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Superstability in simple finitary AECs

by

Tapani Hyttinen and Meeri Kesälä (Helsinki)

Abstract. We continue the study of finitary abstract elementary classes beyond ℵ0-
stability. We suggest a possible notion of superstability for simple finitary AECs, and
derive from this notion several good properties for independence. We also study con-
structible models and the behaviour of Galois types and weak Lascar strong types in this
context.

We show that superstability is implied by a-categoricity in a suitable cardinal. As
an application we prove the following theorem: Assume that (K,4K) is a simple, tame,
finitary AEC, a-categorical in some cardinal κ above the Hanf number such that cf(κ) > ω.
Then (K,4K) is a-categorical in each cardinal above the Hanf number.

1. INTRODUCTION

Saharon Shelah developed the context of abstract elementary classes as
a platform to study classification theory for non-elementary classes. In this
context one does not study structures in any specific language, but a class
K of structures of the same similarity type with an abstract elementary
substructure relation 4K. This framework is very general, and one might
need to refine the axioms of the class to generalize machinery from stability
theory for AECs. Several different contexts have been studied, and most
of them assume at least amalgamation (see [21], [22], [23], [25], [4], [7], [17]
or [2]). We introduced the context of finitary abstract elementary classes. We
assume amalgamation, joint embedding and arbitrarily large models in order
to work inside a monster model. In addition we assume the Löwenheim–
Skolem number being countable and a property we call finite character.
When A and B are models in the class K, finite character says that we can
detect whether A 4K B by only looking at finite tuples ā ∈ A and checking
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whether the Galois type of the tuple ā in A agrees with its Galois type
in B. The main non-elementary examples of finitary classes are homogeneous

classes (see [18] or [14]), and excellent classes (see [20] or [16]). There are
several frameworks of AECs with an abstract notion of independence, where
the definition is not specified but only axioms for the independence calculus
are given; see for example Shelah [24], Grossberg and Kolesnikov [5] or
Grossberg and Lessmann [6]. See also Adler [1] for a first-order framework.
Our work differs from these in that we construct the actual notion.

In the papers [11] and [12] we studied the ℵ0-stable case. (See also [10].)
We introduced a notion of weak type and weak λ-stability for a cardinal λ.
We also studied a notion of strong type called Lascar strong type, written
Lstp, which is the equivalence class of a tuple in the finest invariant equiva-
lence relation with a bounded number of equivalence classes. We defined a
notion of independence with a built-in extension property in the style of [14].
We also found useful the concept of simplicity, which is the property that ↓
satisfies ā ↓A A for all tuples ā and finite sets A (1). In the ℵ0-stable case,
simplicity guarantees that we have the independence calculus for all sets,
not only for ℵ0-saturated models. This approach generalizes the one in [13]
for excellent classes.

The main point of interest in this paper is again a notion of indepen-
dence. We find the obvious notion of superstability, namely weak stability in
large enough cardinals, insufficient to gain good behaviour for the notion of
independence. We call this notion weak superstability and take as the main
notion the following.

Definition 1.1. We say that the class (K, 4K) is superstable if it is
weakly stable in at least one cardinal and the following holds. Let (An)n<ω

be an increasing sequence of finite sets such that
⋃

n<ω An is a model, and
let ā be a tuple. Then there is n < ω such that ā ↓An An+1.

The properties of the notion of independence under superstability are
collected in Theorems 3.5 and 3.13. In Theorem 3.5 we study a super-
stable simple finitary AEC. In Theorem 3.13 we also assume the Tarski–

Vaught property and gain all the usual properties of non-forking of com-
plete types. The Tarski–Vaught property makes it possible to have count-
able constructible models. It says that we have countably many “abstract
formulas” such that each set which is “existentially closed” relative to them
is a K-elementary substructure of the monster model. We also prove that
ℵ0-stable simple finitary classes are superstable (Corollary 3.28) and have
the Tarski–Vaught property (Remark 3.9).

(1) In [11] and [12] we actually studied an a priori stronger notion but we will see that
the notions agree under ℵ0-stability.
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The most important notion of type in the context of AEC is Galois type.
The notion was introduced by Shelah, and named Galois type by Grossberg
in [4]. In our context two tuples ā and b̄ have the same Galois type over
a set A, written tpg(ā/A) = tpg(b̄/A), if there is an automorphism of the
monster model mapping ā to b̄ and fixing A pointwise. The behaviour of
these types is a key question in model theory.

Grossberg and VanDieren have studied abstract elementary classes with
amalgamation and µ-tameness for some µ (see [7]–[9]). The class (K, 4K)
is said to be µ-tame if for any tuples ā and b̄ and a model A , tpg(ā/A ) 6=
tpg(ā/A ) implies that there is a submodel A0 4K A such that |A0| ≤ µ
and tpg(ā/A0) 6= tpg(ā/A0). This assumption implies many good properties
for an abstract elementary class, for example we gain upwards categoricity
transfer from a successor cardinal κ+ > max{LS(K)+, µ}. However, in many
examples Galois types have finite character, that is, if the Galois types of ā
and b̄ differ over a set A, there is some finite subset A0 ⊂ A such that their
types differ already over A0. Elementary classes as well as homogeneous
classes have this property. Also in excellent classes the same holds when
A is assumed to be a model, and in ℵ0-stable finitary classes when A is a
countable model.

We take as our basic notion of type the weak Lascar strong type, which
has finite character by definition. Two tuples ā and b̄ have the same weak
Lascar strong type over A, written Lstpw(ā/A) = Lstpw(b̄/A), if for all
finite A0 ⊂ A we have Lstp(ā/A0) = Lstp(b̄/A0). We study the relation
between these types and Galois types in simple finitary classes. Assuming
superstability and the Tarski–Vaught property we deduce that when A is a
countable set and tpg(ā/A) 6= tpg(b̄/A), there is a finite A0 ⊂ A such that
Lstp(ā/A0) 6= Lstp(b̄/A0) (Theorem 3.19). If we also assume ℵ0-tameness,
the same holds when A is an arbitrary model (Theorem 3.20), and fur-
thermore if A is an a-saturated model, we find a finite A0 ⊂ A such that
tpg(ā/A0) 6= tpg(b̄/A0) (Theorem 3.21). A model A is a-saturated if every
Lascar strong type over a finite subset is realized in A .

In the ℵ0-stable case, the class of ℵ0-saturated models of K, written Kω,
is an interesting subclass of K. Splitting behaves well in this class and we
have the full categoricity transfer in (Kω, 4K), when (K, 4K) is an ℵ0-stable
and ℵ0-tame simple finitary class (Corollary 4.14(1) of [12]). In this paper
we study the class (Ka, 4K), where Ka is the class of a-saturated models
of K. Note that when (K, 4K) is a finitary class, the class (Ka, 4K) is an
abstract elementary class but not necessarily finitary, since its Löwenheim–
Skolem number might be uncountable. We define a-categoricity to mean
categoricity for the class (Ka, 4K), and show that a-categoricity in certain
cardinals implies superstability for (K, 4K). In Section 4 we define an iso-
lation notion for weak Lascar strong type and a concept of an a-primary
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model. We prove an a-categoricity transfer result and state some open ques-
tions.

After this paper was submitted, David Kueker announced new results
that are very relevant to our framework [15]. His results state that any fini-
tary class is closed under L∞ω-equivalence, 4K coincides with the notion
of L∞ω-elementary substructure over ℵ0-saturated models and weak types
equal L∞ω-types in the monster model. Furthermore, if a finitary class is
ℵ0-stable, the class (Kω, 4K) is definable with a complete sentence in Lω1ω,
and L∞ω can be replaced with a countable fragment of Lω1ω. We decided
not to change the notation in this paper, although some notions like “ab-
stract formula” can now be seen in a different light. However, we decided
to rewrite the paper [12] taking these results into account. The paper will
include discussion on how our work fits into the study of non-elementary,
syntactically defined classes and will present several examples. The exam-
ples also show that there are simple, superstable finitary classes with the
Tarski–Vaught property which are not definable with a sentence in Lω1ω. We
will also give a proof that the example studied in [3] is simple, and hence
there is a simple, finitary, ℵ0-stable class which is not tame and thus neither
homogeneous nor excellent.

We assume the reader to be familiar with the notions of abstract elemen-
tary classes and the most common concepts in stability theory for these, like
amalgamation, Galois type and the monster model. We also refer to the re-
sults in [11] and [12] without proof.

2. INDEPENDENCE

In [12] we studied finitary AECs (K, 4K), which are abstract elementary
classes with Löwenheim–Skolem number ℵ0, amalgamation, joint embed-
ding, arbitrarily large models and finite character. Models in these classes
are models of a countable vocabulary τ . First we defined a notion of a Galois
type over the empty set for a tuple ā in a model A , written tpg(ā/∅, A ),
such that

tpg(ā/∅, A ) = tpg(b̄/∅, B)

if there is C ∈ K and K-embeddings f : A → C and g : B → C such that
f(ā) = g(b̄). Then we defined finite character to be the following property.

Assumption 2.1 (Finite character). Assume that A ⊂ B are models

and for all tuples ā ∈ A ,

tpg(ā/∅, A ) = tpg(ā/∅, B).

Then A is a K-elementary submodel of B.

A useful consequence of the finite character property is that, when
A 4K B and f : A → B is an embedding, then f is a K-elementary



Superstability in simple finitary AECs 225

embedding if and only if f preserves the Galois types of finite tuples, i.e.

tpg(ā/∅, B) = tpg(f(ā)/∅, B)

for all tuples ā ∈ A . With the usual Jónsson–Fräıssé construction we obtain
the following theorem.

Theorem 2.2 (Monster model). Let µ be a cardinal. There is M ∈ K

such that :

(1) Universality: For all A ∈ K such that |A | < µ, there is a K-

embedding f : A → M.

(2) K-homogeneity: For all A 4K M such that |A | < µ and K-element-

ary f : A → M, there is g ∈ Aut(M) extending f .

We say that a set A ⊂ M is M-bounded if |A| < µ.

We will always assume that all sets we consider are contained in a mon-
ster model M, and are M-bounded. We say that A is a model if A ∈ K

and A 4K M.

We will only consider such monster models when µ is a limit cardinal.
With finite character we get an even stronger version of (2), namely:

(2′) For all A 4K M such that |A | < µ and mappings f : A → M such
that for all finite tuples ā ∈ A ,

tpg(ā/∅, M) = tpg(f(ā)/∅, M),

there is g ∈ Aut(M) extending f .

The monster models are µ-saturated in the following sense: if M 4K M
′ are

two monster models and A ⊂ M, B ⊂ M
′ are M-bounded sets, there is an

automorphism of M
′ fixing A and mapping B into M.

When ā and b̄ are in a monster model M, we have tpg(ā/∅, M) =
tpg(b̄/∅, M) if and only if there is f ∈ Aut(M) mapping ā to b̄. Also for
an arbitrary set A we write tpg(ā/A, M) = tpg(b̄/A, M) if and only if there
is f ∈ Aut(M/A) mapping ā to b̄, where

Aut(M/A) = {f ∈ Aut(M) : f↾A is the identity}.

We define another notion of type, called the weak type, by tpw(ā/A, M) =
tpw(b̄/A, M) if for each finite A0 ⊂ A, tpg(ā/A0, M) = tpg(b̄/A0, M).

Remark 2.3. Let A and sequences I, J be bounded in a monster model
M. Let also a monster model M

′ extend M. Then there is f ∈ Aut(M/A)
sending I to J if and only if there is g ∈ Aut(M′/A) sending I to J .

By Remark 2.3, if ā, b̄ ∈ M, A ⊂ M is M-bounded and M 4K M
′ are

monster models, then

tpg(ā/A, M) = tpg(b̄/A, M)
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if and only if
tpg(ā/A, M′) = tpg(b̄/A, M′).

Since we assume that all the sets under discussion are bounded subsets of
the monster model, we write only tpg(ā/A) for Galois type and tpw(ā/A)
for weak type.

For any M-bounded ordinal α, we say that a sequence (āi)i<α of tuples
is strongly A-indiscernible in M if for any M-bounded ordinal β ≥ α we can
extend the sequence to (āi)i<β such that for any partial order-preserving f :
β → β we can find F ∈ Aut(M/A) mapping āi to āf(i) for each i ∈ dom(f).

The proof of the following lemma is skipped, but it is proved as Propo-
sition 2.13 in [12].

Lemma 2.4 (Shelah). For every M-bounded cardinal κ there exists a

cardinal H(κ) such that the following holds. Whenever A is a set of size κ
and (āi)i<H(κ) ⊂ M are distinct tuples, there exists a strongly A-indiscernible

sequence (b̄i)i<ω in M such that for each n < ω there are i0 < · · · < in <
H(κ) such that

tpg(b̄0, . . . , b̄n/A) = tpg(āi0 , . . . , āin/A).

Furthermore, if I is any linear ordering , there exists a monster model M
′

extending M and (āi)i∈I in M
′ such that for any n < ω and j0 < · · · < jn ∈ I

there are i0 < · · · < in < H(κ) such that

tpg(b̄0, . . . , b̄n/A) = tpg(āi0 , . . . , āin/A).

We write H(ℵ0) = H. We know that H = i(2ℵ0)+ , which is the so called

Hanf number of abstract elementary classes with LS(K) = ℵ0. We will always
assume that the cardinal µ related to the monster model is closed under the
operation H(·), that is, when a set A is bounded in M, also the cardinal
H(|A|) is bounded in M. We can find arbitrarily large such cardinals: for
any κ, define µ0 = κ and µn+1 = H(µn). If µ =

⋃

n<ω µn, then λ < µ implies
H(λ) < µ.

Now we see that also the notion of any finitely many tuples being in-
cluded in a strongly A-indiscernible sequence is independent of the mon-
ster model for bounded A. Let (ā0, . . . , ān) be included in some strongly
A-indiscernible sequence (āi)i<α in M. We can extend this sequence to the
bounded length H(|A|). Then in any monster model M

′ such that M 4K M
′,

there is a strongly indiscernible (b̄i)i<λ and i0 < · · · < in < H(|A|) such that

tpg(b̄0, . . . , b̄n/A) = tpg(āi0 , . . . , āin/A) = tpg(ā0, . . . , ān/A).

Thus we have f ∈ Aut(M′/A) mapping b̄k to āk for each 0 ≤ k ≤ n. The
sequence (f(b̄i))i<λ is strongly indiscernible in the extended monster model.

Similarly, Lemma 2.4 implies that if there are more than H(|A|)-many
distinct tuples, then for any n < ω we can find some n of these tuples such
that they are the beginning of a strongly A-indiscernible sequence.
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We say that a weak type tpw(ā/A) Lascar-splits over a finite E ⊂ A if
there is a strongly E-indiscernible sequence (āi)i<ω such that ā0, ā1 are in A
and tpw(ā0/ā ∪ E) 6= tpw(ā1/ā ∪ E). The notion of Lascar-splitting is also
independent of the monster model. We define our notion of independence
with built-in extension property.

Definition 2.5. We say that ā is independent of B over A, written

ā ↓A B,

if there is a finite E ⊂ A such that for all monster models M′ extending M

and D ⊂ M
′ such that A ∪ B ⊂ D there is a monster model M

′′ extending
M

′ and b̄ ∈ M
′′ such that tpw(b̄/A∪B) = tpw(ā/A∪B) and tpw(b̄/D) does

not Lascar-split over E.

If M 4K M
′ are monster models and ā, A ∪ B ⊂ M are bounded, then

ā ↓A B in M if and only if ā ↓A B in M
′. Also by µ-saturation, if D in the

above definition is M-bounded, then we can find b̄ in M.
We study several monster models instead of one, since we want to be

exact with our notion of boundedness. Usually the monster model is only
assumed to be “large enough” and all sets in question “small enough”, but
we want to be clear with the details. The main difficulty with only one
monster model would be in the proof of Proposition 2.7, where we would
have to assume that a bounded union of bounded sets is also bounded. On
the other hand, we want the least unbounded cardinal in M to be a limit,
and hence it would have to be a regular limit cardinal. It is consistent with
ZFC that such cardinals do not exist above ℵ0.

The following properties are clear by the definition.

Proposition 2.6.

(1) Invariance: Assume that f is an automorphism of M, ā, A, B ⊂ M

are bounded and ā ↓A B. Then f(ā) ↓f(A) f(B). Also if tpw(b̄/B) =

tpw(ā/B), then b̄ ↓A B.

(2) Monotonicity: Assume that A ⊂ B ⊂ C ⊂ D and ā ↓A D. Then

ā ↓B C.

