i < j,and all a ≤ i in A,

A |= (∃x)ϕ(a, x) → (∃x < j)ϕ(a, x).The lemma below is an extension of Proposition 3.1.Lemma 5.2. Let A be a model of I∆0, and let n > 0. Suppose I ⊆ A is aset of order type ω that is diagonal indisernible for all elements of BT
0 andbounds witnesses for all elements of BT

n−1. Let B be the downward losureof I. Then B is an n-elementary initial substruture of A satisfying full PA.Proof. Sine I is o�nal in B and bounds witnesses for all elements of
BT

n−1, we an apply Lemma 5.1 to see that B ≤n A. Among the boundedformulas is u2 = x, so for i, j ∈ I, A |= i < j → i2 < j. Sine I is diagonalindisernible for all elements of BT
0 , we an apply Proposition 3.1 to see that

B is a model of PA.We begin by onsidering a model A of I∆0 suh that N ≤n A. For n = 0,this is automatially true. For n > 0, however, it is a nontrivial assump-tion. We say, under this speial assumption, when there is a nonstandard
n-elementary substruture satisfying full PA.Lemma 5.3. Suppose N ≤n A. If I ⊆ ω is an in�nite subset of N, and
β(x, u) is Bn−1, then there is an in�nite set J ⊆ I that bounds witnesses for
β(x, u).Proof. Say x has length m and u has length n. We de�ne a sequene
(j0, j1, j2, . . .) by indution. Let j0 be an arbitrary element of I. Supposewe have determined jk. There are �nitely many m-tuples a in N suh that
a ≤ jk. For eah suh a, if A |= (∃u)β(a, u), then sine N ≤n A, there issome b in N suh that N |= β(a, b). We hoose the �rst suh b. Let jn+1 be



Strong initial segments of models of I∆0 169an element of I, greater than jn, and greater than all of the hosen b. Then
J = {jk : k ∈ ω} is the desired set bounding witnesses for β(u, x).Theorem 5.4. Suppose that A is a nonstandard model of I∆0 suh that
N ≤n A. Then the following are equivalent :(i) There is a nonstandard initial segment B suh that B ≤n A and B isa model of PA.(ii) There exist b and c suh that b is nonstandard and c odes satisfationof Σn formulas in A by tuples x ≤ b.
Note. For n = 0, statements (i) and (ii) are simply true, by Theorem4.1 (MAloon's theorem). Even for larger n, we do not know of an examplein whih the statements are invalid.Proof. To prove that (i)⇒(ii), suppose b is a nonstandard element of B.There exists c in B oding satisfation in B of Σn formulas by tuples boundedby b. Sine B ≤n A, c also odes satisfation in A. We must prove that

(ii)⇒(i). We shall obtain the model B by applying Lemma 5.2. We need a set
I of order type ω that is diagonal indisernible for elements of BT

0 and boundswitnesses for elements of BT
n−1. The outline is like that for Theorem 4.1. Toobtain the required set I, we show that there are �nite approximations in

N, and then apply overspill to an appropriate bounded formula.We get the �nite approximations to I by using Lemma 5.3 together withLemma 3.3. We have a bounded formula ψ(u, b, c), with parameters b and c,saying that there is a sequene σ ≤ b of length u suh that σ is diagonalindisernible for all elements of BT
0 bounded by u, and σ bounds witnesses forall elements of BT

n−1 bounded by u. The formula ψ(u, b, c) is satis�ed in A byall standard n. Therefore, by overspill, it is satis�ed by some nonstandard ν.Let σ be a witness. Taking the restrition of σ to standard number inputs,we get a set I of order type ω that is diagonal indisernible for all elementsof BT
0 , and bounds witnesses for all elements of BT

n−1.Now, we drop the assumption that N ≤n A. The following result isanalogous to Lemma 5.3. In what follows, we use it only for inspiration.Proposition 5.5. Let B be a model of PA. If I is a o�nal de�nable set ,and β(u, x) is a Bn−1 formula, then there is a o�nal de�nable set J ⊆ Ithat bounds witnesses for β(u, x).Proof. We have a de�nable funtion G : B → I suh that
• G(0) = min(I),
• G(a+ 1) is the �rst b ∈ I suh that b > G(a) and for all u ≤ G(a),

B |= (∃x̄)β(u, x) → (∃x̄ < b)β(u, x).Let J = ran(G).



