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Abstract. This is the second part of a paper about the classification of 2-compact
groups. In the first part we set up a general classification procedure and applied it to the
simple 2-compact groups of the A-family. In this second part we deal with the other simple
Lie groups and with the exotic simple 2-compact group DI(4). We show that all simple
2-compact groups are uniquely N -determined and conclude that all connected 2-compact
groups are uniquely N -determined. This means that two connected 2-compact groups are
isomorphic if their maximal torus normalizers are isomorphic and that the automorphisms
of a connected 2-compact group are determined by their effect on a maximal torus. As an
application we confirm the conjecture that any connected 2-compact group is the product
of a compact Lie group with copies of the exceptional 2-compact group DI(4).
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2. The limit of the functor H1(W ; Ť )/H1(π0; Ž( )0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3. Rank two nontoral objects of A(SL(2n + 1,R)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4. The C-family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1. The structure of PGL(n,H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2. The limit of the functor H1(W0; Ť )W/W0 on A(PGL(n,H))≤t
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1. INTRODUCTION

This is the second part of a paper whose aim is to show that connected
2-compact groups are determined by their maximal torus normalizers and
that some nonconnected 2-compact groups are determined by their maximal
torus normalizers together with information about the group of components.
The first part [24] contained a general classification scheme which

(1) reduces the classification problem to the case of a connected, simple
2-compact group with no center, and

(2) deals inductively with connected, simple 2-compact groups with no
center.

In the first part we applied this general procedure to the connected 2-
compact groups PGL(n + 1,C), n ≥ 1, of the A-family and showed that
they are uniquely N -determined [24, Theorem 1.4]. In this second part we
shall apply the same procedure to the D-, B-, and C-families of Lie groups,
to the exceptional Lie groups G2, F4, E6, PE7, and E8, and to the exotic
2-compact group DI(4) [9]. We show that there do not exist shadow versions
of these well-known 2-compact groups. The main results are the following.

1.1. Theorem (The D-, B-, and C-families). The connected , simple 2-
compact groups PSL(2n,R), n ≥ 4, SL(2n+ 1,R), n ≥ 2, and PGL(n,H),
n ≥ 3, are uniquely N -determined. Their automorphism groups are

Aut(PSL(2n,R)) =







Z×\Z×
2 ×Σ3, n = 4,

Z×\Z×
2 × 〈c1〉, n > 4 even,

Z×
2 , n > 4 odd ,

Aut(SL(2n+ 1,R)) = Z×\Z×
2 , n ≥ 2,

Aut(PGL(n,H)) = Z×\Z×
2 , n ≥ 3,

where 〈c1〉 is a group of order two (generated by conjugation with a matrix

c1 ∈ GL(2n,R) of determinant −1).
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1.2. Theorem ([36, 1.3]). The connected , simple 2-compact group G2 is

uniquely N -determined. Its automorphism group is Aut(G2) = Z×\Z×
2 ×C2.

1.3. Theorem ([35]). The connected , simple 2-compact group F4 is

uniquely N -determined. Its automorphism group is Aut(F4) = Z×\Z×
2 .

1.4. Theorem. The connected , simple 2-compact groups E6, PE7, and

E8 are uniquely N -determined. Their automorphism groups are Aut(E6) =
Z×

2 , Aut(PE7) = Z×\Z×
2 , and Aut(E8) = Z×\Z×

2 .

1.5. Theorem. The connected , simple 2-compact group DI(4) is uniquely

N -determined. Its automorphism group is Aut(DI(4)) = Z×\Z×
2 .

The method also applies to some nonconnected 2-compact groups and
as an example we consider the general linear groups over the field of real
numbers.

1.6. Corollary. The 2-compact group GL(n,R) is totallyN -determined

for all n ≥ 2. Its automorphism group is

Aut(GL(n,R)) =







Z×\Z×
2 , n ≥ 3 odd ,

Z×
2 , n = 2,

Z×
2 × 〈δ〉, n ≡ 2 mod 4, n > 2,

Z×\Z×
2 × 〈c1〉 × 〈δ〉, n ≡ 0 mod 4,

where 〈δ〉 and 〈c1〉 are subgroups of order two.

The above results together with the corresponding result for the A-
family [24, Theorem 1.4] say that all simple 2-compact groups are uniquely
N -determined. Given this information, the general classification procedure
shows that in fact all connected 2-compact groups are uniquelyN -determined
and that some nonconnected 2-compact groups are totally N -determined
[24, Theorem 1.1].

2. THE D-FAMILY

Let GL(2n,R), n ≥ 1, be the matrix group of 2n by 2n real matrices
and SL(2n,R) the closed subgroup of matrices with determinant 1. The
D-family is the infinite family of matrix groups

PSL(2n,R) =
SL(2n,R)

〈−E〉 , n ≥ 4,

with trivial center. Of course, these groups also exist for n = 1, 2, 3; how-
ever, PSL(2,R) = {1} is the trivial group, and PSL(4,R) = PGL(2,C)2,
PSL(6,R) = PGL(4,C) will at this stage be known to be uniquely N -
determined [24, Theorem 1.4].
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The maximal torus and the maximal torus normalizer of the Lie groups
GL(2n,R), SL(2n,R), and PSL(2n,R) are

(2.1)

T (GL(2n,R)) = SL(2,R)n, N(GL(2n,R)) = GL(2,R) ≀Σn,

T (SL(2n,R)) = SL(2,R)n, N(SL(2n,R)) =

SL(2n,R) ∩N(GL(2n,R)),

T (PSL(2n,R)) =
SL(2,R)n

〈−E〉 , N(PSL(2n,R)) =
N(SL(2n,R))

〈−E〉 .

In all three cases, the maximal torus normalizer is the semidirect product
for the action of the Weyl group

(2.2)
W (GL(2n,R)) = Σ2 ≀Σn, Σ2 = W (GL(2,R)) =

〈(
0 1

1 0

)〉

,

W (SL(2n,R)) = A2n ∩ (Σ2 ≀Σn) = W (PSL(2n,R))

on the maximal torus. It is known that

(2.3) H0(W ; Ť ) = 0, H1(W ; Ť ) =







Z/2, n = 3,

Z/2× Z/2, n = 4,

0, n > 4,

for PSL(2n,R), n ≥ 3 [6, 16, 21, 22]. (The group of outer Lie automorphisms
of the Lie group PSL(8,R), isomorphic to Σ3, is faithfully represented in
H1(W ; Ť )(PSL(8,R)).)

The Lie groups

GL(2n,R) = SL(2n,R) ⋊ 〈D〉, PGL(2n,R) = PSL(2n,R) ⋊ 〈D〈−E〉〉
are the semidirect products of their identity components with the order
two subgroup generated by the matrix D = diag(−1, 1, . . . , 1) (or any other
order two matrix with negative determinant). Conjugation with D induces
an outer automorphism of the Lie groups SL(2n,R) and PSL(2n,R).

1. The structure of PSL(2n,R). In this section we investigate the
Quillen category A(PSL(2n,R)) [24, Definition 2.45] for the 2-compact
group PSL(2n,R) (and the related 2-compact groups SL(2n,R), GL(2n,R),
and PGL(2n,R)).

Consider the elementary abelian 2-groups

(2.4)

t(SL(2n,R)) = t(GL(2n,R)) = 〈e1, . . . , en〉
⊂ SL(2n,R) ⊂ GL(2n,R),

∆2n = 〈e1, . . . , en, c1, . . . , cn〉 = 〈diag(±1, . . . ,±1)〉 ∼= (Z/2)2n

⊂ GL(2n,R),
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(2.4cont.)

P∆2n = ∆2n/〈e1 · · · en〉 ∼= (Z/2)2n−1 ⊂ PGL(2n,R),

S∆2n = 〈e1, . . . , en, c1c2, . . . , c1cn〉 = SL(2n,R) ∩∆2n

∼= (Z/2)2n−1 ⊂ SL(2n,R),

PS∆2n = S∆2n/〈e1 · · · en〉 ∼= (Z/2)2n−2 ⊂ PSL(2n,R),

t(PSL(2n,R)) = t(PGL(2n,R)) = 〈I, e1, . . . , en〉/〈e1 . . . en〉
⊂ PSL(2n,R) ⊂ PGL(2n,R),

P t(SL(2n,R)) = Pt(GL(2n,R)) = 〈e1, . . . , en〉/〈e1 · · · en〉
⊂ SL(2n,R) ⊂ GL(2n,R),

where

ej = diag

((
1 0

0 1

)

, . . . ,

(−1 0

0 −1

)

, . . . ,

(
1 0

0 1

))

∈ SL(2n,R),

I = diag

((
0 −1

1 0

)

, . . . ,

(
0 −1

1 0

))

∈ SL(2n,R),

cj = diag

((
1 0

0 1

)

, . . . ,

(−1 0

0 1

)

, . . . ,

(
1 0

0 1

))

∈ GL(2n,R).

(2.5)

The matrices ej and cj , 1 ≤ j ≤ n, have order two and commute with each
other while Iej = ejI, Icj = ejcjI, and I2 = e1 · · · en = −E.

The representation of the Weyl groups

W (GL(2n,R)) = 〈c1, . . . , cn〉⋊Σn = Σ2 ≀Σn,(2.6)

W (SL(2n,R)) = 〈c1c2, . . . , c1cn〉⋊Σn = A2n ∩ (Σ2 ≀Σn)(2.7)

on the maximal toral elementary abelian 2-group t(GL(2n,R)) is trivial on
the subgroup 〈c1, . . . , cn〉 = Σn

2 while Σn ⊂ GL(n,C) ⊂ SL(2n,R) permutes
the n basis vectors e1, . . . , en of t(SL(2n,R)) = t(GL(2n,R)).

Let V be a nontrivial elementary abelian 2-group in PGL(2n,R) and
V ∗ its inverse image in GL(2n,R). Let q : V → F2 = {0, 1} be the function
and [ , ] : V × V → F2 = {0, 1} the bilinear map given by v∗2 = (−E)q(v)

and [v∗1, v
∗
2] = (−E)[v1,v2], where v∗, v∗1, v

∗
2 ∈ SL(2n,R) are preimages of

v, v1, v2 ∈ PSL(2n,R), respectively. The equations

[v1, v2] = [v2, v1], [v, v] = 0, q(v1 + v2) = q(v1) + q(v2) + [v1, v2]

show that q is the quadratic function associated to the symplectic bilinear
form [ , ] [17, p. 356]. The bilinear form is the deviation from linearity of
the quadratic function. Define V ⊥ ⊃ R(V ) to be the subgroups

V ⊥ = {v ∈ V | [v, V ] = 0} ⊃ {v ∈ V ⊥ | q(v) = 0} = R(V )
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of V . Since q is a group homomorphism on V ⊥, the subgroup R(V ) is either
all of V ⊥ or a subgroup of index 2.

In the following we write G ◦ H for the product of the groups G and
H with a common central subgroup amalgamated. The subgroup ℧1(V

∗) is
generated by all squares of elements of V ∗ [17, III.10.4].

2.8. Lemma. Let V be a nontrivial elementary abelian 2-group in the

adjoint group PGL(2n,R). The preimage, V ∗, in GL(2n,R) of V is

V ∗ =







C2 × V, q(V ) = 0,

C4 ◦ V, [V, V ] = 0, q(V ) 6= 0,

P ×R(V ), [V, V ] 6= 0, q(V ⊥) = 0,

(C4 ◦ P )×R(V ), [V, V ] 6= 0, q(V ⊥) 6= 0,

where C2 = 〈−E〉 ⊂ C4 ⊂ SL(2n,R), P = 21+2d
± is extraspecial , C4 ◦ P is

generalized extraspecial with center of order 4, and ℧1(V
∗) ⊂ 〈−E〉.

Proof. As long as the bilinear form is trivial, [V, V ] = 0, V ∗ is abelian and
the structure theorem for finitely generated abelian groups applies. Assume
that the bilinear form does not completely vanish, [V, V ] 6= 0. Then V ∗ is
nonabelian with commutator subgroup [V ∗, V ∗] = C2. Write V = U ×R(V )
for some nontrivial subgroup U complementary to R(V ). Then V ⊥ = V ⊥ ∩
(U ×R(V )) = (V ⊥ ∩U)×R(V ) and q(V ⊥) = q(V ⊥ ∩U). If U∗ denotes the
preimage of U , we have V ∗ = U∗(C2×R(V )) = U∗×R(V ) as the preimage of
R(V ), C2×R(V ), is central in V ∗. The commutator subgroup [U∗, U∗] equals
[U∗R(V ), U∗R(V )] = [V ∗, V ∗] = C2 and the center Z(U∗) is the preimage
of V ⊥∩U . If q(V ⊥) = 0, then R(V ) = V ⊥ and V ⊥∩U = R(V )∩U is trivial
so Z(U∗) = C2 and U∗ = P is extraspecial. If q(V ⊥) 6= 0, R(V ) has index 2
in V ⊥, V ⊥∩U has order 2, and q(V ⊥∩U) 6= 0 so that Z(U∗) contains an el-
ement of order 4. Therefore Z(U∗) = C4 and U∗ is generalized extraspecial.
There are two isomorphism classes of such groups but only U∗ = C4 ◦D8 ◦
· · · ◦D8 = C4 ◦P has elementary abelian abelianization [33, Ex. 8, p. 146].

For instance, the preimage of the maximal toral elementary abelian 2-
group t(PSL(2n,R) of PSL(2n,R) is the abelian group

(2.9) t(PSL(2n,R))∗ = 〈I, e1, . . . , en〉,
generated by I and t(SL(2n,R)).

2.10. Corollary. Let V be a nontrivial elementary abelian 2-group in

PSL(2n,R). If

• q(V ) = 0, [V, V ] = 0 then V is toral in PSL(2n,R) if and only if

V ∗ = C2 × V is toral in SL(2n,R);
• q(V ) 6= 0, [V, V ] = 0 then V is toral ;
• q(V ) 6= 0, [V, V ] 6= 0 then V is nontoral.
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Proof. We have

V is toral ⇔ V ⊂ t(PSL(2n,R)) ⇔ V ∗ ⊂ t(PSL(2n,R))∗

where the symbol “⊂” reads “is subconjugate to”. In the first case of the
corollary, the preimage V ∗ contains no elements of order 4 so that

V ∗ ⊂ t(PSL(2n,R))∗ ⇔ V ∗ ⊂ t(SL(2n,R))

as t(SL(2n,R)) consists of the elements of order ≤ 2 in t(PSL(2n,R))∗. In
the second case, we have V ∗ = C4 × R(V ) so that R(V ) ⊂ CSL(2n,R)(I) =
GL(n,C). But any complex representation of the elementary abelian 2-
group R(V ) is toral, so R(V ) ⊂ t(GL(n,C)) = t(SL(2n,R)) and V ∗ ⊂
〈C4, t(SL(2n,R))〉 = t(PSL(2n,R))∗. In the third case, the nonabelian group
V ∗ cannot be a subgroup of the abelian group t(PSL(2n,R))∗.

2.11. Lemma. Let V1 and V2 be elementary abelian 2-groups in the ad-

joint group PSL(2n,R). Then

V1 and V2 are conjugate in PSL(2n,R)

⇔ V ∗
1 and V ∗

2 are conjugate in SL(2n,R)

where V ∗
1 , V

∗
2 ⊂ SL(2n,R) are the preimages.

Proof. This is clear.

Write A(PGL(2n,R))q=0 and A(PGL(2n,R))≤t, q=0 for the full subcat-
egories of A(PGL(2n,R)) generated by all elementary abelian 2-groups
V ⊂ PGL(2n,R) with trivial quadratic function q, respectively, all toral
elementary abelian 2-groups V ⊂ PGL(2n,R) with trivial quadratic func-
tion q. Define A(PSL(2n,R))q=0 and A(PSL(2n,R))≤t, q=0 similarly as full
subcategories of A(PSL(2n,R)).

2.12. Lemma. Write GL for GL(2n,R), SL for SL(2n,R), and PSL for

PSL(2n,R). The inclusion functors

A(Σ2n, ∆2n)→ A(GL), A(Σ2n, S∆2n)→ A(SL),

A(W (SL), t(SL))→ A(SL)≤t,

A(Σ2n, P∆2n)→ A(PGL)q=0, A(Σ2n, PS∆2n)→ A(PSL)q=0,

A(W (PSL), t(PSL))→ A(PSL)≤t,

A(W (PSL), P t(SL))→ A(PSL)≤t, q=0

are equivalences of categories. In particular , A(SL) and A(PSL) are full

subcategories of A(GL) and A(PGL), respectively. (See [24, Definition 2.68]
for the meaning of A(Σ2n, ∆2n).)
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Proof. By real representation theory, any nontrivial elementary abelian
2-group of GL(2n,R) is conjugate to a subgroup V of ∆2n (2.4) and

CGL(2n,R)(V ) =
∏

̺∈V ∨

GL(i̺,R)

where i : V ∨ → Z records the multiplicity of ̺ ∈ V ∨ in the representation
V ⊂ ∆2n ⊂ GL(2n,R). Observe that∆2n is the maximal elementary abelian
2-group in CGL(2n,R)(V ). (For any i ≥ 1, GL(i,R) contains the subgroup
∆i, consisting of diagonal matrices with ±1 in the diagonal, as a maximal
elementary abelian 2-group.) Therefore, by the standard argument from
[7, IV.2.5], used also in [24, Lemma 3.4], any group homomorphism be-
tween two nontrivial subgroups of ∆2n induced by conjugation with a ma-
trix from GL(2n,R) is in fact induced by conjugation with a matrix from
NGL(2n,R)(∆2n) = ∆2n ⋊ Σ2n [32, Lemma 3]. Thus the inclusion functor
A(Σ2n, ∆2n)→ A(GL(2n,R)) is a category equivalence.

Any nontrivial elementary abelian 2-group V ⊂ PGL(2n,R) with
q(V ) = 0 is conjugate to a subgroup of P∆2n since V ∗, the preimage in
GL(2n,R), is conjugate to a subgroup of ∆2n. Let V1, V2 be two nontrivial
subgroups of P∆2n. From the commutative diagram of morphism sets

A(Σ2n, ∆2n)(V ∗
1 , V

∗
2 )

����

A(GL(2n,R))(V ∗
1 , V

∗
2 )

����
A(Σ2n, P∆2n)(V1, V2)

� � // A(PGL(2n,R))q=0(V1, V2)

we see that the bottom horizontal arrow is a bijection. This implies that
A(Σ2n, P∆2n)→ A(PGL(2n,R))q=0 is an equivalence of categories.

Any nontrivial elementary abelian 2-group in SL(2n,R) is conjugate in
GL(2n,R) to a subgroup of SL(2n,R)∩∆2n = S∆2n (2.4). The Quillen cate-
gory of SL(2n,R) is a full subcategory of the Quillen category of GL(2n,R)
since CGL(2n,R)(V ) 6⊂ SL(2n,R) for all objects V of A(SL(2n,R)). Thus
the inclusion functor A(Σ2n, S∆2n) → A(SL(2n,R)) is an equivalence of
categories.

Any toral elementary abelian 2-group in SL(2n,R) is conjugate to a
subgroup of t(SL(2n,R)) by its very definition [24, Definition 2.50]. Any
morphism between two nontrivial subgroups of t(SL(2n,R)) induced by
conjugation with a matrix from SL(2n,R) is in fact induced by conjugation
with a matrix from N(SL(2n,R)) and hence from W (SL(2n,R)) [7, IV.2.5].
Thus A(W (SL), t(SL)) → A(SL(2n,R))≤t is a category equivalence. The
same argument can be used to identify the toral subcategory for PSL(2n,R)
(and it is actually a general fact that the inclusion functor A(W (X), t(X))→
A(X)≤t is an equivalence of categories, where t(X)→X is the maximal toral
elementary abelian p-group in the connected p-compact group X [28, 2.8]).
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Any nontrivial toral elementary abelian 2-group V ⊂ PSL(2n,R) with
q(V ) = 0 is conjugate to a subgroup of Pt(SL) (2.4) since V ∗, the preimage
(2.8) in GL(2n,R), is conjugate to a subgroup of t(SL) ⊂ t(PSL)∗ (2.9).
As A(PSL)≤t, q=0 is a full subcategory of A(PSL)≤t = A(W (PSL), t(PSL)),
this means that A(W (PSL), P t(SL)) → A(PSL)≤t, q=0 is a category equiv-
alence.

We now specialize to the full subcategory A(PSL(2n,R))≤t
≤2 of toral ob-

jects of rank at most two [24, Definition 2.50].

2.13. Proposition. The chart

Lines Planes
A(PSL(2n,R))≤t

≤2
q = 0 q 6= 0 q = 0 q 6= 0

n even n/2 2 P (n, 3) + P (n, 4) n/2 + [n/4]

n odd [n/2] 1 P (n, 3) + P (n, 4) [n/2]

gives the number of isomorphism classes of toral objects of rank at most two

in A(PSL(2n,R)).

When n is even, the n/2 toral lines with q = 0 are L(2i, 2n − 2i), 1 ≤
i ≤ n/2, and the two toral lines with q 6= 0 are I and ID. The toral planes

with q = 0 are the planes P (2i0, 2i1, 2i2, 0) where (i0, i1, i2) is a partition

of n into three natural numbers, P (2i0, 2i1, 2i2, 2i3) where (i0, i1, i2, i3) is a

partition of n into four natural numbers, and the toral planes with q 6= 0 are

I#L(i, n− i), 1 ≤ i ≤ n/2, and I#L(i, n− i)D for even i.

When n is odd , the [n/2] toral lines with q = 0 are L(2i, 2n − 2i), 1 ≤
i ≤ [n/2], and the toral line with q 6= 0 is I. The toral planes with q = 0
are the planes P (2i0, 2i1, 2i2, 0) where (i0, i1, i2) is a partition of n into three

natural numbers, P (2i0, 2i1, 2i2, 2i3) where (i0, i1, i2, i3) is a partition of n
into four natural numbers, and the toral planes with q 6= 0 are I#L(i, n− i),
1 ≤ i ≤ [n/2].

In (2.14) and (2.15) we list the centralizers of the rank one objects and

in (2.16) and (2.17) the centralizers of the rank two objects.

Proposition 2.13 is the conclusion of the following considerations.

For any partition i = (i0, i1) of n = i0 + i1 into a sum of two positive
integers i0 ≥ i1 ≥ 1 let L(i) = L(2i0, 2i1) ⊂ t(SL(2n,R)) ⊂ SL(2n,R) be
the toral subgroup generated by

diag(

i0
︷ ︸︸ ︷

+E, . . . ,+E,

i1
︷ ︸︸ ︷

−E, . . . ,−E).

Then the centralizer (of the image in PSL(2n,R)) of this subgroup is
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(2.14) CPSL(2n,R)L(2i0, 2i1)

=







SL(2i0,R)× SL(2ii,R)

〈−E〉 ⋊ 〈diag(D1, D2)〉, i0 6= i1,

SL(2i0,R)2

〈−E〉 ⋊

〈

diag(D1, D2),

(
O E

E 0

)〉

, i0 = i1,

where Dj = diag(−1, 1, . . . , 1) ∈ GL(2ij ,R) are matrices of determinant −1.
The diagonal matrix diag(D1, D2) acts on the identity component of the
centralizer by the outer action on both factors. In the second case, which
only occurs when n = 2i0 is even, the matrix

(
O E
E 0

)
acts by permuting the

factors.

The element I ∈ t(PSL(2n,R))∗ ⊂ SL(2n,R) of order four generates an
order two toral subgroup of PSL(2n,R) with centralizer [28, 5.11]

(2.15) CPSL(2n,R)(I) =

{
GL(n,C)/〈−E〉, n odd,

GL(n,C)/〈−E〉⋊ 〈c1 · · · cn〉, n even,

where, in the even case, the component group acts on the identity com-
ponent through the unstable Adams operation ψ−1. The nontrivial outer
automorphism of PSL(2n,R) takes I to ID where I 6= ID if and only if n is
even [24, Example 5.4(4)].

For any partition i = (i0, i1, i2, 0) of n = i0 + i1 + i2 into a sum of
three positive integers i0 ≥ i1 ≥ i2 > 0 or any partition i = (i0, i1, i2, i3) of
n = i0 + i1 + i2 + i3 into a sum of four positive integers i0 ≥ i1 ≥ i2 ≥ i3 > 0
let P (i) = P (2i0, 2i1, 2i2, 2i3) ⊂ t(SL(2n,R)) ⊂ SL(2n,R) be the subgroup
generated by the two elements

diag(

i0
︷ ︸︸ ︷

+E, . . . ,+E,

i1
︷ ︸︸ ︷

−E, . . . ,−E,
i2

︷ ︸︸ ︷

+E, . . . ,+E,

i3
︷ ︸︸ ︷

−E, . . . ,−E),

diag(

i0
︷ ︸︸ ︷

+E, . . . ,+E,

i1
︷ ︸︸ ︷

+E, . . . ,+E,

i2
︷ ︸︸ ︷

−E, . . . ,−E,
i3

︷ ︸︸ ︷

−E, . . . ,−E).

The centralizers in PSL(2n,R) are

(2.16) CPSL(2n,R)(P (i))

=







SL(2i0,R)2 × SL(2i2,R)2

〈−E,−E,−E,−E〉 ⋊ (ker(C
S(i)
2 → C2) ⋊ Z/2),

i = (2i0, 2i0, 2i2, 2i2),

SL(2i0,R)4

〈−E,−E,−E,−E〉 ⋊ (ker(C
S(i)
2 → C2) ⋊ (Z/2× Z/2)),

i = (2i0, 2i0, 2i0, 2i0),
∏

S(i) SL(2ij ,R)

〈−E〉 ⋊ ker(C
S(i)
2 → C2), otherwise,
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where

ker(C
S(i)
2 → C2)

= 〈diag(D1, D2, E,E), diag(D1, E,D3, E), diag(D1, E,E,D4)〉
(when #S(i) = 4) is generated by the diagonal matrices

Dj = diag(−1, 1, . . . , 1) ∈ GL(2ij,R), 1 ≤ j ≤ 4,

and the groups

Z/2 =

〈









0 E 0 0

E 0 0 0

0 0 0 E

0 0 E 0









〉

,

Z/2× Z/2 =

〈









0 E 0 0

E 0 0 0

0 0 0 E

0 0 E 0









,









0 0 E 0

0 0 0 E

E 0 0 0

0 E 0 0









〉

are generated by block permutation matrices. (The component group of the
first line is C2 ×D8; the component group of the second line is extraspecial
of order 32 isomorphic to D8 ◦D8.)

For any partition i = (i0, i1) of n = i0 + i1 into a sum of two positive
integers i0 ≥ i1 > 0 let I#L(i0, i1) ⊂ PSL(2n,R) be the elementary abelian
2-group that is the quotient of

(I#L(i0, i1))
∗ = 〈I, diag(

i0
︷ ︸︸ ︷

+E, . . . ,+E,

i1
︷ ︸︸ ︷

−E, . . . ,−E)〉 ⊂ t(PSL(2n,R))∗

where t(PSL(2n,R))∗ is the group (2.9). It follows that

(2.17) CPSL(2n,R)I#L(i0, i1)

=







GL(i0,C)×GL(i1,C)

〈−E,−E〉 , n odd,

GL(i0,C)×GL(i1,C)

〈−E,−E〉 ⋊ 〈c1 · · · cn〉, n even, i0 6= i1,

GL(i0,C)×GL(i0,C)

〈−E,−E〉 ⋊ 〈c1 · · · cn, P 〉, n even, i0 = i1,

where P =
(

0 E
E 0

)
permutes the two identical factors.