(3) Restricted local character: Assume that ā ↓A B. Then there is a

finite E ⊂ A such that ā ↓E (A ∪ B).

Now we see that “built-in extension” truly gives us the extension prop-
erty.

Proposition 2.7 (Extension). Assume that ā ↓A B and A ⊂ B ⊂ D
(where all the sets are bounded in M). Then there exists ā′ (∈ M) such that

tpw(ā/B) = tpw(ā′/B) and ā′ ↓A D.

Proof. By Proposition 2.6(3), we may assume that A is finite. Enumerate
all types tpw(b̄i/D), i < κ (in M), such that tpw(b̄i/B) = tpw(ā/B) and
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tpw(b̄i/D) does not Lascar-split over A for all i < κ. This set is nonempty,
since ā ↓A B. For each i < κ, if b̄i 8 A D, let Ei ⊂ Mi be a set witnessing this,
i.e. some set in some monster-extension Mi such that D ⊂ Ei and tpw(b̄i/D)
does not have a non-splitting extension to Ei. If b̄i ↓A D, let Ei = D.

The set E =
⋃

i<κ Ei is bounded in some monster-extension M
′. But

ā ↓A B also in M
′, and thus there is b̄ ∈ M

′ such that tpw(b̄/B) = tpw(ā/B)
and tpw(b̄/E) does not Lascar-split over A. Now tpw(b̄/D) does not Lascar-
split over A either, and by µ-saturation, there is i < κ such that tpw(b̄/D) =
tpw(b̄i/D). But tpw(b̄i/D) has a non-splitting extension to Ei, namely b̄, and
thus b̄i ↓A D, and b̄i is as required.

We use both notations āb̄ and āab̄ for the concatenation of tuples. We
can also abbreviate ā ∪ b̄ for {ā} ∪ {b̄} and ā ∈ A for ā ∈ Alg(ā).

Proposition 2.8 (Finite Pairs Lemma). Let B be finite and A ⊂ B.

Assume that ā ↓A B and b̄ ↓A∪ā B ∪ ā. Then āab̄ ↓A B.

Proof. Assume, for contradiction, that āab̄ 8 A B. In particular, the finite
set A does not witness that āab̄ ↓A B. Hence, there is D containing B such
that whenever tpw(ā′, b̄′/B) = tpw(ā, b̄/B), then tpw(ā′, b̄′/D) Lascar-splits
over A. We may increase the set D if necessary, and assume that it has the
following property: For every finite A ⊂ D and tuples ā0, ā1 ∈ D such that
they are a beginning of a strongly A-indiscernible sequence (āi)i<H, there is
one such sequence in D.

By definition there is ā′ ∈ M
′ such that tpw(ā′/B) = tpw(ā/B) and

tpw(ā′/D) does not Lascar-split over A. Since B is finite, we have f ∈
Aut(M′/B) such that f(ā) = ā′. Now tpw(ā′, f(b̄)/B) = tpw(ā, b̄/B), and
thus f(b̄) ↓A∪ā′ B ∪ ā′. Again by definition there is b̄′ ∈ M

′ such that
tpw(b̄′/B ∪ ā′) = tpw(f(b̄)/B ∪ ā′) and tpw(b̄′/D ∪ ā′) does not Lascar-split
over A ∪ ā′. Hence also tpw(ā′, b̄′/B) = tpw(ā′, f(b̄)/B) = tpw(ā, b̄/B).

Let (c̄i)i<ω be strongly A-indiscernible such that tpg(c̄0/A ∪ ā′ ∪ b̄′) 6=
tpg(c̄1/A ∪ ā′ ∪ b̄′) and c̄0, c̄1 ∈ D. By strong indiscernibility, this sequence
extends to a strongly A-indiscernible (c̄i)i<H. By the above property of D,
we may assume that (c̄i)i<H is in D. Since there are either H-many c̄i not
realizing tpg(c̄0/A ∪ ā′ ∪ b̄′) or H-many c̄i not realizing tpg(c̄1/A ∪ ā′ ∪ b̄′),
we may assume that

tpg(c̄0/A ∪ ā′ ∪ b̄′) 6= tpg(c̄i/A ∪ ā′ ∪ b̄′)

for each i < H.

We claim that (c̄i)i<H has the property that for any i0 < i1 < H,

tpw(c̄i0, c̄i1/A ∪ ā′) = tpw(c̄0, c̄1/A ∪ ā′).

Assume, for contradiction, that there are i0 < i1 such that the above does
not hold. We check the following three possibilities:
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(1) 1 < i0,
(2) i0 = 0,
(3) i0 = 1.

Assume that (1) holds. Since H is an infinite cardinal, we may skip fewer than
H-many tuples if necessary and assume that i0 = 2 and i1 = 3. The sequence
(d̄i)i<H, where d̄i = (c̄α+2n, c̄α+2n+1) for i = α + n < H, α limit and n < ω,
is strongly A-indiscernible and tpg(d̄0/A∪ ā′) 6= tpg(d̄1/A∪ ā′). Then we find
that tpw(ā′/D) Lascar-splits over A, a contradiction. If we have (2), then
the sequence (c̄0, c̄i)i<H is strongly A-indiscernible with tpw(c̄0, c̄i1/A∪ ā′) 6=
tpw(c̄0, c̄1/A ∪ ā′). We infer again that tpw(ā′/D) Lascar-splits over A, a
contradiction.

Assume that (1) or (2) does not hold, and thus for all indices i0 < i1 such
that tpw(c̄i0 , c̄i1/A ∪ ā′) 6= tpw(c̄0, c̄1/A ∪ ā′), we have i0 = 1. We can study
the strongly A-indiscernible sequence (c̄i)i<H, i6=1, since tpg(c̄0/A∪ ā′ ∪ b̄′) 6=
tpg(c̄2/A ∪ ā′ ∪ b̄′) and c̄0, c̄2 ∈ D. The claim holds for this sequence.

We have shown the claim. Now by Lemma 2.4, there is a strongly (A∪ā′)-
indiscernible sequence (c̄′i)i<ω such that tp(c̄′0, c̄

′
1/A∪ ā′) = tp(c̄i0 , c̄i1/A∪ ā)

for some i0 < i1 < H. By the previous claim we have f ∈ Aut(M′/A ∪ ā′)
mapping (c̄′0, c̄

′
1) to (c̄0, c̄1) and thus may assume that c̄′0 = c̄0 and c̄′1 = c̄1.

Since tpg(c̄0/(A∪ā′)∪b̄′) 6= tpg(c̄1/(A∪ā′)∪b̄′), it follows that tpw(b̄′/D ∪ ā′)
Lascar-splits over A ∪ ā′, a contradiction.

Let A ⊂ M be a bounded subset and ā ∈ M a tuple. We say that
tpw(ā/A) is bounded if the set {b̄ ∈ M : b̄ |= tpw(ā/A)} is bounded in M.
We see that if tpw(ā/A) is bounded, then

{b̄ ∈ M : b̄ |= tpw(ā/A)} < H(|A|).

Namely, if the set had some bounded size κ ≥ H(|A|), we could find a
strongly A-indiscernible sequence of distinct tuples realizing tpw(ā/A). Hence
by strong indiscernibility, there would be at least κ+-many tuples in M

realizing tpw(ā/A). This is a contradiction. Since in any monster model
H(|A|) is bounded if and only if A is bounded, a type tpw(ā/A) is bounded
in M if and only if it is bounded in all extending monster models. Also
by µ-saturation, if A is bounded in M, tpw(ā/A) is bounded and M

′ is a
monster model extending M, then {b̄ ∈ M : b̄ |= tpw(ā/A)} = {b̄ ∈ M

′ : b̄ |=
tpw(ā/A)}.

Lemma 2.9. Let A be finite.

(1) If tpw(ā/A) is bounded , then ā ↓A B for any B.

(2) If tpw(ā/A) is not bounded , then ā 8 A ā.

Proof. Let M
′ be any monster-extension and D ⊂ M

′ any set. Assume
that tpw(ā/B) does split over A. Let (b̄i)i<H be strongly A-indiscernible
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such that tpg(b̄0/A ∪ {ā}) 6= tpg(b̄1/A ∪ {ā}). There has to be either H-
many i such that tpg(b̄i/A ∪ {ā}) 6= tpg(b̄0/A ∪ {ā}) or H-many i such that
tpg(b̄i/A ∪ {ā}) 6= tpg(b̄1/A ∪ {ā}). Thus we may assume tpw(b̄i/A ∪ {ā})
6= tpw(b̄0/A ∪ {ā}) for all 0 < i < H. By strong A-indiscernibility, for each
i < H, there is fi ∈ Aut(M′/A) such that fi(b̄k) = b̄i+k for all k < H. Now
if i < j then fi(ā) 6= fj(ā). Otherwise we would have (fi

−1 ◦ fj)(ā) = ā
and (fi

−1 ◦ fj)(b̄0) = b̄k for k > 0. Now (fi(ā))i<H are different realizations
of tpw(ā/A), and the type tpw(ā/A) is not bounded. Thus if tpw(ā/A) is
bounded, tpw(ā/D) does not split over A for any D or monster-extension M

′.
This proves (1).

To prove (2), assume that tpw(ā, A) is not bounded. There are H-many
tuples b̄ such that tpg(b̄/A) = tpg(ā/A). By Lemma 2.4, there is a strongly
A-indiscernible sequence (āi)i<ω of distinct tuples such that tpg(ā0/A) =
tpg(ā/A) and hence tpg(āi/A) = tpg(ā/A) for each i < ω. Furthermore,
since we have f ∈ Aut(M/A) mapping ā0 to ā, we may assume that ā0 = ā.
Assume, for contradiction, that ā ↓A ā. Let ā′ be such that tpw(ā′/A∪ {ā})
= tpw(ā/E ∪ {ā}) and the type tpw(ā′/A ∪ {āi : i < ω}) does not Lascar-
split over A. But now we must have ā′ = ā and this is a contradiction, since
tpg(ā0/A ∪ {ā}) 6= tpq(ā1/A ∪ {ā}) and thus tpw(ā/A ∪ {āi : i < ω}) does
Lascar-split over A. This proves (2).

Proposition 2.10. Let A ⊂ B be finite, ā ↓A B and B ⊂ D. There is

ā′ such that (ā, ā′) is a beginning of a strongly B-indiscernible sequence and

ā′ ↓A D.

Proof. If tpw(ā/A) is bounded, we can take the constant sequence, which
is strongly A-indiscernible, by Lemma 2.9(1). We assume that tpw(ā/A) is
unbounded. By extension there are āi for i < H such that tpw(āi/B) =
tpw(ā/B) and āi ↓A B ∪

⋃

j<i{āj}. By Lemma 2.9(2) and monotonicity we
have āj 6= āi for any j 6= i. Thus there are j0, j1 < H such that (āj0 , āj1) is
a beginning of a strongly B-indiscernible sequence. Since B is finite, there
is f ∈ Aut(M/B) mapping āj0 to ā. Define ā∗ = f(āj1). Now (ā, ā∗) is
the beginning of a strongly B-indiscernible sequence and ā∗ ↓A B ∪ {ā}.
Again by extension there is ā′ such that ā′ ↓A D and tpw(ā′/B ∪ {ā}) =
tpw(ā∗/B ∪ {ā}). Let g ∈ Aut(B ∪ {ā}) be such that g(ā∗) = ā′. Then also
(g(ā), g(ā∗)) = (ā, ā′) is a beginning of a strongly B-indiscernible sequence.

2.1. Lascar strong types. We say that an equivalence relation E in a
monster model M is A-invariant if it is preserved by each f ∈ Aut(M/A).
We also say that an equivalence relation E is bounded if the number of
equivalence classes of E in M is bounded. If E is a bounded and A-invariant
equivalence relation and (āi)i<ω a strongly A-indiscernible sequence, then
E(āi0 , āi1) for each i0, i1 < ω. Otherwise due to A-invariance we would
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get ¬E(āi, āj) for each āi, āj in the sequence. If the number of equivalence
classes of E is κ, we could extend the sequence to the length of κ+, and get
a contradiction.

We conclude that if an A-invariant equivalence relation has a bounded
number of equivalence classes in M, the number must be strictly less than
H(|A|). Also by µ-saturation it cannot have any other equivalence classes in
any extending monster model.

Definition 2.11. We say that sequences ā and b̄ have the same Lascar

strong type over A, written

Lstp(ā/A) = Lstp(b̄/A),

if ℓ(ā) = ℓ(b̄) and E(ā, b̄) holds for any A-invariant and bounded equivalence
relation E of ℓ(ā)-tuples.

Each tuple in a strongly A-indiscernible sequence has the same Lascar
strong type over A. Thus the number of Lascar strong types over a set A
is strictly smaller than the cardinal H(|A|). This holds by Lemma 2.4, since
for any sequence (āi)i<κ for κ ≥ H(A), there are indices i < j < κ such
that the tuples āi, āj are in the same strongly A-indiscernible sequence. As
a corollary of Proposition 2.10 we get the following.

Corollary 2.12. Let A ⊂ B ⊂ D and ā ↓A B, where B is finite. Then

there is ā′ such that Lstp(ā′/B) = Lstp(ā/B) and ā′ ↓A D.

We give an equivalent condition for two tuples to have the same Lascar
strong type over A.

Proposition 2.13. The following are equivalent.

(1) Lstp(ā/A) = Lstp(b̄/A).
(2) There exists n < ω, āi for i ≤ n and strongly A-indiscernible se-

quences Ji for i < n such that ā0 = ā, ān = b̄ and āi, āi+1 ∈ Ji for

i < n.

Proof. Since elements in a strongly A-indiscernible sequence have the
same Lascar strong types over A, (2) implies (1). We show that (1) im-
plies (2). It is enough to show that the relation defined by (2) is an A-
invariant equivalence relation with a bounded number of classes. It is clearly
A-invariant, transitive and symmetric. The trivial strongly A-indiscernible
sequence (ā)i<ω shows that it is also reflexive. It remains to show that it is
bounded. Assume that it would not be bounded, and thus there would be
H(|A|)-many inequivalent tuples. But by Lemma 2.4, at least two of these
elements would be included in some strongly A-indiscernible sequence, a
contradiction.

At least by the previous proposition it is clear that the relation Lstp(ā/A)
does not depend on the possible extension of the monster model.
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If (āi)i<α is a strongly E∪ c̄-indiscernible sequence, the sequence (āic̄)i<α

is strongly E-indiscernible. The above proposition implies that

Lstp(ā/E ∪ c̄) = Lstp(b̄/E ∪ c̄) ⇒ Lstp(āc̄/E) = Lstp(b̄c̄/E).

Definition 2.14. We say that f ∈ Aut(M/A) is a strong automorphism

over A if Lstp(ā/A) = Lstp(f(ā)/A) for each tuple ā.

We define Saut(M/A) to be the group of strong automorphisms fixing A
pointwise. The group Saut(M/A) is a normal subgroup of the automorphism
group Aut(M/A).

Proposition 2.15. The following are equivalent for a bounded A.

(1) Lstp(ā/A) = Lstp(b̄/A).
(2) There is f ∈ Saut(M′/A) such that f(ā) = b̄.

Proof. By the definition of a strong automorphism, (2) implies (1). To
prove that (1) implies (2), we show that the equivalence relation defined
by (2) is A-invariant and has a bounded number of equivalence classes.
First, it is A-invariant due to the normality of the subgroup Saut(M/A)
of Aut(M/A). To prove that it is bounded, assume to the contrary that
(āi)i<H(H(|A|)) are distinct tuples. We remark that the cardinal H(H(|A|))
is bounded. Let A be a model of size H(|A|) such that A ⊂ A and each
Lascar strong type over A is represented in A . By Lemma 2.4 there are
i0 < i1 < H(H(|A|)) = H(|A |) such that (āi0 , āi1) is the beginning of a
strongly A -indiscernible sequence. Thus there is f ∈ Aut(M/A ) mapping
āi0 to āi1 . We show that this automorphism is actually strong over A , which
implies that āi0 and āi1 are equivalent. For this, let ā ∈ M be arbitrary.
There is ā′ ∈ A realizing Lstp(ā/A). Since Lstp is an A-invariant notion
and f(ā′) = ā′, we conclude that

Lstp(f(ā)/A) = Lstp(f(ā′)/A) = Lstp(ā′/A) = Lstp(ā/A).

The above equivalence implies that if Lstp(ā/A) = Lstp(b̄/A) and c̄ is an
arbitrary tuple, we can always find d̄ such that Lstp(ād̄/A) = Lstp(b̄c̄/A).

Lemma 2.16. Assume that A is an ℵ0-saturated model. Then the fol-

lowing are equivalent.