170 P. D'Aquino and J. F. KnightWe de�ne a family of partial funtions FΓ,α, for �nite Γ ⊆ BT
n−1 and

α < ǫ0, suh that FΓ,α(a) is a spei� sequene C witnessing the existeneof an α-large sequene J suh that a < J and J bounds witnesses for allelements of Γ . We identify ordinals with their odes.Definition 12. Let Γ be a �nite subset of BT
n−1 and let α < ǫ0. Assum-ing that FΓ,α(a) is de�ned, it is the sequene (α0, x0, α1, . . . , αr−1, xr−1, αr)with the following properties:

• α0 = α,
• if αi = 0, then C has length 2i+ 1 (i.e., r = i),
• if αi 6= 0, then(a) if i = 0, then x0 is the �rst z > a suh that for all ϕ(u, x) ∈ Γ ,

(∀u ≤ a) (∃x)ϕ(u, x) → (∃x < z)ϕ(u, x),(b) if i > 0, then xi is the �rst z > xi−1 suh that for all ϕ(u, x) ∈ Γ ,
(∀u ≤ xi−1) (∃x)ϕ(u, x) → (∃x < z)ϕ(u, x),

• if αi = β 6= 0 and xi = z, then αi+1 = {β}(z).We have FΓ,α(a) ↓ provided that we an arry out all of these omputations,and we ome to some αi = 0.The result below is the analogue of Theorem 4.2.Theorem 5.6. Let A be a nonstandard model of I∆0, and let n > 0.Then the following are equivalent :(i) there is a nonstandard n-elementary initial segment B satisfying PA,(ii) there exists a set I, of order type ω, suh that I is diagonal indis-ernible for all elements of BT
0 and bounds witnesses for all elementsof BT

n−1,(iii) there exist b and c suh that c odes satisfation of Σn formulas bytuples ≤ b, and for eah �nite r, there is a sequene Ir of length
r, with ode < b, suh that Ir is diagonal indisernible for the �rst
r elements of BT

0 and bounds witnesses for the �rst r elements of
BT

n−1,(iv) there exist b and c suh that c odes satisfation of Σn formulasby tuples ≤ b, and for all standard ordinals α < ǫ0 and all �nite
Γ ⊆ BT

n−1, FΓ,α(0) ↓< b.Note that if A is a nonstandard model of I∆0 suh that N is an initial seg-ment but not an n-elementary initial segment, then for some Bn−1 formula
ϕ(x) satis�ed in A, there is no standard witness (satisfying the formula),and any n-elementary initial segment must inlude suh a witness. If A hasan n-elementary initial segment satisfying PA, then any Bn−1 formula thatis satis�ed has a �rst witness.



Strong initial segments of models of I∆0 171We will obtain Theorem 5.6 from the following stronger result, sayingwhih elements an be inluded in an initial segment that is n-elementaryand satis�es full PA.Theorem 5.7. Suppose A is a model of I∆0, and let n > 0. For anelement a, the following are equivalent :(i) a is ontained in a nonstandard n-elementary initial segment B thatis a model of PA,(ii) there is a set I, of order type ω, suh that a < I, and I is diagonalindisernible for all elements of BT
0 and bounds witnesses for allelements of BT

n−1,(iii) there exist b > a and c suh that c odes satisfation of Σn formulasby tuples ≤ b, and for eah �nite r, there is a sequene Ir of length
r, with ode < b, suh that a < Ir, and Ir is diagonal indiserniblefor the �rst r elements of BT