2.18. Proposition. I#L(i, n − i) 6= I#L(i, n − i)D if and only if n
and i are even.
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Proof. The automorphism group of 〈i〉× 〈ε〉 = C4×C2 = I#L(i, n− i)∗
is the dihedral group of order eight

Aut(C4 × C2) = 〈a, b | a4, b2, bab = a3〉
generated by the two automorphisms given by a(i) = iε, a(ε) = i2ε and
b(i) = i, b(ε) = i2ε. The automorphism a2 ∈ Aut(C4) ⊂ Aut(C4 × C2) is
induced by conjugation with the matrix

diag(P, . . . , P ), P =

(
0 1

1 0

)

,

of determinant (−1)n. Thus

A(SL(2n,R))(I#L(i, n− i)∗) 6= A(GL(2n,R))(I#L(i, n− i)∗)
and I#L(i, n− i) = I#L(i, n− i)D when n is odd [24, Lemma 5.2].

Assume now that n is even. The group of trace preserving automorphisms

A(GL(2n,R))(C4 × C2) =

{ 〈a2, ba〉, 2i < n,

Aut(C4 × C2), 2i = n,

has index two in general but is actually equal to the full automorphism
group in case i = n/2. The conjugating matrix for ba is

diag(

i
︷ ︸︸ ︷

P, . . . , P ,

n−i
︷ ︸︸ ︷

E, . . . , E),

of determinant (−1)i. Thus I#L(i, n − i) = I#L(i, n − i)D when i is odd.
If n = 2i then the conjugating matrices for the automorphisms a and b are

(
0 E

E 0

)

diag(

i
︷ ︸︸ ︷

P, . . . , P ,

i
︷ ︸︸ ︷

E, . . . , E) and

(
0 E

E 0

)

.

The permutation matrix for b has positive determinant and the matrix for
a has determinant (−1)i. Thus I#L(i, n − i) = I#L(i, n − i)D if and only
if i is odd.

2. Centralizers of objects of A(PSL(2n,R))≤t
≤2 are LHS. In this

section we check that all toral objects of rank ≤ 2 have LHS [24, 2.26]
centralizers.

2.19. Lemma. The centralizers of the objects of A(PSL(2n,R))≤t
≤2,

(1) GL(i,C)/〈−E〉⋊ C2, 1 ≤ i (2.15),
(2) SL(2i0,R) ◦ SL(2i1,R) ⋊ C2, 1 ≤ i0 < i1 (2.14),
(3) (SL(2i,R) ◦ SL(2i,R)) ⋊ (C2 × C2), 1 ≤ i (2.14),
(4) CPSL(2n,R)(V ), q(V ) = 0 (2.16),
(5) CPSL(2n,R)(V ), q(V ) 6= 0 (2.17),

are LHS.
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The cases of interest here are summarized in the following charts, ob-
tained by use of a computer, for rank one centralizers with quadratic form
q = 0 (2.14)

SL(2i0,R) ◦ SL(2i1,R) ker θ Hom(W, Ť W ) H1(W ; Ť ) θ

1 = i0, 2 = i1 (Z/2)2 (Z/2)2 Z/2 0

1 = i0, 3 = i1 0 Z/2 (Z/2)2 mono

1 = i0, 4 ≤ i1 0 Z/2 Z/2 iso

2 = i0 < i1 (Z/2)2 (Z/2)3 Z/2 epi

3 ≤ i0 < i1 0 (Z/2)2 (Z/2)2 iso

SL(2i,R) ◦ SL(2i,R) ker θ Hom(W, Ť W ) H1(W ; Ť ) θ

i = 2 (Z/2)4 (Z/2)4 (Z/2)3 0

i ≥ 3 0 (Z/2)2 (Z/2)2 iso

and q 6= 0 (2.15)

GL(i,C)/〈−E〉 ker θ Hom(W ; Ť W ) H1(W ; Ť ) θ

i = 2 Z/2 (Z/2)2 Z/2 epi

i = 3 0 Z/2 Z/2 iso

i = 4 0 Z/2 (Z/2)2 mono

i > 4 0 Z/2 Z/2 iso

and for rank two centralizers with quadratic form q = 0 (2.16)

SL(2i0,R)2 ◦ SL(2i1,R)2 ker θ Hom(W ; Ť W ) H1(W ; Ť ) θ

1 = i0, 2 = i1 (Z/2)4 (Z/2)12 (Z/2)8 epi

1 = i0, 2 < i1 0 (Z/2)6 (Z/2)6 iso

2 = i0 < i1 (Z/2)4 (Z/2)18 (Z/2)14 epi

2 < i0 < i1 0 (Z/2)12 (Z/2)12 iso

∏2
j=0 SL(2ij ,R)/〈−E〉 ker θ Hom(W ; Ť W ) H1(W ; Ť ) θ

1 = i0, 2 = i1 < i2 (Z/2)2 (Z/2)6 (Z/2)4 epi

1 = i0, 2 < i1 < i2 0 (Z/2)4 (Z/2)4 iso

2 = i0 < i1 < i2 (Z/2)2 (Z/2)8 (Z/2)6 epi

2 < i0 < i1 < i2 0 (Z/2)6 (Z/2)6 iso

∏3
j=0 SL(2ij ,R)/〈−E〉 ker θ Hom(W ; Ť W ) H1(W ; Ť ) θ

1 = i0, 2 = i1 < i2 < i3 (Z/2)2 (Z/2)12 (Z/2)10 epi

1 = i0, 2 < i1 < i2 < i3 0 (Z/2)9 (Z/2)9 iso

2 = i0 < i1 < i2 < i3 (Z/2)2 (Z/2)15 (Z/2)13 epi

2 < i0 < i1 < i2 < i3 0 (Z/2)12 (Z/2)12 iso

SL(2i,R)4/〈−E〉 ker θ Hom(W ; Ť W ) H1(W ; Ť ) θ

2 = i (Z/2)8 (Z/2)24 (Z/2)16 epi

3 ≤ i 0 (Z/2)12 (Z/2)12 iso
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and with quadratic form q 6= 0 (2.17)

GL(i0,C) ◦ GL(i1,C) ker θ Hom(W ; Ť W ) H1(W ; Ť ) θ

1 = i0, 2 = i1 Z/2 (Z/2)2 Z/2 epi

1 = i0, 2 < i1 0 (Z/2)2 (Z/2)2 iso

2 = i0 < i1 Z/2 (Z/2)4 (Z/2)3 epi

2 < i0 < i1 0 (Z/2)4 (Z/2)4 iso

GL(i,C) ◦ GL(i,C) ker θ Hom(W ; Ť W ) H1(W ; Ť ) θ

2 = i (Z/2)2 (Z/2)4 (Z/2)3

3 ≤ i 0 (Z/2)4 (Z/2)4 iso

Observe that the dimension of H1(W ; Ť ) stabilizes within the infinite
families of Lie groups included in these tables. Consider for instance the
caseX =

∏3
j=0 SL(2ij,R). The first cohomologyH1(W ; Ť ) = H1(W ; Ť )(X)

group sits in an exact sequence

H1(W ; Ž)→ H1(W ; Ť )→ H1(W ; Ť /Ž)
∂−→ H2(W ; Ž)

where W is the Weyl group. The kernel of the first homomorphism sta-
bilizes [24, Lemma 2.22]. As X/Z is a product of simple Lie groups, the
table from [16, Main Theorem] shows that the dimensions of the F2-vector
spaces H1(W ; Ť /Ž) stabilize. Also H≤2(Σn;F2) stabilize [30, 6.7]. The for-
mula for the cohomology of a wreath product [13, 5.3.1], H∗(C2 ≀Σn;F2) ∼=
H∗(Σn;H∗(C2;F2)

⊗n), now shows that the F2-vector spacesH≤2(C2≀Σn;F2)
and H≤2(W ; Ž) stabilize. By naturality, the kernel of the homomorphism ∂
stabilizes. We conclude that H1(W ; Ť ) stabilizes.

Proof of Lemma 2.19. (a) Let X = GL(i,C)/〈−E〉⋊C2 for i ≥ 1. Since
the Weyl group for X is a direct product W = W0 × C2, X is LHS.

(b) Let X = (SL(2i0,R) ◦ SL(2i1,R)) ⋊ C2 for 1 ≤ i0 < i1. The first
problematic case is when i0 = 1 and i1 = 2 or 3. In this case, explicit
computer computation results in the chart

X H1(π; Ť W0) H1(W ; Ť ) H1(W0; Ť ) H1(W0; Ť )π

i1 = 2 0 Z/2 Z/2 Z/2

i1 = 3 0 (Z/2)2 (Z/2)2 (Z/2)2

showing that X is LHS. The second problematic case is 2 = i0 < i1 where
θ(X0) is epimorphic. Since H1(W0; Ť ) = Z/2, also θ(X0)

π is epimorphic so
that X is LHS [24, Lemma 2.28].

(c) Let X = (SL(2i,R) ◦ SL(2i,R)) ⋊ (C2 × C2) for i ≥ 1. Then X is
a 2-compact toral group when i = 1 and hence obviously LHS. For i ≥ 2
explicit computer computation gives
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X H1(π; Ť W0) H1(W ; Ť ) H1(W0; Ť ) H1(W0; Ť )π

i = 2 (Z/2)2 (Z/2)4 (Z/2)3 (Z/2)2

i ≥ 3 (Z/2)2 (Z/2)3 (Z/2)2 Z/2

so X is manifestly LHS for i = 2. For i > 2, θ(X0) is bijective so X is LHS
[24, Lemma 2.28].

(d) Let X = (SL(2i,R)4/〈−E〉) ⋊ (D8 ◦D8) for i ≥ 1. When i = 1, X is
a 2-compact toral group which are all LHS. When i = 2, explicit computer
computation gives

X H1(π; Ť W0) H1(W ; Ť ) H1(W0; Ť ) H1(W0; Ť )π

i = 2 (Z/2)7 (Z/2)9 (Z/2)16 (Z/2)2

so X is LHS by definition. For i > 2, θ(X0) is bijective.

(e) Let X = (SL(2i0,R)2 ◦ SL(2i1,R)2) ⋊ (C2 × D8) for 1 ≤ i0 < i1.
The problematic cases are i0 = 1, i1 = 2 and 2 = i0 < i1 where θ(X0) is
surjective but not bijective. With the help of computer computations we
obtain the table

X H1(π; Ť W0) H1(W ; Ť ) H1(W0; Ť ) H1(W0; Ť )π

i0 = 1, i1 = 2 (Z/2)5 (Z/2)7 (Z/2)8 (Z/2)2

i0 = 2, 3 ≤ i1 (Z/2)6 (Z/2)11 (Z/2)14 (Z/2)5

showing that X is LHS in these cases also.

(f) Let X = (
∏2

j=0 SL(2ij,R)/〈−E〉) ⋊ C2
2 . The problematic cases are

1 = i0, 2 = i1 < i2 and 2 = i0 < i1 < i2. With the help of computer
computations we obtain the table

X H1(π; Ť W0) H1(W ; Ť ) H1(W0; Ť ) H1(W0; Ť )π

i0 = 1, 2 = i1 < i2 (Z/2)3 (Z/2)6 (Z/2)4 (Z/2)3

2 = i0 < i1 < i2 (Z/2)4 (Z/2)9 (Z/2)6 (Z/2)5

showing that X is LHS in these cases also.

(g) Let X = (
∏3

j=0 SL(2ij ,R)/〈−E〉) ⋊ C3
2 . The problematic cases are

1 = i0, 2 = i1 < i2 < i3 and 2 = i0 < i1 < i2 < i3. With the help of
computer computations we obtain the table

X H1(π; Ť W0) H1(W ; Ť ) H1(W0; Ť ) H1(W0; Ť )π

i0 = 1, 2 = i1 < i2 < i3 (Z/2)8 (Z/2)16 (Z/2)10 (Z/2)8

2 = i0 < i1 < i2 < i3 (Z/2)9 (Z/2)20 (Z/2)13 (Z/2)11

showing that X is LHS in these cases also.

(h) The 2-compact group (GL(i,C)◦GL(i,C))⋊ (Z/2×Z/2) is LHS for
i > 2 where θ is bijective. When i = 2 we find
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X H1(π; Ť W0) H1(W ; Ť ) H1(W0; Ť ) H1(W0; Ť )π

i = 2 (Z/2)2 (Z/2)4 (Z/2)3 (Z/2)2

so X is also LHS in this case.

(i) Let X = GL(i0,C) ◦ GL(i1,C) ⋊ C2, 1 ≤ i0 < i1. Since the iden-
tity component has surjective θ-homomorphism and the component group
π = C2 acts trivially on H1(W0; Ť ), X is LHS by [24, Lemma 2.28]. The
values of the relevant cohomology groups are

X H1(π; Ť W0) H1(W ; Ť ) H1(W0; Ť ) H1(W0; Ť )π

1 = i0, 2 = i1 0 Z/2 Z/2 Z/2

1 = i0, 2 < i1 0 (Z/2)2 (Z/2)2 (Z/2)2

2 = i0 < i1 0 (Z/2)3 (Z/2)3 (Z/2)3

2 < i0 < i1 0 (Z/2)4 (Z/2)4 (Z/2)4

according to computer computations.

3. The limit of the functor H1(W0; Ť )W/W0 on A(PSL(2n,R))≤t
≤2.

Let H1(W0; Ť ) : A(PSL(2n,R))≤t
≤t → Ab be the functor that takes the toral

elementary abelian 2-group V ⊂ t(PSL(2n,R)) to the abelian group
H1(W0CPSL(2n,R)(V ); Ť )), and H1(W0; Ť )W/W0 the functor that takes V
to the invariants for the action of the component group π0CPSL(2n,R)(V ) on
this first cohomology group [24, 2.53].

2.20. Proposition. The restriction map

H1(W (PSL(2n,R)); Ť )→ lim0(A(PSL(2n,R))≤t
≤2;H

1(W0; Ť )W/W0)

is an isomorphism for all n ≥ 4.

Proof. Consider first the case where n = 4. The 2-compact group X =
PSL(8,R) contains (2.13) the four rank one elementary abelian 2-groups
L(2, 6), L(4, 4), I, ID with centralizers

SL(2,R) ◦ SL(6,R) ⋊ C2, SL(4,R) ◦ SL(4,R) ⋊ (C2 × C2),

GL(4,C)/〈−E〉 (twice).

The claim of the proposition follows from the fact, verifiable by computer
computations, that in all four cases, the restriction

H1(W ; Ť (X))→ H1(W0(CX(L)); Ť )W/W0

happens to be an isomorphism.

For n > 4, the claim is that the limit of the functor H1(W0; Ť )W/W0 is
trivial. In fact, even the limit of the functor H1(W0; Ť ) is trivial. To see
this, recall (2.13) that PSL(2n,R) contains the toral lines L(2i, 2n − 2i),
1 ≤ i ≤ [n/2], I, and also ID when n is even. Computer computations show
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that the morphisms

H1(W0; Ť )(L(2, 2n− 2)) →֒ H1(W0; Ť )(I#L(1, n− 1)) ←֓ H1(W0; Ť )(I)

are injective and that their images intersect trivially. When n ≥ 6 is even,
also the images of the injective morphisms

H1(W0; Ť )(L(4, 2n− 4)) →֒ H1(W0; Ť )(I#L(2, n− 2)D) ←֓ H1(W0; Ť )(ID)

intersect trivially. More computer computations show that, similarly, the
morphisms

H1(W0; Ť )(L(2i, 2n− 2i)) →֒ H1(W0; Ť )(I#L(i, n− i)) ←֓ H1(W0; Ť )(I)

are injective and that their images intersect trivially, 1 ≤ i ≤ [n/2].

4. Rank two nontoral objects of A(PSL(2n,R)). In this section we
take a closer look at the nontoral rank two objects of A(PSL(2n,R)) in
order to verify the conditions of [24, Lemma 2.63].

Nontoral rank two objects P of PSL(2n,R) satisfy either q(P ) = 0 or
[P, P ] 6= 0 (2.10) and the latter case only occurs if n is even.

q(P ) = 0: For any partition i0 ≥ i1 ≥ i2 ≥ i3 ≥ 1 of 2n, let

P (i0, i1, i2, i3)
∗ = 〈(+1)i0(−1)i1(+1)i2(−1)i3 , (+1)i0(+1)i1(−1)i2(−1)i3 ,−E〉
⊂∆2n,

P (i0, i1, i2, i3) = P (i0, i1, i2, i3)
∗/〈−E〉 ⊂ P∆2n,

where we apply the notation from [24, (3.5), (3.9)]. Then P (i0, i1, i2, i3)
∗ ⊂

S∆2n if and only if i0, i1, i2, and i3 all have the same parity and P (i0, i1,
i2, i3)

∗ is nontoral iff this parity is odd. It follows (2.12) that the set of
isomorphism classes of nontoral rank two objects of A(PSL(2n,R))q=0 cor-
responds bijectively to the P (n+2, 4) partitions i = (i0, i1, i2, i3) of n+2 into
sums of four natural numbers, n+2 = i0 + i1 + i2 + i3, i0 ≥ i1 ≥ i2 ≥ i3 ≥ 1.
The correspondence is via the map

i = (i0, i1, i2, i3) 7→ P (i) = P (2i0 − 1, 2i1 − 1, 2i2 − 1, 2i3 − 1)

that to the partition i = (i0, i1, i2, i3) associates the quotient P (i) ⊂ PS∆2n

of P (i)∗ ⊂ S∆2n generated by the three elements

v1 = diag(

2i0−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i1−1
︷ ︸︸ ︷

−1, . . . ,−1,

2i2−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i3−1
︷ ︸︸ ︷

−1, . . . ,−1),

v2 = diag(

2i0−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i1−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i2−1
︷ ︸︸ ︷

−1, . . . ,−1,

2i3−1
︷ ︸︸ ︷

−1, . . . ,−1),

v3 = diag(−1, . . . ,−1).
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The centralizer of P (i)∗ in SL(2n,R) is

CSL(2n,R)(P (i)∗) = SL(2n,R) ∩ CSL(2n,R)(P (i)∗)

= SL(2n,R) ∩
( 3∏

j=0

GL(2ij − 1,R)
)

= P (i)∗ ×
3∏

j=0

SL(2ij − 1,R)

and the centralizer of P (i) in PSL(2n,R) is therefore [28, 5.11]

(2.21) CPSL(2n,R)(P (i)) = P (i)×
( 3∏

j=0

SL(2ij − 1,R)
)

⋊ P (i)∨i

where P (i)∨i is a group of permutation matrices isomorphic to C2 if i =
(i0, i0, i2, i2), to C2 × C2 if i = (i0, i0, i0, i0), and trivial in all other cases.
Note that P (i)∗ is contained in N(SL(2n,R)) = SL(2n,R) ∩GL(2,R) ≀Σn

because with R =
(

1 0
0 −1

)
we may write

v1 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,R,

i1−1
︷ ︸︸ ︷

−E, . . . ,−E,
i2−1

︷ ︸︸ ︷

E, . . . , E,R,

i3−1
︷ ︸︸ ︷

−E, . . . ,−E),(2.22)

v2 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,E,

i1−1
︷ ︸︸ ︷

E, . . . , E,

i2−1
︷ ︸︸ ︷

−E, . . . ,−E,−E,
i3−1

︷ ︸︸ ︷

−E, . . . ,−E),(2.23)

and that the centralizer of P (i)∗ there is

CN(SL(2n,R))(P (i)∗) = SL(2n,R) ∩ CGL(2,R)≀Σn
(v1) ∩ CGL(2,R)≀Σn

(v2)

[24, 5.10]
= SL(2n,R) ∩ CGL(2,R)≀(Σi0+i1−1×Σi2+i3−1)(v1)

[24, 5.10]
= P (i)∗ ×

( 3∏

j=0

GL(2,R) ≀Σij−1

)

It follows that the centralizer of P (i) in N(PSL(2n,R)) is

CN(PSL(2n,R))(P (i)) = P (i)×
( 3∏

j=0

GL(2,R) ≀Σij−1

)

⋊ P (i)∨i

= N(CPSL(2n,R)(P (i)))

For instance, if i = (i0, i0, i2, i2), then P (i)∨i is the group of order two gener-
ated by diag(C0, C2) ∈ N(PSL(2n,R)) where C0 is the (4i0− 2)× (4i0− 2)
matrix






0 0 E

0 T 0

E 0 0




 , T =

(
0 1

1 0

)

,
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and C2 is a similar (4i2−2)× (4i2−2) matrix. Thus P (i) ⊂ N(PSL(2n,R))
is a preferred lift [27] of P (i) ⊂ PSL(2n,R). The other two preferred lifts
[26, 6.2] of P (i) ⊂ PSL(2n,R) are obtained by composing the inclusion
P (i) ⊂ N(PSL(2n,R)) with the inner automorphism given by the permu-
tation matrices (1, 2)(2i0, 2n− 2i3 + 1),

(

2i0−1
︷ ︸︸ ︷

+1,+1, . . . ,+1,

2i1−1
︷ ︸︸ ︷

−1, . . . ,−1,

2i2−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i3−1
︷ ︸︸ ︷

−1, . . . ,−1)

6 66 6

(

2i0−1
︷ ︸︸ ︷

+1,+1, . . . ,+1,

2i1−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i2−1
︷ ︸︸ ︷

−1, . . . ,−1,

2i3−1
︷ ︸︸ ︷

−1, . . . ,−1)

6 6 6 6

and (1, 2)(2i0, 2n− 2i3 + 2),

(

2i0−1
︷ ︸︸ ︷

+1,+1, . . . ,+1,

2i1−1
︷ ︸︸ ︷

−1, . . . ,−1,

2i2−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i3−1
︷ ︸︸ ︷

−1, . . . ,−1)

6 66 6

(

2i0−1
︷ ︸︸ ︷

+1,+1, . . . ,+1,

2i1−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i2−1
︷ ︸︸ ︷

−1, . . . ,−1,

2i3−1
︷ ︸︸ ︷

−1, . . . ,−1)

6 6 6 6

taking v1 and v2 as in (2.22), (2.23) to

v1 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,E,

i1−1
︷ ︸︸ ︷

−E, . . . ,−E,
i2−1

︷ ︸︸ ︷

E, . . . , E,−E,
i3−1

︷ ︸︸ ︷

−E, . . . ,−E),

v2 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,R,

i1−1
︷ ︸︸ ︷

E, . . . , E,

i2−1
︷ ︸︸ ︷

−E, . . . ,−E,R,
i3−1

︷ ︸︸ ︷

−E, . . . ,−E),

respectively to

v1 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,R,

i1−1
︷ ︸︸ ︷

−E, . . . ,−E,
i2−1

︷ ︸︸ ︷

E, . . . , E,R,

i3−1
︷ ︸︸ ︷

−E, . . . ,−E),

v2 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,R,

i1−1
︷ ︸︸ ︷

E, . . . , E,

i2−1
︷ ︸︸ ︷

−E, . . . ,−E,R,
i3−1

︷ ︸︸ ︷

−E, . . . ,−E).

In the same way as above, we see that these are really preferred lifts of P (i).
The three lifts are not conjugate in N(PSL(2n,R)) because the intersection
with the maximal torus is v2 in case (2.22), (2.23) but v1 and v1 + v2 in
the other two cases. Observe that all three preferred lifts of P (i) have the
same image in W (PSL(2n,R)) = π0N(PSL(2n,R)) ⊂ π0GL(2,R) ≀ Σn.
Observe also that the inclusion P (i)×P (i)∨i → CPSL(2n,R)(P (i)) induces an
isomorphism on component groups and that the centralizer
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CPSL(2n,R)(P (i)× P (i)∨i ) = CCPSL(2n,R)(P (i))(P (i)∨i )

=







P (i)× SL(2i0 − 1,R), i = (i0, i0, i0, i0),

P (i)× SL(2i0 − 1,R)× SL(2i2 − 1,R), i = (i0, i0, i2, i2),

CPSL(2n,R)(P (i)), otherwise,

has nontrivial identity component when n > 2.

[P, P ] 6= 0: A(PSL(4n,R)) contains (up to isomorphism) four rank two

objects with nontrivial inner product, namely H+, HD
+ , H−, and HD

− , where

H± is the image of 21+2
± ⊂ SL(2n,R) (2.51).

The extraspecial 2-group 21+2
+ ⊂ SL(4n,R) is described in [24, Ex-

ample 5.4(6)] or, alternatively, in [24, 5.7] as

〈

diag

(

n
︷ ︸︸ ︷
(
E 0

0 −E

)

, . . . ,

(
E 0

0 −E

))

, diag

(

n
︷ ︸︸ ︷
(

0 E

E 0

)

, . . . ,

(
0 E

E 0

))〉

= 〈g1, g2〉.
Note that 21+2

+ is contained in N(SL(4n,R)) = SL(4n,R)∩(GL(2,R) ≀Σ2n)
where its centralizer is

CN(SL(4n,R))(2
1+2
+ ) = SL(4n,R) ∩ CGL(4n,R)(v1) ∩ CGL(2,R)≀Σ2n

(v2)

[24, 5.10]
= SL(4n,R)∩CGL(2,R)n⋊(C2≀Σn)(v1) = GL(2,R)≀Σn = N(GL(2n,R)).

It follows, as in 2.51, that the centralizer of H+ in N(PSL(4n,R)) is

CN(SL(4n,R))(H+)=H+×CN(SL(4n,R))(2
1+2
+ )/〈−E〉=N(H+×PGL(2n,R)),

which means that H+ ⊂ N(PSL(4n,R)) is a preferred lift of H+. An-
other preferred lift can be obtained by precomposing the inclusion H+ ⊂
N(PSL(4n,R)) with the nontrivial automorphism in A(PSL(4n,R))(H+) =
O+(2,F2). The final preferred lift is

(21+2
+ )diag(

n
︷ ︸︸ ︷
B,...,B) = 〈−(g1g2)

diag(B,...,B), g
diag(B,...,B)
2 〉, B =

1√
2

(
E I

I E

)

,

−(g1g2)
diag(B,...,B) = diag

((
I 0

0 −I

)

, . . . ,

(
I 0

0 −I

))

, gB
2 = g2.

Also, this subgroup is actually contained in the maximal torus normalizer
with centralizer

CN(SL(4n,R))(2
1+2
+ )diag(B,...,B)

= SL(4n,R) ∩ CGL(2,R)≀Σ2n
(−(g1g2)

diag(B,...,B)) ∩ CGL(4n,R)(g2)



N-determined 2-compact groups. II 21

[24, 5.10]
= (GL(1,C)2 ⋊ C2) ≀Σn ∩ CGL(4n,R)(g2)

= (GL(1,C) ⋊ C2) ≀Σn = N(GL(2n,R))

where

C2 =

〈(
0 T

T 0

)〉

, T =

(
0 1

1 0

)

.