(1) tpw(ā/A ) Lascar-splits over finite E ⊂ A .

(2) There are tuples c̄, d̄ ∈ A such that Lstp(c̄/E) = Lstp(d̄/E) but

tpg(c̄/E ∪ ā) 6= tpg(d̄/E ∪ ā).

Proof. Item (1) implies (2) by the definition. We show that if (1) does
not hold, then neither does (2). For this, assume that tpw(ā/A ) does not
Lascar-split over E and c̄, d̄ are distinct tuples in A such that

Lstp(c̄/E) = Lstp(d̄/E).
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By Proposition 2.13 there are strongly E-indiscernible sequences Ik and
tuples (āk, āk+1) ∈ Ik for 0 ≤ k ≤ n such that ā0 = c̄ and ān+1 = d̄.
Since A is ℵ0-saturated, we may assume that each āk is in A . But now,
since tpw(ā/E) does not Lascar-split over E, we must have tpg(ā0/E ∪ ā) =
tpg(ā1/E ∪ ā) = · · · = tpg(ān/E ∪ ā) = tpg(ān+1/E ∪ ā).

We define that a model A is a-saturated if each Lascar strong type over
a finite subset of A is realized in A .

2.2. Restricted properties with simplicity and weak stability.

We introduce new properties called weak stability and simplicity. We say
that (K, 4K) is weakly stable in a cardinal λ if whenever |A| ≤ λ and (āi)i<λ+

are tuples, there are i < j < λ+ such that tpw(āi/A) = tpw(āj/A).

Definition 2.17. We say that (K, 4K) is weakly stable if there is a
cardinal λ such that (K, 4K) is weakly stable in λ.

Definition 2.18. We say that (K, 4K) is simple if ā ↓A A for each tuple
ā and finite set A.

In the ℵ0-stable case in [12] we defined simplicity as the assumption that
for any ā and arbitrary A there is a finite A′ ⊂ A such that ā ↓A′ A. Here
we call this property local character. With ℵ0-stability, the above notion of
simplicity is equivalent to local character (2).

In this section we collect those properties of the notion ↓ which we can
derive from these restricted versions of simplicity and stability. From now
on we will always assume that (K, 4K) is simple and weakly stable.

Weak stability and simplicity are needed to prove finite symmetry for ↓.
Then we will use simplicity and finite symmetry to prove several other prop-
erties.

Proposition 2.19. Assume that A is finite, ā ↓A b̄ and b̄ 8 A ā. Then

there are āi, b̄i for i < H such that b̄i ↓A āj if and only if i > j.

Proof. Let ā0 = ā and b̄0 = b̄. Define āi, b̄i by induction such that

(1) tpw(āa
i b̄i/A) = tpw(āab̄/A) for all i < H.

(2) tpw(āi/A ∪ b̄) = tpw(ā/A ∪ b̄) for all i < H.
(3) The pair (b̄, b̄i) is a beginning of a strongly A-indiscernible sequence

for each 0 < i < H.
(4) āa

i b̄i ↓A B for every finite B ⊂
⋃

j<i{āj , b̄j}.

Note that due to simplicity, item (4) holds also when i = 0. Assume we
have defined āi, b̄i for i < α. Since ā ↓A b̄, by extension we get āα such
that tpw(āα/A ∪ b̄) = tpw(ā/A ∪ b̄) and āα ↓A

⋃

i<α{āi, b̄i}. By simplicity,

(2) The equivalence follows from Corollaries 3.28 and 3.15. In the ℵ0-stable case we
always have the Tarski–Vaught property (Remark 3.10).
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b̄ ↓A∪āα A ∪ āα, and then by Proposition 2.10 we find b̄α such that (b̄, b̄α)
is a beginning of a strongly (A ∪ āα)-indiscernible sequence and b̄α ↓A∪āα
⋃

i<α A ∪ {āα} ∪ {āi, b̄i}. Now both (2) and (3) hold for i ≤ α.

Let f ∈ Aut(M/A∪ b̄) be such that f(ā) = āα, and g ∈ Aut(M/A∪ āα)

such that g(b̄) = b̄α. Now g ◦ f(āab̄) = g(āa
α b̄) = āa

α b̄α, and thus (1) holds.
Then let B ⊂

⋃

i<α{āi, b̄i} be finite. By monotonicity, we have āα ↓A B and

b̄α ↓A∪āα B, and by the finite pairs lemma we get āa
α b̄α ↓A B. Thus (4) also

holds.

Finally, we see that b̄i ↓A āj if and only if i > j. The case i = j follows
from (1) and the assumption. Also if i > j, from (4) it follows that b̄i ↓A āj . It
remains to study the case when i < j. Let 0 ≤ i < j. By item (4), tpw(āj/A∪
b̄∪ b̄i) does not Lascar-split over A. Since (b̄, b̄i) is a beginning of a strongly
A-indiscernible sequence, we must have tpw(b̄/A ∪ āj) = tpw(b̄i/A ∪ āj).
Furthermore by (2), b̄ 8 A āj , and hence b̄i 8 A āj .

Finally, we get symmetry as in the ℵ0-stable case, with a suitable linear
ordering contradicting weak stability.

Proposition 2.20 (Finite symmetry). Let A be finite. Then ā ↓A b̄ if

and only if b̄ ↓A ā.

Proof. Assume to the contrary that ā ↓A b̄ but b̄ 8 A ā for some ā, b̄ and
finite A. By the previous proposition, there is a sequence (āi, b̄i)i<H such
that b̄i ↓A āj if and only if i > j. Let λ be a cardinal such that (K, 4K) is
stable in λ. Then let I be a linear ordering such that |I| > λ, and there is a
dense set I0 ⊂ I of size λ.

By Lemma 2.4, there are (āi, b̄i)i∈I such that b̄i ↓A āj if and only if
i > j. But now there are |I|-many different types over the set (b̄i, āi)i∈I0 , a
contradiction.

We continue to prove other restricted properties of ↓.

Lemma 2.21. Let E be finite and c̄ ↓E āab̄. If Lstp(ā/E) = Lstp(b̄/E),
then tpw(ā/E ∪ {c̄}) = tpw(b̄/E ∪ {c̄}).

Proof. Let A be an ω-saturated model containing E ∪ {ā, b̄}. Let c̄′ be
such that tpw(c̄′/E ∪ {ā, b̄}) = tpw(c̄/E ∪ {ā, b̄}) and tpw(c̄′/A ) does not
Lascar-split over E. Let f ∈ Aut(M/E) be such that f(c̄′) = c̄. Hence,
tpw(c̄/f(A )) does not Lascar-split over E. Since f(A ) is an ω-saturated
model containing E ∪ {ā, b̄}, and Lstp(ā/E) = Lstp(b̄/E), we must have
tpw(ā/E ∪ {c̄}) = tpw(b̄/E ∪ {c̄}) by Proposition 2.16.

Lemma 2.22. Assume that E is finite. If ā ↓E c̄, b̄ ↓E c̄ and Lstp(ā/E) =
Lstp(b̄/E), then tpw(ā/E ∪ {c̄}) = tpw(b̄/E ∪ {c̄}).
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Proof. Since ā ↓E c̄, from Corollary 2.12 we get some ā′ such that

Lstp(ā′/E ∪ {c̄}) = Lstp(ā/E ∪ {c̄})

and ā′ ↓E {b̄, c̄}. By the finite pairs lemma (Proposition 2.8) since b̄ ↓E c̄,
we must have (ā′)ab̄ ↓E c̄. Then, by symmetry we have c̄ ↓E {b̄, ā′}. But
Lstp(ā′/E) = Lstp(ā/E) = Lstp(b̄/E), so tpw(ā′/E∪{c̄}) = tpw(b̄/E∪{c̄})
by the previous lemma. By the choice of ā′,

tpw(ā/E ∪ {c̄}) = tpw(b̄/E ∪ {c̄}).

Proposition 2.23 (Restricted finite character). Let E be a finite set. If

ā 8 E B, then there is a finite b̄ ∈ B such that ā 8 E b̄.

Proof. By simplicity, ā ↓E E. From Corollary 2.12 we get ā′ such that
Lstp(ā′/E) = Lstp(ā/E) and ā′ ↓E B. Now we cannot have tpw(ā′/E∪B) =
tpw(ā/E∪B), and thus there is some finite b̄ ∈ B such that tpw(ā′/E∪{b̄}) 6=
tpw(ā/E ∪ {b̄}). By monotonicity, ā′ ↓E b̄. Thus ā 8 E b̄ by Lemma 2.22.

As a corollary we get the following.

Lemma 2.24 (Pairs Lemma). Let A ⊂ B. Assume that ā ↓A B and

b̄ ↓A∪{ā} B ∪ {ā}. Then āab̄ ↓A B.

Proof. By Proposition 2.6(3), there is a finite A′ ⊂ A such that ā ↓A′ B
and b̄ ↓A′∪{ā} B ∪ {ā}. We need to show that āab̄ ↓A′ B. But by the finite

pairs lemma, āab̄ ↓A′ B′ for each finite B′ ⊂ B, and thus the claim follows
from restricted finite character.

Also the following proposition is clear by symmetry, monotonicity and
restricted finite character.

Proposition 2.25 (Left transitivity). Assume that A, B are finite and

ā ∪ B ↓A C. Then ā ↓A∪B C.

Proposition 2.26 (Transitivity). Let A ⊂ B ⊂ C. If ā ↓A B and

ā ↓B C, then ā ↓A C.

Proof. By Proposition 2.6(3), there are finite A′ ⊂ A and finite B′ ⊂ B
such that ā ↓A′ B and ā ↓A′∪B′ C. It is enough to show that ā ↓A′ C. By
Proposition 2.23, it is enough to show that ā ↓A′ c̄ for each finite c̄ ∈ C,
and by finite symmetry, it is enough to show that c̄ ↓A′ ā for each finite
c̄ ∈ C. Let c̄ ∈ C be finite. Write c̄ = b̄ac̄0, where b̄ ∈ B and c̄0 ∈ C \ B.
We may assume that b̄ contains B′. Then ā ↓A′ b̄ as well as ā ↓A∪{b̄} c̄0, and

furthermore b̄ ↓A′ ā and c̄0 ↓A∪{b̄} ā by symmetry. Hence, c̄ ↓A′ ā by the
pairs lemma. This completes the proof for transitivity.

Proposition 2.27 (Stationarity of Lascar strong types, version 1). Let

E be finite and assume that ā ↓E B, b̄ ↓E B and Lstp(ā/E) = Lstp(b̄/E).
Then tpw(ā/E ∪ B) = tpw(b̄/E ∪ B).



236 T. Hyttinen and M. Kesälä

Proof. Otherwise, there is a finite c̄ ∈ B such that tpw(ā/E ∪ c̄) 6=
tpw(b̄/E ∪ c̄), which contradicts Lemma 2.22.

Proposition 2.28. Let A⊂B with B finite, and assume that Lstp(ā/A)
= Lstp(b̄/A), ā ↓A B and b̄ ↓A B. Then Lstp(ā/B) = Lstp(b̄/B).

Proof. By Proposition 2.12 there is c̄ realizing Lstp(ā/B) such that

c̄ ↓A B ∪ ā ∪ b̄.

By monotonicity and symmetry, ā ↓B c̄, and then by transitivity, ā ↓A B∪ c̄.
Similarly, b̄ ↓A B∪ c̄. Now by Proposition 2.27, tpw(ā/B∪ c̄) = tpw(b̄/B∪ c̄).
Since B ∪ c̄ is finite, there is f ∈ Aut(M/B ∪ c̄) mapping ā to b̄. Now
Lstp(ā/B) = Lstp(c̄/B) implies Lstp(f(ā)/B) = Lstp(f(c̄)/B), and thus
Lstp(ā/B) = Lstp(c̄/B) = Lstp(b̄/B).

Definition 2.29. We say that ā and b̄ have the same weak Lascar strong

type over A, written Lstpw(ā/A) = Lstpw(b̄/A), if Lstp(ā/B) = Lstp(b̄/B)
for every finite B ⊂ A.

From the above proposition and monotonicity we get the following.

Proposition 2.30 (Stationarity of Lascar strong types, version 2). Let

E be finite and assume that ā ↓E B, b̄ ↓E B and Lstp(ā/E) = Lstp(b̄/E).
Then Lstpw(ā/E ∪ B) = Lstpw(b̄/E ∪ B).

We state a lemma about building Morley-type indiscernible sequences.

Lemma 2.31. Assume that A is finite and ā a tuple. For any ordinal λ
there exists a strongly A-indiscernible sequence (āi)i<λ such that ā0 = ā and

āi ↓A

⋃

j<i

āj for each i < λ.

Proof. By strong indiscernibility and finite character it is enough to find
a sequence for λ = ω.

Again if tpw(ā/A) is bounded, we can take the trivial sequence by Lemma
2.9(1). Assume that tpw(ā/A) is unbounded. Using simplicity and extension
we define (b̄i)i<H such that each b̄i realizes tpg(ā/A) and

b̄i ↓A

⋃

j<i

b̄j for each i < H.

By Lemma 2.9(2) these b̄i are distinct and we can use Proposition 2.4 to find
strongly A-indiscernible sequence (āi)i<ω such that for each n < ω there are
i0 < · · · < in < H such that

tpg(ā0, . . . , ān/A) = tpg(b̄i0 , . . . , b̄in/A).

Hence ān ↓A

⋃

i<n āi for each n < ω. Also ā0 realizes tpg(ā/A) and thus
there is an automorphism f ∈ Aut(M/A) mapping ā0 to ā. We may assume
that ā0 = ā.
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3. SUPERSTABILITY

We would like to find a notion of superstability which would imply all
the usual properties of non-forking for ↓, especially local character. We will
suggest notions of superstability and weak superstability, and discuss the
relation between them. We will also assume simplicity and weak stability in
at least one cardinal, as we did in the previous section. Note that our notion
of superstability uses the fact that LS(K) = ℵ0. We also need simplicity to
show that ℵ0-stability implies superstability (see Corollary 3.28).

Definition 3.1. We say that the class (K, 4K) is superstable if it is
weakly stable and the following holds. Let (An)n<ω be an increasing sequence
of finite sets such that

⋃

n<ω An is a model, and let ā be a tuple. Then there
is n < ω such that ā ↓An An+1.

Definition 3.2. We say that the class (K, 4K) is weakly superstable

if there is a cardinal λ such that (K, 4K) is weakly stable in all cardinals
above λ.

Lemma 3.3 (Local character for models). Assume that a simple finitary

(K, 4K) is superstable. Let A be a model and ā a tuple. Then there is a

finite A ⊂ A such that ā ↓A A .

Proof. Let ā and A witness the contrary.
We recall the so called presentation theorem for abstract elementary

classes with LS(K) = ℵ0. This is the main tool in general abstract elementary
classes introduced by Shelah. There is a vocabulary τ∗ with n-ary function
symbols F k

n for k, n < ω such that for each model B in K there is a τ∗-
structure B∗ such that B∗↾τ = B and whenever a subset B ⊂ B∗ is closed
under the functions (Fn

k )B∗

, then B 4K B. Let A ∗ ∈ K∗ be such that
A ∗↾τ = A . Define increasing and finite sets An ⊂ A , n < ω, such that

(1) (F k
m)A ∗

([An]m) ⊂ An+1 for k, m ≤ n,
(2) ā 8 An An+1 for all n < ω.

We can take A0 = ∅. Assume we have defined Ak for k ≤ n. By assumption,
ā 8 An A , and by Proposition 2.23 there is a finite A′

n+1 ⊂ A such that
ā 8 An A′

n+1. We take

An+1 = A′
n+1 ∪ {(F k

m)A ∗

([An]m) : k, m ≤ n}.

Then ā 8 An An+1 by monotonicity.
Finally,

⋃

n<ω An is closed under the functions (F k
m)A ∗

for m, k < ω, and
thus is a model. We get a contradiction with superstability.

Corollary 3.4. Assume that a simple finitary (K, 4K) is superstable.

Then it is also weakly superstable. Furthermore, let L(K) be a cardinal such

that there are at most L(K)-many Lascar strong types over any finite set.
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For any κ ≥ L(K), there are at most κ-many weak Lascar strong types over

a set of size κ.

Proof. Assume that (K, 4K) is superstable. Let L(K) be the cardinal
as above. (By the argument at the beginning of Section 3.4 we know that
L(K) < H.) We show the latter claim and thus (K, 4K) is weakly stable in
each κ ≥ L(K).