0 and bounds witnesses for the �rst relements of BT
n−1,(iv) there exist b and c suh that c odes satisfation of Σn formulas bytuples ≤ b, and for all α < ǫ0 and all �nite Γ ⊆ BT

n−1, FΓ,α(a) ↓< b.Before proving Theorem 5.7, we note that if we let a = 0 in the statementof Theorem 5.7, then we get Theorem 5.6. With a = 0, eah of the numberedstatements in Theorem 5.7 is easily seen to be equivalent to the orrespondingstatement in Theorem 5.6.Proof of Theorem 5.7. Our plan is to show (iii)⇒(ii)⇒(i)⇒(iv) and then
(iv)⇒(iii).

(iii)⇒(ii): We an write a bounded formula ψ(u, a, b, c) saying that thereexists an inreasing sequene σ of length u suh that
• a < σ and σ has a ode < b,
• σ bounds witnesses for elements of BT

n−1 with odes < u and is diagonalindisernible for elements of BT
0 with odes < u.To talk about satisfation in a bounded way, we use the parameter c. By (iii),

ψ(u, a, b, c) is satis�ed in A by all standard u. Then by overspill, it is satis�edby some nonstandard u. Let σ be a witness, and let I be the sequene ofstandard terms. This set satis�es (ii).
(ii)⇒(i): This follows immediately from Lemma 5.2.
(i)⇒(iv): We work in the initial n-elementary substruture B that is amodel of PA and ontains the element a. We get the fat that FΓ,α(a) isde�ned using the ideas from Lemma 3.3 and Proposition 5.5. We an dothe alulations in B, knowing that they are the same in A. Let Λ(a, x) be aomputable set of formulas of bounded omplexity saying FΓ,α(a) ↓< x for allstandard α < ǫ0. Every �nite subset of Λ(a, x) is satis�ed in B. Therefore, thewhole set is satis�ed in B by some element b. We have c oding satisfation



172 P. D'Aquino and J. F. Knightin B of Σn formulas by tuples ≤ b. Satisfation of these formulas in A is thesame.
(iv)⇒(iii): Proving that (iv)⇒(iii) will take several steps. Here is theoutline.Steps in proving that (iv)⇒(iii)1. Give a bounded formula ϕ(u, a, b, c) saying that there exists b′ < bsuh that for eah ordinal α with ode ≤ u, there exist J1, J2, C1, C2suh that(a) J1, J2 bound witnesses for all ϕ ≤ u in BT

n−1,(b) Ci witnesses that Ji is α-large,() a < J1 and J1 has a ode < b′,(d) b′ < J2, and C1 and C2 have odes < b.2. Show that A |= ϕ(u, a, b, c) for all standard u.3. Apply overspill to get a nonstandard u satisfying ϕ(u, a, b, c). Thenwe get b′ < b suh that for all standard α < ǫ0, there exist J1, J2, C1,
C2 suh that(a) J1, J2 bound witnesses for all standard elements of BT

n−1,(b) Ci witnesses that Ji is α-large,() a < J1 and J1 has a ode < b′,(d) b′ < J2 and C1 and C2 have odes < b.4. Suppose b′ < b, where for all standard α, there exist J and C suhthat(a) J bounds witnesses for all elements of BT
0 ,(b) C witnesses that J is α-large,() b′ < J and C has a ode < b.Show that Fα(b′) ↓< b for all standard α. Then by Theorem 4.2, thereis an initial segment B of A ontaining b′ suh that B is a model ofPA.5. Show that for eah �nite r, there exists a set Ir of size r suh that(a) a < Ir and Ir has a ode < b′,(b) Ir bounds witnesses for the �rst r elements of BT

n−1 and is diagonalindisernible for the �rst r elements of BT
0 .We disuss the �ve steps in order.

Step 1. It is not di�ult to write a bounded formula ϕ(u, a, b, c) withthe desired meaning. We use c to talk about satisfation of the formulas in
BT

n−1.
Step 2. Take a standard number u. Let Γ be the �nite set of elementsof BT
n−1 with odes ≤ u, and let α1, . . . , αk be the ordinals with odes ≤ u.