Observe that, for all three preferred lifts of H+, the image in the Weyl
group W (PSL(4n,R)) = π0N(PSL(4n,R)) ⊂ π0GL(2,R) ≀Σ2n is the order
two subgroup ofΣ2n generated by the permutation (1, 2)(3, 4) · · · (2n−1, 2n).
Observe also that the inclusion H+#L(1, 2n− 1)→ CPSL(4n,R)(H+) (2.40)
induces an isomorphism on component groups and that the centralizer
CPSL(4n,R)(H+#L(1, 2n− 1)) has nontrivial identity component (according
to the proof of 2.55) when n ≥ 2.

The extraspecial 2-group 21+2
− ⊂ SL(4n,R) is described in [24, Ex-

ample 5.4(7)] or, alternatively, in [24, 5.7] as

〈

diag

(

n
︷ ︸︸ ︷
(
I 0

0 −I

)

, . . . ,

(
I 0

0 −I

))

, diag

(

n
︷ ︸︸ ︷
(

0 I

I 0

)

, . . . ,

(
0 I

I 0

))〉

= 〈g1, g2〉.
Note that 21+2

− is contained in N(SL(4n,R)) = SL(4n,R)∩(GL(2,R) ≀Σ2n)
where its centralizer is

CN(SL(4n,R))(2
1+2
− ) = SL(4n,R) ∩ CGL(2,R)≀Σ2n

(g1) ∩ CGL(4n,R)(g2)

[24, 5.10]
= (GL(1,C)2 ⋊ C2) ≀Σn ∩ CGL(4n,R)(g2)

=

〈

GL(1,C),

(
0 T

−T 0

)〉

≀Σn
(1)
= N(GL(n,H))

It follows, as in 2.51, that the centralizer of H− in N(PSL(4n,R)) is

CN(SL(4n,R))(H−) = H−×CN(SL(4n,R))(2
1+2
+ )/〈−E〉 = N(H−×PGL(n,H)),

which means that H− ⊂ N(PSL(4n,R)) is a preferred lift of H−. The
other two preferred lifts can be obtained by precomposing the inclusion
H− ⊂ N(PSL(4n,R)) with the nontrivial automorphisms in

A(PSL(4n,R))(H−) = O−(2,F2) = Sp(2,F2) = GL(2,F2).

Observe that, for all three preferred lifts of H−, the image in the Weyl group
W (PSL(4n,R)) = π0N(PSL(4n,R)) ⊂ π0GL(2,R) ≀ Σ2n is the order two
subgroup of Σ2n generated by (1, 2)(3, 4) · · · (2n− 1, 2n). Observe also that
H− is contained in the rank three subgroup H−#L(1, n − 1) (2.42) whose
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centralizer has a nontrivial identity component when n ≥ 2 (according to
the proof of 2.55).

We conclude that for every nontoral rank two object P of A(PSL(2n,R))
the identity component CPSL(2n,R)(P )0 of the centralizer is centerless. By
(part of) [25, 5.2], the homomorphism

Aut(CPSL(2n,R)(P ))→ Aut(π0CPSL(2n,R)(P ))×Aut(CPSL(2n,R)(P )0),

obtained by applying the functors π0 and ( )0, is injective. Under the in-
ductive assumption that CPSL(2n,R)(P )0 (see (2.21) and 2.51) has π∗(N)-
determined automorphisms it then follows from [24, Lemma 2.63, (2.64)]
that condition (3) of [24, Theorem 2.51] is satisfied.

5. Limits over the Quillen category of PSL(2n,R). In this section
we show that the problem of computing the higher limits of the functors
πi(BZCPSL(2n,R)), i = 1, 2, [24, (2.47)] is concentrated on objects of the
Quillen category with q 6= 0.

2.24. Lemma. Let V ⊂ PS∆2n (2.4) be a nontrivial subgroup represent-

ing an object of the category A(PSL(2n,R))q=0 = A(Σ2n, PS∆2n) (2.12).
Then

ZCPSL(2n,R)(V ) = PS∆
Σ2n(V )
2n

where Σ2n(V ) ⊂ Σ2n is the pointwise stabilizer subgroup [24, Definition 2.68].

Proof. Let ν∗ : V → S∆2n be a lift to SL(2n,R) of the inclusion homo-
morphism of V into PSL(2n,R). Then

CSL(2n,R)(ν
∗V ) = SL(2n,R) ∩

∏

̺∈V ∨

GL(i̺,R), Σ2n(ν∗V ) =
∏

̺∈V ∨

Σi̺

where i : V ∨ → Z records the multiplicity of each ̺ ∈ V ∨ in the representa-
tion ν∗. Write

ν∗(v) = diag(

i1
︷ ︸︸ ︷

̺1(v), . . . , ̺1(v), . . . ,

im
︷ ︸︸ ︷

̺m(v), . . . , ̺m(v))

where ̺1, . . . , ̺m ∈ V ∨ = Hom(V,C2) are pairwise distinct homomorphisms
V → C2 = 〈±1〉 and i1 + · · ·+ im = 2n. There is a corresponding decompo-
sition {1, . . . , 2n} = I1∪· · ·∪Im of the set {1, . . . , 2n} into k disjoint subsets
Ij containing ij elements.

Using [28, 5.11] and [24, Lemma 5.20] we get

CPSL(2n,R)(V ) =
CSL(2n,R)(ν

∗V )

〈−E〉 ⋊ V ∨
ν∗ , Σ2n(V ) = Σ2n(ν∗V ) ⋊ V ∨

ν∗

where V ∨
ν∗ = {ζ ∈ Hom(V,GL(1,R)) | ∀̺ ∈ V ∨ : iζ̺ = i̺}. Suppose that ζ

is a nontrivial element of V ∨
ν∗ . Choose a vector v ∈ V such that ζ(v) = −1.

Then the determinant of ν∗(v) is (−1)n, for ν∗(v) consists of an equal number
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of +1 and −1. Thus n is even. Let σ be the permutation associated to ζ that
moves the subset Ij monotonically to Ik where ζ̺j = ̺k. Then σ is even, for
it is a product of n transpositions. In this way we imbed V ∨

ν∗ as a subgroup of
the alternating group A2n ⊂ PSL(2n,R) to obtain the semidirect products.

The center of the centralizer is

ZCPSL(2n,R)(V ) = Z

(∏
SL(2n,R) ∩GL(i̺,R)

〈−E〉 ⋊ V ∨
ν∗

)

[24, 5.14]
= Z

(∏
SL(2n,R) ∩GL(i̺,R)

〈−E〉

)V ∨
ν∗

[24, 5.18]
=

(
SL(2n,R) ∩∏

ZGL(i̺,R)

〈−E〉

)V ∨
ν∗

=

(
S∆

Σ2n(ν∗V )
2n

〈−E〉

)V ∨
ν∗

= (PS∆
Σ2n(ν∗V )
2n )V ∨

ν∗ = PS∆
Σ2n(V )
2n ,

where the penultimate equality sign is justified by observing that the coef-
ficient group homomorphism H1(Σ2n(ν∗V ); 〈−E〉)→ H1(Σ2n(ν∗V );S∆2n)
→ H1(Σ2n(ν∗V );∆2n) is injective.

Let πi(BZC) = πi(BZCPSL(2n,R)) [24, (2.47)].

2.25. Corollary. lim∗(A(PSL(2n,R))q=0;πi(BZC)) = 0 for n ≥ 2
and i = 1, 2.

Proof. This is obvious for i = 2 as π2(BZC) = 0. For i = 1, use
[24, Lemma 2.69] to compute the limits of the functor π1(BZC)(V ) =

PS∆
Σ2n(V )
2n (2.24). The fixed point group PSDΣ2n

2n is trivial since PSD2n is
an irreducible F2Σ2n-module of dimension 2n− 2 for n ≥ 2.

2.26. Lemma. Let V ⊂ Pt(SL) = Pt(SL(2n,R)) (2.4) be a nontrivial

subgroup representing an object of the category A(A2n∩(Σ2 ≀Σn), P t(SL)) =
A(PSL(2n,R))≤t,q=0 (2.12). Then

ZCPSL(2n,R)(V ) = Pt(SL)(A2n∩(Σ2≀Σn))(V )

where (A2n ∩ (Σ2 ≀ Σn))(V ) is the pointwise stabilizer subgroup [24, Defini-
tion 2.68].

Proof. The pointwise stabilizer subgroups are

(2.27) (A2n ∩ (Σ2 ≀Σn))(V ) = A2n ∩Σ2n(V ), Σ2n(V ) = Σn
2 ⋊Σn(V ).

Because these stabilizer subgroups have these particular forms and PS∆
Σn

2
2n

= Pt(SL), we get

ZCPSL(2n,R)(V ) = PS∆
Σ2n(V )
2n = PS∆

Σn
2 ⋊Σn(V )

2n = Pt(SL)Σn(V )

= Pt(SL)A2n∩(Σn
2 ∩Σn(V ))

from 2.24.
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Lemma 2.26 can also be proved along the lines of [28, 2.8] using [24,
Proposition 2.33].

2.28. Corollary. lim∗(A(PSL(2n,R))≤t, q=0;πi(BZC)) = 0 for n ≥ 2
and i = 1, 2.

Proof. Similar to 2.25 but based on H0(A2n ∩ (Σ2 ≀ Σn);Pt(SL)) =
H0(Σn;Pt(SL)) = 0.

2.29. Lemma. Let V ⊂ t(PSL) = t(PSL(2n,R)) (2.4) be a nontrivial

subgroup representing an object of the category A(A2n∩(Σ2 ≀Σn), t(PSL)) =
A(PSL(2n,R))≤t (2.12) where n ≥ 32. Then

ŽCPSL(2n,R)(V ) = Ť (A2n∩(Σ2≀Σn))(V ),

where Ť = Ť (PSL(2n,R)) is the discrete approximation [10, §3] to the max-

imal torus of PSL(2n,R) and (A2n∩(Σ2 ≀Σn))(V ) is the pointwise stabilizer

subgroup of V [24, Definition 2.68].

Proof. Consider first the case where V ⊂ Pt(SL) ⊂ t(PSL). One checks
that ŤA2n∩Σn

2 = Pt(SL) for n > 2. Since (A2n ∩ (Σ2 ≀Σn))(V ) ⊃ A2n ∩Σn
2

we get

ZCPSL(2n,R)(V )
2.26
= Pt(SL)(A2n∩(Σ2≀Σn))(V ) = Ť (A2n∩(Σ2≀Σn))(V )

in this case.

Consider next the case where V ∗, the preimage of V in SL(2n,R), con-
tains I (2.5) so that V ∗ = 〈I, U〉 (2.8) for some (possibly trivial) elementary
abelian 2-group U ⊂ t(SL) ⊂ CSL(2n,R)(C4) = GL(n,C). Then

CSL(2n,R)(V
∗) =

∏

̺∈U∨

GL(i̺,C), (Σ2 ≀Σn)(V ∗) = Σn(U) ⊂ A2n,

where i : U∨ → Z records the multiplicity of the linear character ̺ ∈ U∨ in
the representation ν∗ : U → GL(n,C) and Σn(U) is the pointwise stabilizer
subgroup for the action of Σn = W (GL(n,C)) on t(SL) = t(GL(n,C)) =
〈e1, . . . en〉. It now follows from [28, 5.11] and [24, Lemma 5.20], as in (2.15)
and (2.17), that

CPSL(2n,R)(V ) =







CSL(2n,R)(V
∗)

〈−E〉 , n odd,

CSL(2n,R)(V
∗)

〈−E〉 ⋊ (U∨
ν∗ × 〈c1 · · · cn〉), n even,

A2n ⊃ (Σ2 ≀Σn)(V ) =

{
Σn(U), n odd,

Σn(U) ⋊ (U∨
ν∗ × 〈c1 · · · cn〉), n even,

where U∨
ν∗ = {ζ ∈ U∨ = Hom(U, 〈−E〉) | ∀̺ ∈ U∨ : iζ̺ = i̺} can be realized

as a subgroup of Σn and 〈c1 · · · cn〉 is the diagonal order two subgroup of Σn
2 .
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Consequently, if n is odd,

ŽCPSL(2n,R)(V ) = Ž

(∏
GL(i̺,C)

〈−E〉

)

=

∏
ŽGL(i̺,C)

〈−E〉

=
Ť (SL(2n,R))Σn(U)

〈−E〉 = ŤΣn(U) = Ť (A2n∩(Σ2≀Σn))(V ),

and if n is even,

ŽCPSL(2n,R)(V ) = Ž

(∏
GL(i̺,C)

〈−E〉 ⋊ (Uν∗ × 〈c1 · · · cn〉)
)

[24, 5.14]
=

(∏
ŽGL(i̺,C)

〈−E〉

)Uν∗×〈c1···cn〉

=

(
Ť (SL(2n,R))Σn(U)

〈−E〉

)Uν∗×〈c1···cn〉

= (ŤΣn(U))Uν∗×〈c1···cn〉= ŤUν∗×〈c1···cn〉= Ť (A2n∩(Σ2≀Σn))(V )

where we use the fact thatH1(Σn(U); 〈−E〉)→ H1(Σn(U); Ť (SL(2n,R))) is
injective. (In fact, the center of the centralizer, ŽCPSL(2n,R)(V ), is a product,

ŤΣn(U), of 2-compact tori when n is odd, and a finite abelian group,

ŤΣn(U)⋊(U∨
ν∗

⋊〈c1···cn〉) = (Ť 〈c1···cn〉)Σn(U)⋊U∨
ν∗ = t(PSL)Σn(U)⋊U∨

ν∗ ,

when n is even.)

2.30. Corollary. lim∗(A(PSL(2n,R))≤t;πi(BZC)) = 0 for n ≥ 3
and i = 1, 2.

Proof. Similar to that of 2.25 but based on H0(W ; Ť )(PSL(2n,R)) = 0
for n ≥ 3 (2.3).

As we shall see next, Corollaries 2.25, 2.28 and 2.30 reduce the prob-
lem of computing the graded abelian group lim∗(A(PSL(2n,R));πi(BZC))
considerably.

Let A be a category containing two full subcategories, Aj , j = 1, 2, such
that any object of A with a morphism to an object of Aj is an object of Aj .
Write A1∩A2 for the full subcategory with objects Ob(A1∩A2) = Ob(A1)∩
Ob(A2), and A1 ∪A2 for the full subcategory with objects Ob(A1 ∪A2) =
Ob(A1) ∪ Ob(A2). Let M : A→ Ab be a functor taking values in abelian
groups. Consider the subfunctor M12 of M given by

M12(a) =

{
0, a ∈ Ob(A1 ∪A2),

M(a), a 6∈ Ob(A1 ∪A2).

We now state a kind of Mayer–Vietoris sequence argument for cohomology
of categories.
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2.31. Lemma. If the graded abelian groups lim∗(A1;M), lim∗(A2;M),
and lim∗(A1 ∩A2;M) are trivial , then lim∗(A;M12) ∼= lim∗(A;M).

Proof. Consider also the subfunctor M1 of M given by

M1(a) =

{
0, a ∈ Ob(A1),

M(a), a 6∈ Ob(A1).

Then there are natural transformationsM12 →M1 →M of functors. The in-
duced long exact sequences imply that it suffices to show lim∗(A;M/M1) =
0 = lim∗(A;M1/M12).

The quotient functor M/M1 vanishes outside A1 where it agrees with M
and therefore [28, 13.12] lim∗(A;M/M1) ∼= lim(A1;M), which is trivial by
assumption.

The same argument applied to A2 instead of A gives

lim∗(A2;M/M1) ∼= lim(A1 ∩A2;M)

Since this abelian group is trivial by assumption, we have

lim∗(A2;M1) ∼= lim∗(A2;M)

Also this abelian group is trivial by assumption.

The quotient functor M1/M12 vanishes outside A1 ∪A2, where it agrees
with M1 and therefore lim∗(A;M1/M12) ∼= lim(A1 ∪ A2;M1). Here, the
functorM1 vanishes outside A2 and hence lim(A1∪A2;M1) ∼= lim∗(A2;M1).
Since we just showed that this abelian group is trivial, we see that so is the
graded group lim∗(A;M1/M12).

We conclude that

lim∗(A(PSL(2n,R));πj(BZCPSL(2n,R))12)

= lim∗(A(PSL(2n,R));πj(BZCPSL(2n,R))),

where πj(BZCPSL(2n,R))12 is the subfunctor of πj(BZCPSL(2n,R)) given by

πj(BZCPSL(2n,R))12(V )

=

{
0, V is toral or q(V ) = 0,

πj(BZCPSL(2n,R)(V )), V is nontoral and q(V ) 6= 0.

According to 2.10 we have

V is nontoral and q(V ) 6= 0 ⇔ [V, V ] 6= 0

for all elementary abelian 2-groups V in PSL(2n,R). Thus the problem of
computing the higher limits of the functors πi(BZCPSL(2n,R)) is concen-

trated on the full subcategory A(PSL(2n,R))[ , ]6=0 of A(PSL(2n,R)) gen-
erated by all elementary abelian 2-groups V ⊂ PSL(2n,R) with nontrivial
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inner product. Note that if PSL(2n,R) contains an elementary abelian 2-
group V with [V, V ] 6= 0 then PSL(2n,R) in particular contains such a sub-
group of rank two. The preimage in SL(2n,R) of rank two V ⊂ PSL(2n,R)
with nontrivial inner product is an extraspecial 2-group 21+2

± with central
℧1 (2.8) so that, by real representation theory [24, 5.5], n must be even.

6. Higher limits of the functors πi(BZC) on A(PSL(4n,R))[ , ]6=0.

In this section we compute the first higher limits of the center functors
πiBZCPSL(4n,R), i = 1, 2 ([24, (2.47)]), using Oliver’s cochain complex [31].

2.32. Lemma. The higher limits of the center functors are

lim1 π1BZCPSL(4n,R) = 0 = lim2 π1BZCPSL(4n,R),

lim2 π2BZCPSL(4n,R) = 0 = lim3 π2BZCPSL(4n,R).

The case i = 2 is easy. Since π2BZCPSL(4n,R) has value 0 on all objects

of A(PSL(4n,R))[ , ]6=0 of rank ≤ 4 (2.55), it is immediate from Oliver’s
cochain complex that lim2 and lim3 of this functor are trivial.

We shall therefore now concentrate on the case i = 1. The claim of the
above lemma is that Oliver’s cochain complex [31]

(2.33) 0→
∏

|P |=22

[P ]
d1

−→
∏

|V |=23

[V ]
d2

−→
∏

|E|=24

[E]
d3

−→ · · ·

is exact at objects of rank ≤ 3. Here, as a matter of notational convention,

(2.34) [E] = HomA(PSL(4n,R))(E)(St(E), E)

stands for the F2-vector space of F2A(PSL(4n,R))(E)-module homomor-
phisms from the Steinberg module St(E) to E. The Steinberg module is the
F2GL(E)-module obtained in the following way.

Let P = F2e1 +F2e2 be a 2-dimensional vector space over F2 with basis
vectors e1, e2. Let F2[0] be the 3-dimensional F2-vector space on length zero
flags, [L], of nontrivial and proper subspaces L of P . The Steinberg module
St(P ) is the 2-dimensional kernel of the augmentation map d : F2[0]→ F2

given by d[L] = 1.

Let V = F2e1 + F2e2 + F2e3 be a 3-dimensional vector space over F2

with basis vectors e1, e2, e3. Let F2[1] be the 21-dimensional F2-vector space
on length one flags [P > L] of nontrivial and proper subspaces of V , and
F2[0] the 14-dimensional F2-vector space on all length 0 flags, [P ] or [L], of
nontrivial and proper subspaces of V . The Steinberg module St(V ) over F2

for V is the 23-dimensional kernel of the linear map d : F2[1]→ F2[0] given
by d[P > L] = [P ] + [L].
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2.35. Proposition. H+ 6= HD
+ and H− 6= HD

− in A(PSL(4n,R)). The

automorphism groups of the objects H+ and H− (2.51) are

A(PSL(4n,R))(H+) = O+(2,F2) ∼= C2,

A(PSL(4n,R))(H−) = O−(2,F2) ∼= GL(2,F2),

and the dimensions of the spaces of equivariant maps are

dim[H+] = 2, dim[H−] = 1.

Proof. The first part will be proved in 2.51. The Quillen automorphism
group A(SL(4n,R))(21+2

± ) equals A(GL(4n,R))(21+2
± ) = Out(21+2

± ) ∼=
O±(2,F2) where the isomorphism is induced by the abelianization 21+2

± →
H± [24, Example 5.4(2)–(3), 5.5].

The F2A(PSL(4n,R))(H+)-equivariant maps given by

(2.36) f+[L] = L, f0[L] =

{

H
A(H+)
+ , q(L) = 0,

0, otherwise,

form a basis for the 2-dimensional space [H+]. The F2A(PSL(4n,R))(H−)-
equivariant map given by

(2.37) f−[L] = L

is a basis for the 1-dimensional space [H−].

The quadratic function [24, 5.5] q(v1, v2, v3) = v2
1 +v2v3 on V0 (2.52) has

automorphism group

O(q) ∼= Sp(2,F2) =

〈





1 0 0

1 1 1

0 1 0




 ,






1 0 0

1 1 1

0 0 1






〉

⊂ GL(3,F2)

of order 6.

2.38. Proposition. V0 6= V D
0 in A(PSL(4n,R)). The automorphism

group A(PSL(4n,R))(V0) equals O(q) and dim[V0] = 4.

Proof. See [24, Example 5.4(5)] for the first part. According to magma,
dim[V0] = 4.

The four F2A(PSL(4n,R))(V0)-module homomorphisms

(2.39) {df+, df0, df−, f0}

given by
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df+[P > L] =

{
L, P = H+,

0, otherwise,
df0[P > L] =







PA(P ), P = H+,

q(L) = 0,

0, otherwise,

df−[P > L] =

{
L, P = H−,

0, otherwise,
f0[P > L] =







V
A(V0)
0 , [P, P ] = 0,

q(L) = 0,

0, otherwise,

form a basis for [V0].

The quadratic function on H+#L(i, 2n− i) ∈ Ob(A(PSL(4n,R))), 0 ≤
i ≤ n, q(v1, v2, v3) = v1v2, has automorphism group

O(q) =

(
O+(2,F2) 0

∗ 1

)

=

〈





0 1 0

1 0 0

0 0 1




 ,






1 0 0

0 1 0

1 0 1




 ,






1 0 0

0 1 0

0 1 1






〉

of order |O+(2,F2)| · 22 = 8.

2.40. Proposition. H+#L(i, 2n−i) 6= (H+#L(i, 2n−i))D if and only

if i is even. The Quillen automorphism group is

A(PSL(4n,R))(H+#L(i, 2n− i))

=







〈





0 1 0

1 0 0

0 0 1




 ,






1 0 0

0 1 0

1 1 1






〉

, i odd,

O(q), i even,

and the dimension of the space of equivariant maps is

dim[H+#L(i, 2n− i)] =

{
6, i odd,

3, i even.

Proof. H+#L(i, 2n− i) ⊂ PSL(4n,R) is (2.52) the quotient of

G = 〈diag(R, . . . , R), diag(T, . . . , T ), diag(

i
︷ ︸︸ ︷

−E, . . . ,−E,
2n−i

︷ ︸︸ ︷

E, . . . , E)〉
= 〈g1, g2, g3〉 ⊂ SL(4n,R).

The centralizer of G in GL(4n,R) is contained in the centralizer of its sub-
group 21+2

+ ,which is contained in SL(4n,R) [24, Example 5.4(6)]. Observe
that

• R and T are conjugate in GL(2,R).

• Conjugation with diag(

i
︷ ︸︸ ︷

T, . . . , T ,

2n−i
︷ ︸︸ ︷

E, . . . , E) induces (g1, g2, g3)
φ17→

(g1g3, g2, g3).
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• Conjugation with diag(

i
︷ ︸︸ ︷

R, . . . , R,

2n−i
︷ ︸︸ ︷

E, . . . , E) induces (g1, g2, g3)
φ27→

(g1, g2g3, g3).

• When i=n, conjugation with
(

0 E
E 0

)
induces (g1, g2, g3)

φ7→(g1, g2,−g3).
Consider the automorphism groups

A(SL(4n,R))(G) ⊂ A(GL(4n,R))(G) ⊂ Out(G)→ O(q)

⊂ Aut(H+#L(i, 2n− i))

where the outer automorphism group has order 16. Note that the automor-
phism φ is in the kernel of the homomorphism Out(G) → O(q) induced
by the abelianization G → H+#L(i, 2n − i). Using the above observations
we see that A(GL(4n,R))(G), even A(SL(4n,R))(G) for even i, maps onto
O(q). Thus the Quillen automorphism group A(GL(4n,R))(G) has order
8 or 16. When i = n the automorphism φ is in A(GL(4n,R))(G), even in
A(SL(4n,R))(G), and when i 6= n, φ 6∈ A(GL(4n,R))(G) as it does not
preserve trace. Thus

|A(GL(4n,R))(G)| =
{

16, i = n,

8, i 6= n.

In any case the group A(SL(4n,R))(G) equals the group A(GL(4n,R))(G)
if and only if i is even. When i is odd, the automorphism φ1 is induced
from a matrix of negative determinant so that NGL(4n,R)(G) 6⊂ SL(4n,R).
According to magma, dim[H+#L(i, 2n− i)] is 3 when i is even and 6 when
i is odd.

The six F2A(PSL(4n,R))(H+#L(i, 2n− i))-linear maps

(2.41) {df+, df0, f0, df
D
+ , df

D
0 , f

D
0 }

given by

df+[P > L] =

{
L, P = H+,

0, otherwise,

df0[P > L] =

{
PA(P ), P = H+, q(L) = 0,

0, otherwise,

f0[P > L] =

{
v1, [P, P ] = 0, q(L) = 0,

0, otherwise,

from a basis for the 6-dimensional F2-vector space [H+#L(i, 2n − i)] for i
odd and [H+#L(i, 2n− i)]× [(H+#L(i, 2n− i))D] for i even. Here, v1 is one
of the two nonzero vectors of V A(V ) that are not D-invariant when i is odd
and the nonzero vector of V A(V ) when i is even, where V = H+#L(i, 2n−i).
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The quadratic function on H−#L(i, n − i) ∈ Ob(A(PSL(4n,R))), 1 ≤
i ≤ [n/2], q(v1, v2, v3) = v2

1 + v1v2 + v2
2 , has automorphism group

O(q) =

(
O−(2,F2) ∗

0 1

)

of order |O−(2,F2)| · 22 = 24.

2.42. Proposition. H−#L(i, n−i) 6= (H−#L(i, n−i))D for all n ≥ 2.
The Quillen automorphism group A(PSL(4n,R))(H−#L(i, n − i)) = O(q)
has order 24 and the dimension of the space of equivariant maps is

dim[H−#L(i, n− i)] = 1.