Let (āi)i<κ+ be finite tuples and A a model such that |A | = κ ≥ L(K).
It is enough to find i < j < κ+ such that Lstpw(āi/A ) = Lstpw(āj/A ). By
local character for models, there are finite Ei ⊂ A such that

āi ↓Ei
A for each i < κ+.

Since there are only κ-many finite subsets of A , we can find a subsequence
(āik)k<κ+ such that Eik = E for some fixed finite E ⊂ A for all k < κ+.
There are only L(K)-many different Lascar strong types over E, and thus
there are k, k′ < κ+ such that Lstp(āik/E) = Lstp(āik′

/E). But now by
stationarity of Lascar strong types, Lstpw(āik/A ) = Lstpw(āik′

/A ).

We collect here the properties of ↓ that we gain from simplicity and
superstability. Since we only have local character for models, these properties
are still incomplete: we only have the independence calculus for models and
finite sets. We will gain local character and the full independence calculus for

all sets in Theorem 3.13, where we also assume the Tarski–Vaught property.

Theorem 3.5. Assume that (K, 4K) is a simple, superstable, finitary

AEC. Then the relation ↓ has the following properties.

(1) Invariance: If A ↓C B, then f(A) ↓f(C) f(B) for any f ∈ Aut(M).
(2) Monotonicity: If A ↓B D and B ⊂ C ⊂ D then A ↓C D and

A ↓B C.

(3) Local character for models: For any finite ā and any B there exists

a finite E ⊂ B such that ā ↓E B.

(4) Transitivity: Let B ⊂ C ⊂ D. If A ↓B C and A ↓C D, then

A ↓B D.

(5) Restricted finite character: Assume that C is finite. A ↓C B if and

only if ā ↓C b̄ for every finite ā ∈ A and b̄ ∈ B.

(6) Finite character for models: Assume that C is a model. A ↓C B if

and only if ā ↓C b̄ for every finite ā ∈ A and b̄ ∈ B.

(7) Reflexivity for finite sets: Assume that C is finite and tpw(ā/C) is

not bounded. Then ā 8 C ā.
(8) Reflexivity for models: Assume that C is a model and tpw(ā/C ) is

not bounded. Then ā 8 C ā.
(9) Stationarity: If Lstpw(ā/C) = Lstpw(b̄/C), ā ↓C B and b̄ ↓C B,

then Lstpw(ā/B ∪ C) = Lstpw(b̄/B ∪ C).
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(10) Extension for finite sets: For any finite C, ā and any B contain-

ing C, there is b̄ such that Lstp(b̄/C) = Lstp(ā/C) and b̄ ↓C B.

(11) Extension for models: For any ā, C a model and B containing C ,
there is b̄ such that Lstpw(b̄/C ) = Lstpw(ā/C ) and b̄ ↓C B.

(12) Restricted symmetry: Assume that C is finite. A ↓C B if and only

if B ↓C A.

(13) Symmetry over models: Assume that C is a model. A ↓C B if and

only if B ↓C A.

Proof. Items (1) and (2) were studied in Proposition 2.6, and local char-
acter for models was proved in Lemma 3.3. Transitivity was stated in Propo-
sition 2.26 and restricted finite character in Proposition 2.23. The other
direction of finite character for models follows from monotonicity. Assume
that C is a model and that A 8 C B. By definition, there is ā ∈ A such that
ā 8 C B. By local character for models, we can choose finite E ⊂ C such
that ā ↓E C . Let b̄ ∈ C ∪ B be finite. We have E ⊂ C ⊂ C ∪ {b̄}, ā ↓E C

and ā ↓C b̄. Hence ā ↓E b̄ by transitivity. Since b̄ was arbitrary, we have
ā ↓E C ∪B by restricted finite character, a contradiction. This proves finite
character for models.

Reflexivity for finite sets is Lemma 2.9(b). For models, assume the con-
trary. Let tpw(ā/C ) be unbounded such that C is a model and ā ↓C ā. By
local character for models there is a finite E ⊂ C such that ā ↓E C . By
transitivity and monotonicity, ā ↓E ā. Since the type tpw(ā/E) cannot be
bounded, we get a contradiction with (7).

Stationarity follows from Proposition 2.30. Extension for finite sets is
Corollary 2.12 with simplicity. We prove extension over models. By local
character for models, there is a finite E ⊂ C such that ā ↓E C . Then by
extension for finite sets there is b̄ realizing Lstp(ā/E) such that b̄ ↓E D. But
now by stationarity, b̄ also realizes Lstpw(ā/C ). Finite symmetry follows
from Proposition 2.20 and restricted finite character. To prove symmetry
over models, it is enough to prove that ā ↓C b̄ implies b̄ ↓C ā for each
ā ∈ A and b̄ ∈ B. Then symmetry over models follows by finite character for
models. Assume that ā ↓C b̄. By local character for models, there is a finite
E ⊂ C such that ā ↓E C and b̄ ↓E C . Then also ā ↓E C ∪ b̄ by transitivity.
Let c̄ ∈ C be an arbitrary finite tuple. We get c̄ ↓E b̄ by symmetry and since
ā ↓E {c̄, b̄}, the pairs lemma implies that c̄aā ↓E b̄. Hence by symmetry
again, we have b̄ ↓E {ā, c̄} for each finite c̄ ∈ C . This implies b̄ ↓E C ∪ {ā}
by restricted finite character, and thus b̄ ↓C ā.

We recall the following lemma from [11]. The proof uses finite character
of (K, 4K), and this is the first place in this paper where we really use it.
Without finite character we should assume that each An is a model. This
lemma is needed in several places where we deal with models built from finite
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sets, in particular in the tree constructions in Lemma 3.7 and Proposition
3.26, and in the essential Proposition 3.11, which we use to build primary
models.

Lemma 3.6. Assume that (K, 4K) is a finitary AEC. Let (An : n < ω)
be an increasing sequence of sets such that

⋃

n<ω An is a model in K. Let

(b̄n)n<ω be a sequence of finite tuples of the same length such that

tpg(b̄m/An) = tpg(b̄n/An) for each n < m < ω.

Then there exists a tuple ā such that

tpg(ā/An) = tpg(b̄n/An) for each n < ω.

We give a sufficient condition for (K, 4K) being superstable. We will also
see in Theorem 3.38 that this condition is implied by a very weak version of
categoricity. Finite character is needed here, since we work with finite sets,
not models.

Lemma 3.7. Let (K, 4K) be a simple finitary AEC. Assume that there

are infinite cardinals κ and λ such that κℵ0 ≤ λ, λℵ0 > λ, (K, 4K) is weakly

stable in λ and the following holds for κ. For all ā and finite A there is a

strongly indiscernible sequence (āi)i<κ such that for any b̄ the set {i < κ :
b̄ 8 A āi} has size strictly smaller than κ. Then (K, 4K) is superstable.

Proof. Assume to the contrary that An are increasing and finite,
⋃

n<ω An

is a model and ā 8 An An+1 for each n < ω.

We define sets Ak
η↾n and tuples āη↾n for all η : ω → λ and n ≤ k < ω

such that

(1) Ak
η↾n ⊂ Ak+1

η↾n are finite and the type tpw(Ak+1
η↾n /Ak

η↾n) is unbounded,

(2) āη↾0 = ā and Ak
η↾0 = Ak for all k < ω,

(3) tpg(āη↾n+1/A
n
η↾n) = tpg(āη↾n/An

η↾n) and āη↾n+1 8 Ak
η↾n+1

Ak+1
η↾n+1,

(4) An
η↾n+1 = An

η↾n and the sequence (An+1
η↾n+1)η(n)<λ is strongly An

η↾n-
indiscernible,

(5) for all b̄, we have |{η(n) < λ : b̄ 8 An
η↾n

An+1
η↾n+1}| < κ.

First define āη↾0 and Ak
η↾0 as in (2). Assume we have defined āη↾m and Ak

η↾m

for all η : ω → λ and m ≤ k < ω for m ≤ n. Let (b̄i)i<κ be the An
η↾n-

indiscernible sequence implied by the assumption, such that b̄0 = An+1
η↾n . We

can stretch this sequence to (b̄i)i<λ, and still, for any b̄, the set

{i < λ : b̄ 8 An
η↾n

b̄i}

is of size strictly less than κ. There is an automorphism fn
i ∈ Aut(M/An

η↾n)

mapping An+1
η↾n to b̄i for each i < λ, and we can take fn

0 = IdM. When
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η(n) = i, we define

An
η↾n+1 = An

η↾n,

Ak
η↾n+1 = fn

i (Ak
η↾n) for each n < k < ω,

āη↾n+1 = fn
i (āη↾n).

This completes the construction.

For η : ω → λ and n < ω, write gn
η = fn

η(n) ◦ · · · ◦ f1
η(1) ◦ f0

η(0) ∈ Aut(M),

where the automorphisms fn
i are as in the previous construction. Always

gn+1
η ↾An = gn

η ↾An. By finite character of (K, 4K), the set
⋃

n<ω

An
η↾n =

⋃

n<ω

gn
η (An)

is a model. Using Lemma 3.6 and (3), we find āη for each η : ω → λ such
that

tpg(āη/A
n
η↾n) = tpg(āη↾n/An

η↾n) for each n < ω.

We look at the types of the tuples āη over the set

B =
⋃

η:ω→λ, n,k<ω

Ak
η↾n,

which has size λ. First we claim that for a fixed η : ω → λ, there are fewer
than κℵ0-many āη′ realizing tpw(āη/B).

We prove the claim by pruning the tree of η′’s at one level n < ω at a
time leaving out all the branches η′ such that āη′ cannot realize tpw(āη/B)
for a simple reason. We leave at most κn branches at each level n, and the
final tree will be of size at most κℵ0 . At level 0 there is only one branch η↾0.
Assume that at level n < ω there remain at most κn branches η′↾n : n → λ.
Let η′↾n be one such branch with possible extensions η′(n) < λ. If āη realizes
tpw(āη′↾n+1/A

n+1
η′↾n+1), we must have āη 8 An

η′↾n+1
An+1

η′↾n+1 by (3). But by (5),

this can only happen for at most κ-many η′(n) < λ. We leave only those
extensions to the tree. We do the pruning for each branch η′↾n of the tree
and are left with at most κn+1-many branches η′↾n + 1 at level n + 1. This
proves the claim.

Let us partition the tuples āη into equivalence classes according to their
weak types over the set B. Now by λ-stability, there are at most λ-many
classes, and by the previous claim, each class is of size at most κℵ0 . This is
a contradiction, since the number of tuples is λℵ0 > λ × κℵ0 .

3.1. Tarski–Vaught property. In [12] we used finite character and
ℵ0-stability to construct models. These properties imply that whenever a
set A has the property that each Galois type over each finite subset of A
is satisfied in A, then A is actually a model. Since in this case there are



242 T. Hyttinen and M. Kesälä

only countably many Galois types over each finite set, we had a useful tool
for extending an arbitrary set A to a model of size |A| + ℵ0. Here we need
a similar property. The finite character property generalizes the idea that
4K would be induced by a language with finitely many free variables in
each formula. Respectively the Tarski–Vaught property can be seen as a
generalization of the “countable” Tarski–Vaught criterion for elementary
classes: To check whether a set is an elementary submodel, it is enough to
see that it is existentially closed with respect to all formulas in the countable
language. We use sets of Galois types over the empty set to generalize the
notion of a formula in a language.

Definition 3.8. We define an abstract n-formula φ to be a set of Galois
types tpg(ā/∅) of n-tuples ā over the empty set. For an n-tuple b̄ ∈ B, write
B |= φ(b̄) if tpg(b̄/∅, B) ∈ φ.

Assumption 3.9 (Tarski–Vaught property). Let S be a set of abstract
formulas. We say that a set A ⊂ M is S-saturated if the following holds. For
any finite ā ∈ A, b̄ ∈ M and φ ∈ S, if M |= φ(āb̄), then there is d̄ ∈ A such
that M |= φ(ād̄).

We define the Tarski–Vaught property to be the following: There is
a countable set S of abstract formulas such that any S-saturated subset
A ⊂ M is a K-elementary submodel of M.

Remark 3.10. Assume that (K, 4K) is an ℵ0-stable finitary AEC. Then
it has the Tarski–Vaught property.

Proof. We can take as S the set of all singletons of Galois types over the
empty set. By ℵ0-stability, there are only countably many of them. By finite
character, any ℵ0-saturated subset is a model (Lemma 3.8 of [11]).

The following useful proposition uses finite character of (K, 4K) in the
form of Lemma 3.6.

Proposition 3.11. Assume that a finitary (K, 4K) is simple, super-

stable and has the Tarski–Vaught property. Let (Ai)i<ω be finite and increas-

ing and let (āi)i<ω be tuples such that for i < j, Lstp(āj/Ai) = Lstp(āi/Ai).
Then there is some i < ω such that āi+1 ↓Ai

Ai+1.

Proof. We define tuples b̄i and finite increasing sets Bi as follows:

(1) Bi = Ai ∪
⋃

j<i b̄j for each i < ω.

(2) b̄i ↓Bi
(
⋃

j<ω āj ∪
⋃

j<ω Aj) for each i < ω.

(3) B =
⋃

i<ω Bi satisfies the following: For each finite b̄ ∈ B, d̄ ∈ M

and φ ∈ S such that M |= φ(b̄d̄) there is c̄ ∈ B such that M |= φ(b̄c̄).

When we have defined Bn, let (c̄n
j )j<ω be tuples such that whenever there

exists a tuple c̄ such that M |= φ(b̄, c̄) for some φ ∈ S and finite b̄ ∈ Bn,
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then one such c̄ is listed as c̄n
j for some j < ω. Then let d̄n contain c̄n′

j for

every j, n′ ≤ n. If each tpg(d̄n/Bn) is realized in B, then clearly (3) holds.
First let B0 = A0. Assume we have defined Bn and b̄i for each i < n.

Since d̄n ↓Bn Bn by simplicity, we can use extension to get b̄n such that
tpg(b̄n/Bn) = tpg(d̄n/Bn) and (2) holds for n. Then let Bn+1 = An∪

⋃

i<n b̄i.
This completes the construction.

We claim that when i, j ≥ n,

āi ↓Aj
Bn.

We prove the claim by induction on n and for all i, j ≥ n simultaneously.
By simplicity, āi ↓Aj

Aj for each i, j ≥ n. Since B0 ⊂ Aj for each j, this
implies the claim for n = 0. Assume we have shown the claim for n and
let i, j ≥ n + 1. By (2), b̄n ↓Bn āi ∪ Aj , and thus by monotonicity and
finite symmetry, āi ↓Bn∪Aj

b̄n. Induction and finite transitivity imply that
āi ↓Aj

Bn ∪ b̄n. Since Bn+1 = Bn ∪ b̄n ∪An+1 ⊂ Bn ∪ b̄n ∪Aj , this gives the
claim.

Now we have Lstp(āj/An) = Lstp(ān/An), ān ↓An Bn and āj ↓An Bn for
each n < j < ω, and thus by stationarity,

tpg(āj/Bn) = tpg(ān/Bn) for each n < j < ω.

Since B =
⋃

n<ω Bn is a model by (3), we can use Lemma 3.6 to get a tuple
ā such that

tpg(ā/Bn) = tpg(ān/Bn) for each n < ω.

Since B is a model, by superstability there is n < ω such that ā ↓Bn Bn+1,
and furthermore by invariance, ān+1 ↓Bn Bn+1. By the previous claim,
ān+1 ↓An Bn, and thus by finite transitivity, ān+1 ↓An Bn+1. Since An+1 ⊂
Bn+1, this ān+1 is the one required for the proposition.

We can easily derive the following corollary, using the restricted finite
character property of ↓.

Corollary 3.12 (Local character). Let (K, 4K) be a simple, super-

stable, finitary AEC with the Tarski–Vaught property. Assume that ā is a

tuple and A is an arbitrary set. Then there is a finite E ⊂ A such that

ā ↓E A.

Finally, we get the usual properties of non-forking for complete types
over arbitrary sets. The proof of the following is analogous to the proof of
Theorem 3.5.

Theorem 3.13. Assume that (K, 4K) is a simple, superstable, finitary

AEC with the Tarski–Vaught property. Then the relation ↓ has the following

properties.

(1) Invariance: If A ↓C B, then f(A) ↓f(C) f(B) for any f ∈ Aut(M).
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(2) Monotonicity: If A ↓B D and B ⊂ C ⊂ D then A ↓C D and A ↓B C.

(3) Local character: For any finite ā and any B there exists a finite

E ⊂ B such that ā ↓E B.

(4) Transitivity: Let B ⊂ C ⊂ D. If A ↓B C and A ↓C D, then A ↓B D.

