
FUNDAMENTA

MATHEMATICAE

195 (2007)

The effective Borel hierarchy

by

M. Vanden Boom (Notre Dame, IN)

Abstract. Let K be a subclass of Mod(L) which is closed under isomorphism. Vaught
showed that K is Σα (respectively, Πα) in the Borel hierarchy iff K is axiomatized by an
infinitary Σα (respectively, Πα) sentence. We prove a generalization of Vaught’s theorem
for the effective Borel hierarchy, i.e. the Borel sets formed by union and complementation
over c.e. sets. This result says that we can axiomatize an effective Σα or effective Πα

Borel set with a computable infinitary sentence of the same complexity. This result yields
an alternative proof of Vaught’s theorem via forcing. We also get a version of the pull-
back theorem from Knight et al. which says if Φ is a Turing computable embedding of
K ⊆ Mod(L) into K ′ ⊆ Mod(L′), then for any computable infinitary sentence ϕ in the
language L, we can find a computable infinitary sentence ϕ∗ in L′ such that for all A ∈ K,
A |= ϕ∗ iff Φ(A) |= ϕ, where ϕ∗ has the same complexity as ϕ.

1. Introduction. In descriptive set theory, we study definable sets and
functions in Polish spaces, i.e. complete, separable topological spaces that
admit a metric. The Borel sets in a Polish space frequently receive atten-
tion. These sets are constructed from the basic open sets by countable union
and complementation. We form a hierarchy within the class of Borel sets,
specifying the Σα and Πα Borel sets for each ordinal α, based on the oper-
ations used to build up the set. Where a set lies in the Borel hierarchy is a
reflection of the complexity of the set.

We work in the context of a particular Polish space known as Mod(L),
the class of structures over some fixed countable language L, where each
structure has universe ω. López-Escobar [7] showed that a subclass K,
closed under isomorphism, is Borel iff K is axiomatized by an infinitary
sentence σ, where the conjunctions and disjunctions in σ are over countable
sets. Vaught [8] improved on this result by showing that if K is Σα (respec-

2000 Mathematics Subject Classification: Primary 03E15; Secondary 03C57, 03C75,
03D55.

Key words and phrases: effective Borel set, Vaught’s theorem, computable embedding.
The author would like to thank Dr. Julia Knight at the University of Notre Dame for

her feedback and support with this paper.

[269] c© Instytut Matematyczny PAN, 2007

270 M. Vanden Boom

tively, Πα) in the Borel hierarchy for some ordinal α, then σ can be taken to
be a Σα (respectively, Πα) sentence. That is, we can axiomatize an invariant
Σα or Πα Borel set with a sentence that is of the same complexity as the
Borel set we are attempting to describe. We refer to this result as Vaught’s

theorem throughout this paper.
In this paper, we focus primarily on the effective Borel sets, which are

built up from the basic sets by c.e. union and complementation. To make
precise the c.e. unions, we assign indices to the effective Borel sets. We
also specify the corresponding effective Borel hierarchy. We then prove a
generalization of Vaught’s theorem, which deals with the effective Borel
hierarchy and a notion of “within” described below. This is our main result.

Theorem 1.1. Let K ⊆ Mod(L), where K is closed under isomorphism.

Suppose that for some α ≥ 1, i is an index for an effective Σα (respec-
tively , Πα) set Bi such that Bi ∩ K is closed under isomorphism. Then

we can effectively find (an index for) a computable Σα (respectively , Πα)
sentence σ such that Bi = Mod(σ) within K, i.e.

Bi ∩K = Mod(σ) ∩K,

where Mod(σ) = {A : A |= σ}.

The effective version of Vaught’s theorem follows immediately from this
result.

Theorem 1.2 (Effective version of Vaught’s theorem). Let K ⊆ Mod(L),
where K is closed under isomorphism. Let α ≥ 1. If K is an effective Σα

(respectively , Πα) set , then we can effectively find (an index for) a com-

putable Σα (respectively , Πα) sentence σ such that K is axiomatized by σ.

This theorem says that we can axiomatize an effective Σα or effective Πα

Borel set that is closed under isomorphism with a computable infinitary sen-
tence of the same complexity. Informally, this means that the conjunctions
and disjunctions in the sentence are over c.e. sets.

We also obtain some additional results. By relativizing the proof of the
theorem above, we obtain an alternative proof of Vaught’s theorem. This fact
was noted by Knight. Unlike Vaught’s category argument in [8], however, we
use a (relativized) forcing argument. These types of proof are known to be
related; Kechris mentions this connection and the related terminology in [5].
It remains to be seen whether there are essential or interesting differences
in these proofs.

We also get the following version of a result from [6], called the pull-back
theorem. For classes K ⊆ Mod(L), K ′ ⊆ Mod(L′) closed under isomorphism
such that K Turing computably embeds into K ′ via a computable opera-
tor Φ, we can effectively transfer from a sentence ϕ in the language L′ to
a sentence ϕ∗ in the language L such that for all A ∈ K, Φ(A) |= ϕ iff

The effective Borel hierarchy 271

A |= ϕ∗. In [6], we prove a somewhat more general result for structures with
universe a subset of ω, possibly finite. Here, however, we use Theorem 1.1
to obtain a restricted version of the pull-back theorem for a Turing com-
putable embedding that takes K ⊆ Mod(L) to K ′ ⊆ Mod(L′). We refer the
interested reader to Section 4 or [6] for definitions of these terms.

In Section 2, we give some background on ordinal notations, which we
then use to index computable infinitary formulas and the effective Borel
sets. In Section 3, we give a proof, via forcing, of the effective version of
Vaught’s theorem. We also observe that Vaught’s original result can be ob-
tained by relativizing our proof. Finally, in Section 4, we give an application
of the theorem to obtain a pull-back theorem for classes of structures with
universe ω.

We conclude this section with some general comments on Mod(L), since
this is the context for our work.

1.1. Background on Mod(L). Throughout this paper, we work with a
fixed predicate language L. We assume that L is relational, which simpli-
fies the topology of Mod(L), described below. However, we do not actu-
ally lose anything with this restriction, since anything we could say with
an operational language could be said with a corresponding relational lan-
guage. We assume further that L is computable, which means the set of
relational symbols in L is computable and we can effectively determine the
arity of each symbol. We consider the structures over this language with
universe ω, denoted Mod(L). We let Mod(σ) be the subset of Mod(L) such
that A ∈ Mod(σ) iff A |= σ.

Let (αn)n∈ω be a computable list of all atomic sentences in the language
L ∪ ω, except for sentences of the form a = b for a, b ∈ ω. By omitting
sentences a = a, which are true for all a, and sentences a = b, which are
false for b 6= a, we have complete freedom over the αn. Thus, each function
σ ∈ 2ω asserting that each αn is true or false, corresponds with a possible
structure in Mod(L). In fact, we can think of these meaningful sentences as
the propositional variables of a corresponding propositional language. We
define a topology on the class of structures identified by these functions,
letting the basic open neighborhoods be the sets Nf corresponding to finite
functions f ∈ 2<ω, where Nf = {σ ∈ 2ω : σ ⊇ f}. With this topology,
Mod(L) is a Cantor space, which is an example of a Polish space [5].