Strong initial segments of models of I∆0 173We show that there exists b′ < b suh that for eah αi, there exist J1,i, J2,i,
C1,i, C2,i with the following features:

• J1,i, J2,i bound witnesses for all elements of Γ ,
• C1,i, C2,i, witness that J1,i, J2,i are αi-large,
• a < J1,i and J1,i has a ode < b′,
• b′ < J2,i and C2,i has a ode < b.We may suppose α1 < · · · < αk. Take the least m suh that ωm > ωαk ,and let

α = ωm(αk) + · · · + ωm(α1) + ωm + ωαk + · · · + ωα1 .We are assuming statement (iv) (from Theorem 5.7), so there exist J and Csuh that
• J bounds witnesses for all elements of Γ ,
• C witnesses that J is α-large,
• a < J and C has a ode < b.By Lemma 2.5, we have

J = J1,1ˆ. . . Ĵ1,k Ĵ
∗ˆJ2,1ˆ. . .ˆJ2,k,where J1,i is ωαi-large, J∗ is ωm-large, and J2,i is ωm(αi)-large. The ele-ments of J1,i are smaller than those of J1,i+1, those of J1,k are smaller thanthose of J∗, those of J∗ are smaller than those of J2,1, and those of J2,i aresmaller than those of J2,i+1. By Lemma 2.7, sine J1,i is ωαi-large, it hasa subsequene that is αi-large. Similarly, sine J2,i is ωm(αi)-large, it has asubsequene that is αi-large. There are sequenes C1,i, C∗, and C2,i witness-ing the largeness of the sets J1,i, J∗, and J2,i, where all of these are boundedby C. Sine J∗ is ωm-large, it is nonempty. We let b′ ∈ J∗. This ompletesStep 2.

Step 3. Having arried out Steps 1 and 2, we are in a position to applyoverspill as in the desription of Step 3.
Step 4. Reall that Theorem 2.17 onnets the Wainer funtions withlargeness. Our assumption that J bounds witnesses for all bounded formulassimpli�es both the statement and the proof of the result below.Lemma 5.8. Suppose C witnesses that J is α-large, where α is standard ,

J bounds witnesses for all standard elements of BT
0 , b′ < J (where b′ isnonstandard) and C has a ode < b. Then Fα(b′) ↓< b.Proof. Suppose

C = (α0, j0, α1, j1, . . . , αr−1, jr−1, αr).Reall that if Jk = (jk, jk+1, . . . , jr) is the part of J that appears after
αk in C, then Jk is αk-large. Sine α is standard and b′ < j0, where b′ isnonstandard, the ode for α is < j0. We an show that for all k, the odefor αk is < jk. For k > 0, we have a bounded formula saying how αk is



174 P. D'Aquino and J. F. Knightomputed from αk−1 and jk−1. Sine J bounds witnesses for this formula, if
αk−1 < jk−1, it follows that αk < jk.Definition 13. For any x and any β, we de�ne the x-unwinding of
β to be the sequene (β0, . . . , βk), where β = β0, for i < k, βi 6= 0 and
βi+1 = {βi}(x), and βk = 0.It follows from Proposition 2.6 that for x ≤ jk, the terms of the
x-unwinding of αk appear in C. Moreover, the ode for the unwinding exists,sine it is de�ned by reursion using a bounded formula, with C boundingeverything we need. Sine the ode for αk is < jk, if x ≤ jk, then the odefor the unwinding is < jk+1. To prove the lemma, we show the following.
Claim. For all k < r, for all x ≤ jk, Fαk

(x) ↓.Proof of Claim. We proeed by indution on the ordinals in C startingwith αr−1, whih we may suppose to be 1, and working our way up to α0 = α.For all x ≤ jr−1, F1(x) = F x+1
0 (x) = 2x + 1. Suppose the Claim holds for