(5) Finite character: A ↓C B if and only if ā ↓C b̄ for every finite ā ∈ A
and b̄ ∈ B.

(6) Reflexivity: If tpw(ā/A) is not bounded , then ā 8 A ā.
(7) Stationarity: If Lstpw(ā/C) = Lstpw(b̄/C), ā ↓C B and b̄ ↓C B,

then Lstpw(ā/B ∪ C) = Lstpw(ā/B ∪ C).
(8) Extension: For any ā, C and B containing C there is b̄ such that

Lstpw(b̄/C) = Lstpw(ā/C) and b̄ ↓C B.

(9) Symmetry: A ↓C B if and only if B ↓C A.

3.2. Weak Lascar strong type and superstability. In this section
we study the behaviour of weak Lascar strong types in superstable simple
finitary AECs. First we study when so called abstract weak Lascar strong

types are realized. We say that p is an abstract weak Lascar strong type
over A if p is a collection

p = {Lstp(āB/B) : B ⊂ A finite},

where B ⊂ B′ ⊂ A implies Lstp(āB′/B) = Lstp(āB/B). For finite B ⊂ A,
the type Lstp(āB/B) ∈ p may also be denoted as p↾B. We say that p is
realized by ā if Lstp(ā/B) ∈ p for all finite B ⊂ A. We will show that
abstract weak Lascar strong types over models are realized in superstable
simple finitary classes, and if in addition the class has the Tarski–Vaught
property, then all abstract weak Lascar strong types are realized. For these
proofs we need versions of local character for abstract types. When p is an
abstract weak Lascar strong type over A, we say that p is independent of A
over E, written

p ↓E A,

if aB ↓E B for all finite B ⊂ A such that E ⊂ B and Lstp(āB/B) ∈ p.

Lemma 3.14. Assume that (K, 4K) is a simple, superstable finitary AEC.

Let A be a model and p an abstract weak Lascar strong type over A. Then

there is a finite E ⊂ A such that p ↓E A .

Proof. Let A and p witness the contrary. The proof is analogous to the
proof of Lemma 3.3. Let again F k

n for k, n < ω be function symbols from
the presentation theorem and A ∗ be the extension of A . Define increasing
and finite sets An ⊂ A and tuples ān for n < ω such that

(1) Lstp(ān/An) ∈ p for each n < ω,
(2) (F k

m)A ∗

(An) ⊂ An+1 for k, m ≤ n,
(3) ān+1 8 An An+1 for each n < ω.
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We can take A0 = ∅ and ā0 realizing p↾∅. Assume we have defined Ak for
k ≤ n. By assumption, p 8 An A , and thus there is some finite A′

n+1 ⊂ A

such that An ⊂ A′
n+1 and (p↾A′

n+1) 8 An An+1. Let

An+1 = A′
n+1 ∪ {(F k

m)A ∗

(An) : k, m ≤ n}

and ān+1 be a tuple realizing p↾An+1. Since ān+1 also realizes p↾A′
n+1, we

have ān+1 8 An A′
n+1, and thus (3) holds by monotonicity.

Finally,
⋃

n<ω An is closed under the functions (F k
m)A ∗

for m, k < ω, and
thus is a model. We can use Lemma 3.6 to find ā realizing tpg(ān/An) for
each n < ω. Now ā and (An)n<ω contradict superstability.

Assuming the Tarski–Vaught property we can prove a stronger lemma.
The proof is analogous to the previous one. We do not need the functions
F k

m to contradict superstability, but obtain a contradiction with Proposition
3.11 instead.

Lemma 3.15. Assume that (K, 4K) is a simple, superstable finitary AEC

with the Tarski–Vaught property. Let p be an abstract weak Lascar strong type

over a set A. Then there is a finite E ⊂ A such that p ↓E A.

Now we can use extension to prove the following theorem.

Theorem 3.16. Assume that (K, 4K) is a superstable, simple, finitary

AEC. Then each abstract weak Lascar strong type over a model is realized. If

in addition (K, 4K) has the Tarski–Vaught property , then all abstract weak

Lascar strong types are realized.

Proof. We prove the first claim. Then it is clear how to prove the second
claim using Lemma 3.15. Let p be an abstract weak Lascar strong type over
a model A . By Lemma 3.14, there is a finite E ⊂ A such that p ↓E A . Let
b̄ realize p↾E. By simplicity, b̄ ↓E E, and thus by Corollary 2.12, there is ā
realizing Lstp(b̄/E) such that ā ↓E A . This ā realizes p by stationarity.

Another consequence of superstability and the Tarski–Vaught property
is that weak Lascar strong type is a stronger notion than Galois type over
all countable sets. The proof of this theorem is a similar construction to the
one in the ℵ0-stable case, when we proved that equivalent Galois types imply
equivalent weak types over countable models (see [11]). Again we introduce
a notion of an isolated type.

Definition 3.17. We say that the Lascar weak strong type Lstpw(āc̄/A)
is isolated over the pair (c̄, E), for some finite E ⊂ A, if for every b̄ such
that Lstp(b̄c̄/E) = Lstp(āc̄/E) we have Lstpw(b̄c̄/A) = Lstpw(āc̄/A).

We remark that Lstp(b̄c̄/E) = Lstp(āc̄/E) does not necessarily imply
that Lstp(b̄/E ∪ c̄) = Lstp(ā/E ∪ c̄), although the converse holds. Hence the
previous notion of isolation is needed for the proof of Theorem 3.19.
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Proposition 3.18. Let (K, 4K) be a superstable simple finitary AEC

with the Tarski–Vaught property. For every set A, finite B ⊂ A and tuples

b̄, c̄, there is ā and a finite E ⊂ A such that āc̄ realizes Lstp(b̄c̄/B) and

Lstpw(āc̄/A) is isolated over the pair (c̄, A).

Proof. Let B, A, b̄ and c̄ witness the contrary. We define finite and
increasing sets An ⊂ A and tuples ān for n < ω such that

(1) b̄ = ā0 and B ⊂ A0,
(2) Lstp(ān+1c̄/An) = Lstp(ānc̄/An),
(3) ān+1c̄ 8 An An+1,
(4) c̄ ↓A0

A.

This will contradict Proposition 3.11. The construction runs as follows. First,
by local character, there is a finite E′ ⊂ A such that c̄ ↓E′ A. We take ā0 = b̄
and A0 = E′ ∪ B. Assume we have defined Am and ām for m ≤ n.

By Theorem 3.13(7) there is d̄ realizing Lstp(ān/An ∪ c̄) with d̄ ↓An∪c̄ A.
Then d̄c̄ realizes Lstp(ānc̄/An). Since Lstpw(d̄c̄/A) cannot be isolated over
the pair (c̄, An), there is ān+1 such that Lstp(ān+1c̄/An) = Lstp(d̄c̄/An) =
Lstp(ānc̄/An) but Lstpw(ān+1c̄/A) 6= Lstpw(d̄c̄/A).

Now we cannot have ān+1c̄ ↓An A, since otherwise, as d̄ ↓An∪c̄ A and
c̄ ↓An A, the pairs lemma implies that d̄c̄ ↓An A. But then Lstpw(d̄c̄/A) =
Lstpw(ān+1c̄/A) by stationarity, a contradiction. Thus by finite character
there is a finite An+1 ⊂ A such that An ⊂ An+1 ān+1c̄ 8 An An+1. This
completes the construction.

Theorem 3.19. Assume that (K, 4K) is a simple, finitary superstable

AEC with the Tarski–Vaught property. Let A be a countable set. Then

Lstpw(ā/A) = Lstpw(b̄/A) implies that tpg(ā/A) = tpg(b̄/A).

Proof. Enumerate A = {cn : n < ω}. We define sequences ān and finite
An ⊂ A for each n < ω such that

(1) ā = ā0, ān is an initial segment of ān+1 and cn ∈ An ⊂ An+1 ⊂ A,
(2) Lstpw(ān+1ān/A) is isolated over the pair (ān, A),
(3) B = A ∪

⋃

n<ω ān is S-saturated for the countable set S of ab-
stract formulas from the Tarski–Vaught property: for all finite b̄ ∈ B,
d̄ ∈ M and φ ∈ S such that M |= φ(b̄d̄) there is c̄ ∈ B such that
M |= φ(b̄c̄).

We define simultaneously tuples (c̄n
j )j<ω and d̄n ∈ M.

First let ā0 = ā and A0 = {c0}. Assume we have defined Am, ām for
m ≤ n. Let (c̄n

j )j<ω be tuples such that whenever there exists a tuple c̄ such

that M |= φ(b̄, c̄) for some φ ∈ S and finite b̄ ∈ Bn, then one such c̄ is listed
as c̄n

j for some j < ω. Then let d̄n be finite such that c̄k
j ⊂ d̄n for all k, j ≤ n.
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By Proposition 3.18 there is ā′ and finite A′ ⊂ A such that

Lstp(ā′ān/An) = Lstp(d̄nān/An)

and Lstp(ā′ān/A) is isolated over the pair (ān, A′). Let An+1 = An∪A′∪cn+1

and ān+1 = ānā′.

This completes the first construction. Now clearly (1) and (2) hold. Also
(3) holds by the construction and the fact that having the same Lascar
strong type implies having the same Galois type. Thus

B = A ∪
⋃

n<ω

ān =
⋃

n<ω

An ∪
⋃

n<ω

ān

is a model.

Secondly, we construct, by induction on n < ω, tuples b̄n such that

(3.1) Lstpw(b̄n . . . b̄0/A) = Lstpw(ān . . . ā0/A).

First let b̄0 = b̄. Then (3.1) holds by assumption. Assume that we have
defined b̄m for m ≤ n. Let b̄n+1 be such that Lstp(b̄n+1b̄n . . . b̄0/An+1) =
Lstp(ān+1ān . . . ā0/An+1). We claim that (3.1) holds for b̄n+1. If not, there
is a finite B ⊂ A such that

Lstp(b̄n+1b̄n . . . b̄0/B) 6= Lstp(ān+1ān . . . ā0/B).

We may assume that An+1 ⊂ B. By induction,

Lstp(ān . . . ā0/B) = Lstp(b̄n . . . b̄0/B).

Let c̄ be such that

Lstp(c̄ān . . . ā0/B) = Lstp(b̄n+1b̄n . . . b̄0/B),

and hence also

Lstp(c̄ān . . . ā0/An+1) = Lstp(b̄n+1b̄n . . . b̄0/An+1)

= Lstp(ān+1ān . . . ā0/An+1).

But now by isolation, also

Lstp(c̄ān . . . ā0/B) = Lstp(ān+1ān . . . ā0/B),

and thus Lstp(b̄n+1b̄n . . . b̄0/B) = Lstp(ān+1ān . . . ā0/B), a contradiction.
Now the second construction is complete.

For each finite An ⊂ A, Lstp(b̄0 . . . b̄n/An) = Lstp(ā0 . . . ān/An) implies
that tpg(b̄0 . . . b̄n/An) = tpg(ā0 . . . ān/An). There are automorphisms fn, for
n < ω, witnessing this. By finite character of (K, 4K), the mapping

⋃

n<ω

fn↾(An ∪ ā0 . . . ān) : B → M

extends to an automorphism f ∈ Aut(M/A) such that f(ā)=f(ā0)= b̄0 = b̄.
This proves the theorem.
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We recall that (K, 4K) is said to be κ-tame if for every model A and
tuples b̄ and ā such that

tpg(ā/A ) 6= tpg(b̄/A ),

there is B 4K A of size ≤ κ such that

tpg(ā/B) 6= tpg(b̄/B).

We say that (K, 4K) is tame is it is LS(K)-tame. Assuming tameness we
can generalize the previous result to weak Lascar strong types over models
of arbitrary size.

Theorem 3.20. Assume that (K, 4K) is a tame, simple, superstable,
finitary AEC with the Tarski–Vaught property. If A is a model , then

Lstpw(ā/A ) = Lstpw(b̄/A ) implies that tpg(ā/A ) = tpg(b̄/A ).

Proof. Assume that A is a model and Lstpw(ā/A ) = Lstpw(b̄/A ). Then
also Lstpw(ā/B) = Lstpw(b̄/B) for all countable B 4K A . Theorem 3.19
implies that tpg(ā/B) = tpg(b̄/B) for all countable B 4K A . But now by
tameness, tpg(ā/A ) = tpg(b̄/A ).

Theorem 3.21. Assume that (K, 4K) is a tame, simple, superstable,
finitary AEC with the Tarski–Vaught property. If A is an a-saturated model ,
then the following are equivalent :

(1) Lstpw(ā/A ) = Lstpw(b̄/A ).
(2) tpg(ā/A ) = tpg(b̄/A ).
(3) tpw(ā/A ) = tpw(b̄/A ).

Proof. By the previous theorem, (1) implies (2). Clearly (2) implies (3).
It is enough to prove that equivalent weak types over A imply equivalent
weak Lascar strong types over A . Let A ⊂ A be finite. We want to show
that Lstp(ā/A) = Lstp(b̄/A). Since A is a-saturated, there is c̄ ∈ A realizing
Lstp(ā/A). Now since tpw(ā/A ) = tpw(b̄/A ), there is f ∈ Aut(M/A ∪ c̄)
such that f(ā) = b̄. Then by invariance Lstp(f(ā)/A) = Lstp(f(c̄)/A), and
thus Lstp(b̄/A) = Lstp(c̄/A) = Lstp(ā/A).

In Section 3.3 we show that ℵ0-stability implies superstability in simple
finitary classes. Since ℵ0-stability and finite character also imply the Tarski–
Vaught property, the above equivalence also holds in simple, tame ℵ0-stable
finitary classes. There all ℵ0-saturated models are moreover a-saturated, and
hence have countable a-saturated models. The implication of Theorem 3.19
does not need tameness, and thus holds in ℵ0-stable simple finitary classes.

By Corollary 3.4 and Theorem 3.21 we get the following.

Theorem 3.22. Assume that a simple, tame finitary (K, 4K) has the

Tarski–Vaught property and is superstable. Then it is Galois-stable in each
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cardinal µ ≥ L(K), where L(K) is the least upper bound for the number of

Lascar strong types over a finite set.

3.3. Characterization of superstability. In this section we study
how the concepts of superstability, weak superstability and ℵ0-stability are
related. We show that a nice behaviour of weak Lascar strong types im-
plies our notions of weak superstability and superstability being equivalent
(Corollary 3.27) and that simple ℵ0-stable finitary classes are superstable
(Corollary 3.28). We also characterize superstability with some equivalent
conditions in Theorem 3.29.

We define an auxiliary notion of dominating weak Lascar strong types.
We say that the class (K, 4K) has λ-dominating weak Lascar strong types if
for every model A of size ≤ λ and tuples ā and b̄, whenever Lstpw(ā/A ) =
Lstpw(b̄/A ), then tpg(ā/A ) = tpg(b̄/A ). We say that the class has domi-
nating weak Lascar strong types if it has λ-dominating weak Lascar strong
types for all λ. Tameness, Tarski–Vaught property and superstability imply
dominating weak Lascar strong types in a simple, finitary (K, 4K) by Theo-
rem 3.20. We will show that also weak superstability and dominating weak
Lascar strong types imply superstability.

Lemma 3.23. Assume that a simple finitary (K, 4K) has λ-dominating

weak Lascar strong types. Assume that ā ↓A B ∪ A, where B is a model ,
|B| ≤ λ and A is a finite set , not necessarily a subset of B. Assume also

that B ⊂ C, where C is a set. Then there is g ∈ Aut(M/A ∪ B) such that

g(ā) ↓A C.

Proof. By Corollary 2.12 there is b̄ realizing Lstp(ā/A) such that b̄ ↓A

A ∪ C. We write the finite set A as a sequence ā′. Now by stationar-
ity (Proposition 2.30), Lstpw(ā/B ∪ A) = Lstpw(b̄/B ∪ A), and further-
more Lstpw(āaā′/B) = Lstpw(b̄aā′/B). Then by λ-dominating weak Las-
car strong types, there is g ∈ Aut(M/B) such that g(āaā′) = b̄aā′. Hence
g(ā) ↓A A ∪ C and g ∈ Aut(A /B ∪ A).

Lemma 3.24. Assume that a simple, finitary , weakly stable (K, 4K) has

λ-dominating weak Lascar strong types. Let A ⊂ B, where A is finite and

B is a model of size ≤ λ, and let α be an ordinal. If ā ↓A B, then there is

a strongly B-indiscernible sequence (āi)i<α such that ā0 = ā and

āi ↓A B ∪
⋃

j<i

āj for each i < α.