Within Mod(L), we restrict our attention to subclasses K ⊆ Mod(L)
which are closed under isomorphism. Equivalently, we say K is invariant, or,
more precisely, invariant under the action of S∞, the group of permutations
of ω. In [8], Vaught also worked with invariant classes K, but in the more
general context of a group G acting on an arbitrary Polish space X, rather
than S∞ and Mod(L) specifically.

272 M. Vanden Boom

2. Indexing the effective Borel sets. Our goal is to describe what
it means for a class of structures, a subset of Mod(L), to be effective Σα or
effective Πα in the effective Borel hierarchy. Recall that every Borel set is
constructed by taking countable unions and complements (or, equivalently,
countable intersections and complements) of some basic sets. Traditionally,
we denote the class of sets at each level α in this hierarchy using bold-face
notation, Σα or Πα. Effective Borel sets, however, are constructed using
strictly c.e. unions and complements, and classes in the effective Borel hi-
erarchy are written using light-face notation, Σα or Πα. Not surprisingly,
we begin by looking at the lowest level of the hierarchy, and then build up
from there. In order to move up in the hierarchy, we need a way to index
the effective Borel sets so, at say the Σα level, we can include all of the sets
obtained by c.e. union of effective Πβ sets for β < α.

There are various systems for assigning indices to the Borel sets; in the
literature these indices are often called Borel codes [4]. In this section, we
describe a method for indexing each effective Borel set, which allows us to
specify the class of effective Σα and effective Πα Borel sets, for computable
ordinals α. The index has the same purpose as the Borel code mentioned
above, but we must be more careful in picking out only the sets formed
by c.e. unions and complements. A nice feature of the indexing scheme we
describe here is that it parallels the method used in [1] to index computable
infinitary formulas. After reviewing Kleene’s system of ordinal notations,
we present systems for indexing the effective Borel sets and the computable
infinitary formulas.

2.1. Ordinal notation. Let O denote the set of notations in Kleene’s
system. Each notation a ∈ O represents a particular ordinal α, written
|a|O = α. These notations, or names, for the ordinals, specify how the ordinal
is built up from below. An informal definition of the set O, the function
| |O, and the strict partial ordering <O on O is given below (see [1] for more
information).

1. Let 1 be the notation for the ordinal 0, i.e. |1|O = 0.
2. If b is a notation for the ordinal α, then 2b is a notation for the

successor ordinal α + 1 and b <O 2b. Moreover, for all notations c
such that c <O b, c <O 2b as well.

3. If ϕe is a total computable function from ω to O such that, for all
n ∈ ω, ϕe(n) <O ϕe(n + 1), and limn |ϕe(n)|O = α, then 3 · 5e is a
notation for the limit ordinal α and ϕe(n) <O 3·5e for all n. Moreover,
for all notations c such that c <O ϕe(n), c <O 3 · 5e.

An infinite ordinal will have infinitely many different notations in Kleene’s
system. However, we use all possible notations because there is no reason to
prefer one notation over another. The exact conventions used to distinguish

The effective Borel hierarchy 273

between notations for successor and limit ordinals are not important for our
purposes, but we do make use of the partial ordering <O.

2.2. Effective Borel sets. With the notation system in place, we define
the index sets for each notation a ∈ O.

Definition 2.1. The index sets for the effective Borel sets, denoted
BSΣ

a and BSΠ
a , are defined as follows for each a ∈ O.

1. BSΣ
1 = BSΠ

1 = {pϕq : ϕ is a finitary quantifier-free sentence}, i.e.
the set of Gödel numbers for finitary quantifier-free sentences which
are the result of substituting a tuple of constants for the finitely many
variables in a finitary quantifier-free L-formula.

2. Let |a|O > 0. Then

(a) BSΣ
a = {〈Σ, a, e〉 : e ∈ ω},

(b) BSΠ
a = {〈Π, a, e〉 : e ∈ ω},

where Σ and Π are coded as 0 and 1, respectively, and 〈x, y, z〉 is the
code for the triple (x, y, z) under some standard coding scheme.

Next, we describe the effective Borel sets corresponding to indices inBSΣ
a

and BSΠ
a . Notice that we make use of strictly c.e. unions and intersections

to build up each effective Borel set (recall that We denotes the eth c.e. set).

Definition 2.2. Let i be an index for an effective Borel set. Then the
effective Borel set Bi with index i is defined as follows.

1. If i ∈ BSΣ
1 = BSΠ

1 , thenBi is the set of B ∈ Mod(L) such that B satis-
fies the sentence with Gödel number i. We write this as Bi = Mod(ψ)
where pψq = i.

2. Assume |a|O > 0.

(a) If i ∈ BSΣ
a , then i = 〈Σ, a, e〉 for some e ∈ ω and Bi is the union

of the sets Bj for j ∈We ∩
⋃
b<Oa

BSΠ
b .

(b) If i ∈ BSΠ
a , then i = 〈Π, a, e〉 for some e ∈ ω and Bi is the

intersection of the sets Bj for j ∈We ∩
⋃
b<Oa

BSΣ
b .

For |a|O = α and i ∈ BSΣ
a , we say Bi is effective Σα; likewise, if i ∈ BSΠ

a ,
then we say Bi is effective Πα.

2.3. Computable infinitary formulas. We also need Kleene’s system of
ordinal notations in order to define computable infinitary formulas in a pred-
icate language L. We follow the definition in [1]. Informally, we start with
the basic formulas, which are simply the atomic formulas and the negations
of atomic formulas, and build up from there using conjunctions and dis-
junctions, and existential and universal quantifiers, as usual. However, we
also allow infinite (over a c.e. set) disjunctions and conjunctions in these
formulas.

274 M. Vanden Boom

We introduce this type of formula formally here since we frequently work
with computable infinitary formulas in the remainder of the paper. We also
mention some simple facts involving negation. Once again, we begin by
defining a computable set of indices for each a ∈ O.

Definition 2.3. The index sets for computable infinitary formulas, de-
noted SΣ

a and SΠ
a , are defined as follows for each a ∈ O.

1. SΣ
1 = SΠ

1 = {pϕq : ϕ is a finitary quantifier-free formula}.
2. Let |a|O > 0. Then

(a) SΣ
a = {〈Σ, a, x, e〉 : x is a tuple of variables, e ∈ ω},

(b) SΠ
a = {〈Π, a, x, e〉 : x is a tuple of variables, e ∈ ω}.