Proof. H−#L(i, n− i) ⊂ PSL(4n,R) is the quotient of

G = 21+2
− × 2

=

〈

diag

((
0 −R
R 0

)

, . . . ,

(
0 −R
R 0

))

,

diag

((
0 −T
T 0

)

, . . . ,

(
0 −T
T 0

))

,

diag

(

i
︷ ︸︸ ︷
(−E 0

0 −E

)

, . . . ,

(−E 0

0 −E

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . . ,

(
E 0

0 E

))〉

= 〈g1, g2, g3〉 ⊂ SL(4n,R).

The centralizer of G in GL(4n,R) is contained in the centralizer of its sub-
group 21+2

− , which is contained in SL(4n,R) [24, Example 5.4.(7)]. Observe
that:

• A(SL(4,R))(21+2
− ) ∼= O(q).

• Conjugation with

diag

(

i
︷ ︸︸ ︷
(
T 0

0 T

)

, . . . ,

(
T 0

0 T

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . . ,

(
E 0

0 E

))

induces the automorphism (g1, g2, g3)
φ17→ (g1g3, g2, g3).

• Conjugation with

diag

(

i
︷ ︸︸ ︷
(
R 0

0 R

)

, . . . ,

(
R 0

0 R

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . . ,

(
E 0

0 E

))

induces the automorphism (g1, g2, g3)
φ27→ (g1, g2g3, g3).
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• When i = n/2, conjugation with
(

0 E
E 0

)
induces the automorphism

(g1, g2, g3)
φ7→ (g1, g2,−g3).

Consider the automorphism groups

A(SL(4n,R))(G) ⊂ A(GL(4n,R))(G) ⊂ Out(G)→ O(q)

⊂ Aut(H−#L(i, n− i))
where the outer automorphism group has order 48. Note that the automor-
phism φ is in the kernel of the homomorphism Out(G)→ O(q) induced by
the abelianization G → H−#L(i, n − i). Using the above observations we
see that A(SL(4n,R))(G) maps onto O(q). Thus the Quillen automorphism
group A(GL(4n,R))(G) has order 48 or 24. When n is even and i = n/2,
the automorphism φ is in A(SL(4n,R))(G), and when i < n/2, φ is not in
A(GL(4n,R))(G) as it does not preserve trace. Thus

|A(GL(4n,R))(G)| =
{

48, i = n/2,

24, i < n/2.

In any case, the group A(SL(4n,R))(G) equals A(GL(4n,R))(G) so that
H−#L(i, n− i) 6= (H−#L(i, n− i))D [24, Lemma 5.2]. According to magma,
the dimension dim[H−#L(i, n− i)] equals 1.

The F2A(PSL(4n,R))(H−#L(i, n− i))-linear map {df−} given by

(2.43) df−[P > L] =

{
L, P = H−,

0, otherwise,

is a basis for the 1-dimensional F2-vector space [H−#L(i, n− i)].
The quadratic function q(v1, v2, v3, v4) = v2

1 + v2v3 has automorphism
group

O(q) =

(
Sp(2,F2) ∗

0 1

)

,

Sp(2,F2) ∼=
〈






1 0 0

1 1 1

0 1 0




 ,






1 0 0

1 1 1

0 0 1






〉

⊂ GL(3,F2),

of order 48.

2.44. Proposition. The 4-dimensional object V0#L(i, n− i), 1 ≤ i ≤
[n/2], of the category A(PSL(4n,R)) satisfies

V0#L(i, n− i) 6= (V0#L(i, n− i))D.

It contains the objects V0, H+#L(2i, 2n − 2i), and H−#L(i, n − i). The

automorphism group A(PSL(4n,R))(V0#L(i, n − i)) equals O(q) and the

dimension of the space of equivariant maps is dim[V0#L(i, n− i)] = 5.
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Proof. V0#L(i, n− i) ⊂ PSL(4n,R) is [24, 5.7] the quotient of

G = 21+2
± ◦ 4× 2 =

〈

diag

((
0 −E
E 0

)

, . . . ,

(
0 −E
E 0

))

,

diag

((
R 0

0 R

)

, . . . ,

(
R 0

0 R

))

, diag

((
T 0

0 T

)

, . . . ,

(
T 0

0 T

))

,

diag

(

i
︷ ︸︸ ︷
(−E 0

0 −E

)

, . . . ,

(−E 0

0 −E

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . .

(
E 0

0 E

))〉

= 〈g1, g2, g3, g4〉 ⊂ SL(4n,R).

The centralizer of G in GL(4n,R) is contained in the centralizer of its sub-
group 21+2

− , which is contained in SL(4n,R) [24, Example 5.4.(7)]. Observe
that:

• A(SL(4,R))(21+2
± ◦ 4) = Out(G) ∼= Out(C4) × Sp(2,F2) [24, Ex-

ample 5.4(5)].
• Conjugation with

diag

(

i
︷ ︸︸ ︷
(

0 E

E 0

)

, . . . ,

(
0 E

E 0

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . . ,

(
E 0

0 E

))

induces the automorphism (g1, g2, g3, g4)
φ17→ (g1g4, g2, g3, g4).

• Conjugation with

diag

(

i
︷ ︸︸ ︷
(
T 0

0 T

)

, . . . ,

(
T 0

0 T

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . . ,

(
E 0

0 E

))

induces the automorphism (g1, g2, g3, g4)
φ27→ (g1, g2g4, g3, g4).

• Conjugation with

diag

(

i
︷ ︸︸ ︷
(
R 0

0 R

)

, . . . ,

(
R 0

0 R

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . . ,

(
E 0

0 E

))

induces the automorphism (g1, g2, g3, g4)
φ37→ (g1, g2, g3g4, g4).

• Conjugation with diag
((

0 E
E 0

)
, . . . ,

(
0 E
E 0

))
induces the automorphism

(g1, g2, g3, g4)
φ47→ (−g1, g2, g3g4).
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• When i = n/2, conjugation with
(

0 E
E 0

)
∈ SL(4n,R) induces the au-

tomorphism (g1, g2, g3, g4)
φ57→ (g1, g2, g3,−g4).

Consider the automorphism groups

A(SL(4n,R))(G) ⊂ A(GL(4n,R))(G) ⊂ Out(G)→ O(q)

⊂ Aut(V0#L(i, n− i)),
where the outer automorphism group has order 196 and O(q) has order 48.
Note that the automorphism φ4 of order 2 is in the kernel of the homomor-
phism Out(G) → O(q) induced by the abelianization G → V0#L(i, n − i).
Using the above observations we see that A(SL(4n,R))(G) maps onto O(q)
with a kernel of order at least 2. Thus the Quillen automorphism group
A(GL(4n,R))(G) has order 192 or 96. When n is even and i = n/2, the
automorphism φ5 is in A(SL(4n,R))(G), and when i < n/2, φ5 is not in
A(GL(4n,R))(G) as it does not preserve trace. Thus

|A(GL(4n,R))(G)| =
{

192, i = n/2,

96, i < n/2.

In any case, the group A(SL(4n,R))(G) equals A(GL(4n,R))(G) so that
V0#L(i, n− i) 6= (V0#L(i, n− i))D [24, Lemma 5.2]. According to magma,
dim[V0#L(i, n− i)] = 5.

The five F2A(PSL(4n,R))(V0#L(i, n− i))-linear maps

(2.45) {ddf+L(2i,2n−2i), ddf0L(2i,2n−2i), df0L(2i,2n−2i), ddf−L(i,n−i), df0V0}
given by

ddf+L(2i,2n−2i)[V > P > L] =

{
L, V = H+#L(2i, 2n− 2i), P = H+,

0, otherwise,

ddf0L(2i,2n−2i)[V > P > L]

=

{
PA(P ), V = H+#L(2i, 2n− 2i), P = H+, q(L) = 0,

0, otherwise,

df0L(2i,2n−2i)[V > P > L]

=

{
V A(V ), V = H+#L(2i, 2n− 2i), [P, P ] = 0, q(L) = 0,

0, otherwise,

ddf−L(i,n−i)[V > P > L] =

{
L, V = H−#L(i, n− i), P = H−,

0, otherwise,

df0V0[V > P > L] =

{
V A(V ), V = V0, [P, P ] = 0, q(L) = 0,

0, otherwise

constitute a basis for [V0#L(i, n− i)].
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2.46. Lemma. The 4-dimensional object H+#P (1, i− 1, 2n− i, 0), 2 <
i ≤ n, of the category A(PSL(4n,R)), n > 2, satisfies H+#P (1, i − 1,
2n− i, 0) = (H+#P (1, i− 1, 2n− i, 0))D. It contains the 3-dimensional ob-

jects

H+#







L(1, 2n− 1), L(i− 1, 2n− i+ 1), L(i− 1, 2n− i+ 1)D, L(i, 2n− i),
i odd,

L(1, 2n− 1), L(i− 1, 2n− i+ 1), L(i, 2n− i), L(i, 2n− i)D,

i even.

Its Quillen automorphism group is

A(PSL(4n,R))(H+#P (1, i− 1, 2n− i, 0))

=







〈









0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1









,









1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1









,









1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1









,









1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1









〉

, i > 2 odd,

〈









0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1









,









1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1









,









1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1









,









1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1









〉

, i > 2 even,

of order 16. The space of equivariant maps has dimension

dim[H+#P (1, i− 1, 2n− i, 0)] = 16.

Proof. H+#P (1, i− 1, 2n− i) ⊂ PSL(4n,R) is (2.53) the quotient of

G = 〈diag(R, . . . , R), diag(T, . . . , T ),

diag(E,

i−1
︷ ︸︸ ︷

−E, . . . ,−E,
2n−i

︷ ︸︸ ︷

E, . . . , E), diag(E,

i−1
︷ ︸︸ ︷

E, . . . , E,

2n−i
︷ ︸︸ ︷

−E, . . . ,−E)〉
= 〈g1, g2, g3, g4〉 ⊂ SL(4n,R).

The centralizer of G in GL(4n,R) is contained in the centralizer of its
subgroup 21+2

+ , which is contained in SL(4n,R) [24, Example 5.4(6)]. This
means [24, (5.3)] that the elements of the automorphism groups A(GL(4n,
R))(G) and A(PGL(4n,R))(H+#P (1, i− 1, 2n− i, 0)) have a well-defined

sign. The Quillen automorphism group is contained in the group
(

O+(2,F2) ∗
0 E

)

of order 25 = 32. Observe that

• R and T are conjugate in GL(2,R) so that the automorphism (g1, g2,

g3, g4)
φ17→ (g2, g1, g3, g4) is in the Quillen automorphism group and has

sign +1.
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• Conjugation with diag(E,

i−1
︷ ︸︸ ︷

E, . . . , E,

2n−i
︷ ︸︸ ︷

T, . . . , T ) induces the automor-

phism (g1, g2, g3, g4)
φ27→ (g1g4, g2, g3, g4) of sign (−1)i.

• Conjugation with diag(E,

i−1
︷ ︸︸ ︷

T, . . . , T ,

2n−i
︷ ︸︸ ︷

E, . . . , E) induces the automor-

phism (g1, g2, g3, g4)
φ37→ (g1g3, g2, g3, g4) of sign −(−1)i.

• Conjugation with diag(E,

i−1
︷ ︸︸ ︷

E, . . . , E,

2n−i
︷ ︸︸ ︷

R, . . . , R) induces the automor-

phism (g1, g2, g3, g4)
φ47→ (g1, g2g4, g3, g4) of sign (−1)i.

• Conjugation with diag(E,

i−1
︷ ︸︸ ︷

R, . . . , R,

2n−i
︷ ︸︸ ︷

E, . . . , E) induces the automor-

phism (g1g3, g2, g3, g4)
φ57→ (g1, g2g3, g3, g4) of sign −(−1)i.

• Conjugation with diag(E,

i−1
︷ ︸︸ ︷

RT, . . . , RT ,

2n−i
︷ ︸︸ ︷

RT, . . . , RT ) induces the auto-

morphism given by (g1, g2, g3, g4)
φ67→ (g1g3g4, g2g3g4, g3, g4) of sign +1.

It follows that NGL(4n,R)(G) 6⊂ SL(4n,R) as this normalizer contains ele-
ments of negative determinant regardless of the parity of i. Also, the auto-
morphism group A(PSL(4n,R))(H+#P (1, i− 1, 2n− i, 0)) is generated by
(the automorphisms induced by) φ1, φ2, φ4, and φ6 when i is even, and φ1,
φ3, φ5, and φ6 when i is odd.

The fourteen F2A(PSL(4n,R))(H+#P (1, i− 1, 2n− 1))-linear maps

{ddf+L(i−1,2n−i+1), ddf
D
+L(i−1,2n−i+1), ddf0L(i−1,2n−i+1),(2.47)

ddfD
0L(i−1,2n−i+10), df0L(i−1,2n−i+1), df

D
0L(i−1,2n−i+1),

ddf+L(i,2n−i), ddf
D
+L(i,2n−i), ddf0L(i,2n−i), ddf

D
0L(i,2n−i),

df0L(i,2n−i), df
D
0L(i,2n−i), df0L(1,2n−1), df

D
0L(1,2n−1)}

form a partial basis for the 16-dimensional vector space [H+#P (1, i − 1,
2n− 1)], 2 < i ≤ n. For 1 < i ≤ n and i odd,

ddf+L(i,2n−i)[V > P > L] =

{
L, V = H+#L(i, 2n− i), P = H+,

0, otherwise,

ddfD
+L(i,2n−i)[V > P > L] =

{
L, V = H+#L(i, 2n− i), P = HD

+ ,

0, otherwise,

ddf0L(i,2n−i)[V > P > L]

=

{
PA(P ), V = H+#L(i, 2n− i), P = H+, q(L) = 0,

0, otherwise,
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ddfD
0L(i,2n−i)[V > P > L]

=

{
PA(P ), V = H+#L(i, 2n− i), P = HD

+ , q(L) = 0,

0, otherwise,

df01L(i,2n−i)[V > P > L]

=

{
V ∩O1, V = H+#L(i, 2n− i), [P, P ] = 0, q(L) = 0,

0, otherwise,

dfD
01L(i,2n−i)[V > P > L]

=

{
V ∩O2, V = H+#L(i, 2n− i), [P, P ] = 0, q(L) = 0,

0, otherwise,

where (in the last two formulas), O1 and O2 are the two orbits of length 2 for
the action of A(PSL(4n,R))(H+#P (1, i− 1, 2n− i, 0)) on H+#P (1, i− 1,
2n − i, 0). Each of the hyperplanes isomorphic to V = H+#L(i, 2n − i)
contains precisely one vector v1 from O1 and one vector v2 from O2 and
{v1, v2} is a basis for the fixed point group V A(PSL(4n,R))(V ). For 1 < i ≤ n
and i even,

ddf+L(i,2n−i)[V > P > L] =

{
L, V = H+#L(i, 2n− i), P = H+,

0, otherwise,

ddfD
+L(i,2n−i)[V > P > L] =

{
L, V = (H+#L(i, 2n− i))D, P = (H+)D,

0, otherwise,

ddf0L(i,2n−i)[V > P > L]

=

{
PA(P ), V = H+#L(i, 2n− i), P = H+, q(L) = 0,

0, otherwise,

ddfD
0L(i,2n−i)[V > P > L]

=

{
PA(P ), V = (H+#L(i, 2n− i))D, P = (H+)D, q(L) = 0,

0, otherwise,

df0L(i,2n−i)[V > P > L]

=

{
V A(V ), V = H+#L(i, 2n− i), [P, P ] = 0, q(L) = 0,

0, otherwise,

dfD
0L(i,2n−i)[V > P > L]

=

{
V A(V ), V = (H+#L(i, 2n− i))D, [P, P ] = 0, q(L) = 0,

0, otherwise.

2.48. Lemma. The 4-dimensional object H+#P (1, 1, 2, 0) of the cate-

gory A(PSL(8,R)) satisfies H+#P (1, 1, 2, 0) = (H+#P (1, 1, 2, 0))D. It con-

tains the 3-dimensional objects

H+#L(1, 3), H+#L(2, 2), (H+#L(2, 2))D.
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Its Quillen automorphism group is

A(PSL(8,R))(H+#P (1, 1, 2, 0))

=

〈









0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1









,









1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1









,









1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1









,









1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1









,









1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1









〉

of order 32, and dim[H+#P (1, i− 1, 2n− i, 0)] = 8.

Proof. The proof is similar to that of 2.46. The elementary abelian 2-
group H+#P (1, 1, 2, 0) ⊂ PSL(8,R) is the quotient of the group

G =

〈diag(R,R,R,R), diag(T, T, T, T ), diag(E,−E,E,E), diag(E,E,−E,−E)〉
⊂ SL(8,R)

The extra element of A(PSL(8,R))(H+#P (1, 1, 2, 0)) is induced by conjuga-
tion with the matrix diag

((
0 E
E 0

)
,
(

E 0
0 E

))
∈ SL(8,R). According to magma,

dim[H+#P (1, 1, 2, 0)] = 8.

The eight F2A(PSL(8,R))(H+#P (1, 1, 2, 0))-linear maps

{ddf+L(2,2), ddf
D
+L(2,2), ddf0L(2,2), ddf

D
0L(2,2),(2.49)

df0L(2,2), df
D
0L(2,2), df01L(1,3), df

D
01L(1,3)}

from a basis for the vector space [H+#P (1, 1, 2, 0)].
We are now ready to describe the differentials d1 and d2 in Oliver’s

cochain complex (2.33) for computing the higher limits of the functor

π1(BZCPSL(4n,R)(V )) = V

on the category A(PSL(4n,R)). The 6× (6n+ 2[n/2] + 8) matrix for d1 is
of the following form (shown here for n = 3):

[H+#L(1, 5)] [H+#L(2, 4)] × [H+#L(2, 4)]D H+#L(3, 3)

[H+] (A 0) (A 0) (A 0)

[H+]D (0 A) (0 A) (0 A)

[H−]

[H−]D

[H−#L(1, 1)] × [H−#L(1, 1)]D [V0] × [V0]
D

(H 0) [H+]

(0 H) [H+]D

(1 0) (B 0) [H−]

(0 1) (0 B) [H−]D

where
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A =

(
1 0 0

0 1 0

)

, H =

(
1 0 0 0

0 1 0 0

)

, B = (0 0 1 0),

is injective so lim1 = 0. Exactness is thus equivalent to

dim(im d2) ≥ 6n+ 2[n/2] + 2.

We shall show this by mapping the n+ [n/2] + 2[n/2] + 2 objects of dimen-
sion 3,

H+#L(i, 2n− i), (H+#L(i, 2n− i))D (i even), 1 ≤ i ≤ n,
H−#L(i, n− i), (H−#L(i, n− i))D, 1 ≤ i ≤ [n/2], V0, V

D
0 ,

of A(PSL(4n,R)) to the n− 2 + 2[n/2] objects of dimension 4,

H+#P (1, i− 1, 2n− i, 0), 2 < i ≤ n,
V0#L(n− i, i), (V0#L(n− i, i))D, 1 ≤ i ≤ [n/2],

for n > 2, and to

H+#P (1, 1, 2, 0), V0#L(1, 1), (V0#L(1, 1))D

when n = 2. The (6n + 2[n/2] + 8) × (16(n − 2) + 10[n/2]) matrix for d2

(shown here for n = 5) is

[H+#P (1, 2, 7)] [H+#P (1, 3, 6)] [H+#P (1, 4, 5)]

[H+#L(1, 9)] (A A B) (A A B) (A A B)

[H+#L(2, 8)] × [H+#L(2, 8)]D (E 0 0)

[H+#L(3, 7)] (0 E 0) (E 0 0)

[H+#L(4, 6)] × [H+#L(4, 6)]D (0 E 0) (E 0 0)

[H+#L(5, 5)] (0 E 0)

[H−#L(1, 4)] × [H−#L(1, 4)]D

[H−#L(2, 3)] × [H−#L(2, 3)]D

[V0] × [V0]
D

[V0#L(1, 4)] [V0#L(1, 4)]D [V0#L(2, 3)] [V0#L(2, 3)]D

[H+#L(1, 9)]
(

H

0

) (
0

H

)

[H+#L(2, 8)] × [H+#L(2, 8)]D

[H+#L(3, 7)]
(

H

0

) (
0

H

)

[H+#L(4, 6)] × [H+#L(4, 6)]D

[H+#L(5, 5)]
(

L

0

) (
0

L

)

[H−#L(1, 4)] × [H−#L(1, 4)]D

(
L

0

) (
0

L

)

[H−#L(2, 3)] × [H−#L(2, 3)]D

(
K

0

) (
0

K

) (
K

0

) (
0

K

)

[V0] × [V0]
D
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where

A =













1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0













, B =













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0













, K =








1 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1







,

H =






1 0 0 0 0

0 1 0 0 0

0 0 1 0 0




, L = (0 0 0 1 0),

while E is the 6× 6 unit matrix and 0 the zero matrix. These matrices are
given with respect to the bases (2.39), (2.41), (2.43), (2.47), (2.45).

The case n = 2 of PSL(8,R) is special. Part of the matrix for d2 is the
22× 18 matrix

[H+#P (1, 1, 2, 0)] [V0#L(1, 1)] [V0#L(1, 1)]D

[H+#L(1, 3)] (A B)

[H+#L(2, 2)] × [H+#L(2, 2)]D (E 0)

(
H

0

) (
0

H

)

[H−#L(1, 1)] × [H−#L(1, 1)]D
(

L

0

) (
0

L

)

[V0] × [V0]
D

(
K

0

) (
0

K

)

where now

B =













0 0

0 0

0 0

0 0

1 0

0 1













,

while E is the 6 × 6 unit matrix and 0 the zero matrix. As (partial) bases
we use the ordered sets (2.41), (2.43), (2.39), (2.49), (2.45). This matrix has
rank 16.

2.50. Corollary. The partial differential
∏

1≤i≤n
i odd

[H+#L(i, 2n− i)]×
∏

1≤i≤n
i even

[H+#L(i, 2n− i)]× [H+#L(i, 2n− i)]D
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×
∏

1≤i≤[n/2]

[H−#L(i, n− i)]× [H−#L(i, n− i)]D × [V0]× [V0]
D

d2

−→
∏

2<i≤n

[H+#P (1, i− 1, 2n− i, 0)]×
∏

1≤i≤[n/2]

[V0#L(i, n− i)]

has rank 6n+ 2[n/2] + 2.

Proof. By now we know a matrix for this linear map so we simply check
its rank.

Proof of Lemma 2.32. For π2 use the fact that it is trivial on the objects
with [ , ] 6= 0.

7. The category A(PSL(4n,R))
[ , ]6=0
≤4 . We shall need information about

all objects of A(PSL(4n,R))[ , ]6=0 of rank ≤ 3 and some objects of rank 4.
If V ⊂ PSL(4n,R) is a nontoral elementary abelian 2-group with non-
trivial inner product then its preimage V ∗ ⊂ SL(4n,R) is P × R(V ) or
(C4 ◦ P ) × R(V ), where P is an extraspecial 2-group, C4 ◦ P a generalized
extraspecial 2-group, and ℧1(V

∗) = 〈−E〉 (2.8). We manufacture all ori-
ented real representations of these product groups as direct sums of tensor
products of irreducible representations of the factors [24, 5.6].

2.51. Rank two objects with nontrivial inner product. The category
A(PSL(4n,R)) contains up to isomorphism four rank two objects with non-
trivial inner product, H± and HD

± . The elementary abelian 2-group H± ⊂
PSL(4n,R) is the quotient of the extraspecial 2-group 21+2

± ⊂ SL(4n,R)

with ℧1(2
1+2
± ) = 〈−E〉 described in [24, Example 5.4(6)–(7)]. Their central-

izers [32, Proposition 4] in SL(4n,R) and PSL(4n,R) are

CSL(4n,R)(2
1+2
+ ) = GL(2n,R), CPSL(4n,R)(H+) = H+ × PGL(2n,R),

CSL(4n,R)(2
1+2
− ) = GL(n,H), CPSL(4n,R)(H−) = H− × PGL(n,H),

where H+ and H− are hyperbolic planes with quadratic functions q+(v1, v2)
= v1v2 and q−(v1, v2) = v2

1 + v1v2 + v2
2 [24, 5.5], respectively. In the first

case, for instance, the commutative diagram

1 // PGL(2n,R) // CPSL(4n,R)(H+) // H∨
+

// 0

H+

OO

[·,·]

∼=

88qqqqqqqqqqqqq

gives a central section of the short exact sequence from [28, 5.11]. Alterna-
tively, CPSL(4n,R)(H+) = H+ × PGL(2n,R) = V+ × (PSL(2n,R) ⋊ C2).

2.52. Rank three objects with nontrivial inner product. Let V be a rank
three object of A(PSL(4n,R)) with nontrivial inner product. Then V or V D
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is isomorphic to H+#L(i, 2n−i) (1 ≤ i ≤ n), H−#L(i, n−i) (1 ≤ i ≤ [n/2])
or V0. Furthermore, H+#L(i, 2n − i) ⊂ PSL(4n,R) is defined to be the
quotient of

〈diag(R, . . . , R), diag(T, . . . , T ), diag(

i
︷ ︸︸ ︷

−E, . . . ,−E,
2n−i

︷ ︸︸ ︷

E, . . . , E)〉,

R =

(
1 0

0 −1

)

, T =

(
0 1

1 0

)

,

isomorphic to 21+2
+ ×C2 ⊂ SL(4n,R), and H−#L(i, n− i) ⊂ PSL(4n,R) to

be the quotient of
〈

diag

((
0 −R
R 0

)

, . . . ,

(
0 −R
R 0

))

, diag

((
0 −T
T 0

)

, . . . ,

(
0 −T
T 0

))

,

diag

(

i
︷ ︸︸ ︷
(−E 0

0 −E

)

, . . . ,

(−E 0

0 −E

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . . ,

(
E 0

0 E

))〉

,

isomorphic to 21+2
− ×C2 ⊂ SL(4n,R). The elementary abelian 2-group V0 ⊂

PSL(4n,R) is the quotient of

〈

diag

((
R 0

0 R

)

, . . . ,

(
R 0

0 R

))

, diag

((
T 0

0 T

)

, . . . ,

(
T 0

0 T

))

,

diag

((
0 −E
E 0

)

, . . . ,

(
0 −E
E 0

))〉

,

isomorphic to the generalized extraspecial 2-group C4 ◦21+2
± ⊂ SL(4n,R) as

described in [24, Example 5.4(5)].

2.53. Rank four objects with nontrivial inner product. The following
partial census of rank four objects with nontrivial inner product suffices
for our purposes. Define the elementary abelian 2-group H+#P (1, i− 1,
2n− i) ⊂ PSL(4n,R), 2 ≤ i ≤ n, to be the quotient of

〈diag(R, . . . , R), diag(T, . . . , T ),

diag(E,

i−1
︷ ︸︸ ︷

−E, . . . ,−E,
2n−i

︷ ︸︸ ︷

E, . . . , E), diag(E,

i−1
︷ ︸︸ ︷

E, . . . , E,

2n−i
︷ ︸︸ ︷

−E, . . . ,−E)〉
⊂ SL(4n,R).