αk+1, i.e., for all x ≤ jk+1, Fαk+1
(x) ↓. We must show that the laim holdsfor αk, i.e., for all x ≤ jk, Fαk

(x) ↓. There are two ases.
Case 1. Suppose αk is a suessor, and let x ≤ jk. By de�nition,

Fαk
(x) = F x+1

{αk}(x)(x),where {αk}(x) = αk+1. We show by indution on y ≤ x+1 that F y
αk+1

(x) ↓.First, note that F 1
αk+1

(x) ↓, by our indutive hypothesis (on the ordinals).Supposing that F y
αk+1

(x) ↓, where y ≤ x, we show that F y+1
αk+1

(x) ↓. Sine
αk+1 = {αk}(x), where the ode for αk is ≤ jk, we have F y

αk+1
(x) < jk+1(this is de�ned by a bounded formula in terms of x, y, and αk). Then

Fαk+1
(F y

αk+1
(x)) ↓, by our indutive hypothesis (on the ordinals). It followsthat Fα(x) ↓.

Case 2. Suppose αk is a limit ordinal, and let x ≤ jk. By de�nition,
Fαk

(x) = sup
z≤x

F{αk}(z)(x).For eah z ≤ x, {αk}(z) ours in the z-unwinding of αk, so it is αj for some
j > k. By our indutive hypothesis, Fαj

(x) ↓. Sine Fαj
(x) is de�ned by abounded formula in terms of z, x, and αk, where z, x, and the odes for αkare all ≤ jk, we have Fαj

(x) < jk+1. So, we get Fαk
(x) ↓< jk+1.We have proved the Claim, and this learly gives the Lemma.Sine Fα(b′) ↓< b, for all standard α < ǫ0, we an apply Theorem 4.2 toget an initial segment B of A suh that b′ ∈ B and B is a model of PA.

Step 5. We want to show that for eah standard r, there is a set Ir ofsize r suh that
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• a < Ir and Ir has a ode < b′,
• Ir bounds witnesses for the �rst r elements of BT

b−1 and is diagonalindisernible for the �rst r elements of BT
0 .We work in the model B of PA that was obtained in Step 4. We shalluse Proposition 3.6. Let Γ onsist of the �rst r elements of BT

0 . Let nΓ and
gΓ be as desribed just before Proposition 3.6. Let α = ω1+2nΓ (r−1)+1. InStep 3, we obtained an α-large sequene J suh that a < J and J boundswitnesses for the elements of Γ . Moreover, the ode for J is < b′, so J is anelement of B. We need to be sure that J is still α-large when looked at in B.Say J = (j0, j1, . . . , jr−1). The sequene

C = (α, j0, α1, j1, . . . , αr−1, jr−1, 0)witnessing that J is α-large in A is de�ned by reursion. In partiular, theordinals satisfy the relation αk+1 = {αk}(jk). Calulating in B, we arrive atthe same ordinals, and we see that {αr−1}(jr−1) = 0, so we �nd that J is
α-large in B. We are in a position to apply Proposition 3.6, and we get therequired set Ir.This ompletes the proof that (iv)⇒(iii), whih was all that remained inthe proof of Theorem 5.7.6. ProblemsProblem 1. Suppose A is a nonstandard model of I∆0 suh that N ≤n

A. Must there exist b and c suh that b is nonstandard , and c odes satisfa-tion in A of Σn formulas by tuples x ≤ b?Problem 2. Give onditions under whih a nonstandard model of I∆0has a nonstandard m-elementary initial segment that is a model of IΣn, andsay whih elements an be inluded in suh an initial segment.Aknowledgments. The authors are grateful to Henryk Kotlarski forhis helpful omments. The authors are also grateful to the institutions whihenabled them to ollaborate. The �rst author reeived partial support fromthe University of Notre Dame. The seond author reeived partial supportfrom the Instituto Nazionale di Alta Matematia and the Seonda Universitàdi Napoli.
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