For each index i, we describe its corresponding computable infinitary
formula ϕi.

Definition 2.4. Let i be an index for a computable infinitary formula.
Then the computable infinitary formula ϕi(x) with index i is defined as
follows.

1. If i ∈ SΣ
1 = SΠ

1 , then the computable Σ0 and computable Π0 formula
ϕi is the finitary quantifier-free formula in the language L with Gödel
number i. We assume that these formulas are in complete disjunctive
normal form, that is to say, each disjunct has the form ±α1&· · ·&±αn
where α1, . . . , αn is a complete list of atomic subformulas.

2. Assume |a|O > 0.

(a) If i ∈ SΣ
a , then i = 〈Σ, a, x, e〉 for some tuple of variables x and

e ∈ ω, so ϕi(x) is the disjunction of the formulas (∃u)ψj(x, u) for
j ∈ We ∩

⋃
b<Oa

SΠ
b , where the third component of j is a tuple

of variables v, and u consists of the variables in v but not in x.
(b) If i ∈ SΠ

a , then i = 〈Π, a, x, e〉 for some tuple of variables x and
e ∈ ω, so ϕi(x) is the conjunction of the formulas (∀u)ψj(x, u)
for j ∈We∩

⋃
b<Oa

SΣ
b , where the third component of j is a tuple

of variables v, and u consists of the variables in v but not in x.

In a similar fashion, we can index and describe computable infinitary
formulas in a propositional language P , for P a computable set of proposi-
tional variables. We start with computable sets of indices PSΣ

a and PSΠ
a for

a ∈ O. We build up from the computable Σ0 and computable Π0 proposi-
tional formulas (which are simply the finitary propositional formulas) using
c.e. disjunctions and conjunctions as expected.

Because the negations in a given formula ϕ are all “inside” (appear-
ing only in the finitary quantifier-free sentences), we must define a formula
neg(ϕ) of the dual form that is logically equivalent to the negation of ϕ.

The effective Borel hierarchy 275

Definition 2.5. Let ϕ be a computable infinitary formula. Then neg(ϕ)
is defined inductively as follows:

1. Suppose ϕ is finitary quantifier-free. Then neg(ϕ) is the formula in
complete disjunctive normal form (with the same atomic subformulas)
that is logically equivalent to ¬ϕ.

2. Suppose ϕ is computable Σα, a c.e. disjunction of formulas of
the form (∃u)ψ. Then neg(ϕ) is the conjunction of the formulas
(∀u) neg(ψ).

3. Suppose ϕ is computable Πα, a c.e. conjunction of formulas of
the form (∀u)ψ. Then neg(ϕ) is the disjunction of the formulas
(∃u) neg(ψ).

We can also show the following simple fact, which is true since we have
specified that the finitary quantifier-free formulas should always be written
in complete disjunctive normal form.

Proposition 2.6. Let ϕ be a computable infinitary formula as defined

above. Then neg(neg(ϕ)) = ϕ.

Proof. The proof is a straightforward induction.

3. Effective version of Vaught’s theorem. A well-known result in
descriptive set theory, due to López-Escobar [7] in the 1960s, says that an
invariant set K is Borel iff K is the set of all models for some sentence σ.
López-Escobar proved that σ is an Lω1ω sentence (an infinitary sentence in
which the conjunctions and disjunctions are over countable sets and there
is only finite nesting of quantifiers), but did not locate this sentence at a
particular level of complexity.

By introducing special transforms with category quantifiers “for non-
meagerly many” and “for co-meagerly many”, Vaught [8] was able to show
that K is an invariant Σα (respectively, Πα) set in the Borel hierarchy iff
K = Mod(σ) for an infinitary Σα (respectively, Πα) sentence σ. His proof
is a category argument and the transforms that he used are now known as
Vaught transforms [5]. As mentioned in the introduction, we refer to this re-
sult as Vaught’s theorem. This theorem demonstrates the strong connection
between the complexity of the sentence axiomatizing an invariant Borel set,
and the level of that Borel set in the hierarchy.

It is natural to ask whether a similar result holds in the effective Borel
hierarchy. That is, we would like to know if

K is closed under isomorphism and effective Σα (respectively,
Πα) in the effective Borel hierarchy iff K = Mod(σ) for σ a
computable Σα (respectively, Πα) sentence.

276 M. Vanden Boom

One direction is clear: given a subclass K = Mod(σ) for σ a computable Σα

(respectively, Πα) sentence, K is an effective Σα (respectively, Πα) Borel set
(for α = 0, the result is by Definition 2.2, and an inductive argument shows
that the result holds for all α ≥ 1).

For the converse, we actually prove a generalization involving the notion
of “within”. We say C = D within K if C ∩K = D ∩K. We show that if K
and K ∩Bi are closed under isomorphism where Bi is an effective Borel set,
then we can effectively find a computable infinitary sentence σ such that
Bi = Mod(σ) within K. Moreover, if Bi is effective Σα or effective Πα then
so is σ. The effective version of Vaught’s theorem follows immediately from
this result by letting K = Bi. The remainder of this section presents the
technical details of the forcing argument, culminating with the proof of this
generalization and corollaries in Section 3.4.

3.1. Forcing conditions and forcing language. We fix an L-structure A
throughout this section and build a generic copy B of A. Eventually, we will
see that the definitions and lemmas are independent of the specific A used,
but for now it helps to think of a particular A and its generic copy B under
construction. We begin with a set F of forcing conditions.

Definition 3.1. The set F of forcing conditions is the set of finite
partial permutations p of ω. We write p, q, r for elements of F and we say
that q extends p if q ⊇ p.

We can think of F as the set of partial isomorphisms from B, which is
under construction, to A.

We need an appropriate forcing language, suitable for talking about B.
In particular, if we have an effective Borel set Bi, then our forcing language
must be able to express B ∈ Bi. Because we do not need quantifiers in order
to express this relationship, we choose a propositional language PL.

Definition 3.2. Let PL be the propositional language where the propo-
sitional symbols are obtained by substituting constants for the finitely many
variables in an atomic formula in the predicate language L. The forcing lan-

guage is the set S of computable infinitary propositional formulas in the
language PL.

We can verify that this forcing language S has enough expressive power
to say B ∈ Bi, where i is the index for an effective Borel set.

Proposition 3.3. Let i be an index for an effective Borel set Bi. Then

we can effectively find an index j for a computable infinitary propositional

formula ψj ∈ S with the meaning B ∈ Bi, i.e. B |= ψj iff B ∈ Bi. Moreover ,
if Bi is effective Σα (respectively , Πα), then ψj is computable Σα (respec-
tively , Πα) as well.

The effective Borel hierarchy 277

Proof. The proof is by induction on α.