Proof. If tpw(ā/A) is bounded, we can take the trivial sequence. Thus we
may assume that tpw(ā/A) is unbounded. Using Proposition 2.12 we define
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(b̄i)i<H(|B|) such that each b̄i realizes Lstp(ā/A) and

b̄i ↓A B ∪
⋃

j<i

b̄j for each i < H(|B|).

By stationarity of weak Lascar strong types, each b̄i realizes Lstpw(ā/B)
and by λ-dominating weak Lascar strong types, also tpg(ā/B).

For each i < H(|B|), the type tpw(b̄i/A) = tpw(ā/A) is unbounded, and
thus by Lemma 2.9(2) these b̄i are distinct. We can use Lemma 2.4 to find
strongly B-indiscernible sequence (āi)i<α such that for each n < ω and
j0 < · · · < jn < α there are i0 < · · · < in < H(|B|) such that

tpg(āj0 , . . . , ājn/B) = tpg(b̄i0 , . . . , b̄in/B).

Hence by finite character, āi ↓A B ∪
⋃

j<i āj for each n < ω.

Now ā0 realizes tpg(ā/B) and thus there is an automorphism f in
Aut(M/B) mapping ā0 to ā. We may assume that ā0 = ā.

In the following lemma we again use the finite character of (K, 4K).

Lemma 3.25. Assume that a simple finitary weakly stable (K, 4K) has λ-

dominating weak Lascar strong types. Let (Ak)k<ω be an increasing sequence

of finite sets such that
⋃

k<ω Ak is a model , A2∪ ā ↓A1
C and Ak+1 ↓Ak∪ā C

for k ≥ 2. Assume also that C is a model of size ≤ λ and C ⊂ D. Then

there is an increasing sequence (Bk)k<ω of finite sets and finite b̄ such that

(1) tpg(Bk ∪ b̄/A1 ∪ C ) = tpg(Ak ∪ ā/A1 ∪ C ),
(2) B2 ∪ b̄ ↓A1

D,
(3) Bk+1 ↓Bk∪b̄ D for k ≥ 2,
(4)

⋃

k<ω Bk is a model.

Proof. Since A2∪ ā ↓A1
C , by Lemma 3.23 there is g2 ∈ Aut(M/A1∪C )

such that g2(A2 ∪ ā) ↓A1
D. We let b̄ = g2(ā) and B2 = g2(A2). Since

A3 ↓A2∪ā C , by invariance also g2(A3) ↓B2∪b̄ C and again by Lemma 3.23,
there is g ∈ Aut(M/B2 ∪ b̄ ∪ C ) such that g(g2(A3)) ↓B2∪b̄ D. We let
g3 = g ◦ g2 and B3 = g3(A3).

Let k ≥ 3 and assume we have defined gk ∈ Aut(M/gk−1(Ak−1∪ ā)) such
that gk−1(ā) = b̄, gk↾(A1 ∪ C ) = Id(A1 ∪ C ) and gk(Ak) ↓gk−1(Ak−1∪ā) D.
We set Bk = gk(Ak).

Since Ak+1 ↓Ak∪ā C , also gk(Ak+1) ↓gk(Ak∪ā) C and thus by Lemma 3.23,
there is g ∈ Aut(M/gk(Ak ∪ ā)∪C ) such that g(gk(Ak+1)) ↓gk(Ak∪ā) D. We

let gk+1 = g ◦ gk. Now, if Bk+1 = gk+1(Ak+1), we have tpg(Bk ∪ b̄/A1 ∪ C )
= tpg(Ak ∪ ā/A1 ∪ C ) and Bk+1 ↓Bk∪b̄ D when k ≥ 2.

Finally, the mapping
⋃

k<ω gk↾Ak
:
⋃

k<ω Ak →
⋃

k<ω Bk preserves Galois
types of finite tuples, and thus by finite character of (K, 4K) it is a K-
embedding. We conclude that

⋃

k<ω Bk is a model.
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Proposition 3.26. Assume that (K, 4K) is a simple, finitary AEC. As-

sume also that (K, 4K) is stable in λ and has λ-dominating weak Lascar

strong types for some λ such that λℵ0 > λ. Let (Ak)k<ω be an increasing

sequence of finite sets such that
⋃

k<ω Ak is a model and let ā be a tuple.

Then there is k < ω such that ā ↓Ak
Ak+1.

Proof. Assume the contrary. Let (Ak)k<ω be an increasing sequence of
finite sets such that

⋃

k<ω Ak is a model and ā 8 Ak
Ak+1 for all k < ω.

For each mapping ξ : ω → λ and k, n < ω, we define finite Ak
ξ↾n, āξ↾n

and a set An such that

(1) An ⊂ An+1 and |An| ≤ λ for each n < ω,
(2) A0 = A0 is finite but An is a model for each 0 < n < ω,
(3)

⋃

ξ:n→λ An
ξ↾n ⊂ An,

(4) when ξ↾n = ξ′↾n and ξ′(n) < ξ(n),

tpg(āξ↾n+1/A
n+1
ξ′↾n+1) 6= tpg(āξ′↾n+1/A

n+1
ξ′↾n+1),

(5) for m < n < ω, tpg(āξ↾n/Am) = tpg(āξ↾m/Am).

Then by Lemma 3.6, for each ξ :ω→λ, we will gain āξ satisfying tpg(āξ↾n/An)
for each n < ω. By (4), these āξ will contradict λ-stability. We carry out the
construction maintaining the following three conditions.

(i) We have Ak
ξ↾n ⊂ Ak+1

ξ↾n for each k < ω and
⋃

k<ω Ak
ξ↾n is a model.

(ii) For each ξ : ω → λ and n < ω,

(a) ξ′↾n = ξ↾n and ξ′(n) < ξ(n) imply An+1
ξ↾n+1 ↓An

ξ↾n
An ∪ An+1

ξ′↾n+1,

(b) (An+1
ξ↾n+1)ξ(n)<λ is a strongly An-indiscernible sequence with

An+1
ξ↾n+1 = An+1

ξ↾n for ξ(n) = 0,

(c) for each n < ω, j < λ there is Fn+1
j ∈ Aut(M/An) such that

Fn+1
j (An+1

ξ↾n ) = An+1
ξ↾n+1 for ξ such that ξ(n) = j,

(d) the model An+1 is closed under the functions Fn+1
j and their

inverses for j < λ.

(iii) If k ≥ n, then Ak+1
ξ↾n ↓Ak

ξ↾n
∪āξ↾n

An, āξ↾n 8 Ak
ξ↾n

Ak+1
ξ↾n and

An+1
ξ↾n ∪ āξ↾n ↓An

ξ↾n
An.

First let Ak
ξ↾0 = Ak for each k < ω, āξ↾0 = ā and A0 = A0 = A0

ξ↾0. Then
(ii) holds trivially, and (i) and (iii) hold by simplicity, monotonicity and the
assumption. Also (1)–(5) hold trivially.

Assume we have defined everything for m ≤ n. Since An+1
ξ↾n ↓An

ξ↾n
An

by (iii), we can use (Proposition 2.31 or) Lemma 3.24 to find a strongly
An-indiscernible (An+1

ξ↾n+1)ξ(n)<λ such that An+1
ξ↾n+1 = An+1

ξ↾n for ξ(n) = 0 and
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(ii)(a) holds. Then define Fn+1
j and An+1 as desired, Fn+1

0 being the identity.

We require that An ∪
⋃

ξ:(n+1)→λ An+1
ξ↾n+1 ⊂ An+1, |An+1| ≤ λ and An+1 is

closed under each Fn+1
j and (Fn+1

j )(−1).

By (iii), we have An+2
ξ↾n ↓

An+1

ξ↾n
∪āξ↾n

An and An+1
ξ↾n ∪ āξ↾n ↓An

ξ↾n
An. The

pairs lemma and left transitivity imply that

An+2
ξ↾n ∪ āξ↾n ↓An+1

ξ↾n
An.

On the other hand, we have Ak+1
ξ↾n ↓Ak

ξ↾n
∪āξ↾n

An and āξ↾n 8 Ak
ξ↾n

Ak+1
ξ↾n for

each k ≥ n+1. By Lemma 3.25, there are b̄ and finite Bk for n+1 ≤ k < ω,
such that Bn+1 = An+1

ξ↾n and for each k ≥ n + 1,

(b1) Bk ∪ b̄ realizes tpg(Ak
ξ↾n ∪ āξ↾n/An+1

ξ↾n ∪ An) and thus b̄ 8 Bk
Bk+1,

(b2) Bn+2 ∪ b̄ ↓An+1

ξ↾n
An+1,

(b3) Bk+1 ↓Bk∪b̄ An+1 when k ≥ n + 2,
(b4) Bk ⊂ Bk+1 and

⋃

k<ω Bk is a model.

Since Bn+1 = An+1
ξ↾n , we have

Fn+1
ξ(n) (Bn+1) = An+1

ξ↾n+1.

For each ξ(n) < λ and n + 1 < k < ω, define

āξ↾n+1 = Fn+1
ξ(n) (b̄) and Ak

ξ↾n+1 = Fn+1
ξ(n) (Bk).

Since each Fn+1
j maps An+1 to itself, we see from (b1)–(b3) that (iii) holds

for n + 1. Also by (b4), (i) holds. We check that (1)–(5) hold. Items (1)–(3)
hold by the definition of An+1. Also (5) holds, since b̄ realizes tpg(āξ↾n/An)
and Fn+1

j ∈ Aut(M/An) for each j < λ. We claim that (4) holds.

Let ξ′↾n = ξ↾n and ξ′(n) < ξ(n). Since āξ↾n+1 ↓
An+1

ξ↾n+1

An+1 by (iii)

and An+1
ξ′↾n+1 ⊂ An+1, we find that āξ↾n+1 ↓An+1

ξ↾n+1

An+1
ξ′↾n+1. Furthermore,

An+1
ξ↾n+1 ↓An

ξ↾n
An+1

ξ′↾n+1 by (ii). The pairs lemma and monotonicity imply that

āξ↾n+1 ↓An
ξ↾n

An+1
ξ′↾n+1.

On the other hand, āξ↾n 8 An
ξ↾n

An+1
ξ↾n by (iii), and thus b̄ 8 An

ξ↾n
An+1

ξ↾n by (b1).

The automorphism Fn+1
ξ′(n) gives

āξ′↾n+1 8 An
ξ↾n

An+1
ξ′↾n+1.

We conclude that tpg(āξ↾n+1/A
n+1
ξ′↾n+1) 6= tpg(āξ′↾n+1/A

n+1
ξ′↾n+1).

From the above proposition we get two important corollaries.



Superstability in simple finitary AECs 253

Corollary 3.27. Assume that (K, 4K) is a simple finitary AEC with

dominating weak Lascar strong types. Then (K, 4K) is superstable if and

only if it is weakly superstable.

Proof. The “only if” direction is Corollary 3.4. If (K, 4K) is weakly su-
perstable and has dominating weak Lascar strong types, we can clearly find
the λ required for Proposition 3.26.

Corollary 3.28. Assume that (K, 4K) is an ℵ0-stable simple finitary

AEC. Then it is superstable.

Proof. By Theorem 3.12 of [11], in ℵ0-stable finitary AECs, equivalence
of weak types implies equivalence of Galois types over countable models.
Thus any ℵ0-stable finitary AEC has ℵ0-dominating weak Lascar strong
types. Superstability follows by Proposition 3.26.

Finally, we give a list of properties equivalent to superstability.

Theorem 3.29 (Characterization of superstability). Let (K, 4K) be a

simple finitary AEC with the Tarski–Vaught property. The following are

equivalent.

(1) The class (K, 4K) is weakly stable and for all finite and increasing

An, n < ω, and all ā there is n < ω such that ā ↓An An+1.

(2) Superstability: The class (K, 4K) is weakly stable and for all finite

and increasing An, n < ω, such that
⋃

n<ω An is a model and all ā
there is n < ω such that ā ↓An An+1.

(3) The class (K, 4K) is weakly superstable and there is an infinite car-

dinal κ such that for any ā and finite A, there is a strongly A-

indiscernible (āi)i<κ such that for any b̄,

|{i < κ : b̄ 8 A āi}| < κ.

(4) There are infinite cardinals λ and κ such that κℵ0 ≤ λ, λℵ0 > λ,
(K, 4K) is weakly stable in λ and for any ā and finite A, there is a

strongly A-indiscernible (āi)i<κ such that for any b̄,

|{i < κ : b̄ 8 A āi}| < κ.

If the class is also tame, (1)–(4) are equivalent to

(5) The class (K, 4K) is weakly superstable and whenever a finite tuple b̄
realizes Lstpw(ā/A ), where A is a model , there is f ∈ Aut(M/A )
such that f(b̄) = ā.

Proof. Items (1) and (2) are equivalent by Proposition 3.11. By Lemma
3.7, (4) implies (2). Clearly also (3) implies (4). We show that (1) implies
(3), which completes the proof of the first part of the theorem. By Corollary
3.4, (1) implies weak superstability. To prove (3), let ā and A be finite. We
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prove (3) for the infinite cardinal κ = ℵ0. By Lemma 2.31, there is a strongly
A-indiscernible sequence (ān)n<ω such that ā0 = ā and

ān ↓A

⋃

m<n

ām for each n < ω.

We claim that this is the required sequence. We assume the contrary, that
there would be some b̄ such that b̄ 8 A ān for infinitely many n < ω. Let
(b̄n)n<ω be this infinite subsequence. Then we claim that

b̄ 8 A∪
⋃

m<n b̄m
b̄n for each n < ω.

To prove this second claim, again assume the contrary that b̄ ↓A∪
⋃

m<n b̄m
b̄n

for some n. But now b̄n ↓A

⋃

m<n b̄m by the definition of the sequence, and
by symmetry and transitivity we get b̄n ↓A b̄ ∪

⋃

m<n b̄m. Then b̄ ↓A b̄n

by monotonicity and symmetry, a contradiction. This proves the second
claim. To prove the first claim we define increasing and finite sets An :=
A ∪

⋃

m<n b̄m. Now b̄ 8 An An+1 for each n < ω, a contradiction with (1).
Item (5) follows from (2) by Corollary 3.4 and Theorem 3.20, where we

need tameness. Item (2) follows from (5) by Proposition 3.26, since weak
superstability clearly implies weak stability.

We note that in the previous theorem implication from (4) to (2) also
holds without the Tarski–Vaught property.

3.4. a-categoricity. One of the basic results for abstract elementary
classes with amalgamation, joint embedding and arbitrarily large models,
shown by Shelah, is that categoricity in any uncountable cardinal implies
stability in LS(K). We also proved in [11] that in our case stability in
LS(K) = ℵ0 implies weak stability in each infinite cardinal. Since we now
want to study the case without ℵ0-stability, we will consider a weakening of
categoricity called a-categoricity, and study when a-categoricity implies su-
perstability. We recall that a model is said to be a-saturated if every Lascar
strong type over a finite subset is realized in the model.

Definition 3.30. We say that the class (K, 4K) is a-categorical in κ if
there are exactly one a-saturated model of size κ, up to isomorphism.

Let us denote by L(K) the supremum of the number of Lascar strong
types over any finite set. For any single finite set E, we know by Lemma
2.4 that the number of Lascar strong types over this set is strictly less than
the number H = i(2ℵ0)+ . To count the value of L(K), we should take the
supremum over each finite subset in the monster model M. On the other
hand, if there is an automorphism f ∈ Aut(M) mapping a finite set E1 to
another finite set E2, there are exactly the same number of Lascar strong
types over E1 and E2. Since there are at most 2ℵ0 different isomorphism
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types of countable structures in K, there are at most ℵ0 times 2ℵ0 finite sets
in the monster model, up to automorphism. Now since cf(H) > 2ℵ0 , we get

L(K) < H.

There exists an a-saturated model in every cardinal κ ≥ L(K).

When (K, 4K) is a finitary abstract elementary class, we can study the
class (Ka, 4K), where Ka is the class of a-saturated models of K. The class
(Ka, 4K) is an abstract elementary class with amalgamation, joint embed-
ding, arbitrarily large models and LS(Ka) = L(K). Also LS(K)-tameness
of (K, 4K) implies LS(Ka)-tameness for (Ka, 4K). Many results from more
general theory of abstract elementary classes can be adapted for (Ka, 4K).
Also a-categoricity transfer follows for certain cardinals (see Theorem 4.12).

We state the following results which adapt the presentation theorem and
the construction of Ehrenfeucht–Mostowski models for AECs by Shelah.

Proposition 3.31. There is a class K∗ of τ∗-structures with τ∗ = τ ∪
{F k

i : k < ω, i < L(K)}, where each F k
i is a k-ary function symbol and the

following holds.