Define V0#L(i, n− i) ⊂ PSL(4n,R), 1 ≤ i ≤ [n/2], to be the quotient of
〈

diag

((
0 −E
E 0

)

, . . . ,

(
0 −E
E 0

))

, diag

((
R 0

0 R

)

, . . . ,

(
R 0

0 R

))

,



N-determined 2-compact groups. II 43

diag

((
T 0

0 T

)

, . . . ,

(
T 0

0 T

))

,

diag

(

i
︷ ︸︸ ︷
(−E 0

0 −E

)

, . . . ,

(−E 0

0 −E

)

,

n−i
︷ ︸︸ ︷
(
E 0

0 E

)

, . . .

(
E 0

0 E

))〉

isomorphic to C4 ◦ 21+2
± × C2 ⊂ SL(4n,R).

2.54. Centers of centralizers. For the computations in §6 we need to
know the centers of the centralizers for some of the low-dimensional objects
of A(PSL(4n,R))[ , ]6=0.

2.55. Proposition. Let V ∈ Ob(A(PSL(4n,R))[ , ]6=0) be one of the

objects

• H+, H−,
• H+#L(i, 2n− i) (1 ≤ i ≤ n), H−#L(i, n− i) (1 ≤ i ≤ [n/2]), V0,
• H+#P (1, i− 1, 2n− i, 0) (1 < i ≤ n), V0#L(i, n− i) (1 ≤ i ≤ [n/2])

introduced in 2.51–2.53. Then ZCPSL(4n,R)(V ) = V .

Proof. The proof is a case-by-case checking.

H+ and H−: Since the centralizers of the rank two objects H+ and H−

are CPSL(4n,R)(H+) = H+ × PGL(2n,R) and CPSL(4n,R)(H−) = H− ×
PGL(n,H), the assertion is immediate in this case.

H+#L(i, 2n− i) (1 ≤ i ≤ n) and H+#P (1, i− 1, 2n− i, 0) (1 < i ≤ n):
We shall only prove the 2-dimensional case since the 3-dimensional case
is similar. The centralizer of H+#L(i, 2n− i) is isomorphic to the product
of H+ with the centralizer of L = L(i, 2n− i) in PGL(2n,R). There is [28,
5.11] a short exact sequence

1→ GL(i,R)×GL(2n− i,R)

〈−E〉 → CPGL(2n,R)(L)→ Hom(L, 〈−E〉)̺ → 1

where the rightmost group consists of all homomorphisms φ : L→ 〈−E〉
such that ̺ and φ · ̺ are conjugate representations in GL(2n,R). By trace
considerations, this group is trivial if i < n and of order two if i = n. Hence

CPGL(2n,R)(L) =







GL(i,R)×GL(2n− i,R)

〈−E〉 , i < n,

GL(n,R)2

〈−E〉 ⋊ 〈C1〉, i = n,

where C1 =( 0 E
E 0 ) is the 2n× 2n matrix that interchanges the two GL(n,R)

factors. In case i < n, use [24, Lemma 5.18]. In case i = n, the center is [24,
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Lemma 5.13] the pull-back of the group homomorphisms

GL(n,R)× 〈(E,−E)〉
〈−E〉 =

(
GL(n,R)2

〈−E〉

)〈C1〉

→ Aut

(
GL(n,R)2

〈−E〉

)

← 〈C1〉,

which is GL(1,R)×〈(−E,E)〉
〈−E〉 = L again.

V0 and V0#L(i, n− i): The object V0 ⊂ PSL(4n,R) is the quotient of

G = 4 ◦ 21+2
± ⊂ SL(4n,R) as described in [24, Example 5.4(5)]. As this

representation ̺ = n(χ+χ) is the n-fold sum of an irreducible representation
of complex type there are exact sequences

1 // GL(n,C)
〈−E〉

// CPSL(4n,R)(V0) // Hom(G, 〈−E〉)̺
// 1

1 // Z(G)/G′ //
?�

OO

G/G′ //
?�

OO

G/Z(G) //
?�

OO

1

where the top row is [28, 5.11]. The abelian group Hom(G, 〈−E〉)̺, consisting
of all homomorphisms φ : G→ 〈−E〉 such that ̺ and φ · ̺ are conjugate in
SL(4n,R), equals all of Hom(G, 〈−E〉) = 23 since conjugation with the first
two of the generators from 2.52 and with

C2 = diag

((
E 0

0 −E

)

, . . . ,

(
E 0

0 −E

))

induces three independent generators. Hence

CPSL(4n,R)(V0) =

(
GL(n,C)

〈−E〉 × V0/V
⊥
0

)

⋊ 〈C2〉.

Note that conjugation with the matrix C2 induces complex conjugation on
GL(n,C). The center of this semidirect product is [24, Lemma 5.13] the
pull-back of the group homomorphisms

GL(n,R) ◦ 〈i〉
〈−E〉 × V0/V

⊥
0 =

(
GL(n,C)

〈−E〉 × V0/V
⊥
0

)〈C2〉

→ Aut

(
GL(n,C)

〈−E〉 × V0/V
⊥
0

)

← 〈C2〉,

which is
GL(1,R) ◦ 〈i〉
〈−E〉 × V0/V

⊥
0 =

〈i〉
〈−E〉 × V0/V

⊥
0 = V0.

The case of V0#L(i, n−i), 1 ≤ i < [n/2], is quite similar. The centralizer
is

CPSL(4n,R)(V0#L(i, n− i)) =

(
GL(i,C)×GL(n− i,C)

〈−E〉 × V0/V
⊥
0

)

⋊ 〈C2〉



N-determined 2-compact groups. II 45

and its center is the pull-back of the homomorphisms

(GL(i,R)×GL(n− i,R)) ◦ 〈i〉
〈−E〉 × V0/V

⊥
0

=

(
GL(i,C)×GL(n− i,C)

〈−E〉 × V0/V
⊥
0

)〈C2〉

→ Aut

(
GL(i,C)×GL(n− i,C)

〈−E〉 × V0/V
⊥
0

)

← 〈C2〉,

which is

ZCPSL(4n,R)(V0#L(i, n− i)) =
(GL(1,R)×GL(1,R)) ◦ 〈i〉

〈−E〉 × V0/V
⊥
0

= 22 × V0/V
⊥
0 = V0 × L.

If n is even and i = n/2, there is a short exact sequence

1→ GL(n,C)2

〈−E〉 → CPSL(4n,R)(V0 × L)→ Hom(G× L, 〈−E〉)̺ → 1

where the elementary abelian group on the right is all of Hom(G×L, 〈−E〉)
= 24. Hence the centralizer satisfies

CPSL(4n,R)(V0 × L) =

(
GL(n,C)2

〈−E〉 × V0/V
⊥
0

)

⋊ 〈C1, C2〉

where C2 is as above and C1 is the 4n × 4n matrix
(

0 E
E 0

)
. The matrix C2

commutes with V0/V
⊥
0 and acts as complex conjugation on GL(n,C)2/〈−E〉.

The matrix C1 commutes with V0/V
⊥
0 and switches the two factors of

GL(n,C)2. The center of the centralizer is the pull-back of the group homo-
morphisms

GL(n,R) ◦ 〈i〉 × 〈(E,−E)〉
〈−E〉 × V0/V

⊥
0 =

(
GL(n,C)2

〈−E〉 × V0/V
⊥
0

)〈C1,C2〉

→ Aut

(
GL(n,C)2

〈−E〉 × V0/V
⊥
0

)

← 〈C1, C2〉,

which is

ZCPSL(4n,R)(V0 × L) =
GL(1,R) ◦ 〈i〉 × 〈(E,−E)〉

〈−E〉 × V0/V
⊥
0

= 22 × V0/V
⊥
0 = V0 × L.

H−#L(i, n− i): As above, we have

CPSL(4n,R)(H− × L)

=







GL(i,H)×GL(n− i,H)

〈−E〉 ×H−, i < [n/2],

GL(i,H)2

〈−E〉 ⋊ 〈C1〉 ×H−, n even and i = n/2,
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with center

ZCPSL(4n,R)(H− × L) =
GL(1,R)×GL(1,R)

〈−E〉 = 2×H− = H− × L

in case i 6= n− i. If n is even and i = n/2, then the center is the pull-back
of the group homomorphisms

GL(i,H)× 〈(−E,E)〉
〈−E〉 ×H− =

GL(i,H)2

〈−E〉 ×H−

→ Aut

(
GL(i,H)2

〈−E〉 ×H−

)

← 〈C1〉,

which is

ZCPSL(4n,R)(H−×L) =
GL(1,R)× 〈(−E,E)〉

〈−E〉 ×H− = 2×H− = H−×L.

3. THE B-FAMILY

The B-family consists of the matrix groups

SL(2n+ 1,R), n ≥ 2,

of 2n+1 by 2n+1 real matrices of determinant +1. When n = 1 we obtain
the 2-compact group SL(3,R) = PGL(2,C) considered in [24, Chapter 3].
The embedding

GL(2n,R)→ SL(2n+ 1,R) : A→
(
A 0

0 detA

)

permits us to consider the general linear group GL(2n,R) as a maximal rank
subgroup of SL(2n+ 1,R). The maximal torus normalizer for the subgroup
GL(2n,R) is therefore also the maximal torus normalizer for SL(2n+1,R),
N(SL(2n+ 1,R)) = N(GL(2n,R) (2.1), so that these two Lie groups have
the same Weyl group, W (SL(2n+ 1,R)) = W (GL(2n,R)) = Σ2 ≀Σn (2.2).

It is known [22, 1.6], [16, Main Theorem] that

H0(W ; Ť ) = Z/2, H1(W ; Ť ) =

{
Z/2, n = 2,

Z/2× Z/2, n > 2,

for these groups.
The full general linear group GL(2n+ 1,R) = SL(2n+ 1,R)× 〈−E〉 is

the direct product of SL(2n+1,R) with the opposite of the identity matrix,
so that PGL(2n+ 1,R) = SL(2n+ 1,R).

1. The structure of SL(2n + 1,R). Consider the elementary abelian
2-groups

∆2n+1 = 〈diag(±1, . . . ,±1)〉 ⊂ GL(2n+ 1,R),
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S∆2n+1 = SL(2n+ 1,R) ∩∆2n+1 ⊂ SL(2n+ 1,R),

t = t(SL(2n+ 1,R)) = ∆2n+1 ∩ T (SL(2n+ 1,R)) = 〈e1, . . . , en〉
⊂ T (SL(2n+ 1,R))

in GL(2n+ 1,R) and SL(2n+ 1,R).

3.1. Lemma. The inclusion functors

A(Σ2n+1, ∆2n+1)→ A(GL(2n+ 1,R)),

A(Σ2n+1, S∆2n+1)→ A(SL(2n+ 1,R)),

A(Σ2 ≀Σn, t)→ A(SL(2n+ 1,R))≤t

are equivalences of categories. (See [24, Definition 2.68] for the meaning of

A(Σ2n+1, ∆2n+1).)

Proof. Similar to 2.12. A(SL(2n + 1,R) is a full subcategory of the
category A(GL(2n + 1,R) since conjugation with the central element −E
of negative determinant is the identity.

(Note that the Quillen categories A(GL(2n,R)) = A(Σ2n, ∆2n) and
A(SL(2n+ 1,R)) = A(Σ2n+1, ∆2n+1) (2.12, 3.1) are not equivalent.)

For any partition i = (i0, i1), i0 ≥ 0, i1 > 0, of 2n + 1, let L(i0, i1) ⊂
∆2n+1 be the subgroup generated by

diag(

i0
︷ ︸︸ ︷

+1, . . . ,+1,

i1
︷ ︸︸ ︷

−1, . . . ,−1) = (i0̺0 + i1̺1)(e1).

For any partition (i0, i1, i2, i3) of 2n + 1 where at least two of i1, i2, i3 are
positive, let P (i0, i1, i2, i3) ⊂ ∆2n+1 be the subgroup generated by

diag(

i0
︷ ︸︸ ︷

+1, . . . ,+1,

i1
︷ ︸︸ ︷

−1, . . . ,−1,

i2
︷ ︸︸ ︷

+1, . . . ,+1,

i3
︷ ︸︸ ︷

−1, . . . ,−1)

= (i0̺0 + i1̺1 + i2̺2 + i3̺3)(e1),

diag(

i0
︷ ︸︸ ︷

+1, . . . ,+1,

i1
︷ ︸︸ ︷

+1, . . . ,+1,

i2
︷ ︸︸ ︷

−1, . . . ,−1,

i3
︷ ︸︸ ︷

−1, . . . ,−1)

= (i0̺0 + i1̺1 + i2̺2 + i3̺3)(e2).

Note that L(i0, i1) is a subgroup of S∆2n+1 if and only if i1 is even, and
that P (i0, i1, i2, i3) is a subgroup of S∆2n+1 if and only of i1, i2, i3 have the
same parity, the opposite parity of i0.

Let P (k, r) denote the number of partitions of k = i0 + · · · + ir−1 into
sums of r positive integers 1 ≤ i0 ≤ · · · ≤ ir−1. From the above discussion
we conclude

3.2. Proposition. The category A(SL(2n+ 1,R)) contains precisely :

• n isomorphism classes of rank one objects represented by the lines

L(2i0 + 1, 2i1) where 0 ≤ i0 ≤ n− 1 and i1 = n− i0.
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•
∑n

j=2 P (j, 2)+
∑n

j=3 P (j, 3) isomorphism classes of toral rank two ob-

jects. They are represented by the subgroups P (2i0+1, 2i1, 2i2, 0), where

0 ≤ i0 ≤ n − 2 and (i1, i2) is a partition of n − i0, together with the

subgroups P (2i0 + 1, 2i1, 2i2, 2i3), where 0 ≤ i0 ≤ n− 3 and (i1, i2, i3)
is a partition of n− i0.
•

∑n+2
j=3 P (j, 3) isomorphism classes of nontoral rank two objects repre-

sented by the subgroups P (2i0, 2i1− 1, 2i2− 1, 2i3− 1), where 0 ≤ i0 ≤
n− 1 and (i1, i2, i3) is a partition of n− i0 + 2.

The centralizers of these objects are

(3.3) CSL(2n+1,R)L(2i0 + 1, 2i1)

= SL(2n+ 1,R) ∩ (GL(2i0 + 1,R)×GL(2i1,R))

= SL(2i0 + 1,R)×GL(2i1,R),

(3.4) CSL(2n+1,R)P (i) = SL(2n+ 1,R) ∩
∏

GL(ij,R)

=







SL(2i0 + 1,R)×GL(2i1,R)×GL(2i2,R)×GL(2i3,R),

P (2i0 + 1, 2i1, 2i2, 2i3) toral,

GL(2i0,R)×GL(2i1 − 1,R)×GL(2i2 − 1,R)× SL(2i3 − 1,R),

P (2i0, 2i1 − 1, 2i2 − 1, 2i3 − 1) nontoral,

as, for instance,

SL(2n+ 1,R) ∩ (GL(2i0 + 1,R)×GL(2i1,R))

= SL(2n+ 1,R) ∩ (SL(2i0 + 1,R)× 〈−E〉 × SL(2i1,R) ⋊ 〈D〉)
= SL(2i0 + 1,R)× SL(2i1,R) ⋊ 〈−D〉 = SL(2i0 + 1,R)×GL(2i1,R),

and the centers of the centralizers are

ZCSL(2n+1,R)L(2i0 + 1, 2i1) = L(2i0 + 1, 2i1),(3.5)

ZCSL(2n+1,R)P (i) = SL(2n+ 1,R) ∩
∏

ij>0

ZGL(ij,R)(3.6)

=

{
P (i), #{j | ij > 0} = 3,

P (i)× Z/2, #{j | ij > 0} = 4.

3.7. Lemma. For any nontrivial subgroup V ⊂ S∆2n+1 there is a natu-

ral isomorphism

ZCSL(2n+1,R)(V ) = H0(Σ2n+1(V );S∆2n+1)

where Σ2n+1(V ) is the pointwise stabilizer subgroup [24, Definition 2.68].

Proof. Let V ⊂ S∆2n+1 be any nontrivial subgroup of rank r. Then
V = V (i) is the image of the representation

∑

̺∈V ∨ i̺̺ for some function
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i : Hom((Z/2)r,R×)→ Z where
∑

̺∈V ∨ i̺ = 2n+ 1 and

ZCSL(2n+1,R)V (i) = Z
(

SL(2n+ 1,R) ∩
∏

i̺>0

GL(i̺,R)
)

= SL(2n+ 1,R) ∩
∏

i̺>0

ZGL(i̺,R) = S∆2n+1 ∩∆
∏

Σi̺

2n+1 = S∆
Σ2n+1(V (i))
2n+1 ;

here the second equality can be proved by recalling that CGL(i,R)SL(i,R) =
ZGL(i,R) and the final equality follows from the observation that the sta-
bilizer subgroup Σ2n+1(V (i)) equals

∏

i̺>0
Σi̺ .

3.8. Corollary. limi(A(SL(2n + 1,R);π1(BZCSL(2n+1,R))) = 0 for

all i > 0.

Proof. Immediate from the general exactness theorem [24, Lemma 2.69]
for functors of the form as in 3.7.

3.9. Proposition. Centralizers of objects of A(SL(2n + 1,R))≤t
≤2 are

LHS.

Proof. Let X1 and X2 be connected Lie groups and π1 and π2 finite
2-groups acting on them. Suppose that the homomorphisms θ(X1)

π1 and
θ(X1)

π1 [24, (2.20)] are surjective. Then also θ(X1 ×X2)
π1×π2 is surjective

and so the product X1 ⋊ π1 × X2 ⋊ π2 is LHS [24, Lemma 2.28]. This
observation applies to the products (3.3), (3.4) since the θ-homomorphisms
are surjective [16, 5.6], [24, Example 2.29(5)] for SL(2i + 1,R), i ≥ 0, and
SL(2i,R), i ≥ 1.

2. The limit of the functor H1(W ; Ť )/H1(π0; Ž( )0). In this sub-
section we check, using a modification of [24, 2.53], that conditions (1) and
(2) of [24, Theorem 2.51] with X = SL(2n + 1,R) are satisfied under the
inductive assumptions that the connected 2-compact groups SL(2i+ 1,R),
0 ≤ i < n, and SL(2i,R), 1 ≤ i ≤ n, are uniquely N -determined.

The objects V ⊂ SL(2n+1,R) of the category A(PSL(2n+1,R))≤t
≤2 are

the rank one objects L(i0, i1) and the rank two objects P (2i0 +1, 2i1, 2i2, 0)
and P (2i0+1, 2i1, 2i2, 2i3) as described in 3.2. The rank two object P (2i0+1,
2i1, 2i2, 2i3), i3 ≥ 0, contains the three lines L(2i0 + 2i1 + 1, 2i2 + 2i3),
L(2i0 + 2i2 + 1, 2i1 + 2i3), and L(2i0 + 2i3 + 1, 2i1 + 2i2). Their centralizers
are described in (3.3) and (3.4). Note that there are functorial isomorphisms

(3.10) ŤW0(CSL(2n+1,R)(V )) = (Z/2)min{i0,1} × Ž(CSL(2n+1,R)(V )0)

as modules over π0CSL(2n+1,R)(V ).

Condition (1) of [24, Theorem 2.51] is satisfied as the centralizer CX(V )
has N -determined automorphisms and is N -determined for general reasons
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[24, 2.39, 2.35, 2.40]. This means that there are isomorphisms, αV and fV ,
such that the diagrams

CN (V )
αV

∼=
//

��

CN (V )

��
CX(V )

fV

∼= // CX′(V )

commute and αV ∈ H1(W ; Ť )(CX(V )). There may be more than one choice
for αV but for each αV there is just one possibility for fV [24, Lemma 2.14(2)].
The set of possible αV for a given V is a H1(π0; Ž(( )0))(CX(V ))-coset in
H1(W ; Ť )(CX(V )) [24, Lemma 2.37]. The collection of the αV for various
V represents an element of the inverse limit

(3.11) lim0

(

A(SL(2n+ 1,R))≤t
≤2;

H1(W ; Ť )

H1(π0; Ž(( )0))

)

of the quotient functor over the category A(SL(2n+ 1,R))≤t
≤2.

Condition (2) of [24, Theorem 2.51] is satisfied if the restriction map from
the abelian group H1(W ; Ť )(SL(2n+ 1,R)) to (3.11) is surjective. Because
of the natural splitting (3.10) and because the centralizers CSL(2n+1,R)(V )
are LHS, there is a short exact sequence

0→ Hom(π0, (Z/2)min{i0,1})→ H1(W ; Ť )

H1(π0; Ž(( )0))
→ H1(W0; Ť )π0 → 0

of functors on A(SL(2n + 1,R))≤t
≤2. If we now apply the functor given by

Hom(π0, (Z/2)min{i0,1}) to the morphisms

(3.12) L(2i0 + 1, 2i1 + 2i2)→ P (2i0 + 1, 2i1, 2i2, 0)← L(2i0 + 2i1 + 1, 2i2)

we see that the induced morphisms are injective and that their images in-
tersect trivially. Thus the inverse limit of this functor is trivial and from the
above short exact sequence we obtain an injective map

lim0

(

A(SL(2n+ 1,R))≤t
≤2;

H1(W ; Ť )

H1(π0; Ž(( )0))

)

→ lim0(A(SL(2n+ 1,R))≤t
≤2;H

1(W0; Ť )π0)

between the inverse limits. As the inverse limit on the right is a subgroup of
the inverse limit of the functorH1(W0; Ť ), we conclude that if the restriction
map

(3.13) H1(W0; Ť )(SL(2n+1,R))→ lim0(A(SL(2n+1,R))≤t
≤2;H

1(W0; Ť ))

is surjective, then condition (2) of [24, Theorem 2.51] is satisfied.
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3.14. Lemma. The restriction homomorphism (3.13) is an isomorphism

for all n ≥ 2.

Proof. For n = 2, the image under the functor H1(W0; Ť ) of the cat-
egory L(1, 4) → P (1, 2, 2, 0) ← L(3, 2) is 0 → 0 ← Z/2 so that the limit
of the functor H1(W0; Ť ) is Z/2. Since SL(3,R) × SL(2;R) → SL(5,R)
turns out to induce an isomorphism on H1(W0; Ť ) the claim follows in this
case.

For n=3, taking into account only the planes of type P (2i0−1, 2i1, 2i2, 0),
we should compute the limit of the diagram

H1(W0CSL(7,R)L(1, 6))
,,YYYYYY

H1(W0CSL(7,R)P (1, 4, 2, 0))

H1(W0CSL(7,R)L(3, 4))

22eeeeee

,,YYYYYY

H1(W0CSL(7,R)P (3, 2, 2, 0))

H1(W0CSL(7,R)L(5, 2))

88qqqqqqqqqqqqqqqqqqqqqqq
22eeeeee

of F2-vector spaces. For each of the planes P take the intersections of the im-
ages in the cohomology groups H1(W0CSL(7,R)P ; Ť ) of H1(W0CSL(7,R)L; Ť )
for each line L ⊂ P . Take the intersection of the preimages in each
H1(W0CSL(7,R)L; Ť ) of these subspaces of H1(W0CSL(7,R)P ; Ť ). Using the
computer program magma one may see that these subspaces have dimen-
sions 1, 2, 2 for L = L(1, 6), L(3, 4), L(5, 2), respectively, and that they equal
the image of the restriction maps from H1(W0; Ť )(SL(7,R)). This shows
that the lemma is true in this case.

In general, the above-mentioned subspaces of H1(W0CSL(7,R)L; Ť ) have
dimension one for L = L(1, 2n) and dimension two for the lines L =
L(2i+ 1, 2n − 2i) with 1 ≤ i ≤ n − 1 and these subspaces equal the im-
age of the restriction maps from H1(W0; Ť )(SL(2n+ 1,R)).

3. Rank two nontoral objects of A(SL(2n + 1,R)). The nontoral
rank two objects of A(SL(2n + 1,R)) are represented by the subgroups
P (i) ⊂ S∆2n+1 generated by the elements

e1 = diag(

2i0
︷ ︸︸ ︷

+1, . . . ,+1,

2i1−1
︷ ︸︸ ︷

−1, . . . ,−1,

2i2−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i3−1
︷ ︸︸ ︷

−1, . . . ,−1),

e2 = diag(

2i0
︷ ︸︸ ︷

+1, . . . ,+1,

2i1−1
︷ ︸︸ ︷

+1, . . . ,+1,

2i2−1
︷ ︸︸ ︷

−1, . . . ,−1,

2i3−1
︷ ︸︸ ︷

−1, . . . ,−1),

where i = (2i0, 2i1 − 1, 2i2 − 1, 2i3 − 1), 0 ≤ i0 ≤ n − 1, and (i1, i2, i3) is
a partition of n + 2 − i0 (3.2). The generators of P (i) may also be written
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as

(3.15) e1 = diag(

i0−1
︷ ︸︸ ︷

E,. . . ,E,E,

i1−1
︷ ︸︸ ︷

−E,. . . ,−E,−R,
i2−1

︷ ︸︸ ︷

E,. . . ,E,

i3−1
︷ ︸︸ ︷

−E,. . . ,−E,−1),

(3.16) e2 = diag(

i0−1
︷ ︸︸ ︷

E,. . . ,E,E,

i1−1
︷ ︸︸ ︷

E,. . . ,E,R,

i2−1
︷ ︸︸ ︷

−E,. . . ,−E,
i3−1

︷ ︸︸ ︷

−E,. . . ,−E,−1)

where

R =

(
1 0

0 −1

)

.

The centralizer of P (i) is

CSL(2n+1,R)(P (i))

= SL(2n+ 1,R)

∩ (GL(2i0,R)×GL(2i1 − 1,R)×GL(2i2 − 1,R)×GL(2i3 − 1,R))

= GL(2i0,R)×GL(2i1 − 1,R)×GL(2i2 − 1,R)× SL(2i3 − 1,R).

Let us observe that P (i) is contained in the maximal torus normalizer
N(SL(2n + 1,R)) = GL(2,R) ≀ Σn. Since the centralizer of P (i) in the
maximal torus normalizer,

CGL(2,R)≀Σn
(P (i)) = GL(2,R) ≀Σi0 ×GL(2,R) ≀Σi1−1 ×GL(1,R)

×GL(1,R)×GL(2,R) ≀Σi2−1 ×GL(2,R) ≀Σi3−1,

is the maximal torus normalizer for the centralizer of P (i), the lift P (i) ⊂
N(SL(2n+ 1,R)) is a preferred lift of P (i) ⊂ SL(2n+ 1,R) [27]. The other
two preferred lifts are given by composing with the permutation matrices
for the permutations (1, 2)(i0 + i1, 2n + 1) and (1, 2)(i0 + i1 + 1, 2n + 1)
(assuming i0 > 0) resulting in the lifts given by

e1 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,E,

i1−1
︷ ︸︸ ︷

−E, . . . ,−E,−E,
i2−1

︷ ︸︸ ︷

E, . . . , E,

i3−1
︷ ︸︸ ︷

−E, . . . ,−E,−1),

e2 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,E,

i1−1
︷ ︸︸ ︷

E, . . . , E,R,

i2−1
︷ ︸︸ ︷

−E, . . . ,−E,
i3−1

︷ ︸︸ ︷

−E, . . . ,−E,−1)

and

e1 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,E,

i1−1
︷ ︸︸ ︷

−E, . . . ,−E,R,
i2−1

︷ ︸︸ ︷

E, . . . , E,

i3−1
︷ ︸︸ ︷

−E, . . . ,−E,−1),

e2 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,E,

i1−1
︷ ︸︸ ︷

E, . . . , E,−E,
i2−1

︷ ︸︸ ︷

−E, . . . ,−E,
i3−1

︷ ︸︸ ︷

−E, . . . ,−E,−1),

respectively. These two lifts are also preferred lifts of P (i) ⊂ SL(2n+ 1,R).
The three preferred lifts are not conjugate in N(SL(2n + 1,R)) because
the intersection with the maximal torus is generated by e1 + e2 in the first
case and by e1, respectively e2, in the other two cases. Note that all three
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preferred lifts have the same maximal torus, SL(2,R)i0 × SL(2,R)i1−1 ×
SL(2,R)i2−1 × SL(2,R)i3−1.