1. Let α = 0 and consider an index i for an effective Σ0 (equivalently,
effective Π0) Borel set. Then i ∈ BSΣ

1 = BSΠ
1 so i is the Gödel number for a

finitary quantifier-free sentence formed by substituting a tuple of constants
for the finitely many variables in a finitary quantifier-free L-formula. We let j
be the Gödel number for the same sentence, now thought of as a computable
Σ0 (equivalently, Π0) formula in S built up from the propositional variables
of PL by finitary conjunctions and disjunctions.

2. Now consider α ≥ 1 where |a|O = α for some a ∈ O. We assume that
the result holds for all β < α. Suppose i is the index for some effective Σα

set Bi. Then i has the form 〈Σ, a, e〉 where |a|O = α, and Bi is the union of
the sets Bk for all indices k ∈We∩

⋃
b<Oa

BSΠ
b . Since k ∈ BSΠ

b with b <O a,

Bk is effective Πβ for some β < α. Thus, for each k ∈ We ∩
⋃
b<Oa

BSΠ
b ,

we can apply the inductive hypothesis to effectively find a formula ψk′ ∈ S

with the meaning B ∈ Bk. We take ψj to be the disjunction of the for-
mulas ψk′ . This formula ψj has the meaning B ∈ Bi and is computable
Σα as desired. Notice that j will be of the form 〈Σ, a, x, e′〉 for some ap-
propriate tuple of variables x and e′ ∈ ω (the notation a, however, is the
same as in i). Similarly, if i is the index for some effective Πα set, then
i has the form 〈Π, a, e〉 where |a|O = α, and Bi is the intersection of the
sets Bk for all indices k ∈ We ∩

⋃
b<Oa

BSΣ
b . We take ψj to be the con-

junction of the formulas ψk′ ∈ S, where ψk′ has the meaning B ∈ Bk as
above.

In order to be precise, we would always work with indices for both
the effective Borel sets and computable infinitary formulas. It is the index
(a number) that we can compute with, not the object itself. In the interest
of comprehensibility, however, we often blur the distinction between the in-
dex and the set or formula. Thus, we will often work directly with the set
or formula, knowing that we could switch to talking about the indices if we
needed to be more precise.

3.2. Definition of forcing and basic lemmas. We are now ready to define
forcing and prove the usual lemmas.

Definition 3.4 (Forcing). Let p ∈ F and let ϕ ∈ S be a formula of the
forcing language. We define p forces ϕ, written p ϕ, inductively below.
We say p decides ϕ, written p ‖ϕ, if p ϕ or p neg(ϕ).

1. Suppose ϕ is computable Σ0 and Π0. Then p ϕ if all of the constants
in ϕ are in dom(p) and p makes ϕ true in A.

2. Suppose ϕ is computable Σα (α > 0) of the form
∨∨

i ψi where each
ψi is computable Πβi

for βi < α. Then p ϕ if p ψi for some i.

278 M. Vanden Boom

3. Suppose ϕ is computable Πα (α > 0) of the form
∧∧

i ψi where each
ψi is computable Σβi

for some βi < α. Then p ϕ if for each i and
for each q ⊇ p, it is not the case that q neg(ψi).

Given a forcing condition p ∈ F and a formula ϕ ∈ S in the forcing
language, we have the following basic lemmas, proved using induction on
the complexity of the formula ϕ.

Lemma 3.5 (Extension). If p ϕ and q ⊇ p, then q ϕ.

Proof. We proceed by induction on the complexity of ϕ.

1. First, suppose ϕ is computable Σ0 and Π0; that is, ϕ is finitary. Then ϕ
has only finitely many propositional symbols and hence only finitely many
constants b from |B|. We write ϕ = ϕ(b) to emphasize that ϕ is an L-sentence
with constants from |B|. If p ϕ(b) then b ⊆ dom(p) and p makes ϕ(b) true
in A by mapping b to some tuple a of constants from |A|. If q ⊇ p then b is
also in dom(q), so q(b) = p(b) for all b ∈ b. Thus, q maps b to the same a,
thereby making ϕ(b) true in A as well. Hence q ϕ.

2. Suppose ϕ is computable Σα (α > 0) of the form
∨∨

i ψi, where each ψi
is computable Πβi

for βi < α. If p ϕ, then p ψi for some i. But if q ⊇ p,
then q ψi by the inductive hypothesis, so q ϕ.

3. Suppose ϕ is computable Πα (α > 0) of the form
∧∧

i ψi, where each ψi
is computable Σβi

for βi < α. If p ϕ, then for all i and for all r ⊇ p, we
do not have r neg(ψi). In particular, if q ⊇ p, then for all i and for all
r ⊇ q ⊇ p, it is not the case that r neg(ψi). Thus, q ϕ.

Lemma 3.6 (Consistency). It is not the case that p ϕ and p neg(ϕ).

Proof. We proceed by induction on ϕ.

1. Suppose ϕ is computable Σ0 and Π0. If p ϕ, then all of the constants
in ϕ are in dom(p) and p makes ϕ true in A. Since p cannot also make the
negation true in A, it does not force neg(ϕ). Likewise, if p neg(ϕ), it does
not force ϕ.

2. Suppose ϕ is computable Σα (α > 0) of the form
∨∨

i ψi, where each ψi
is computable Πβi

for βi < α. Then neg(ϕ) =
∧∧

i neg(ψi) where the neg(ψi)
are computable Σβi

. Assume by contradiction that p ϕ and p neg(ϕ).
Since p ϕ, there is some j such that p ψj . But p neg(ϕ) implies that
for all i and for all q ⊇ p, q does not force neg(neg(ψi)) = ψi (recall that
this equality holds by Proposition 2.6). In particular, it is not the case that
p ψj . By the inductive hypothesis, p cannot force both ψj and neg(ψj),
so we have a contradiction.

3. The dual case is even simpler. Suppose ϕ is computable Πα (α > 0)
of the form

∧∧
i ψi, where each ψi is computable Σβi

for βi < α. Suppose by

The effective Borel hierarchy 279

contradiction p ϕ and p neg(ϕ). Then p neg(ψi) for some i, while for
all i and for all q ⊇ p, q 1 neg(ψi), a contradiction.

Lemma 3.7 (Density). There exists q ⊇ p such that q ‖ϕ.

Proof. Once again, we proceed by induction on ϕ.

1. Suppose ϕ = ϕ(b) is computable Σ0 and Π0. Take any q ⊇ p such that
b ⊆ dom(q). Then q will make either ϕ(b) or neg(ϕ(b)) true in A, so q ‖ϕ.

2. Suppose ϕ is computable Σα of the form
∨∨

i ψi, where each ψi is
computable Πβi

for some βi < α. Assume that for all q ⊇ p, q 1 ϕ. It
suffices to show there is some q ⊇ p such that q neg(ϕ) =

∧∧
i neg(ψi).