(1) If A ∗ ∈ K∗ and B ⊂ A ∗ a subset such that B is closed under

functions F k
i , then B is an a-saturated K-elementary substructure of

A ∗↾τ .

(2) For every a-saturated A ∈ K there is A ∗ ∈ K∗ such that A ∗↾τ = A .

When A ∗ ∈ K∗ and A ⊂ A ∗, we denote by SH(A) the closure of A under
the functions F k

i , k < ω, i < L(K). By the previous theorem, SH(A) is an
a-saturated K-elementary substructure of A ↾τ . The following formulation of
the Ehrenfeucht–Mostowski model construction is tailored for the purposes
of this paper. The proof of this theorem is similar to the proof of Proposition
2.13 in [12]. First we recall the concept of a tidy sequence from [12].

Definition 3.32. Let iα0 < · · · < iαn ∈ I for each α < λ, where I is
a linear order. We say that the sequence (iα0 , . . . , iαn)α<λ is tidy if for each
0 ≤ k ≤ n one of the following holds.

(1) The index at k is constant, that is, iαk = β ∈ I is fixed for each
α < λ.

(2) The index at k is included in some (m + 1)-block, that is,

k ∈ {p, p + 1, . . . , p + m}

where

(a) p + m + 1 > n or for each β < λ, we have

iβp+m+1 ≥ sup{iαp+m : α < λ},



256 T. Hyttinen and M. Kesälä

(b) p − 1 < 0 or for each β < λ, we have

iβp−1 < min{iαp : α < λ},

(c) for each α < β < λ, we have iαp < · · · < iαp+m < iβp < · · · < iβp+m.

Proposition 3.33. For any linear order I and set A there is a sequence

(ai)i∈I and a model EM(I, A) ∈ K∗ with A ∪ (ai)i∈I ⊂ EM(I, A) such that

(1) |EM(I, A)| = |I| + |A| + L(K).
(2) Each element in EM(I, A) is a τ∗-term from some ai0 , . . . , ain and

ā with n < ω, i0 < · · · < in ∈ I and ā ∈ A.

(3) Each partial order-preserving f : I→I extends to an τ∗-isomorphism

F : SH({ai : i ∈ dom(f)} ∪ A) → SH({ai : i ∈ rng(f)} ∪ A)

mapping ai to af(i) for each i ∈ dom(f) and fixing A pointwise.

(4) Let (iα0 , . . . , iαn)α<λ, iα0 < · · · < iαn ∈ I, be a tidy sequence and let

b̄i = t̄(aiα
0
, . . . , aiαn)

for a fixed sequence t̄ of terms of τ∗. Then (b̄i)i<α is a strongly

A-indiscernible sequence.

We identify (ai)i∈I with I. The proof of the following theorem is stan-
dard, using Ehrenfeucht–Mostowski models.

Theorem 3.34 (Shelah). Let (K 4K) be an AEC with amalgamation,
joint embedding , arbitrarily large models and LS(K) ≤ L(K). Assume that

the class (K, 4K) is a-categorical in some κ > L(K) and let κ > µ ≥ L(K).
Then (K, 4K) is Galois-stable in µ.

From this theorem it follows that when a simple finitary AEC (K, 4K)
is a-categorical for some κ > L(K), it is weakly stable, and we can use the
restricted properties of ↓ studied in Section 2.2. We also get the following
corollary as usual.

Corollary 3.35. Let (K 4K) be an AEC with amalgamation, joint

embedding , arbitrarily large models and LS(K) ≤ L(K). Assume that (K, 4K)
is a-categorical in some κ > L(K) and let µ be such that cf(κ) ≥ µ. Then the

categorical a-saturated model of size κ is µ-saturated with respect to Galois

types.

The next lemma gives another property that we want the a-categorical
model to have.

Lemma 3.36. Assume that (K, 4K) is a simple finitary AEC. Let λ >
L(K). There is an a-saturated model A of size λ with the following property :
For any A ⊂ A such that |A| ≤ L(K), any finite B ⊂ A and any tuple ā
there is b̄ ∈ A realizing Lstp(ā/B) such that b̄ ↓B A.



Superstability in simple finitary AECs 257

Proof. We construct the model A as an increasing and continuous union
of a-saturated models Ai of size λ, for i < L(K)+, such that the following
holds: for any finite B ⊂ Ai and any tuple ā there is b̄ ∈ Ai+1 realizing
Lstp(ā/B) such that b̄ ↓B Ai. Then since L(K)+ is regular, for any A ⊂ A

such that |A| ≤ L(K) we can find i < L(K)+ such that A ⊂ Ai. We see that
the model A is as required by monotonicity.

The construction is as follows. First let A0 be any a-saturated model of
size λ. At the limit step we take union, so it is enough to construct the model
at each successor step. Assume we have defined Ai. Let (Bj)j<λ enumerate

all finite subsets of Ai. Then let (āj
k)k<L(K) enumerate representatives for

each Lascar strong type over a set Bj . For any finite Bi ⊂ Ai and a tuple

āj
k, there is some b̄j

k realizing Lstp(āj
k/Bj) such that b̄j

k ↓Bj
Ai. This follows

from simplicity and Corollary 2.12. Now let Ai+1 be an a-saturated model
of size λ containing

Ai ∪
⋃

j<λ, k<L(K)

b̄j
k.

The construction is complete.

In the following proposition we assume that the a-categoricity cardinal
has uncountable cofinality. This is needed to ensure that the categorical
a-saturated model satisfies all weak types over countable subsets. Hence
we are only able to prove superstability from a-categoricity in a cardinal
with uncountable cofinality. This is a flaw also in our a-categoricity transfer
theorem, and we would like to know whether it is possible to drop this
assumption.

Proposition 3.37. Let (K, 4K) be a simple finitary AEC. Assume that

(K, 4K) is a-categorical in κ > L(K) with uncountable cofinality. For each

ā and finite A there is a strongly A-indiscernible sequence (āi)i<ω such that

ā0 = ā and for any b̄, the set {i < ω : b̄ 8 A āi} is finite.

Proof. Let I = Q+κ+ω. The model EM(I, A) has size κ and thus is the
one a-saturated model of size κ. This model has the property of Lemma 3.36
and is ℵ1-saturated by Corollary 3.35. It is enough to study any ā′ realizing
tpw(ā/A), and hence, by Lemma 3.36, we may assume that ā ⊂ EM(I, A)
and ā ↓A SH(Q ∪ A).

Let ā = t̄(i0, . . . , in, A0), where t̄ is a sequence of terms of τ∗, i0 <
· · · < in ∈ I and A0 ⊂ A. We can definite a tidy sequence (jm

0 , . . . , jm
n )m<ω,

jm
0 < · · · < jm

n ∈ I, such that

(1) j0
k = ik for each 0 ≤ k ≤ n,

(2) jm+1
k = ik is constant if and only if ik ∈ Q,

(3) when k is minimal such that ik /∈ Q, the indices at k, . . . , n form an
((n − k) + 1)-block which is cofinal in κ + ω.
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Now the sequence (ām)m<ω, where ām = t̄(jm
0 , . . . , jm

n , A0), is strongly A-
indiscernible by Proposition 3.33(4). Also ā0 = ā. Since for any m < ω we
have a τ∗-isomorphism

h : SH(Q ∪ A ∪ {jm
0 , . . . , jm

n }) → SH(Q ∪ A ∪ {j0
0 , . . . , j0

n})

fixing Q ∪ A and mapping ām to ā, it follows that ām ↓A SH(Q ∪ A) for
each m < ω.

We claim that (ām)m<ω is the sequence we need for the proof. To prove
the claim, let b̄ be any tuple. Again it is enough to study any b̄′ realizing
tpw(b̄/A ∪ (ām)m<ω), and since EM(I, A) is ℵ1-saturated, we may assume
that b̄ ∈ EM(I, A). Now b̄ = t̄′(h0, . . . , hp, A

′) for some sequence t̄′ of terms
of τ∗, h0 < · · · < hp ∈ I and A′ ⊂ A. We assume to the contrary that b̄ 8 A ām

for infinitely many m < ω. But then by (3) we can find m < ω such that
b̄ 8 A ām and h0 < · · · < hp < jm

k for all k such that jm
k /∈ Q. There is a partial

order-preserving f : I → I fixing jm
0 , . . . , jm

n and mapping hk into Q for each
0 ≤ k ≤ p. By Proposition 3.33(3), this extends to a τ∗-isomorphism F with
domain SH({jm

0 , . . . , jm
n , h0, . . . , hp}∪A), fixing ām ∪A and mapping b̄ into

SH(Q ∪A). Furthermore, since dom(F ) and rng(F ) are models, F extends
to an automorphism of M. By invariance we get F (b̄) 8 A ām. But on the
other hand, since F (b̄) ∈ SH(Q ∪ A), ām ↓A F (b̄). This is a contradiction
with finite symmetry.

Theorem 3.38. Assume that a simple finitary (K, 4K) is a-categorical

in κ ≥ H with uncountable cofinality. Then (K, 4K) is superstable.

Proof. Since cf(H) > ω and max{2ℵ0 , L(K)} < H, we have

(max{2ℵ0 , L(K)})+ω < H ≤ κ.

Define λ = (max{2ℵ0 , L(K)})+ω. By Theorem 3.34, (K, 4K) is stable in
λ < λℵ0 . Now by Proposition 3.37, for any ā and finite A such that tpw(ā/A)
is unbounded, there is a strongly A-indiscernible sequence (āi)i<ω such that
for any b̄, the set {i < ω : b̄ 8 A āi} is finite. Also ℵℵ0

0 ≤ λ. Then by Lemma
3.7, (K, 4K) is superstable.

In the above theorem it is enough that (K, 4K) is a-categorical in some
κ > λ ≥ max{L(K), 2ℵ0}, where λℵ0 > λ and cf(κ) > ω.

We will prove an a-categoricity transfer result in Section 4.1. For this
we need that under superstability, the a-categorical model of size > L(K) is
L(K)+-saturated with respect to weak Lascar strong types. We will prove
a stronger result: the a-categorical model is strongly saturated. We say that
A is strongly saturated if all weak Lascar strong types over subsets of size
< |A | are realized in A . We also say that (K, 4K) is strongly stable in λ if
there are at most λ-many weak Lascar strong types over a model of size λ.
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Theorem 3.39. Assume that (K, 4K) is a superstable simple finitary

AEC and λ > L(K). There is a strongly saturated model of size λ.

Proof. In Corollary 3.4 we show that (K, 4K) is strongly stable in each
cardinal λ ≥ L(K). Let λ > L(K) and let (Ai)i<λ be an increasing and
continuous chain of models of size λ such that each weak Lascar strong
type over Ai is realized in Ai+1. We claim that A =

⋃

i<λ Ai is strongly
saturated. If λ is regular, this is clear. We may assume that λ is a limit.

Let ā be a tuple and B ⊂ A such that |B| < λ. We want to realize
Lstpw(ā/B) in A . By local character for models and since λ is a limit
ordinal, there is γ < λ such that ā ↓Aγ

A . Set α = γ + |B|+ < λ. Similarly
for any finite c̄, there is i < α such that c̄ ↓Ai

Aα. Since cf(α) > |B|, there
is β such that γ ≤ β < α and

c̄ ↓Aβ
Aα for each finite tuple c̄ ∈ B.

Choose b̄ ∈ Aβ+1 realizing Lstpw(ā/Aβ). Then c̄ ↓Aβ
b̄ for each finite tuple

c̄ ∈ B. By symmetry and finite character over models, b̄ ↓Aβ
B. Furthermore

by stationarity, b̄ is the realization of Lstpw(ā/B) in A .

To justify the notion of a-categoricity, we give an example of a Lω1ω-
definable class of structures which is not categorical but is a-categorical in
each cardinal > 2ℵ0 .

Example 3.40. Let F and Ei, i ≤ ω, be binary relation symbols. Let T
be the following set of axioms:

(1) Axioms stating that each Ei and F are equivalence relations.
(2) E0 divides the structure into two classes, that is,

∃x∃y(¬E0(x, y) ∧ ∀z(E0(x, z) ∨ E0(y, z))).

(3) The relation En+1 divides all classes of En into two, that is, for all
n < ω,

∀x∃y∃z(En(y, x) ∧ En(z, x) ∧ ¬En+1(y, z)∧

∀x′(En(x′, x) ↔ (En+1(x
′, y) ∨ En+1(x

′, z)))).

(4) The relation Eω is an intersection of the relations En, n < ω, that
is,

∀x∀y
(

Eω(x, y) ↔
∧

n<ω

En(x, y)
)

.

(5) All equivalence classes of Eω are of equal size (F defines a one-to-one
and onto function between any two classes), that is,

∀x∀y∃!z(F (x, z) ∧ Eω(y, z)).

This example is not categorical, since in a model of T it might happen
that some intersection of equivalence classes corresponding to a branch in
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2ω is empty. Not even the class of ℵ0-saturated structures of this theory is
categorical. If each Lascar strong type over the empty set is realized in a
model of T , no empty intersections can occur. When A is an a-saturated
model of T and is of size κ > 2ℵ0 , then each equivalence class of Eω must
be of size κ. Thus all such models is isomorphic.

4. PRIMARY MODELS

In this section we assume that (K, 4K) is a simple, superstable, finitary
AEC with the Tarski–Vaught property.

Definition 4.1. Let ā be a tuple and A a set. A weak Lascar strong
type Lstpw(ā/A) is a-isolated over a finite E ⊂ A if whenever b̄ realizes
Lstp(ā/E), then b̄ ↓E A.

The property of being a-isolated is invariant under automorphisms, that
is, if Lstpw(ā/A) is a-isolated over E ⊂ A and f ∈ Aut(M), then the type
Lstpw(f(ā)/f(A)) is a-isolated over f(E).

Lemma 4.2. For every tuple ā, set A and finite B ⊂ A there is b̄ and

finite A0 ⊂ A such that Lstp(b̄/B) = Lstp(ā/B) and Lstpw(b̄/A) is a-

isolated over A0.

Proof. Assume that ā, A and finite B ⊂ A witness the contrary. We
define tuples āi and finite sets Ai for i < ω to contradict Proposition 3.11.
First let ā0 = ā and A0 = B. Then assume we have defined ān and An for
i ≤ n such that

(1) Lstp(āi/B) = Lstp(ā/B),
(2) the sets Ai are finite and Ai ⊂ Ai+1 ⊂ A,
(3) Lstp(āi+1/Ai) = Lstp(āi/Ai),
(4) āi+1 8 Ai

Ai+1.

Since we have (1), the type Lstpw(ān/A) cannot be a-isolated over finite
An ⊂ A. Thus there is a tuple ān+1 such that Lstp(ān+1/An) = Lstp(ān/An)
but ān+1 8 An A. Furthermore, by finite character of independence, there is a
finite An+1 ⊂ A such that ān+1 8 An An+1. We may assume that An ⊂ An+1.
This construction contradicts Proposition 3.11.

Definition 4.3. We say that A is S-primary over a set A if for some
ordinal ξ there are tuples āi and finite sets Ai for i < ξ such that

(1) the weak Lascar strong type Lstpw(āi/A∪
⋃

j<i āj) is a-isolated over
Ai ⊂ A ∪

⋃

j<i āj ,
(2) A = A ∪

⋃

i<ξ āi is S-saturated.

If in addition A is a-saturated, we say that it is a-primary.
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We say that A is a-constructible over A if (1) in the above definition
holds. Analogously to the similar result in [12], we can prove the following
lemma.

Lemma 4.4. For every set A there is a model B of size |A|+ℵ0 which is

S-primary over A. Furthermore, if B′ is an a-saturated model containing A,
we can choose B such that B 4K B′.

Proof. We prove the last claim. Write |A| + ℵ0 = λ. By induction on
n < ω we define sets Bn ⊂ B′ of size λ, tuples ān

i ∈ B′ and finite sets
An

i ⊂ B′ for i < λ. First let B0 = A.
Assume we have defined Bn. Enumerate all finite subsets of Bn as (b̄j)j<λ

and let S = {φk : k < ω}. Let (c̄k
j )j<λ, k<ω be tuples such that whenever

there exists a tuple c̄ such that M |= φk(b̄j , c̄) for φk ∈ S and finite b̄j ∈ Bn,
then one such c̄ is listed as c̄k

j . If such a c̄ does not exist, c̄k
j can be arbitrary.

Then let (c̄i)i<λ enumerate all (c̄i
j)i<ω, j<λ.