Let U = 〈e1, e2, e3〉 be the elementary abelian 2-group generated by e1
and e2 as in (3.15), (3.16) together with

e3 = diag(

i0−1
︷ ︸︸ ︷

E, . . . , E,R,

i1−1
︷ ︸︸ ︷

E, . . . , E,E,

i2−1
︷ ︸︸ ︷

E, . . . , E,

i3−1
︷ ︸︸ ︷

E, . . . , E,−1),

Note that the centralizer of U has a nontrivial identity component, and that
the inclusion U ⊂ CSL(2n+1,R)(P (i)) induces an isomorphism on π0.

Under the inductive assumption that SL(2i,R), 1 ≤ i ≤ n − 1, and
SL(2i− 1,R), 1 ≤ i ≤ n, have π∗(N)-determined automorphisms (or using
[19]) we conclude from [24, Lemma 2.63, (2.64)] and (part of) [25, 5.2] that
condition (3) of [24, Theorem 2.51] is satisfied for SL(2n+ 1,R). (Namely,
[24, Lemma 2.63(1)] says that ν ′L does not depend on the choice of L < V .
The difference f−1

ν,L2
◦ fν,L1 between any two of the maps fν,L from [24,

Theorem 2.51(3)] is an automorphism of CSL(2n+1,R)(P (i)) that, by [24,
Lemma 2.63(2)], is the identity on the identity component and by the com-
mutative diagram [24, (2.64)]

(3.17)

U

wwpppppppppppp

''NNNNNNNNNNNN

CSL(2n+1,R)(P (i))
f−1

ν,L2
◦fν,L1 // CSL(2n+1,R)(P (i))

also the identity on π0CSL(2n+1,R)(P (i)). Any such automorphism of the
centralizer CSL(2n+1,R)(P (i)) has [25, 5.2] the form A→ ϕ(A)A where

ϕ : GL(2i0,R)×GL(2i1 − 1,R)×GL(2i2 − 1,R)× SL(2i3 − 1,R)

→ π0(GL(2i0,R)×GL(2i1 − 1,R)×GL(2i2 − 1,R)× SL(2i3 − 1,R))

→ ZGL(2i0,R)

is some homomorphism. Diagram (3.17) thus implies that the inclusion U →
SL(2n + 1,R) and the monomorphism given by ei 7→ ϕ(ei)ei, 1 ≤ i ≤ 3,
are conjugate. Since the trace of ei, 1 ≤ i ≤ 3, is odd (nonzero), ϕ must be
trivial. Thus fν,L1 and fν,L2 are identical isomorphisms.)

4. THE C-FAMILY

Let H = {a + bj | a, b ∈ C}, where j2 = −1 and ja = aj for a ∈ C, be
the quaternion algebra. The C-family consists of the matrix groups

PGL(n,H) = GL(n,H)/〈−E〉, n ≥ 3,

of quaternion projective n×n matrices. (These 2-compact groups also exist
for n = 1 or n = 2. However, PGL(1,H) = SL(3,R) = PGL(2,C) and
PGL(2,H) = SL(5,R) [24, 5.24] are already covered.)
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The maximal torus normalizer for GL(1,H) = H×, generated by the
maximal torus GL(1,C) = C× and the element j, sits in the nonsplit ex-
tension

1→ GL(1,C)→ N(GL(1,H))→ 〈j〉/〈−1〉 → 1

of Σ2 by GL(1,C) = C×. The maximal torus normalizer for GL(n,H) is
the subgroup

N(GL(n,H)) = N(GL(1,H)) ≀Σn,

generated by N(GL(1,H))n ⊂ GL(n,H) and the permutation matrices. The
maximal torus normalizer for PGL(n,H), the quotient N(GL(n,H)) by the
order two group 〈−E〉, sits in the extension

1→ GL(1,C)n

〈−E〉 → N(GL(1,H))n

〈−E〉 → N(GL(1,H))

GL(1,C)
≀Σn → 1,

which does not split (for n ≥ 3).

It is known that [22, 1.6], [16, Main Theorem]

H0(W ; Ť )(PGL(n,H)) = 0, H1(W ; Ť )(PGL(n,H)) =

{
Z/2, n = 3, 4,

0, n > 4,

for the projective groups.

1. The structure of PGL(n,H). Let

∆n = t(GL(n,H)) = 〈diag(±1, . . . ,±1)〉 ⊂ GL(n,H)

be the maximal elementary abelian 2-group in GL(n,H), and C4 = 〈I〉 ⊂
GL(n,H) the cyclic order four group generated by I = diag(i, . . . , i). The
maximal elementary abelian 2-group in PGL(n,H) is the quotient

t(PGL(n,H)) =
t(PGL(n,H))∗

〈−E〉 , t(PGL(n,H))∗ = C4 ◦ t(GL(n,H)),

so that the toral part of the Quillen category,

A(PGL(n,H))≤t = A

(

C2 ≀Σn,
C4 ◦ 〈diag(±1, . . . ,±1)〉

〈−E〉

)

,

is equivalent to the category whose objects are nontrivial subgroups of
t(PGL(n,H)) and whose morphisms are induced from the action of the
Weyl group [24, Definition 2.68].

For any partition i = (i0, i1) of n = i0 + i1 into a sum of two positive
integers i0 ≥ i1 ≥ 1 > 0 let L(i) = L(i0, i1) ⊂ GL(n,H) be the subgroup
generated by

diag(

i0
︷ ︸︸ ︷

+1, . . . ,+1,

i1
︷ ︸︸ ︷

−1, . . . ,−1).
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Then the centralizer is

(4.1) CPGL(n,H)L(i0, i1) =







GL(i0,H)×GL(i1,H)

〈−E〉 , i0 6= i1,

GL(i0,H)2

〈−E〉 ⋊

〈(
0 E

E 0

)

〈−E〉
〉

, i0 = i1,

so that ZCPGL(n,H)L(i0, i1) = L(i0, i1) as in the proof of 2.55 and [24,
Lemma 5.18].

Let (also) I ∈ PGL(n,H) denote the order two element that is the image
of the order four element i ∈ GL(n,H). Then

(4.2) CPGL(n,H)(I) =
GL(n,C)

〈−E〉 ⋊ 〈j〈−E〉〉

so that ZCPGL(n,H)(I) = 〈I〉 as shown in the proof of 2.55.

For any partition (i0, i1, i2, 0) of n = i0 + i1 + i2 into a sum of three
positive integers i0 ≥ i1 ≥ i2 > 0 or any partition (i0, i1, i2, i3) of n =
i0 + i1 + i2 + i3 into a sum of four positive integers i0 ≥ i1 ≥ i2 ≥ i3 > 0 let
P (i0, i1, i2, i3) ⊂ ∆2n+1 be the subgroup generated by the two elements

diag(

i0
︷ ︸︸ ︷

+1, . . . ,+1,

i1
︷ ︸︸ ︷

−1, . . . ,−1,

i2
︷ ︸︸ ︷

+1, . . . ,+1,

i3
︷ ︸︸ ︷

−1, . . . ,−1),

diag(

i0
︷ ︸︸ ︷

+1, . . . ,+1,

i1
︷ ︸︸ ︷

+1, . . . ,+1,

i2
︷ ︸︸ ︷

−1, . . . ,−1,

i3
︷ ︸︸ ︷

−1, . . . ,−1).

Then the centralizer is

(4.3) CPGL(n,H)(P (i))

=







GL(i0,H)4

〈−E〉 ⋊ (C2 × C2), i = (i0, i0, i0, i0),

GL(i0,H)2 ×GL(i2,H)2

〈−E〉 ⋊ C2, i = (i0, i0, i2, i2) ,

GL(i0,H)×GL(i1,H)×GL(i2,H)×GL(i3,H)

〈−E〉 , #i = 4,

where the groups C2 are generated by permutation matrices.

For any partition i = (i0, i1) of n = i0 + i1 into a sum of two positive
integers i0 ≥ i1 > 0 let I#L(i0, i1) ⊂ PGL(n,H) be the elementary abelian
2-group that is the quotient of

(I#L(i0, i1))
∗ = 〈I, diag(

i0
︷ ︸︸ ︷

+1, . . . ,+1,

i1
︷ ︸︸ ︷

−1, . . . ,−1)〉.
Then the centralizer is
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(4.4) CPGL(n,H)(I#L(i0, i1))

=







GL(i0,C)×GL(i1,C)

〈−E〉 ⋊ 〈j〈−E〉〉, i0 6= i1,

GL(i0,C)2

〈−E〉 ⋊

〈

j〈−E〉,
(

0 E

E 0

)

〈−E〉
〉

, i0 = i1.

4.5. Proposition. The category A(PGL(n,H)) contains exactly

• [n/2] + 1 rank one toral objects represented by the lines L(i, n − i),
1 ≤ i ≤ [n/2] (with q = 0), and by the line I (with q 6= 0).
• P (n, 3) + P (n, 4) + [n/2] rank two toral objects represented by the

P (n, 3) planes P (i0, i1, i2, 0) (with q = 0), and the P (n, 4) planes

P (i0, i1, i2, i3) (with q = 0), and the [n/2] planes I#L(i, n − i), 1 ≤
i ≤ [n/2] (with q 6= 0).

4.6. Proposition. Let V ⊂ PGL(n,H) be a nontrivial elementary

abelian 2-group. Then

V is toral ⇔ [V, V ] 6= 0.

Proof. The proof is similar to 2.10 with the extra input that all elemen-
tary abelian 2-groups in GL(n,H) are toral by quaternion representation
theory [1].

4.7. Proposition. Centralizers of objects of A(GL(n,H))≤t
≤2 are LHS.

Proof. The centralizers C = C0 ⋊ π in question are the nonconnected
centralizers listed in (4.1), (4.2), (4.3), and (4.4). In fact, we only need to
deal with

GL(i,H)2

〈−E〉 ⋊C2,
GL(i0,H)2 ×GL(i1,H)2

〈−E〉 ⋊C2,
GL(i,H)4

〈−E〉 ⋊(C2×C2)

as the other cases are covered by 2.19. It suffices to show that θ(C0)
π is

surjective [24, Lemma 2.28, (2.20)].
Computations with the program magma result in the table

GL(i,H)2

〈−E〉
⋊ C2 ker θ Hom(W, Ť W ) H1(W ; Ť ) θ H1(W ; Ť )π

1 = i (Z/2)2 (Z/2)2 0 epi 0

2 = i (Z/2)2 (Z/2)4 (Z/2)3 (Z/2)2

2 < i 0 (Z/2)4 (Z/2)4 iso (Z/2)2

From the table we see that θπ is surjective unless i = 2. In that exceptional
case, more computations show that H1(π; ŤW ) = Z/2 and H1(W⋊C2; Ť ) =
(Z/2)3, which means that also (GL(2,H)2/〈−E〉) ⋊ C2 is LHS.

Computations with the program magma result in the table
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GL(i0,H)2 × GL(i1,H)2

〈−E〉
ker θ Hom(W, Ť W ) H1(W ; Ť ) θ H1(W ; Ť )π

1 = i0, 2 = i1 (Z/2)4 (Z/2)18 (Z/2)14 epi (Z/2)7

1 = i0, 2 < i1 (Z/2)2 (Z/2)18 (Z/2)16 epi (Z/2)8

2 = i0 < i1 (Z/2)2 (Z/2)24 (Z/2)22 epi (Z/2)11

3 < i0 < i1 0 (Z/2)24 (Z/2)24 iso (Z/2)12

Since θ is surjective and H>0(π; ker θ) = 0 because the action of π on ker θ
is induced from the trivial subgroup, θπ is surjective.

Computations with the program magma result in the table

GL(i,H)4

〈−E〉
⋊ (C2 × C2) ker θ Hom(W, Ť W ) H1(W ; Ť ) θ H1(W ; Ť )π

1 = i (Z/2)4 (Z/2)12 (Z/2)8 epi (Z/2)2

2 = i (Z/2)4 (Z/2)24 (Z/2)20 epi (Z/2)5

2 < i 0 (Z/2)24 (Z/2)24 iso (Z/2)6

Since θ is surjective and H>0(π; ker θ) = 0 because the action of π on ker θ
is induced from the trivial subgroup, θπ is surjective.

2. The limit of the functor H1(W0; Ť )W/W0 on A(PGL(n,H))≤t
≤2.

Let H1(W0; Ť ) : A(PGL(n,H))≤t
≤2 → Ab be the functor that takes the toral

elementary abelian 2-group V ⊂ t(PGL(n,H)) to the abelian group
H1(W0CPGL(n,H)(V ); Ť ), and H1(W0; Ť )W/W0 the functor that takes V to
the invariants for the action of the component group π0CPGL(n,H)(V ) on
this first cohomology group.

4.8. Proposition. The restriction map

H1(W (PGL(n,H)); Ť )→ lim0(A(PGL(n,H))≤t
≤2;H

1(W0; Ť )W/W0)

is an isomorphism for all n > 3.

Proof.

PGL(4,H): Computer computations show that the intersection of the
images of the morphisms

H1(W0; Ť )W/W0(L(1, 3))→ H1(W0; Ť )W/W0(I#L(1, 3))
∼=←− H1(W0; Ť )W/W0(I)

is 1-dimensional and that its preimage in H1(W0; Ť )W/W0(I) equals the im-
age of the restriction map from H1(W, Ť )(PGL(4,H)). Similarly, the images
of the monomorphisms

H1(W0; Ť )W/W0(L(1, 3)) →֒ H1(W0; Ť )W/W0(P (1, 1, 2, 0))

←֓ H1(W0; Ť )W/W0(L(2, 2))
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meet in a 1-dimensional subspace whose inverse images in the cohomology
groups to the right and to the left agree with the images of the restriction
maps from H1(W, Ť )(PGL(4,H)).

PGL(n,H), n > 4: Computer computations show that the images of the
morphisms

H1(W0; Ť )W/W0(L(1, n− 1))→ H1(W0; Ť )W/W0(I#L(1, n− 1))
∼=←− H1(W0; Ť )W/W0(I)

intersect trivially and that the arrow pointing left is an isomorphism. Simi-
larly, the images of the injective morphisms

H1(W0; Ť )W/W0(L(i, n− i)) →֒ H1(W0; Ť )W/W0(P (i, 1, n− i− 1, 0))

←֓ H1(W0; Ť )W/W0(L(i+ 1, n− i− 1)), 1 ≤ i < [n/2],

intersect trivially. These observations imply that

lim0(A(PGL(n,H))≤t
≤2;H

1(W0; Ť )W/W0) = 0

and also H1(W, Ť )(PGL(n,H)) = 0 as n > 4.

3. The category A(PGL(n,H))
[ , ]6=0
≤4 . We shall need information about

all nontoral objects of A(PGL(n,H)) of rank≤ 3 and some objects of rank 4.
If V ⊂ PGL(n,H) is an elementary abelian 2-group with nontrivial inner
product then its preimage V ∗ ⊂ GL(n,H) is P ×R(V ) or (C4 ◦P )×R(V ),
where P is an extraspecial 2-group, C4 ◦ P a generalized extraspecial 2-
group, and ℧1(V

∗) = 〈−E〉 (2.8). We manufacture all oriented quaternion
representations of these product groups as direct sums of tensor products
of irreducible representations of the factors [24, 5.6] as described in [1, 3.7,
3.65].

Note that the degrees of the faithful irreducible representations over H

for the groups 21+2
+ and C4 ◦ 21+2

± are even, and that the quaternion group

21+2
− has a faithful irreducible representation over H, namely the defining

representation.

4.9. The category A(PGL(2n + 1,H))
[ , ]6=0
≤4 . The Quillen category

A(PGL(2n+ 1,H)) contains up to isomorphism just one nontoral rank two
object, H−, whose inverse image in GL(2n+ 1,H) is

Q8 = 21+2
− = 〈diag(i, . . . , i), diag(j, . . . , j)〉.

As in 2.51, the centralizers [32, Proposition 4] of 21+2
− and H− are

CGL(2n+1,H)(2
1+2
− ) = GL(2n+ 1,R),

CPGL(2n+1,H)(H−) = H− × SL(2n+ 1,R),

so that ZCPGL(2n+1,H)(H−) = H−.
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There are n nontoral objects of rank three,H−#L(i, 2n+1−i), 1 ≤ i ≤ n.
The inverse image in GL(2n+ 1,H) of H−#L(i, 2n+ 1− i) is

〈diag(i, . . . , i), diag(j, . . . , j), diag(

i
︷ ︸︸ ︷

+1, . . . ,+1,

2n+1−i
︷ ︸︸ ︷

−1, . . . ,−1)〉
and the center of the centralizer, CPGL(2n+1,H)(H−#L(i, 2n + 1 − i)) =
H− × CSL(2n+1,R)(L(i, n − 1)), is ZCPGL(2n+1,H)(H−#L(i, 2n + 1 − i)) =
H−#L(i, 2n+ 1− i) according to (3.5).

The objects H−#P (i0, i1, i2, i3), where P (i0, i1, i2, i3) is as in (4.3), are
rank four nontoral objects.

We need to know that the nontoral object H− satisfies condition (3)
of [24, Theorem 2.51]. Note that the conditions of [24, Lemma 2.63] are
satisfied because the identity component of CPGL(2n+1,H)(H−) is nontrivial
and because the Quillen automorphism group A(PGL(2n + 1,H))(H−) =
GL(2,F2) acts transitively on the set of preferred liftsH− ⊂ N(PGL(2n+ 1,
H)) of H− ⊂ PGL(2n+1,H). Under the inductive assumption that SL(2n+
1,R) has π∗(N)-determined automorphisms (or using [19]) we conclude from
[24, Lemma 2.63, (2.64)] and (part of) [25, 5.2] that condition (3) of [24,
Theorem 2.51] is satisfied for the nontoral rank two object H−. (Namely,
[24, Lemma 2.63(1)] says that ν ′L does not depend on the choice of L < V .
The difference f−1

ν,L2
◦ fν,L1 between any two of the maps fν,L from [24,

Theorem 2.51(3)] is an automorphism of CPGL(2n+1,H)(H−) that, by [24,
Lemma 2.63(2)], is the identity on the identity component and by the com-
mutative diagram [24, (2.64)]

(4.10)

H−

wwoooooooooooo

''OOOOOOOOOOOO

CPGL(2n+1,H)(H−)
f−1

ν,L2
◦fν,L1 // CPGL(2n+1,H)(H−)

also the identity on π0CPGL(2n+1,H)(H−). Since the identity component
SL(2n+1,R) of the centralizer CPGL(2n+1,H)(H−) has no center, this shows

that f−1
ν,L2
◦ fν,L1 is the identity automorphism [25, 5.2].)

4.11. Rank two nontoral objects of A(PGL(2n,H)). The category
A(PGL(2n,H)) contains up to isomorphism two nontoral rank two objects,
H+ and H−, whose inverse images in GL(2n,H) are

21+2
+ = 〈diag(R, . . . , R), diag(T, . . . , T )〉, R =

(
1 0

0 −1

)

, T =

(
0 1

1 0

)

,

21+2
− = 〈diag(i, . . . , i), diag(j, . . . , j)〉,

where the representation of the dihedral group 21+2
+ is of real type and the

representation of the quaternion group 21+2
− of quaternion type. This follows
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from 2.8 because 21+2
+ has one faithful irreducible H-representation of degree

two and 21+2
− has one faithful irreducible H-representation of degree one. The

centralizers are [32, Proposition 4]

CGL(2n,H)(2
1+2
+ ) = GL(n,H), CPGL(2n,H)(H+) = H+ × PGL(n,H),

CGL(2n,H)(2
1+2
− ) = GL(2n,R), CPGL(2n,H)(H−) = H− × PGL(2n,R),

as we see by an argument similar to that of 2.51. This implies [24, Lemma
5.18] that ZCPGL(2n,H)(H) = H for all nontoral rank two objects H of
A(PGL(2n,H)).

We need to know that these nontoral objects satisfy condition (3) of [24,
Theorem 2.51]. To see this we use [24, Lemma 2.63].

H+: Condition (1) of [24, Lemma 2.63] is clearly satisfied since the iden-
tity component of CPGL(2n,H)(H+) is nontrivial when n ≥ 3. The group

H∗
+ = 21+2

+ is contained in N(GL(2n,H)) = N(GL(1,H)) ≀ Σ2n and its
centralizer there is

CN(GL(2n,H))(2
1+2
+ ) = CN(GL(1,H))≀Σ2n

(21+2
+ ) = N(GL(1,H)) ≀Σn

= N(GL(n,H)),

and therefore H− is contained in N(GL(2n,H))/〈−E〉 = N(PGL(2n,H)),
where its centralizer is

CN(PGL(2n,H))(H+) = H+ ×N(PGL(n,H)) = N(CGL(2n,H)(H+))

as in 2.51. This means that H+ ⊂ N(PGL(2n,H)) is a preferred lift [27] of
H+ ⊂ GL(2n,H). Precomposing the inclusion H+ ⊂ N(PGL(2n,H)) with
the nontrivial element of A(PGL(2n,H))(H+) = O+(2,F2) ∼= C2 (4.18)
leads to another preferred lift. The third preferred lift is the quotient of

(21+2
+ )diag(B,...,B) = 〈diag(RB , . . . , RB), diag((RT )B , . . . , (RT )B)〉,

B =
1√
2

(
1 i

i 1

)

, RB = T, (RT )B =

(
i 0

0 −i

)

.

Note that these three preferred lifts all have the same image in the Weyl
group π0N(GL(2n,H)) = π0(N(GL(1,H))) ≀Σ2n, namely the subgroup gen-
erated by the permutation (1, 2)(3, 4) · · · (2n− 1, 2n) ∈ Σ2n.

Under the inductive assumption that PGL(n,H) has π∗(N)-determined
automorphisms (or using [19]) we conclude from [24, Lemma 2.63, (2.64)]
and (part of) [25, 5.2] that condition (3) of [24, Theorem 2.51] is satis-
fied for the nontoral rank two object H+ of A(PGL(2n,H)). (Namely, [24,
Lemma 2.63(1)] says that ν ′L does not depend on the choice of L < V . The
difference f−1

ν,L2
◦ fν,L1 between any two of the maps fν,L from [24, Theo-

rem 2.51(3)] is an automorphism of CPGL(2n,H)(H+) that, by [24, Lemma
2.63(2)], is the identity on the identity component and by the commutative
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diagram [24, (2.64)]

(4.12)

H+

xxppppppppppp

&&NNNNNNNNNNN

CPGL(2n,H)(H+)
f−1

ν,L2
◦fν,L1 // CPGL(2n,H)(H+)

also the identity on π0CPGL(2n,H)(H+). Since the identity component of

CPGL(2n,H)(H+) has no center, this shows that f−1
ν,L2
◦ fν,L1 is the identity

automorphism [25, 5.2].)

H−: Condition (1) of [24, Lemma 2.63] is clearly satisfied since the iden-
tity component of CPGL(2n,H)(H−) is nontrivial when n ≥ 3. The group

H∗
− = 21+2

− is contained in N(GL(2n,H)) = N(GL(1,H)) ≀ Σ2n and its
centralizer there is

CN(GL(1,H))≀Σ2n
(21+2

− )
[24, 5.10]

= CN(GL(1,H))(i, j) ≀Σn

= GL(1,R) ≀Σ2n = N(GL(2n,R)),

and therefore H− is contained in N(GL(2n,H))/〈−E〉 = N(PGL(2n,H)),
where its centralizer is

CN(PGL(2n,H))(H−) = H− ×N(GL(2n,R))/〈−E〉
= H− ×N(PGL(2n,R)) = N(CPGL(2n,H)(H−))

as in 2.51. This means that H− ⊂ N(PGL(2n,H)) is a preferred lift [27] of
H− ⊂ GL(2n,H). Precomposing the inclusion H− ⊂ N(PGL(2n,H)) with
elements of A(PGL(2n,H))(H−) = O−(2,F2) = GL(2,F2) (4.18) leads to
the other two preferred lifts of H−.

Under the inductive assumption that the identity component PSL(2n,R)
of PGL(2n,R) has π∗(N)-determined automorphisms (or using [19]) we con-
clude from [24, Lemma 2.63] and diagram [24, (2.64)] and (part of) [25, 5.2]
that condition (3) of [24, Theorem 2.51] is satisfied for the nontoral rank
two object H− of A(PGL(2n,H)). (The argument for this is the same as
in the case of H+ with the little extra complication that π0CPGL(2n,H)(H−)
has an extra generator, so that we replace diagram (4.12) by

(4.13)

〈H−, diag(−1, 1, . . . , 1)〉

uukkkkkkkkkkkkkkk

))SSSSSSSSSSSSSSS

CPGL(2n,H)(H+)
f−1

ν,L2
◦fν,L1 // CPGL(2n,H)(H+)

from [24, (2.64)] where the slanted arrows induce isomorphisms on the com-
ponent groups.)
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4.14. Rank three nontoral objects of A(PGL(2n,H)). The nontoral rank
three objects of the category A(PGL(2n,H)) are the quotients of H+#
L(i, n − i), 1 ≤ i ≤ [n/2], H−#L(i, 2n − i), 1 ≤ i ≤ n, and V0. These
subgroups of GL(2n,H) are defined to be

〈diag(

n
︷ ︸︸ ︷

R, . . . , R), diag(

n
︷ ︸︸ ︷

T, . . . , T ), diag(

i
︷ ︸︸ ︷

E, . . . , E,

n−i
︷ ︸︸ ︷

−E, . . . ,−E)〉,

〈diag(

2n
︷ ︸︸ ︷

i, . . . , i), diag(

2n
︷ ︸︸ ︷

j, . . . , j), diag(

i
︷ ︸︸ ︷

1, . . . , 1,

2n−i
︷ ︸︸ ︷

−1, . . . ,−1)〉,

〈diag(

2n
︷ ︸︸ ︷

i, . . . , i), diag(

n
︷ ︸︸ ︷

R, . . . , R), diag(

n
︷ ︸︸ ︷

T, . . . , T )〉
and their centralizers are

CPGL(2n,H)(H+#L(i, n− i)) = H+ × CPGL(n,H)(L(i, n− i)),
CPGL(2n,H)(H−#L(i, n− i)) = H− × CPGL(2n,R)(L(i, 2n− i)),

CPGL(2n,H)(V0) = H+ × CPGL(n,H)(I)
(4.2)
= H+ ×

GL(n,C)

〈−E〉 ⋊ 〈j〈−E〉〉,

so that (4.1, 2.55, 4.2) ZCPGL(2n,H)(V ) = V for all nontoral rank three ob-
jects V of A(PGL(2n,H)). The elements of H+#L(i, n−i), H−#L(i, 2n−i),
and V0 have traces (computed in GL(4n,C)) in the sets ±{0, 4n − 8i, 4n},
±{0, 4n− 4i, 4n}, and ±{0, 4n}.