By our assumption, for all q ⊇ p and for all i, q 1 ψi. By Proposition 2.6,
ψi = neg(neg(ψi)). Thus, for all q ⊇ p and for all i, q 1 neg(neg(ψi)). But
this is what it means for p to force neg(ϕ), so we have found our desired
forcing condition deciding ϕ.

3. Now suppose ϕ is computable Πα of the form
∧∧

i ψi, where each ψi
is computable Σβi

for some βi < α. As in the previous case, assuming that
p 1 ϕ, we must show that there is some q ⊇ p such that q neg(ϕ), where
neg(ϕ) =

∨∨
i neg(ψi). Since p 1 ϕ, for some i there is an extension q ⊇ p

such that q neg(ψi). Hence q neg(ϕ).

We are now in a position to build B using a special sequence of forcing
conditions.

Definition 3.8. A complete forcing sequence, or c.f.s., is a sequence
(pn)n∈ω of forcing conditions in F such that:

1. pn+1 ⊇ pn,
2. for all a ∈ |A|, there is an n such that a ∈ ran(pn),
3. for all ϕ ∈ S, there exists n such that pn ‖ϕ.

By the density and extension lemmas, it is clear that a c.f.s. exists. We
fix such a c.f.s. (pn)n∈ω and let f =

⋃
n pn. Then f is a 1-1 function since

it is the union of 1-1 partial permutations. Condition 2 implies ran(f) = ω.
Condition 3 says that all formulas in the forcing language must be decided
by some forcing condition in the sequence, including sentences of the form
b = b, which are in the forcing language for all constants b ∈ ω. In order
to decide a formula, however, all constants (namely, b) mentioned in the
formula must be in the domain of the forcing condition. Hence, dom(f) = ω.
Thus, f is a permutation of ω, mapping |B| 1-1 and onto |A|, and we obtain
our generic copy B of A from f as planned.

Definition 3.9. We say B is a generic copy of A if B ∼= A via the
function f =

⋃
n pn given by a c.f.s. (pn)n∈ω.

280 M. Vanden Boom

In this context, however, B is a predicate structure; that is, we write
B |= ϕ thinking of ϕ as a predicate formula that is satisfied with elements
of |B| substituted for the free variables in ϕ. Technically, however, we are
still working with a propositional language and propositional formulas and
hence need a propositional structure B∗ appropriate for the forcing language.
We can define a propositional structure as a map g : PL → {0, 1} in 2ω

such that g(ϕ) = 1 if ϕ is a positive sentence from the atomic diagram of
B and g(ϕ) = 0 otherwise (see [3] for a similar definition). In particular,
we can associate a propositional structure B∗ with the function f =

⋃
pn

generating B. Thus, the propositional symbols of B∗ are the atomic sentences
ofD(B). Since the propositional structure B∗ |= ϕ if and only if the predicate
structure B |= ϕ, we shall call this structure B as well.

We conclude this subsection with an important lemma showing the
strong connection between the formulas forced by some pn in the c.f.s. and
the truth of these formulas in B.

Lemma 3.10 (Truth and forcing). For all ϕ ∈ S, B |= ϕ iff there exists

n such that pn ϕ.

Proof. We proceed by induction on ϕ (once again considering B as a
propositional structure and ϕ as a propositional formula).

1. Suppose ϕ = ϕ(b) is computable Σ0 and Π0. If B |= ϕ then f =
⋃
n pn

maps b to some tuple a, making ϕ(a) true in A. Thus, there is some n

such that dom(pn) includes b and pn makes ϕ(b) true in A, so pn ϕ.
Conversely, if there is some n such that pn ϕ, then pn makes ϕ true in A.
Since B ∼=f A, B |= ϕ.

2. Suppose ϕ is computable Σα of the form
∨∨

i ψi, and assume that the
statement holds for each ψi, computable Πβi

for some βi < α. If B |= ϕ,
then there exists i such that B |= ψi, and so by the inductive hypothesis,
there is an n such that pn ψi. Hence, pn ϕ. Likewise, if there is an n

such that pn ϕ, then pn ψi for some i. By the inductive hypothesis,
B |= ψi, and so B |= ϕ as desired.

3. Now suppose ϕ is computable Πα of the form
∧∧

i ψi, and assume
that the statement holds for each ψi, computable Σβi

for some βi < α.
First, assume that B |= ϕ. Then for all i, B |= ψi and so by the inductive
hypothesis, there is some n(i) such that pn(i) ψi. There is also some m
such that pm ‖ϕ. Assume by contradiction that pm neg(ϕ), so there is
some j such that pm neg(ψj). Let M = max{m,n(j)}. By the extension
lemma, however, pM ψj and pM neg(ψj), which is a contradiction by
consistency. Therefore, we must have pm ϕ. Next, assume that for somem,
pm ϕ. Then for all i and for all n ≥ m, it is not the case that pn neg(ϕ).
That is, there is no i such that pn neg(ψi). Suppose by contradiction that

The effective Borel hierarchy 281

B 6|= ϕ. Then there is some j such that B 6|= ψj , and so by the inductive
hypothesis, there is some n(j) such that pn(j) neg(ψj). Again, we define
M = max{m,n(j)}. Then by extension, pM neg(ψj), a contradiction.
Hence, B |= ϕ.

3.3. Definability of forcing. We now show that forcing is definable. The
observant reader will notice that these formulas are independent of the par-
ticular A that we fixed at the beginning of the section, which will be crucial
in proving our main result.

Lemma 3.11 (Definability of forcing conditions). Let b be a tuple of

distinct constants from ω, with a corresponding tuple x of variables. Then

we can find a finitary quantifier-free formula forceb(x) in the predicate lan-

guage L such that A |= forceb(a) iff the relation p (with domain b) which

maps b to a is a 1-1 function (i.e. iff p is a forcing condition).

Proof. Let forceb(x) be the conjunction of formulas ¬(xi = xj) for each

bi 6= bj in b.

Lemma 3.12 (Definability of forcing). Let ϕ ∈ S and let b be a tuple

of distinct constants. Then we can find a computable infinitary predicate

formula Forceb,ϕ(x) in the predicate language L such that A |= Forceb,ϕ(a)

iff the relation p (with domain b) taking b to a is a forcing condition and

p ϕ. Moreover , if ϕ is computable Σα, or computable Πα, then so is

Forceb,ϕ(x).

Proof. Once again, the proof is by induction on ϕ.

1. Suppose ϕ is computable Σ0 and Π0. If b does not include all of the
constants from |B| appearing in ϕ, then let Forceb,ϕ(x) be ⊥.

Otherwise, we can write ϕ = ϕ(b), again emphasizing that ϕ is a fi-
nite conjunction of basic propositional symbols with constants in b. Recall
that the propositional symbols in the forcing language are simply atomic
formulas in the predicate language L with a finite tuple of constants b for
the variables. Replacing the constants b with variables x again, we have a
finitary quantifier-free formula ϕ(x) in the predicate language L, and we let
Forceb,ϕ(x) be

forceb(x) & ϕ(x).