Let α < λ and assume we have defined ān
i for i < α. Let c̄i

j be the tuple

listed as c̄α. We use Lemma 4.2 to find a tuple d̄ realizing Lstp(c̄i
j/b̄j) and

a finite subset An
α ⊂ Bn ∪

⋃

i<α ān
i such that Lstpw(d̄/Bn ∪

⋃

i<α ān
i ) is a-

isolated over An
α. By a-saturation, there is ān

α ∈ B′ realizing Lstp(d̄/b̄j∪An
α).

Then also Lstpw(ān
α/Bn∪

⋃

i<α ān
i ) is a-isolated over An

α. Finally, let Bn+1 =
Bn ∪

⋃

i<λ ān
i .

Clearly B =
⋃

n<ω Bn = A ∪
⋃

(n,i)∈ω×λ ān
i is S-saturated and thus a

model. Now B is an S-primary model over A and is of size λ.

We can easily see how to change the above construction to obtain an
a-primary model. In Bn+1 we should also realize all Lascar strong types
over finite subsets of Bn. We obtain the following result.

Lemma 4.5. For every set A there is a model B of size |A|+L(K) which

is a-primary over A. Furthermore, if B′ is an a-saturated model contain-

ing A, we can choose B such that B 4K B′.

We define domination as usual.

Definition 4.6. We say that a set A dominates a set B over an a-
saturated model A if for every tuple c̄,

c̄ ↓A A ⇒ c̄ ↓A B.

We show that a-primary models have similar properties to f-primary
models in [12]. Since the concept itself is here different, we need to reprove
some of these.

Lemma 4.7. Let B be a set and A1, A2 ⊂ B finite such that

(1) Lstpw(ā0/B) is a-isolated over A0,
(2) Lstpw(ā1/B ∪ ā0) a-isolated over A1 ∪ ā0.

Then the type Lstpw(ā0, ā1/B) is a-isolated over A = A1 ∪ A2.
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Proof. We assume to the contrary that there is some finite tuple c̄0c̄1

realizing Lstp(ā0, ā1/A) such that c̄0c̄1 8 A B. By finite character there is
some b̄ ∈ B such that

c̄0c̄1 8 A b̄.

There is f ∈ Saut(M/A) such that f(c̄0c̄1) = ā0ā1. By 1, c̄0 ↓A b̄ and then by
invariance, ā0 ↓A f(b̄). Since also ā0 ↓A b̄, from symmetry and stationarity
we get

Lstp(b̄/A ∪ ā0) = Lstp(f(b̄)/A ∪ ā0).

Let g be a strong automorphism mapping f(b̄) to b̄ and fixing A ∪ ā0. Now
Lstp(g(ā1)/A ∪ ā0) = Lstp(ā1/A ∪ ā0) and since by (2),

g(ā1) ↓A∪ā0
b̄,

the pairs lemma implies that g(ā1)ā0 ↓A b̄. Since g−1 ∈ Aut(M/ā0∪A) maps
b̄ to f(b̄), we have ā1ā0 ↓A f(b̄) by invariance. Again using the automorphism
f−1 and invariance, we infer that c̄0c̄1 ↓A b̄, a contradiction.

Proposition 4.8. Let A be an a-saturated model and B a set. Let

A
∗ = A ∪ B ∪

⋃

i<ξ

āi

be a-constructible over A ∪ B and let d̄ be a tuple in A ∗. Then there are

ā = āi0 , . . . , āin for i0 < · · · < in < ξ, finite A ⊂ A and b̄ ⊂ B such that

(1) d̄ ⊂ A ∪ b̄ ∪ ā,
(2) Lstpw(ā/A ∪ b̄) is a-isolated over A ∪ b̄,
(3) the tuple b̄ dominates ā ∪ b̄ over A .

Proof. The proof of items (1) and (2) is identical to the proof of the
analogous result in [12], using Lemma 4.7. We now assume that we have
found ā, b̄ and A satisfying (1) and (2) and then show that (3) holds.

Assume to the contrary that c̄ ↓A b̄ but c̄ 8 A b̄ ∪ ā for some tuple c̄.
By symmetry, also b̄ ↓A c̄. Let A′ ⊂ A be finite such that A ⊂ A′,
c̄ ↓A′ A ∪ b̄ and b̄ ↓A′ A ∪ c̄. By finite character, there is a finite B′ such
that A′ ⊂ B′ ⊂ A and c̄ 8 A′ B′ ∪ ā ∪ c̄.

Since A is a-saturated, there is d̄ ∈ A realizing Lstp(c̄/B′). Since b̄ ↓B′

A ∪ c̄, we get c̄ ↓B′ b̄ and d̄ ↓B′ b̄ by symmetry. By stationarity there is an
automorphism g ∈ Aut(M/B′ ∪ b̄) mapping c̄ to d̄.

By a-isolation, g(ā) ↓A′∪b̄ A , and furthermore g(ā) ↓A′∪b̄ d̄ ∪ B′. On the
other hand, by monotonicity and invariance, d̄ ↓A′ B′∪ b̄, and by symmetry,
b̄ ∪ B′ ↓A′ d̄. Now by the pairs lemma, g(ā) ∪ b̄ ∪ B′ ↓A′ d̄.

But since c̄ 8 A′ ā ∪ b̄ ∪ B′, by invariance d̄ 8 A′ g(ā) ∪ b̄ ∪ B′, and by sym-

metry, g(ā) ∪ b̄ ∪ B′
8 A′ d̄, a contradiction.

By finite character we obtain the following corollary.
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Corollary 4.9. Let B = A ∪ B ∪ (āi)i<ξ be an a-constructible model

over A ∪ B, where A is an a-saturated model. Then B dominates B over

the model A .

4.1. Morley sequences. In this section we assume that (K, 4K) is a
simple, superstable finitary AEC. The following result is again adapted from
Shelah for this context. We sketch the proof.

Proposition 4.10. Let λ be a cardinal , A an a-saturated model , |A | ≥
λ+ > L(K) and let B ⊂ A be such that |B| < λ+. Then there is an a-

saturated model B 4K A , finite E ⊂ B and a sequence (āi)i<λ+ such that

Lstpw(āi/B) = Lstpw(ā0/B)

and
āi ↓E B ∪

⋃

j<i

āj for each i < λ+.

Proof. Define a continuous and increasing chain of a-saturated models
Ai 4K A and tuples āi ∈ A , i < λ+, such that B ⊂ A0, |Ai| = |B| + L(K)
and āi ∈ Ai+1 \ Ai. By superstability, for each i there is a finite Ei ⊂ Ai

such that āi ↓Ei
Ai. By Fodor’s lemma we may assume that λ+-many Ei are

included in Ai0 for a fixed i0. Taking a subsequence, we may assume that
i0 = 0 and furthermore, using the pigeon-hole principle, we may assume that
āi ↓E Ai for a fixed finite E ⊂ A0 and for each i < λ+. Also since λ+ > L(K),
we may assume that Lstp(āi/E) = Lstp(āj/E) for each i < j < λ+. Then
by stationarity, Lstpw(āi/Ai) = Lstpw(āj/Ai) for each i < j < λ+. We can
take B = A0.

We call the sequence (ā)i<λ+ from the above proposition a Morley se-

quence over B. The finite set E ⊂ B is called the base set.

Lemma 4.11. Let (āi)i<α be a Morley sequence over an a-saturated B,
and let E ⊂ B be the base set. Then for all n < ω and j0 < · · · < jn < α,

(1) b̄j0 , . . . , b̄jn ↓E B,
(2) Lstpw(b̄j0 , . . . , b̄jn/B) = Lstpw(b̄0, . . . , b̄n/B).

Proof. Item (1) can be shown by induction on n, using the pairs lemma.
We also prove (2) by induction on n. The case n = 0 is clear by definition.
We assume that (2) holds for n. To prove it for n + 1, let j0 < · · · < jn <
jn+1 < α. Let C ⊂ B be an arbitrary finite subset. By induction, there is
f ∈ Saut(M/C ∪ E) such that f(b̄jk

) = b̄k for 0 ≤ k ≤ n. By invariance,

f(b̄jn+1
) ↓E C ∪ b̄0, . . . , b̄n,

and then by stationarity,

Lstp(f(b̄jn+1
)/E ∪ C ∪ b̄n, . . . , b̄0) = Lstp(b̄n+1/E ∪ C ∪ b̄n, . . . , b̄0).
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Hence Lstp(b̄jn+1
, . . . , b̄j0/C) = Lstp(f(b̄jn+1

), b̄n, . . . , b̄0/C), and also

Lstp(b̄jn+1
, . . . , b̄j0/C) = Lstp(b̄n+1, b̄n, . . . , b̄0/C).

4.2. a-categoricity transfer. We use a-primary models to prove an
a-categoricity transfer theorem for simple tame finitary AECs. Grossberg
and VanDieren have already a categoricity transfer result in [7] for tame
classes which can be applied here. The class of a-saturated models of a
simple tame finitary AECs with the induced notion 4K forms an abstract
elementary class with amalgamation, joint embedding, arbitrarily large mod-
els, Löwenheim–Skolem number L(K) and tameness in L(K). Thus the result
of [7] implies that a-categoricity in a successor cardinal strictly greater than
L(K)+ gives upwards a-categoricity transfer. Furthermore, we then get a-
categoricity for all cardinals above H2(L(K)) by the downward categoricity
transfer result presented by Shelah [22] (see also Baldwin [2]). Combining
these results we get the following theorem.

Theorem 4.12 (Grossberg, Baldwin, Shelah, VanDieren). Let (K, 4K)
be an AEC with amalgamation, joint embedding , arbitrarily large models and

tameness in χ. Assume that (K, 4K) is a-categorical in a successor cardinal

κ+ > max{L(K)+, χ}. Then it is a-categorical in every

λ ≥ min{κ+, H2(L(K))}.

Here H2(L(K)) is the second Hanf number for the class (Ka, 4K), that is,
H(H(L(K))). Our result does not assume the a-categoricity cardinal being a
successor, but we still have to make some assumptions on the cardinal. Also
the class studied in [7] is more general.

The following proposition is an analogue of the weak categoricity transfer
of [12]. Tameness is not needed for this proposition.

Proposition 4.13. Let (K, 4K) be a simple, superstable finitary AEC

with the Tarski–Vaught property. Assume that there is κ > L(K) such that

each a-saturated model of size κ realizes all weak Lascar strong types over

subsets of size ≤ L(K). Then any a-saturated model A such that |A | > L(K)
is saturated with respect to weak Lascar strong types.

Proof. Let A be an a-saturated model such that |A | > L(K) and let
B ⊂ A , |B| < |A |. Let also d̄ ∈ M be a finite tuple. By Proposition 4.10
there is a Morley sequence (b̄i)i<ω ⊂ A over an a-saturated model B 4K A

containing B. Let E1 be the base set. By local character, there is a finite E2

such that d̄ ↓E2
B. We show that Lstpw(d̄/B) is realized in A .

Let C 4K B be a-saturated and of size L(K) such that E1 ∪ E2 ⊂ C .
We use extension to continue the Morley sequence to (b̄i)i<κ. Let

C
∗ = C ∪

⋃

i<κ

b̄i ∪
⋃

j<ξ

āj
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be a-primary over C ∪
⋃

i<κ b̄i such that |C ∗| = κ. By assumption, the
model C ∗ is L(K)+-saturated with respect to weak Lascar strong types.
Let d̄∗ ∈ C ∗ realize Lstpw(d̄/C ). We find finite A ⊂ C , b̄ = (bi0 , . . . , bim),
i0 < · · · < im < κ, and ā = (āj0 , . . . , ājn), j0 < · · · < jn < ξ, as in Propo-
sition 4.8. We use again local character to find a finite E3 ⊂ C such that
āab̄ ↓E3

C .

Define b̄∗ = (b0, . . . , bm) ∈ A . By Lemma 4.11(2), we have

Lstpw(b̄/C ) = Lstpw(b̄∗/C ),

and thus there is f ∈ Saut(M/E1 ∪ E3) such that f(b̄) = b̄∗. By Corollary
2.12 and simplicity, there is ā′ realizing Lstp(f(ā)/E1 ∪ E3 ∪ b̄∗) such that
ā′ ↓E1∪E3∪b̄∗ C . By Lemma 4.11(1), b̄∗ ↓E1

C , and thus by the pairs lemma,

ā′ab̄∗ ↓E1∪E3
C . But now by stationarity,

(4.1) Lstpw(ā′ab̄∗/C ) = Lstpw(āab̄/C ).

Since A is a-saturated, there is ā∗ ∈ A realizing Lstp(ā′/A∪ b̄∗). By invari-
ance, Lstpw(ā′/C ∪ b̄∗) is f-isolated over A ∪ b̄∗. We gain that

ā∗ ↓A∪b̄∗ C .

By stationarity, ā∗ realizes Lstp(ā′/C ∪ b̄∗). Furthermore by (4.1),

(4.2) Lstpw(ā∗ab̄∗/C ) = Lstpw(āab̄/C ).

By Proposition 4.8(3), b̄∗ dominates b̄∗ ∪ ā∗ over C . Since b̄∗ ↓E1
B by

Lemma 4.11(1), using monotonicity, symmetry and dominance we get

(4.3) ā∗ ∪ b̄∗ ↓C B.

But now Lstpw(d̄/C ) is realized by d̄′ ⊂ A ∪ ā ∪ b̄, and d̄ ↓C B by mono-
tonicity. By (4.3) and stationarity, Lstpw(d̄/B) is realized in A ∪ ā∗ ∪ b̄∗

∈ A .

We recall the following well-known fact about Galois types.

Lemma 4.14 (Shelah). Let (K, 4K) be an AEC with amalgamation, joint

embedding and arbitrarily large models.

(1) Let A 4K B, A 4K B′, |A | < |B′| ≤ κ and B be κ-saturated. Then

there is an automorphism f ∈ Aut(M/A ) such that f(B′) 4K B.

(2) Two saturated models B1, B2 containing A , such that |A | < |B1| =
|B2|, are isomorphic over A .

We can embed any countable model into an ℵ0-saturated model. The
previous lemma implies that when two models are saturated with respect to
Galois types, they are isomorphic.
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Theorem 4.15. Let (K, 4K) be a simple, tame finitary AEC with the

Tarski–Vaught property. Assume that (K, 4K) is a-categorical in some κ >
λ ≥ max{L(K), 2ℵ0}, where λℵ0 > λ and cf(κ) > ω. Then it is a-categorical

in any κ > L(K).

Proof. By Theorem 3.34, (K, 4K) is stable in λ. Then by Proposition
3.37 and Lemma 3.7, the class (K, 4K) is superstable. By Proposition 3.39,
the only a-saturated model of size κ is strongly saturated. Furthermore by
Proposition 4.13, then any a-saturated model of size > L(K) is saturated
with respect to weak Lascar strong types. Furthermore, by tameness and
Theorem 3.20, any a-saturated model of size > L(K) is saturated with re-
spect to Galois types. Then any two a-saturated models of the same size
> L(K) are isomorphic.

Arguing as in Theorem 3.38, we can show the following corollary. The
result is analogous to the Categoricity Conjecture of Shelah, except for
the flaw that we assume the a-categoricity cardinal to have uncountable
cofinality.

Corollary 4.16. Assume that (K, 4K) is a simple, tame finitary AEC

with the Tarski–Vaught property. If (K, 4K) is a-categorical in some κ ≥ H
with uncountable cofinality , then it is a-categorical in any κ ≥ H.

4.3. Questions. The first question is motivated by the fact that we
would like to drop the assumption of uncountable cofinality in Corollary
4.16. We need this assumption in Proposition 3.37 to ensure that the a-
categorical model realizes all weak types over countable subsets.

Question 4.17. Assume that (K, 4K) is a simple finitary class, a-cat-

egorical in some κ > L(K) (or κ ≥ H) with countable cofinality. Does the

unique a-saturated model of size κ realize all weak types over countable sub-

sets?

We believe that this question is related to the next question.

Question 4.18. Assume that (K, 4K) is a simple finitary class, a-cat-

egorical in some κ > L(K) with countable cofinality. Is (K, 4K) weakly stable

in κ?

One motivation for the study of finitary classes is to generalize the the-
ory of (simple) excellent classes. We have also adapted many methods and
concepts from excellent classes (see [13]). Since excellent classes are usually
assumed to be ℵ0-stable, this paper can be thought of as an attempt to
generalize the study of excellent classes beyond ℵ0-stability. We study the
superstable case, but one could as well try to study the theory assuming only
weak stability. In particular, can we prove a stability hierarchy theorem for
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weak types? Some preliminary results on the behaviour of independence in
this case have been studied in Section 2.2.
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