4.15. Rank four nontoral objects of A(PGL(2n,H)). The elementary
abelian 2-group H−#P (1, i− 1, 2n− i, 0) ⊂ GL(2n,H), 1 < i ≤ n, is

〈diag(

2n
︷ ︸︸ ︷

i, . . . , i), diag(

2n
︷ ︸︸ ︷

j, . . . , j), diag(1,

i−1
︷ ︸︸ ︷

−1, . . . ,−1,

2n−i
︷ ︸︸ ︷

1, . . . , 1),

diag(1,

i−1
︷ ︸︸ ︷

1, . . . , 1,

2n−i
︷ ︸︸ ︷

−1, . . . ,−1)〉.
The elements of P have traces in {2n+ 2− 2i,−2n+ 2i, 2n+ 1} and these
three integers are all distinct, so that the Quillen automorphism group (4.18)
has order 3 · 25. This nontoral rank four object contains the two nontoral
rank three objects H−#L(1, 2n− 1), H−#L(2, 2n− 2) when i = 2 and the
three nontoral rank three objects H−#L(1, 2n−1), H−#L(i−1, 2n− i+1),
H−#L(i, 2n− i) when i > 2.

The elementary abelian 2-group V0#L(i, n−i)⊂GL(2n,C)⊂GL(2n,H),
1 ≤ i ≤ [n/2], is the subgroup

〈diag(

2n
︷ ︸︸ ︷

i, . . . , i), diag(

n
︷ ︸︸ ︷

R, . . . , R), diag(

n
︷ ︸︸ ︷

T, . . . , T ),

diag(

i
︷ ︸︸ ︷

E, . . . , E,

n−i
︷ ︸︸ ︷

−E, . . . ,−E)〉
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containing the three rank three objects H+#L(i, n− i), H−#L(2i, 2n− 2i),
and V0.

For these nontoral rank four objects E ⊂ GL(2n,H), the center of
the centralizer is finite (2.55) and as, of course, E ⊂ ZCPGL(2n,H)(E) we
see that HomA(PGL(2n,H))(St(E), E) is a subspace of the F2-vector space
HomA(PGL(2n,H))(St(E), π1BZCPGL(2n,H)(E)).

4. Higher limits of the functor πi(BZC) on A(PGL(n,H))[ , ]6=0.

In this section we compute the first higher limits of the center functors
πiBZCPGL(n,H), i = 1, 2 [24, (2.47)].

4.16. Lemma. The first higher limits of the center functors are

lim1 π1BZCPGL(n,H) = 0 = lim2 π1BZCPGL(n,H),

lim2 π2BZCPGL(n,H) = 0 = lim3 π2BZCPGL(n,H).

The case i = 2 is easy. Since π2BZCPGL(n,H) has value 0 on all objects

of A(PGL(n,H))[ , ]6=0 of rank ≤ 4, it is immediate from Oliver’s cochain
complex [31] that lim2 and lim3 of this functor are trivial. We shall therefore
now concentrate on the case i = 1.

For any elementary abelian 2-group E in PGL(n,H) we shall write

(4.17) [E] = HomA(PGL(n,H)(E))(St(E), E)

for the F2-vector space of F2A(PGL(n,H))(E)-equivariant maps from the
Steinberg representation St(E) over F2 of GL(E) to E. Oliver’s cochain
complex has the form (2.33).

4.18. Proposition. Regardless of the parity of n, the Quillen automor-

phism groups are

A(PGL(n,H))(H−) = O−(2,F2),

A(PGL(n,H))(H−#V ) =

(
O−(2,F2) ∗

0 A(GL(n,R))(V )

)

,

and dimF2 [H−] = 1 = dimF2 [H−#L(i, 2n+ 1− i)] as described in 2.35 and

2.42.

Proof. A(GL(n,H))(21+2
− ) = Out(21+2

− ) since all automorphisms of 21+2
−

preserve the trace. This group maps (isomorphically) to the subgroup
O−(2,F2) ⊂ GL(H−) of automorphisms that preserve the quadratic func-
tion q on H−. The Quillen automorphism group of H−#V consists of the au-
tomorphisms that lift to trace preserving automorphisms of 21+2

− #V . The di-
mension of the vector spaces of equivariant maps was computed by magma.

In the odd case of GL(2n + 1,H) the cochain complex (2.33) takes the
form
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(4.19) 0→ [H−]
d1

−→
∏

1≤i≤n

[H−#L(i, 2n+ 1− i)] d2

−→
∏

|E|=24

[E]
d3

−→ · · ·

and we need to show that d1 is injective and that dim(im d2) ≥ n− 1.
If E = H−#P (i), where P (i) is as in (4.3), then

A(PGL(2n+ 1,H))(H−#P (i)) =

(
O−(2,F2) ∗

0 A(SL(2n+ 1,R))(P (i))

)

where A(SL(2n + 1,R))(P (i)) is the group of trace preserving automor-
phisms of P (i). It turns out that

dimF2 [H−#P (i0, i1, i2, i3)] =







2, A(SL(2n+ 1,R))(P (i)) = {E},
1, A(SL(2n+ 1,R))(P (i)) = C2,

0, A(SL(2n+ 1,R))(P (i)) = GL(2,F2).

When n = 1 or n = 2, the cochain complex (4.19) has the form

0→ [H−]
d1

−→ [H−#L(1, 2)]
d2

−→ [H−#P (1, 1, 1, 0)]→ · · ·
or respectively

0→ [H−]
d1

−→ [H−#L(1, 4)]× [H−#L(2, 3)]

d2

−→ [H−#P (1, 1, 3, 0)]× [H−#P (1, 2, 2, 0)]→ · · · ,
where all vector spaces are one-dimensional. In the case of n = 1, d1 is an
isomorphism, and in the case n = 2, d1 has matrix (1 1) and d2 has matrix
(

1 1
1 1

)
. In case n ≥ 3, it is enough to show that d1 is injective and d2 has

rank n− 1 in the cochain complex

0→ [H−]
d1

−→
∏

1≤i≤n

[H−#L(i, 2n+1−i)] d2

−→
∏

2<i≤n

[H−#P (1, i−1, 2n−i+1, 0)]

that agrees with (4.19) in degrees one, a product of one-dimensional vector
spaces, and two, a product of two-dimensional vector spaces. The elemen-
tary abelian 2-group H−#P (1, i − 1, 2n − i + 1, 0) ⊂ GL(2n + 1,H) con-
tains the nontoral subspaces H−#L(1, 2n), H−#L(i − 1, 2n − i + 2), and
H−#L(i, 2n−i+1). The map f−, defined exactly as in (2.37), is the nonzero
element of [H−], and the maps df−, defined exactly as in (2.43), are nonzero
in H−#L(i, 2n + 1 − i). It follows that d1 is injective. A magma compu-
tation reveals that {ddf−L(i−1,2n−i+2), ddf−L(i,2n−i+1)}, where these
F2A(GL(2n+ 1,H))(H−#P (1, i− 1, 2n− i+ 1, 0))-maps are defined as in
(2.45), is a basis for the two-dimensional space H−#P (1, i− 1, 2n− i+1, 0)
and that ddf−L(1,2n) = ddf−L(i−1,2n−i+2) + ddf−L(i,2n−i+1). This shows that

d2 has rank n− 1.
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In the even case of GL(2n,H) the cochain complex (2.33) takes the form

0→ [H−]×[H+]
d1

−→
∏

1≤i≤n

[H−#L(i, 2n−i)]×
∏

1≤i≤[n/2]

[H+#L(i, n−i)]×[V0]

d2

−→
∏

|E|=24

[E].

4.20. Proposition. The automorphism groups of the low-degree non-

toral objects of the Quillen category A(PGL(2n,H)) are

A(PGL(2n,H))(H+) = O+(2,F2),

A(PGL(2n,H))(H+#V ) =

(
O+(2,F2) ∗

0 A(GL(n,H))(V )

)

,

A(PGL(2n,H))(V0) ∼= Sp(2,F2),

A(PGL(2n,H))(V0#L(i, n− i)) ∼=
(

Sp(2,F2) ∗
0 1

)

.

Furthermore, dimF2 [H+] = 2, dimF2 [H+#L(i, n − i)] = 3, dimF2 [V0] = 4,
and dimF2 [V0#L(i, n− i)] = 5 as described in 2.35, 2.40, 2.38, and (2.45).

Proof. The Quillen automorphism groups of the dihedral group 21+2
+ and

the generalized extraspecial group 4 ◦ 21+2
± are the full outer automorphism

groups because the traces are nonzero only on the derived groups which are
characteristic. The images in GL(H+), respectively, GL(V0), isomorphic to
O+(2,F2) ∼= C2 and to Sp(2,F2) = GL(2,F2), are the Quillen automor-
phism groups for H+ and V0. For the middle formula, recall that the trace
of H±#V is the product of the traces.

As in the real case (Chap. 2) we see that d1 embeds [H−]×[H+] into [V0].
The only problem is to show that the rank of d2 is ≥ n + 3[n/2] + 4− 3 =
n+ 3[n/2] + 1. We have to show that

dim(im d2) ≥ n+ 3[n/2] + 1.

We do this by mapping the n+ [n/2] + 1 nontoral rank three objects (4.14)

• [H−#L(i, 2n− i)], 1 ≤ i ≤ n, with basis {df−} as in (2.43),
• [H+#L(i, n− i)], 1 ≤ i ≤ [n/2], with basis {df+, df0, f0} as in (2.41),
• [V0] with basis {df+, df0, df−, f0} as in (2.39)

into the (n− 2) + [n/2] nontoral rank four objects (4.15)

• H−#P (1, i− 1, 2n+ 1− i), 2 < i ≤ n, with basis

{ddf−L(i−1,2n+1−i), ddf−L(i,2n−i)}
where these maps are defined as the similar maps in (2.45),
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• V0#L(i, n− i), 1 ≤ i ≤ [n/2], with basis

{ddf+L(i,n−i), ddf0L(i,n−i), df0L(i,n−i), ddf−L(2i,2n−2i), df0V0}
as in (2.45).

Computations with magma show that the resulting (n + 3[n/2] + 4) ×
(2n+ 5[n/2]) matrix has rank n + 3[n/2] + 1. The matrix has the form
(shown here for n = 5)

[H−#P (1, 2, 7)] [H−#P (1, 3, 6)] [H−#P (1, 4, 5)] V0#L(1, 4) V0#L(2, 3)

H−#L(1, 9) (1 1) (1 1) (1 1)

H−#L(2, 8) (1 0) (0 0 0 1 0)

H−#L(3, 7) (0 1) (1 0)

H−#L(4, 6) (0 1) (1 0) (0 0 0 1 0)

H−#L(5, 5) (0 1)

H+#L(1, 4) A

H+#L(2, 3) A

V0 B B

where

A =






1 0 0 0 0

0 1 0 0 0

0 0 1 0 0




 , B =








1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1







.

5. PROOFS OF THE MAIN THEOREMS

This chapter contains the proofs of the main results stated in the intro-
duction of this Part II and also of three theorems from Part I.

1. Proof of Theorem 1.1. The proof of Theorem 1.1 uses induction
over n simultaneously applied to the three infinite families PSL(2n,R),
SL(2n+ 1,R), and PGL(n,H).

Note first that the proof of [24, Theorem 2.51] goes through with only
insignificant changes if we replace hypotheses (1) and (2) by

(1 & 2) The centralizer of any toral (V, ν) ∈ Ob(A(X)≤t
≤2) is uniquely N -

determined

and leave the other conditions unchanged.

Proof of Theorem 1.1. The statement of the theorem means [24, Defini-
tion 2.10] that the 2-compact groups
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• PSL(2n,R), SL(2n + 1,R), and PGL(n,H) have π∗(N)-determined
automorphisms,
• PSL(2n,R), SL(2n+ 1,R), and PGL(n,H) are N -determined.

We may inductively assume the connected 2-compact groups PSL(2i,R),
1 ≤ i ≤ n− 1, SL(2i+1,R), 1 ≤ i < n− 1, and PGL(i,H), 1 ≤ i < n, to be
uniquely N -determined. From [24, Theorem 1.4] we know that PGL(i,C) is
uniquely N -determined for all i ≥ 1. The plan is now to use [24, 2.48, 2.51]
inductively.

Consider first the connected, centerless 2-compact group PSL(2n,R).

PSL(2n,R) has N -determined automorphisms: According to [24, 2.48]
it suffices to show that:

(1) CPSL(2n,R)(L) has N -determined automorphisms for any rank one
elementary abelian 2-group L ⊂ PSL(2n,R).

(2) The limit lim1(A(PSL(2n,R));π1BZCPSL(2n,R)) is 0 and the limit

lim2(A(PSL(2n,R));π2BZCPSL(2n,R)) is 0.

Item (2) is proved in 2.32. The centralizers that occur in item (1) are listed
in (2.14) and (2.15). That the centralizers from (2.14) have N -determined
automorphisms follows, under the induction hypothesis that the 2-compact
groups PSL(2i,R), 1 ≤ i ≤ n − 1, have N -determined automorphisms,
from general hereditary properties of N -determined 2-compact groups [24,
Chapter 2]. Note here that Ž(C0) = Ť (C0)

W (C0) for C = CPSL(2n,R)(L)
by [22, 1.6]. Similarly, the centralizers from (2.15) have N -determined au-
tomorphisms because the 2-compact groups PGL(n,C), 1 ≤ n < ∞, have
N -determined automorphisms [24, Theorem 1.4].

PSL(2n,R) is N -determined: We verify the four conditions of [24, The-
orem 2.51]. Let V ⊂ PSL(2n,R) be a toral elementary abelian 2-group of
rank at most 2. The centralizer C = CPSL(2n,R)(V ) is one of the 2-compact
groups listed in (2.14), (2.16), (2.15), or (2.17), so it is LHS (2.19). The
identity component C0 of C satisfies the equation Ž(C0) = Ť (C0)

W (C0) [22,
1.6] and the adjoint form is

PC0 =







PSL(2i0,R)× PSL(2i1,R), i0 + i1 = n,
∏3

j=0 PSL(2ij,R), i0 + i1 + i2 + i3 = n,

PGL(n,C),

PGL(i0,C)× PGL(i1,C), i0 + i1 = n,

in these four cases. The induction hypothesis and the general results of [24,
Chapter 2, §2] imply that C0 is uniquely N -determined and that C is totally
N -determined. Since also the homomorphism

H1(W ; Ť ) ։ lim1(A(PSL(2n,R))≤t
≤2, H

1(W0; Ť )W/W0)
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is surjective (2.20), we deduce from [24, Lemma 2.54] that the first two
conditions of [24, Theorem 2.51] are satisfied. The third condition has been
verified in Chapter 2, §4, and the fourth, and final, condition in 2.32.

PSL(2n,R) has π∗(N)-determined automorphisms: This means that the
only automorphism of PSL(2n,R) that restricts to the identity on the max-
imal torus is the identity, i.e. that

H1(W ; Ť )(PSL(2n,R)) ∩AM(Aut(PSL(2n,R))) = {0}
where AM is the Adams–Mahmud homomorphism [24, (2.4)]. For n > 4,
H1(W ; Ť )(PSL(2n,R)) = 0, and there is nothing to prove. Consider the
case n = 4. Let f be an automorphism of PSL(8,R) such that AM(f) ∈
H1(W ; Ť ). Let L ⊂ PSL(8,R) be any rank one elementary abelian 2-group.
Since f is the identity on the maximal torus, f(L) is conjugate to L, so that
f restricts to an automorphism of CPSL(8,R)(L) and to an automorphism
of the identity component of CPSL(8,R)(L). Since CPSL(8,R)(L)0 has π∗(N)-
determined automorphisms by [24, Lemmas 2.38–2.39], it follows that f ∈
H1(W ; Ť )(PSL(2n,R)) restricts to 0 in H1(W ; Ť )(CPSL(8,R)(L)0). However,
the restriction map is injective (see the proof of 2.20) so that f = 0. This
shows that PSL(8,R) has π∗(N)-determined automorphisms.

Consider next the 2-compact group SL(2m+ 1,R) where m = n− 1.

SL(2m+ 1,R) has N -determined automorphisms: We verify the condi-
tions of [24, Lemma 2.48]. Let L ⊂ SL(2m+ 1,R) be an elementary abelian
2-group of rank 1. The centralizer C = CSL(2m+1,R)(L) is given in (3.3).
According to [24, Chapter 2, §2], C has N -determined automorphisms. (Use
the natural splitting of (3.10) in connection with [24, Lemma 2.35].) See 3.8
for the vanishing of the higher limits.

SL(2m+ 1,R) is N -determined: Conditions (1) and (2) of [24, Theo-
rem 2.51] are verified in Chapter 3, §2, condition (3) in Chapter 3, §3, and
condition (4) in 3.8.

SL(2m+ 1,R) has π∗(N)-determined automorphisms: To prove this, it
suffices to find a rank one elementary abelian 2-group L ⊂ SL(2m + 1,R)
such that CSL(2m+1,R)(L)0 has π∗(N)-determined automorphisms and such
that CSL(2m+1,R)(L)0 → SL(2m + 1,R) induces a monomorphism on

H1(W ; Ť ). Such a line is provided by L = L(2m − 1, 2) with centralizer
identity component CSL(2m+1,R)(L)0 = SL(2m − 1,R) × SL(2,R); see the
proof of 3.14.

Consider finally the 2-compact group PGL(n,H) for n ≥ 3.

PGL(n,H) has N -determined automorphisms: We verify the conditions
of [24, Lemma 2.48]. Let L ⊂ PGL(n,H) be an elementary abelian 2-group
of rank one. The centralizer C = CPGL(n,H)(L) is given in (4.1) and (4.2).
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According to the general results of [24, Chapter 2, §2], C has N -determined
automorphisms, and according to 4.16, the higher limits vanish.

PGL(n,H) is N -determined: Note that PGL(3,H) satisfies condition
(1 & 2) so that we may apply the variant of [24, Theorem 2.51] mentioned
above. When n > 3, conditions (1) and (2) of that theorem follow if we can
verify that the conditions of [24, Lemma 2.54] are satisfied. That the cen-
tralizer CPGL(n,H)(V ) (4.1, 4.2, 4.3, 4.4), where V is an elementary abelian
2-group of rank at most two, satisfies the conditions of [24, Lemma 2.54]
is a consequence of the general results of [24, Chapter 2, §2] and 4.7, 4.8.
See 4.9 and 4.11 for condition (3) and 4.16 for condition (4) of [24, Theo-
rem 2.51].

PGL(n,H) has π∗(N)-determined automorphisms: We only need to con-

sider the cases n = 3 and n = 4 as H1(W ; Ť )(PGL(n,H)) = 0 for n > 4
[16, Main Theorem]. In those two cases, it suffices, as above, to find a rank
one elementary abelian 2-group L ⊂ PGL(n,H) such that CPGL(n,H)(L)0
has π∗(N)-determined automorphisms and such that CPGL(n,H))(L)0 →
PGL(n,H) induces a monomorphism on H1(W ; Ť ). Such a line is provided
by L = I, for which CPGL(n,H)(I)0 = GL(n,C)/〈−E〉 (4.2).

Since PSL(2n,R), n ≥ 4, is uniquely N -determined and has a split
maximal torus normalizer, we see that its automorphism group is isomor-
phic to W\NGL(L)(W ) by [24, Lemma 2.16]. When n = 4, the group,
Outtr(W ), on the right in the exact sequence [24, (2.8)] is the permutation
group Σ3. There are Lie group outer automorphisms inducing Σ3. When
n > 4,

Aut(PSL(2n,R))
∼= W\NGL(L)(W ) = W\〈Z∗

2,W (PGL(2n,R))〉 = W\〈Z×
2 ,W, c1〉

= (W ∩ 〈Z×
2 , c1〉)\〈Z×

2 , c1〉

=

{ 〈−c1〉\〈Z×
2 , c1〉 = Z×

2 , n odd,

〈−1〉\〈Z×
2 , c1〉 = Z×\Z×

2 × 〈c1〉, n even.

Similarly,

Aut(SL(2n+ 1,R)) ∼= W\NGL(L)(W ) = W\〈Z×
2 ,W 〉

= (W ∩ Z×
2 )\Z×

2 = Z×\Z×
2

for n ≥ 2 by [24, Lemma 2.16].
The automorphism group Aut(PGL(n,H)), n ≥ 3, is contained in the

quotient group W\NGL(L)(W ) ∼= Z×\Z×
2 [24, Lemma 2.16]. Since H2(W ; Ť )

is an elementary abelian 2-group [21], it is isomorphic to the second coho-
mology group H2(W ; t(PGL(n,H))) with coefficient module t(PGL(n,H)),
the maximal elementary abelian 2-group in the maximal torus. The unstable
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Adams operations with index in Z×
2 act trivially here since they act as coef-

ficient group automorphisms. Thus all elements of W\NGL(L)(W ) preserve

the extension class e ∈ H2(W ; Ť ) and we conclude that Aut(PGL(n,H)) ∼=
Z×\Z×

2 .

Proof of Corollary 1.6. Note first that GL(n,R) is LHS for all n ≥ 1.
If n is odd, GL(n,R) = SL(n,R) × 〈−E〉 is LHS because its Weyl group
is the direct product of the Weyl group of the identity component with the
component group. If n is even, see [24, Example 2.29(5)]. According to [24,
2.35, 2.40], GL(n,R) is totally N -determined.

If n is odd, the identity component has trivial center, so that the auto-
morphism group is Aut(GL(n,R)) = Aut(SL(n,R)) = Z×\Z×

2 by the short
exact sequence [25, 5.2].

Suppose next that n = 2m is even. When m = 1, Aut(GL(2,R)) =
Aut(Z/2,Z/2∞, 0) = Aut(Z/2∞) = Z×

2 according to [24, (2.6)]. When
m > 1, H1(π; Ž(SL(2m,R))) = H1(π; 〈−E〉) is the order two subgroup 〈δ〉
of Aut(GL(2m,R)) generated by the group isomorphism δ(A) = (detA)A,
A ∈ GL(2m,R), and H1(W ; Ť ) = Hom(Wab, 〈−E〉) = Z/2 × Z/2 (for
m > 2) [16, 21] is the middle group of an exact sequence

0→ H1(π; 〈−E〉)→ H1(W ; Ť )→ H1(W0; Ť )→ 0

because GL(2m,R) is LHS. (Form = 2, the cohomology group H1(W0; Ť ) is
trivial and H1(π; Ž(SL(2m,R))) = Z/2, though.) In the exact sequence [24,
(2.5)] for the automorphism group of N = N(GL(2m,R)) = N(SL(2m +
1,R)), the group on the right hand side is Aut(W, Ť , 0) = 〈W,Z×

2 〉 as for
SL(2m+1,R). Thus Aut(N) is generated by H1(W ; Ť ), W , and Z×

2 , so that
Aut(N,N0) = Aut(N) as W0 is normal in W . Note that these three sub-
groups of Aut(N,N0) commute because of the special form of the elements
of H1(W ; Ť ) = Hom(Wab, 〈−E〉). Hence

Aut(N,N0)

W0

=
〈H1(W ; Ť ),W,Z×

2 〉
W0

=
〈H1(W ; Ť ),W0, c1,Z

×
2 〉

W0

=
〈H1(W ; Ť ), c1,Z

×
2 〉

W0 ∩ 〈H1(W ; Ť ), c1,Z
×
2 〉

=







〈H1(W ; Ť ), c1,Z
×
2 〉

〈−c1〉
= H1(W ; Ť )× Z×

2 , m odd,

〈H1(W ; Ť ), c1,Z
×
2 〉

〈−1〉 = H1(W ; Ť )× 〈c1〉 × Z×\Z×
2 , m even.

According to [24, Lemma 2.17], the automorphism group Aut(GL(2m,R))
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is a subgroup of the above group and

Aut(GL(2m,R)) =

{ 〈δ〉 × Z×
2 , m odd,

〈δ〉 × 〈c1〉 × Z×\Z×
2 , m even,

for m > 1.

2. The 2-compact group G2. The group BG2 is a rank two 2-compact
group containing a rank three elementary abelian 2-group E3 ⊂ G2 such that
A(G2)(E3) = GL(3,F2) [14, 6.1] [11, 5.3] and

H∗(BG2;F2) ∼= H∗(BE3;F2)
GL(3,F2) ∼= F2[c4, c6, c7]

realizes the mod 2 rank 3 Dickson algebra [23]. The Quillen category A(G2)
contains exactly one isomorphism class of objects E1, E2, E3 of ranks 1, 2, 3,
as Lannes theory [20] implies that the inclusion functor

A(GL(3,F2), E3)→ A(G2)

is an equivalence of categories. The centralizers of E1 ⊂ E2 ⊂ E3 are

SO(4) ⊃ T ⋊ 〈−E〉 ⊃ E3.

In all three cases, ZCG2(Ei) = Ei so that π2BZCG2 = 0 and π1BZCG2 =
H0(GL(3,F2)(−);E3). Thus π1BZCG2 is an exact functor [24, Lemma 2.69]
with lim0 π1BZCG2 = H0(GL(3,F2);E3) = 0.

The Weyl group W (G2) ⊂ GL(2,Z) ⊂ GL(2,Z2), of order 12, is gener-
ated by the two matrices [5, VI.4.13]

(−1 0

3 1

)

,

(
1 1

0 −1

)

and the maximal torus normalizer N(G2) is the semidirect product of the
maximal torus and the Weyl group [8].

It is known that H0(W ; Ť )(G2) = 0, that H1(W ; Ť )(G2) = 0, and that
H2(W ; Ť )(G2) = 0 [16, 15].

Proof of Theorem 1.2. The rank one centralizer

SL(4,R) = SL(2,C) ◦ SL(2,C)

is uniquely N -determined by [24, Theorem 1.4] and [24, Chapter 2.§2]. Con-
dition (2) of [24, Theorem 2.51] is satisfied because H1(W (X); Ť (X)) = 0
for X = G2, SL(4,R) [16, Main Theorem]. Conditions (1) and (3) are satis-
fied because the only rank two object in G2 is toral and its centralizer is a
2-compact toral group. We noted above that the higher limits vanish. Now
[24, 2.48, 2.51] show that G2 is uniquely N -determined.

We have Aut(G2) = W (G2)\NGL(2,Z2)(W (G2)) [24, Lemma 2.16] as the
extension class is e(G2) = 0 [8]. The exact sequence [24, (2.8)] can be used to
calculate the automorphism group. Using the description of the root system
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from [5, VI.4.13] with short root α1 = ε1−ε2 and long root α2 = 2ε−ε2−ε3
generating the integral lattice in Z3

2 one finds that

NGL(2,Z2)(W (G2)) = 〈Z×
2 , A,W (G2)〉, A =

√
−3

(
0 3

1 0

)

,

and therefore Aut(G2) = Z×
2 /Z

× × C2 where the cyclic group of order two
is generated by the exotic automorphism A interchanging the two roots.