Notice that Forceb,ϕ(x) is also finitary, computable Σ0 and Π0.

2. Suppose ϕ is computable Σα of the form
∨∨

i ψi, where each ψi is
computable Πβi

for some βi < α. Now p ϕ iff p ψi for some i. By
the inductive hypothesis, for each i, we can find an appropriate Πβi

for-
mula Forceb,ψi

(x) such that p ψi iff A |= Forceb,ψi
(a). Thus, we may let

282 M. Vanden Boom

Forceb,ϕ(x) be

forceb(x) &
∨∨

i

Forceb,ψi
(x),

a computable Σα predicate formula.

3. Suppose ϕ is computable Πα of the form
∧∧

i ψi, where each ψi is
computable Σβi

for some βi < α. Recall that p ϕ iff for all i and for all
q ⊇ p, q 1 ψi. As in the Σα case, we use the inductive hypothesis to find
appropriate formulas defining forcing for each ψi. In this case, however, we
are interested in formulas Force

b,b
′
,neg(ψi)

(x, x′) for each i and for all tuples

of distinct constants b and b
′
. If b is in dom(p) for some forcing condition p,

we can think of b
′
as representing the additional constants mapped to x′ by

some extension q ⊇ p. Thus, we let Forceb,ϕ(x) be

forceb(x) &
∧∧

i,b
′

(∀x′) neg(Force
b,b

′
,ψi

(x, x′)).

Since neg(ψi) is computable Πβi
, the formulas Force

b,b
′
,neg(ψi)

(x, x′) are also

computable Πβi
. Hence the formulas neg(Force

b,b
′
,neg(ψi)

(x, x′)) are com-

putable Σβi
, making Forceb,ϕ(x) computable Πα as desired.

3.4. Proof of main result. We use the forcing machinery we have devel-
oped in this section to prove our main result.

Theorem 1.1. Let K ⊆ Mod(L), where K is closed under isomorphism.

Suppose that for some α ≥ 1, i is an index for an effective Σα (respec-
tively , Πα) set Bi such that Bi ∩ K is closed under isomorphism. Then

we can effectively find (an index for) a computable Σα (respectively , Πα)
sentence σ such that Bi = Mod(σ) within K.

Proof. We first define σ when i is an index for an effective Σα set, and
verify that for a fixed A ∈ K, A ∈ Bi iff A ∈ Mod(σ). Next, we show
that the result holds for all A ∈ K, so Bi = Mod(σ) within K. Finally, we
consider the case when i is an index for an effective Πα set.

Definition of σ in the effective Σα case. Let i be an index for an effec-
tive Σα set. By Proposition 3.3, we can effectively find a computable Σα

formula ψj in the language PL such that for all B ∈ K, B ∈ Bi iff B |= ψj .
Now ψj may involve infinitely many constants. We want to replace ψj by
a predicate L-sentence which satisfies the same property. We do this using
the forcing mechanism we have developed.

Let A ∈ K. We think of the forcing construction for building a generic
copy B of A, given by a c.f.s. (pn)n∈ω. By the truth and forcing lemma,
B |= ψj iff there is some n ∈ ω such that pn ψj . Moreover, by the
definability of forcing lemma, for all tuples of distinct constants b, there is a

The effective Borel hierarchy 283

computable Σα formula Forceb,ψj
(x) in the predicate language L such that

A |= Forceb,ψj
(a) iff the function p mapping b to a is a forcing condition and

p ψj . Thus, we take σ to be the computable Σα sentence
∨∨

b,x

(∃x) Forceb,ψj
(x),

a c.e. disjunction over tuples of constants b and corresponding tuples of
variables x, which says that there is some forcing condition forcing ψj .

Verification. We must check that this is the desired L-formula corre-
sponding to the effective Σα set Bi. Recall that we started with a fixed but
arbitrary A ∈ K. Assume further that A ∈ Bi and consider the generic
copy B of A (B ∼= A). Since Bi ∩K is closed under isomorphism, we have
B ∈ Bi∩K and thus B |= ψj . This implies that there is an n ∈ ω such that the
forcing condition pn, mapping some b to a, forces ψj . Thus, A |= Forceb,ψj

(a),

so A ∈ Mod(σ) as desired. Likewise, if we assume that A ∈ Mod(σ), then
there is some forcing condition p forcing ψj , and consequently we can build
a generic copy B of A such that B |= ψj . But the fact that K is closed
under isomorphism implies B ∈ K. Thus, B ∈ Bi as well. Moreover, since
the intersection Bi ∩K is closed under isomorphism and B ∼= A, A ∈ Bi.

Generalization to all A ∈ K. Recall that we have been working with a
fixed A ∈ K in mind. We have shown that for this fixed A, A ∈ Bi ∩K iff
A ∈ Mod(σ) ∩ K. However, we seek to prove this result for all A ∈ K. It
is clear that there is some dependence on A. Given a forcing condition p,
the particular formulas in S forced by p depend on the specific A that we
selected. Likewise, the generic copy B depends on A and the specific c.f.s.
used to obtain this copy. Nevertheless, the method we used to define forcing
and choose a c.f.s. never depended on A. Similarly, the proofs of the lemmas
in this section did not rely on any special knowledge of A. In particular, we
defined the formulas Forceb,ψ(x) based only on b and ψ, independently of A.
Thus, our forcing mechanism works uniformly for all A, and the result is
true for all A ∈ K. This means that for all A ∈ K, A ∈ Bi iff A ∈ Mod(σ),
so Bi = Mod(σ) within K.

Definition in the effective Πα case. Let i be an index for an effective Πα

set. This implies that Bi is effective Σα, so we can use the argument above to
find a computable Σα sentence σ such that Bi = Mod(σ) within K. But this
means that Bi = Mod(neg(σ)) within K, where neg(σ) is computable Πα.

We use this theorem in the remainder of the paper to prove some ad-
ditional results. The first (and easiest) application is to get the effective
version of Vaught’s theorem.

284 M. Vanden Boom

Theorem 1.2 (Effective version of Vaught’s theorem). Let K⊆Mod(L),
where K is closed under isomorphism. Let α ≥ 1. If K is an effective Σα

(respectively , Πα) set with index i, then we can effectively find (an index

for) a computable Σα (respectively , Πα) sentence σ such that K = Mod(σ).

Proof. This is a special case of Theorem 1.1 above: take K = Bi.

Knight observed that we can relativize Theorem 1.2 in order to obtain
an alternative proof of Vaught’s theorem.

Corollary 3.13 (Relativization of Theorem 1.2). Let X be an arbitrary

set. Let K ⊆ Mod(L), where K is closed under isomorphism. Let α ≥ 1. If

K is an X-effective Σα (respectively , X-effective Πα) set with index i, then

we can effectively find (an index for) an X-computable Σα (respectively ,
X-computable Πα) sentence σ such that K = Mod(σ).

Proof. We relativize the results in Sections 2 and 3 to an arbitrary setX.
First, consider ordinals computable in X, with a corresponding set of com-
putable notations (a notation for an X-computable limit ordinal α is 3 · 5e,
where e is an index for an X-computable function that yields an increasing
sequence with limit α). Next, with this new set of notations, we define the
X-effective Borel hierarchy and X-computable infinitary formulas. The forc-
ing proof then follows as is, substituting X-effective Borel set for effective
Borel set and X-computable sentence for computable sentence.

Theorem 3.14 (Vaught). Let K ⊆ Mod(L), where K is closed under

isomorphism. Let α ≥ 1. If K is Σα (respectively , Πα) in the Borel hierar-

chy , then there is a Σα (respectively , Πα) sentence σ such that K = Mod(σ).

Proof. Recall that effective Borel sets are constructed by taking c.e.
unions and complements of basic sets. Arbitrary Borel sets in Mod(L), on
the other hand, are constructed using countable union and complementation,
not necessarily over c.e. sets. These operations, however, are computable rel-
ative to some X, namely the (Borel) code X for K itself (the details of how
we code K in X are not important, see [4] for an example). If K is Σα, for
example, then K is X-effective Σα, so we can apply Theorem 3.13 to get an
X-computable Σα sentence σ such that K = Mod(σ). Hence σ is the desired
Σα sentence. Likewise for K that are Πα in the Borel hierarchy.

4. Application of the main result. In [2], two notions of effective
embedding are introduced: computable embedding and Turing computable
embedding. These embeddings provide a way to compare classes of count-
able structures, while allowing finer distinctions than the Borel embeddings
which served as inspiration for them. Computable embeddings were origi-
nally chosen for investigation in [2], but various results on Turing computable
embeddings, defined as follows, are presented in [6].

The effective Borel hierarchy 285

Definition 4.1. A Turing computable embedding of a class K into K ′

is an operator Φ = ϕe such that:

1. for all A ∈ K, ϕ
D(A)
e = χD(B) for some B ∈ K ′,

2. if A,A′ ∈ K have corresponding Φ-image structures B,B′ ∈ K ′, re-
spectively, then A ∼= A′ iff B ∼= B′.

We write K ≤tc K
′ if there is such an embedding.

In the context of [2] and [6], K and K ′ are classes of countable struc-
tures with universe a subset of ω, possibly finite. The classes are closed
under isomorphism, modulo this restriction on the universe. Given a Turing
computable embedding Φ, we have a uniform effective procedure to pass
from the diagram of an input structure A in K to some output structure
B = Φ(A) in K ′, and we do so in a way that respects isomorphism. In order
to compute the characteristic function of the output structure B, we can
use information about what elements are in the universe of A as well as
information about what elements are not in the universe of A.

The primary result in [6] is a pull-back theorem which says that given
a Turing computable embedding Φ such that K ≤tc K

′ via Φ, and a com-
putable infinitary sentence ϕ in the language ofK ′, we can find a computable
infinitary sentence ϕ∗ of the same complexity in the language of K such that
for all A ∈ K, Φ(A) |= ϕ iff A |= ϕ∗. We call ϕ∗ a pull-back of ϕ. This is an
important tool in proving non-embeddability results and in giving character-
izations of the classes that Turing computably embed into a given class K.
We refer the interested reader to [6].

In the present paper, however, we are working with K ⊆ Mod(L) and
K ′ ⊆ Mod(L′), so K and K ′ are classes of structures with universe all

of ω. This context is of classical interest, so we would like to look at Turing
computable embeddings involving classes K,K ′ like this. In this context, we
do not need to worry about elements that are not in the universe of A ∈ K

since the universe of all input and output structures is ω. Indeed, for each
halting computation of Φ = ϕe, the information we care about is γ(a), a
finite conjunction of basic sentences in the language L corresponding to the
questions (with positive answers) asked of the oracle D(A) during the course
of the computation. We say that the computation uses γ(a).

When working with classes of structures like this, we can use the general
pull-back theorem from [6]. Nevertheless, it is interesting to see that our
main result also yields something in this direction. In this section, we use
Theorem 1.1 to get a proof of the pull-back theorem for Turing computable
embeddings that take K ⊆ Mod(L) to K ′ ⊆ Mod(L′).

4.1. A pull-back theorem. We start with a computable infinitary sen-
tence ϕ in the predicate language L′. Although we cannot immediately find

286 M. Vanden Boom

a pull-back of ϕ in the predicate language L, we can easily find a pull-back
ϕ̂ in the propositional language PL using an inductive argument (recall
that the propositional symbols of PL are atomic L-formulas with constants
substituted for the finitely many variables). We then form a correspond-
ing effective Borel set and apply the main result, Theorem 1.1, to get the
pull-back ϕ∗ as desired. Thus, the outline of the proof is as follows:

ϕ computable infinitary sentence in predicate language L′ (given)

↓

ϕ̂ pull-back in propositional language PL (Lemma 4.2)

↓

Mod(ϕ̂) effective Borel set (Lemma 4.3)

↓

ϕ∗ pull-back in predicate language L (Theorem 1.1).

We begin with a lemma that allows us to find a pull-back in PL. Unlike
the pull-back ϕ∗ that we are attempting to find in the predicate language L,
the pull-back in PL may involve infinitely many constants.

Lemma 4.2. Assume K ≤tc K
′ via Φ = ϕe and let ϕ be a computable in-

finitary sentence which is the result of substituting a finite tuple of constants

for the free variables in a computable infinitary formula in the predicate lan-

guage L′. Then we can effectively find a computable infinitary sentence ϕ̂ in

the propositional language PL such that for all A ∈ K, Φ(A) |= ϕ iff A |= ϕ̂.

Moreover , if ϕ is computable Σα, or computable Πα, for α ≥ 1, then so is ϕ̂.

Proof. The proof is by induction on the complexity of ϕ.

1. Suppose ϕ is computable Σ0 and Π0. We may assume that ϕ = ϕ(b) is a
finite conjunction of basic sentences ψi, where b is a finite tuple of constants.
Consider one such ψi and let H be the c.e. set of halting computations such
that Φ halts with output 1 on input ψi. Each computation h ∈ H uses some

γh(a), so we can let ψ̂i be
∨∨

h∈H γh(a). This is a computable Σ1 sentence in

the propositional language PL, and for A ∈ K, Φ(A) |= ψi iff A |= ψ̂i. Thus,

we can take ϕ̂ to be the finite conjunction of the ψ̂i as defined above. Then
ϕ̂ is also computable Σ1 and Φ(A) |= ϕ iff A |= ϕ̂.

2. Suppose ϕ is computable Σα (α ≥ 1) of the form
∨∨

i(∃ui)ψi(ui),
where each ψi is computable Πβi

for some βi < α. Then let ϕ̂ be
∨∨

i,di

̂ψi(di),

which, by the inductive hypothesis, is computable Σα and satisfies the de-
sired property.

The effective Borel hierarchy 287

3. Suppose ϕ is computable Πα (α ≥ 1) of the form
∧∧

i(∀ui)ψi(ui),
where each ψi is computable Σβi

for some βi < α. If α = 1, then neg(ψi(ui))
is a computable Π0 formula for each i, so for all possible tuples of constants
di which we can substitute for the variables ui, we can use the first case to

form ̂neg(ψi(di)), a computable Σ1 sentence in PL. We let ϕ̂ be

neg
(∨∨

i,di

̂neg(ψi(di))
)
,

so ϕ̂ is computable Π1 as desired. Otherwise, if α > 1, let ϕ̂ be
∧∧

i,di

̂ψi(di),
which by the inductive hypothesis is computable Πα and satisfies the re-
quired property.

(Note that, for the Π1 case, we must write ϕ̂ in terms of the dual. This
ensures that the complexity of ϕ and ϕ̂ matches at this level. We could, of
course, write it in this form for all Πα cases, but it is only necessary when
α = 1.)

As we did before in the forcing argument, when we write A |= ϕ̂ we are
thinking of A as a propositional structure. Likewise, later in this section
when we write A |= ϕ∗ we are thinking of A as a predicate structure, even
though we do not explicitly make this distinction.

Next we pass from a sentence ϕ̂ in the propositional language PL to an
effective Borel set of the same complexity.

Lemma 4.3. Let ϕ̂ be a computable Σα (respectively , Πα) sentence in

the propositional language PL. Then Mod(ϕ̂) = Bj where j is an index for

an effective Σα (respectively , Πα) set.

Proof. Once again, the proof is by induction on the complexity of ϕ̂.

1. Suppose ϕ̂ is computable Σ0 and Π0. Then ϕ̂ is a finitary conjunction
of basic propositional symbols. However, we can also think of ϕ̂ as a finitary
quantifier-free formula in the predicate language L with a tuple of constants
substituted for the finitely many variables in the formula. By Definition 2.2,
Mod(ϕ̂) = {B : B |= ϕ̂} = Bj where j ∈ BSΣ

1 = BSΠ
1 is the Gödel number

of the sentence ϕ̂.

2. Suppose ϕ̂ is computable Σα (α ≥ 1) of the form
∨∨

i ψ̂i, where each ψ̂i
is computable Πβi

for some βi < α. Then Mod(ϕ̂) is the c.e. union of the sets

Mod(ψ̂i), which are effective Πβi
by the inductive hypothesis. Thus, Mod(ϕ̂)

is an effective Σα set Bj , where j is of the form 〈Σ, a, e〉 and |a|O = α.

3. Likewise, suppose ϕ̂ is computable Πα (α ≥ 1) of the form
∧∧

i ψ̂i,

where each ψ̂i is computable Σβi
for some βi < α. By the inductive hypoth-

esis, Mod(ϕ̂) is the c.e. intersection of the effective Σβi
sets Mod(ψ̂i). Again,

288 M. Vanden Boom

this is enough to conclude that Mod(ϕ̂) is an effective Πα set Bj, with an
index j of the form 〈Π, a, e〉 for some |a|O = α.

We are now ready to prove the pull-back theorem. It may be helpful to
review the outline of the proof given at the beginning of this section.

Theorem 4.4 (Pull-back theorem for ≤tc with K ⊆ Mod(L) and
K ′ ⊆ Mod(L′)). Let K ⊆ Mod(L) and K ′ ⊆ Mod(L′) where K,K ′ are

closed under isomorphism. If K ≤tc K ′ via Φ = ϕe, then for any com-

putable infinitary sentence ϕ in the language L′, we can find a computable

infinitary sentence ϕ∗ in the language L such that for all A ∈ K, Φ(A) |= ϕ

iff A |= ϕ∗. Moreover , if ϕ is computable Σα, or computable Πα, for α ≥ 1,
then so is ϕ∗.

Proof. We give the proof for ϕ computableΣα. The proof is similar when
starting with a computable Πα sentence.

Suppose ϕ is a computable Σα sentence in the language L′. By Lemma 4.2,
there is a computable Σα sentence ϕ̂ in the propositional language PL such
that, for all A ∈ K, Φ(A) |= ϕ iff A |= ϕ̂. However, this is not yet the
required sentence: we want to find a sentence ϕ∗ in the predicate language L
which satisfies the same property. We continue by taking ϕ̂ and forming
Mod(ϕ̂) ⊆ Mod(L), which is an effective Σα set by Lemma 4.3.

We do not know how the operator Φ behaves on structures outside of K.
However, for A,A′ ∈ K, if A′ ∼= A, then Φ(A′) ∼= Φ(A) since the Turing
computable embedding Φ respects isomorphism (see Definition 4.1). Thus,

A |= ϕ̂ ⇒ Φ(A) |= ϕ ⇒ Φ(A′) |= ϕ ⇒ A′ |= ϕ̂,

so Mod(ϕ̂) ∩ K is closed under isomorphism and we have satisfied the
hypotheses of Theorem 1.1. Applying this theorem, we see that Mod(ϕ̂)
is axiomatized (within K) by a computable Σα sentence σ, which is in the
language L. We define ϕ∗ to be the sentence σ given by Theorem 1.1. Thus,
for A ∈ K,

Φ(A) |= ϕ ⇔ A |= ϕ̂ ⇔ A ∈ Mod(ϕ̂) = Bi ⇔ A |= ϕ∗

as desired. Moreover, since Lemmas 4.2 and 4.3 and Theorem 1.1 are effec-
tive, we have effectively found the pull-back of ϕ in the predicate language L
using this procedure.

References

[1] C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hier-

archy, Elsevier, 2000.
[2] W. Calvert, D. Cummins, J. F. Knight and S. Miller, Comparing classes of finite

structures, Algebra Logika 34 (2004), 666–701 (in Russian); English transl.: Algebra
Logic 43 (2004), 374–392.

The effective Borel hierarchy 289

[3] H. B. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.
[4] T. Jech, Set Theory, 2nd ed., Springer, 1997.
[5] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.
[6] J. F. Knight, S. Miller, and M. Vanden Boom, Turing computable embeddings, J. Sym-

bolic Logic, to appear.
[7] E. G. K. López-Escobar, An interpolation theorem for denumerably long formulas,

Fund. Math. 57 (1965), 253–272.
[8] R. Vaught, Invariant sets in topology and logic, ibid. 82 (1974), 269–294.

Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556, U.S.A.
E-mail: mvandenb@nd.edu

Received 9 September 2006;

in revised form 7 May 2007