3. The 2-compact group DI(4). BDI(4) is a rank three 2-compact
group containing a rank four elementary abelian 2-group E4 ⊂ DI(4) such
that A(DI(4))(E4) = GL(4,F2) and [9]

H∗(BDI(4);F2) ∼= H∗(BE4;F2)
GL(4,F2) ∼= F2[c8, c12, c14, c15]

realizes the mod 2 rank 4 Dickson algebra. Lannes theory [20] implies that
the Quillen category A(DI(4)) is equivalent to A(GL(4,F2), E4) with ex-
actly one elementary abelian 2-group (isomorphism class), E1, . . . , E4, of
each rank 1, . . . , 4. The centralizers of the toral subgroups E1, E2, E3 and
the nontoral subgroup E4 are, respectively,

Spin(7) ⊃ SU(2)3/〈(−E,−E,−E)〉 ⊃ T ⋊ 〈−E〉 ⊃ E4

and ZCDI(4)(Ei) = Ei in all four cases, so that the functor

πjBZCDI(4) : A(GL(4,F2), E4)→ Ab

is the 0-functor for j = 2 and equivalent to the functorH0(GL(4,F2)(−);E4)
for j = 1. This is an exact functor [24, Lemma 2.69] and lim0 π1BZCDI(4) =

H0(GL(4,F2);E4) = 0.

As may be seen from [34], the Weyl group W (DI(4)) ⊂ GL(3,Z2) of
order 2|GL(3,F2)| = 336 is generated by the matrices





1 0 0

2 −1 −1

0 0 1




 ,






1 0 0

0 0 1

2 −1 −1




 ,






−1 1 1

0 1 0

0 0 1




 ,






−v 0 v2 + v

−1 1 v

−2v 0 v






where v ∈ Z2 is the unique 2-adic integer with 2v2−v+1 = 0. The first three
matrices generate W (Spin(7)) [7, 3.9, 3.11]. Since W (DI(4)) is isomorphic
to GL(3,F2)× 〈−E〉,

Hn(W ; Ť )(DI(4)) =
⊕

2i≤n

Hn−2i(GL(3,F2);H
2i(〈−E〉; Ť ))

=
⊕

2i≤n

Hn−2i(GL(3,F2); (Z/2)3)
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and, in particular,

H0(W ; Ť )(DI(4)) = 0, H1(W ; Ť )(DI(4)) = Z/2,

H2(W ; Ť )(DI(4)) = Z/2.

We may characterize the maximal torus normalizer short exact sequence
for DI(4) as the unique nonsplit extension of Ť by W (DI(4)); it is nonsplit
because the restriction to W (Spin(7)) ⊂W (DI(4)) is nonsplit [8].

We cannot use [24, Theorem 2.51] as it stands because condition (2) fails:
the restriction map

Z/2 = H1(W ; Ť )(DI(4))→ H1(W ; Ť )(Spin(7))
[16]
= (Z/2)2

is not surjective. Instead, we use the version of [24, Theorem 2.51] where
the first two conditions have been replaced by (1 & 2).

Proof of Theorem 1.5. Condition (1 & 2) is satisfied for DI(4) since
the connected 2-compact groups Spin(7) and SU(2)2/∆ are uniquely N -
determined by [24, Theorem 1.4], Theorem 1.1, and the general results of
[24, Chapter 2, §2]. Since also the relevant higher limits vanish [9, 2.4],
DI(4) is uniquely N -determined by [24, 2.48, 2.51]. Since Outtr(W (DI(4)))
is trivial and Z(W (DI(4))) = 〈−E〉 has order two, Aut(DI(4)) can be read
off from [24, (2.8), Lemma 2.16].

4. The 2-compact group F4. BF4 is a rank four 2-compact group
containing a rank five elementary abelian 2-group E5 ⊂ F4 such that [35,
2.1]

H∗(BF4;F2) ∼= H∗(BE5;F2)
A(F4)(E5) ∼= F2[y4, y6, y7, y16, y24],

where the Quillen automorphism group is the parabolic subgroup

A(F4)(E5) =

(
GL(2,F2) ∗

0 GL(3,F2)

)

⊂ GL(5,F2)

of order 26|GL(2,F2)| |GL(3,F2)|. The inclusion functor

A(A(F4)(E5), E5)→ A(F4)

is a category equivalence by Lannes theory [20]. Inspection of the list of cen-
tralizers of elementary abelian 2-groups in F4 [35, 3.2] shows that ZCF4(V )
= V for each nontrivial V ⊂ E5 so that the functor π2BZCF4 is 0 and
π1BZCF4 = H0(A(F4)(E5)(−);E5). Thus π1BZCF4 is an exact functor
[24, Lemma 2.69] and lim0 π1BZCF4 = H0(A(F4)(E5);E5) = 0.

It is known that H0(W ; Ť )(F4) = 0, that H1(W ; Ť )(F4) = 0, and that
H2(W ; Ť )(F4) = Z/2 [16, 15]. The poset of the toral part of the Quillen
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category is

B

A

B3

A2B1

A3

A4B3

A6B1

3
WWWWWWW

++WWWWWWW

1gggggg

33gggggg

2
WWWWWW

++WWWWWW

3ggggggg

33ggggggg

1gggggg

33gggggg

6
WWWWW

++WWWWW

3ggggg

33ggggg

4
WWWWWW

++WWWWWW

where the labels on the arrows indicate multiplicities.

Proof of Theorem 1.3. Table 1, based on [18, 6.11], [14, 2.14, 7.3, 7.4],
[35, 3.2] and explicit computation, collects information about the toral ob-
jects of rank ≤ 2 of the Quillen category of F4. (The third column shows
the cohomological dimension of the centralizer and the fourth column the
number of reflections in W0, the Weyl group of the identity component of
the centralizer.)

Table 1. Toral subgroups of F4 of rank ≤ 2

Class Centralizer dim refl. |W0| H1(W0; Ť )

2A SU(2) ×C2
Sp(3) 24 10 2531 (Z/2)2

2B Spin(9) 36 16 2731
Z/2

4A3 (U(1) ×C2
U(3)) ⋊ C2 10 3 2131 (Z/2)2

4A2
B

1 Spin(4) ×C2
Spin(5) 16 6 25 (Z/2)5

4B3 Spin(8) 28 12 2631 (Z/2)2

Condition (1 & 2) is satisfied for F4 because centralizers of rank one
objects and centralizers of rank two objects have uniquely N -determined
centralizers. This follows from [24, Chapter 2, §2] as their simple factors are
uniquely N -determined by [24, Theorem 1.4] and Theorem 1.1; note in par-
ticular that the unique nonconnected centralizer is uniquely N -determined
according to [24, Lemma 2.37]. We already noted that the relevant higher
limits vanish, and since there are no nontoral elementary abelian 2-groups
of rank two [35, 3.2], F4 is uniquely N -determined by [24, 2.48, 2.51].

The automorphism group of the 2-compact group F4 is the middle term
of the exact sequence [24, (2.8), Lemma 2.16]. (All automorphisms of F4

automatically preserve the extension class e(F4), which is the nontrivial
element of H2(W ; Ť ) = Z/2 [8, 21].) The group Outtr(W (F4)) of trace
preserving outer automorphisms is cyclic of order two but the nontrivial
outer automorphism of W (F4) cannot be realized as conjugation with an
element of NGL(L)(W ). The center of W (F4) is C2 = 〈−E〉. We conclude

that Aut(F4) = Z×\Z×
2 consists entirely of unstable Adams operations.
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5. The E-family. We consider the centerfree simple 2-compact groups
E6, PE7, and E8.

Proof of Theorem 1.4. Using the information from [14, 18] one finds that
the Quillen category for E6 contains six isomorphism classes of toral objects
of rank at most two. Their class distribution and centralizers are listed
in Table 2, in which S(U(m) × U(n)) = U(1) ×Clcm(m,n)

(SU(m) × SU(n))

Table 2. Elementary abelian toral subgroups of E6 of rank ≤ 2

Class Centralizer dim refl. |W0| H1(W0; Ť )

2A SU(2) ×C2
SU(6) 38 16 253251

Z/2

2B U(1) ×C4
Spin(10) 46 20 273151

Z/2

4A3 (U(1) ×C2
S(U(3) × U(3))) ⋊ C2 18 6 2232 (Z/2)4

4A2
B SU(2) ×C2

S(U(2) × U(4)) 32 8 2531 (Z/2)4

4AB
2 U(1) ×C2

S(U(1) × U(5)) 26 10 233151 (Z/2)2

4B3 U(1) ×C4
(U(1) ×〈(−1,z)〉 Spin(8)) 30 12 2631 (Z/2)2

stands for (U(m) × U(n)) ∩ SU(m + n). Note that E6 satisfies condition
(1 & 2), because the only nonconnected centralizer in the table happens
to be uniquely N -determined by [24, Lemma 2.37], and that all rank two
elementary abelian 2-groups are [4] toral in the simply connected compact
Lie group E6. As the higher limits vanish (5.1 below), the 2-compact group
E6 is uniquely N -determined by [24, 2.48, 2.51].

According to [14, 9.4] and [18, 6.11, 6.12], the Lie group PE7 contains
three conjugacy classes of elements of order two with centralizers

CPE7(2B) = SU(2) ◦ SSpin(12) =
SU(2)× Spin(12)

〈(E, x), (−E, xz)〉 ,

CPE7(2H) = (U(1)× E6) ⋊ C2,

CPE7(2A) = SU(8)/〈i〉⋊ C2.

(The classes 2B, 2H, 2A correspond to 2B, 4H, 4A from [14, Table IV];
z ∈ Spin(2n) is the nontrivial element in the kernel of Spin(2n) → SO(2n)
and x ∈ Spin(2n) is an element in the fiber over −E ∈ SO(2n).) We verify
the first two conditions of [24, Theorem 2.51] by using [24, Lemma 2.54].
For all centralizers C of Table 3, Ž(C0) = ŤW0 [24, 2.32] as the identity
component C0 does not contain SO(2n + 1) as a direct factor, and direct
computation shows that they are all LHS [24, 2.26]. At this stage we are
assuming that C0 is uniquely N -determined. Since H1(W ; Ť )(PE7) = 0 [16,
Main Theorem] it remains to show that the limit from [24, Lemma 2.54] is
trivial. This is a machine computation in the toral subcategory of PE7: there
is a unique rank two toral object in A(PE7) with class distribution BHA.
It turns out that H1(W0; Ť ) = Z/2, because the three rank one objects
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embed into H1(W0; Ť ) = (Z/2)3 for this single rank two object as pairwise
complementary subspaces, and therefore the limit is indeed trivial.

Table 3. Elementary abelian toral subgroups of PE7 of rank ≤ 2

Class Centralizer dim refl. |W0| H1(W0)

2B SU(2) ◦ SSpin(12) 69 31 2103251
Z/2

2H (U(1) × E6) ⋊ C2 79 36 273451
Z/2

2A SU(8)/〈iE〉 ⋊ C2 63 28 27325171
Z/2

4BHA
U(1) × SU(2) × SU(6)

(−1,−E,−E), 〈(−i, E, E)〉
⋊ C2 39 16 253251 (Z/2)3

4BA
3 U(1) × SU(4) × SU(4)

〈(i,−iE, iE), (1, iE, iE)〉
⋊ (C2 × C2) 31 12 2632 (Z/2)4

4BH
3 U(1) × U(1) × Spin(10)

〈(1,−1, x), (−1,−1, xz)〉
⋊ C2 47 20 273151 (Z/2)2

4B3 U(1) × U(1) × SU(6)

〈(1, 1,−E), (−1,−1, E)〉
⋊ C2 37 15 243251 (Z/2)2

4B3 SU(2) × SU(2) × SU(2) × Spin(8)

〈(E,E,−E, x), (−E,−E, E, xz), (E,−E,−E, z)〉
37 15 2931 (Z/2)5

Still according to [14], there are three nontoral rank two elementary
abelian 2-groups in PE7. One is 2A-pure, has centralizer (Z/2)2 × PSO(8)
and automorphism group GL(2,F2), one has class distribution 22A2H, cen-
tralizer (Z/2)2 × PSp(4) and automorphism group C2, and the third one is
2H-pure, has centralizer (Z/2)2 × F4 and automorphism group GL(2,F2).
We use [24, Lemma 2.63] to verify the third condition of [24, Theorem 2.51].
It turns out thatW (PE7) contains two elements, v1 and v2, of order two with
+1-eigenspace of dimension four. The image of CW (PE7)(v1) in GL(π1(T

v1)

⊗Q) = GL(4,Q) has order 25 · 31 while in the case of v2 we get an image
of order 27 · 32. We conclude that if V2 ⊂ N(PE7) is the preferred lift of
the nonpure nontoral rank two object, then the image in W (PE7) is v1 [27,
1.3, 4.2]. This observation can be used in connection with [24, Lemma 2.63]
to verify the third condition of [24, Theorem 2.51]. Since the higher limits
vanish (5.2), the 2-compact group PE7 is uniquely N -determined by [24,
2.48, 2.51].

Table 4, based on [14, 18] and explicit computations, collects information
about centralizers of elementary abelian 2-groups in E8 of rank ≤ 2. We ver-
ify the first two conditions of [24, Theorem 2.51] by using [24, Lemma 2.54].
For all centralizers C of Table 4, Ž(C0) = ŤW0 [24, 2.32] as the identity
component C0 does not contain SO(2n + 1) as a direct factor, and direct
computation shows that they are all LHS. At this stage we are assuming
that C0 is uniquely N -determined. Since H1(W ; Ť )(E8) = 0 [16, Main The-
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Table 4. Elementary abelian toral subgroups of E8 of rank ≤ 2

Class Centralizer dim refl |W0| H1(W0; Ť )

2A SU(2) ◦ E7 136 64 211345171
Z/2

2B SSpin(16) 120 56 214325171
Z/2

4A1
B

2 U(1) × SU(8)

〈(i,−iE), (1,−E)〉
⋊ C2 64 28 27325171 (Z/2)2

4A2
B

1 Spin(4) × Spin(12)

〈(z1, z2), (x1, x2)〉
72 32 2113251 (Z/2)4

4A3 U(1) × U(1) × E6

〈(−1,−1, e)〉
⋊ C2 80 36 273451 (Z/2)2

4B3 Spin(8) × Spin(8)

〈(z1, z2), (x1, x2)〉
⋊ C2 56 24 21232 (Z/2)6

orem] it remains to show that the limit from [24, Lemma 2.54] is trivial.
This is a machine computation in the toral subcategory of E8: there is a
unique rank two toral object in A(E8) with class distribution A1B2. It
turns out that H1(W0; Ť ) = Z/2, because the two rank one objects em-
bed into H1(W0; Ť ) = (Z/2)2 for this single rank two object as comple-
mentary subspaces, and therefore the limit is indeed trivial. There are no
nontoral rank two elementary abelian 2-groups in the simply connected com-
pact Lie group E8 [4]. Since the higher limits vanish (5.3), the 2-compact
group E8 is uniquely N -determined by [24, 2.48, 2.51]. In all three cases,
H1(W ; Ť ) = 0 [16, Main Theorem], H2(W ; Ť ) = Z/2 (where the extension
class e(X) is nontrivial) [21], and the group Outtr(W ) is trivial so that [24,
Lemma 2.16, (2.8)] immediately gives the formulas for the automorphism
groups.

Alternatively, for X = E6,PE7,E8, we may apply the method used by
Vavpetič and Viruel in [35] and shift from the category A(X) of elementary
abelian subgroups to the category R2(X) of 2-stubborn subgroups of X. In
the situation of [24, Theorem 2.51], their functor R2(X)op → A(X) : P →
2Z(P ) gives induced maps

BP → BCX(2Z(P ))→ BX ′,

for each 2-stubborn P ⊂ X, that respect the morphisms of the stubborn
category up to homotopy. Since the obstruction groups for the stubborn
category are known to vanish, these maps rigidify to a map BX → BX ′ un-
der the maximal torus. This way one circumvents the problem of computing
the higher limits over the Quillen category and relies instead on the result
from [18] that the higher limits over R2(X) are known to vanish.

5.1. Limits over the Quillen category of E6. The poset for the toral part,
A(E6)

≤t, of the Quillen category for E6:
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contains three objects V2, V3, V4, with class distributions 4A3, 8A6B1, and
16A12B3, with nonconnected centralizers

S(U(1)2)×C2 S(U(3)2) ⋊ C2 ⊃ S(U(1)2)×C2 S(U(1)2 ×U(2)2) ⋊ C2

⊃ S(U(1)2)×C2 S(U(1)6) ⋊ C2,

where the component group C2 is generated by

c =

((
0 −1

1 0

)

,

(
0 −E
E 0

))

∈ SU(2)×C2 SU(6).

It follows from [24, 2.33, 5.14] that ŽCE6(V ) = ŤW (E6)(V ) for every toral
object V of the Quillen category. As in [24, 3.13–3.15], this implies that
lim∗(A(E6);πi(BZCE6)�t)

∼= lim∗(A(E6);πi(BZCE6)) for i = 1, 2. The el-

ementary abelian subgroups 〈V2, c〉, 〈V3, c〉, 〈V4, c〉, with class distributions
23A7, 24A14B1, and 25A28B3, are nontoral and, according to [14, 8.2], they
are the only nontoral elementary abelian subgroups of E6. Their central-
izers are 〈V2, c〉 × SU(3), 〈V2, c〉 × U(2), and 〈V2, c〉 × U(1)2. The automor-
phism groups in A(E6) for the first two subgroups contain the automorphism
groups in A(F4). Thus

A(E6)(2
3A7) = GL(3,F2), A(E6)(2

4A14B1) =

(
GL(3,F2) 0

∗ 1

)

of order 168 and 1344. Their contributions to Oliver’s cochain complex [31]
for the higher limits of the functor π1(BZCE6) [24, (2.47)] are

HomA(E6)(23A7)(St(23), 23) = 0, HomA(E6)(24A14B1)(St(24), 24) = 0

and hence limj(A(E6);π1(BZC)) = 0 for j = 1, 2. The functor π2(BZCE6)
[24, (2.47)] is 0 on nontoral objects of rank ≤ 3 and has value Z2 on the
nontoral object of rank four. It follows that limj(A(E6);π2(BZCE6)) for
j = 2, 3.

5.2. Limits over the Quillen category of PE7. As for E6, inspection of
A(PE7)

≤t:
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shows that the problem of computing the higher limits of the functors
πi(BZCPE7) is concentrated on the nontoral objects of the Quillen cate-
gory.

Let V be a rank three elementary abelian 2-group in PE7 containing a
nontoral elementary abelian 2-group H of rank two. Then V is generated by
H and an involution L ⊂ CPE7(H) not contained inH where CPE7(H) = F4,
PSp(4), or PSO(8). The orthogonality relations [14, 1.5] and the eigenvalue
multiplicities from [14, Table VI] (with small corrections for the classes A

and B) determine the class distribution for V as shown in the following
table:

CPE7
(H) L C = CPE7

(H × L) dim C H × L

2A[F4] SU(2) ◦ Sp(3) 24 B
1
A

3
H

3

F4
2B[F4] Spin(9) 36 B

1
H

6

L(1, 3) SU(2) ◦ Sp(3) 24 B
1
A

3
H

3

PSp(4) L(2, 2) Spin(5) ◦ Spin(5) ⋊ C2 20 B
1
A

4
H

2

I U(4)/〈−E〉 ⋊ C2 16 B
1
A

5
H

1

L(2, 6) U(4)/〈−E〉 ⋊ C2 16 B
1
A

5
H

1

PSO(8) L(4, 4) SO(4) ◦ SO(4) ⋊ (C2 × C2) 12 B
1
A

6

I, ID U(4)/〈−E〉 ⋊ C2 16 B
1
A

5
H

1

Of course, some of the nontoral elementary abelian 2-groups in this table
may be conjugate in PE7.

Any elementary abelian 2-group of rank three in PE7 is contained in
and contains the center of the maximal rank subgroup CPE7(2B) = SU(2) ◦
SSpin(12) because the orthogonality relations combined with eigenvalue
multiplicities [14, 1.5, Table VI] imply that any elementary abelian 2-group



80 J. M. Møller

of rank three in PE7 contains an element from the class 2B. Thus any
elementary abelian 2-group of rank three in PE7 is conjugate to the preim-
age V ∗ ⊂ SU(2) ◦ SSpin(12) of an elementary abelian 2-group of rank two
V ⊂ SO(3) × PSO(12). The elementary abelian 2-group V ∗ is toral if and
only if V is toral. Suppose from now on that V is nontoral. Then the im-
age, V2, of V in PSO(12) must be a nontoral elementary abelian 2-group of
rank two. Indeed, if V2 is toral in PSO(12), the image, V1, of V in SO(3)
must be nontoral. Then [V2, V2] = {e} in SSpin(12) and [V1, V1] = {E,−E}
in SU(2) so that [V ∗, V ∗] 6= {e} in SU(2) ◦ SSpin(12), contradicting that
V ∗ is abelian. Thus V2 is one of the nontoral elementary abelian 2-groups
described in Chapter 2, §4, with q(V2) = 0 or V2 = H±, H

D
± as in 2.51.

q(V2) = 0: The possibilities for V2 ⊂ PSO(12) are indexed by the five
partitions (i0, i1, i2, i3) ∈ {(5, 1, 1, 1), (4, 2, 1, 1), (3, 3, 1, 1), (3, 2, 2, 1), (2, 2,
2, 2)} of 8 into four natural numbers. The nontoral elementary abelian 2-
group corresponding to (i0, i1, i2, i3) is V2 = 〈v1, v2〉 generated by

v1 = ((+1)2i0−1(−1)2i1−1(+1)2i2−1(−1)2i3−1),

v2 = ((+1)2i0−1(+1)2i1−1(−1)2i2−1(−1)2i3−1).

The following table describes the preimage V ∗
2 ⊂ SSpin(12) of V2 ⊂ PSO(12)

using [24, Lemma 5.28].

(5, 1, 1, 1) (4, 2, 1, 1) (3, 3, 1, 1) (3, 2, 1, 1) (2, 2, 2, 2)

v2
1 z e z e z

v2
2 z z z e z

[v1, v2] z z z z z

V ∗
2 ⊂ SSpin(12) 21+2

− 21+2
+ 21+2

− 21+2
+ 21+2

−

As the extraspecial 2-group 21+2
+ does not imbed in SU(2) [24, 5.5] no V

with V ∗
2 = 21+2

+ has elementary abelian preimage in SU(2) ◦ SSpin(12). In
the other three cases, we need u1, u2 ∈ SU(2) such that (u2

1, u
2
2, [u1, u2]) =

(−E,−E,−E). The only possibility is 21+2
− = 〈u1, u2〉 = 〈iR, iT 〉 [24, 5.5]

and we see that

V ∗ = 〈(E, z), (iR, v1), (iT, v2)〉 = 〈(−E, e), (iR, v1), (iT, v2)〉
is elementary abelian. The centralizer of V ∗ in PE7 or SU(2)◦SSpin(12) is the
preimage under the map SU(2)◦SSpin(12)→ SO(2)×PSO(12) of a subgroup
of CSO(3)×PSO(12)(V ) [28, 5.11]. In the case (5, 1, 1, 1), the centralizer of V ∗

has type B4, dimension 36, and

V ∗ = 23B1H6, CPE7(V
∗) = V ∗ ◦ Spin(9) = V × Spin(9),

A(PE7)(V
∗) =

(
GL(2,F2) ∗

0 1

)

.
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In the case (3, 3, 1, 1), the centralizer of V ∗ has type B2
2 , dimension 20, and

V ∗ = 23B1H2A4, CPE7(V
∗) = V × Spin(5) ◦ Spin(5) ⋊ C2,

A(PE7)(V
∗) =

(
C2 ∗
0 1

)

.

In the case (2, 2, 2, 2), the centralizer of V ∗ has type A4
1, dimension 12, and

V ∗ = 23B1A6, CPE7(V
∗) = V ×SU(2)◦SU(2)◦SU(2)◦SU(2)⋊(C2×C2),

A(PE7)(V
∗) =

(
GL(2,F2) ∗

0 1

)

.

In all these cases, V ∗ contains a single element from the class 2B, which
implies that A(PE7)(V

∗) = A(SU(2) ◦ SSpin(12))(V ∗). (If g ∈ PE7 normal-
izes V ∗, conjugation by g, cg : V ∗ → V ∗, must fix the unique element in V ∗

from the class 2B, and thus g ∈ CPE7(2B) = SU(2) ◦ SSpin(12).)

H−: The elementary abelian 2-group V2 = H− ⊂ PSO(12) is the image

of 21+2
− = 〈v1, v2〉 ⊂ SO(12) generated by [24, 5.7]

v1 = diag

((
I 0

0 −I

)

,

(
I 0

0 −I

)

,

(
I 0

0 −I

))

,

v2 = diag

((
0 I

I 0

)

,

(
0 I

I 0

)

,

(
0 I

I 0

))

In SSpin(12) we have (v2
1, v

2
2, [v1, v2]) = (e, e, e) because, in Spin(12), we

see that (v2
1, v

2
2, [v1, v2]) = (x, x, x) as (v2

1 , v
2
2, [v1, v2]) = (−E,−E,−E)

in SU(6) ⊂ Spin(12). To match this we need u1, u2 ∈ SU(2) such that
(u2

1, u
2
2, [u1, u2]) = (E,E,E). The only possibility is u1 = ±E = u2 and then

V ∗ = 〈(E, z), (E, v1), (E, v2)〉.
The centralizer of V ∗ has type A1D3, dimension 24, and

V ∗ = 23B1H3A3, CPE7(V
∗) = V × SU(2) ◦ Sp(3).

The unique occurrence of 2B means that the automorphism group of V ∗ is
A(PE7)(V

∗) = A(SU(2) ◦ SSpin(12))(V ∗) and this group is a subgroup of
(

GL(2,F2) ∗
0 1

)

that maps onto A(SO(3)×PSO(12))(V ) = GL(2,F2). The class distribution
forces

A(PE7)(V
∗) =

(
GL(2,F2) 0

0 1

)

.
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HD
− : The elementary abelian 2-group V2 = HD

− ⊂ PSO(12) is the image

of (21+2
− )D = 〈vD

1 , v
D
2 〉 ⊂ SO(12) where v1, v2 are as above. In Spin(12) we

get ((v2
1)

D, (v2
2)

D, [v1, v2]
D) = (xz, xz, xz) so that ((v2

1)
D, (v2

2)
D, [v1, v2]

D) =
(z, z, z) in SSpin(12). To match this we need the extraspecial 2-group 21+2

− =
〈iR, iT 〉 ⊂ SU(2) and we get

V ∗ = 〈(E, z), (iR, vD
1 ), (iT, vD

2 )〉.
The centralizer of V ∗ has type C3, dimension 21, and

V ∗ = 23B7, CPE7(V
∗) = V ∗ × PSp(3),

A(PE7)(V
∗) ⊃ A(SU(2) ◦ SSpin(12))(V ∗) =

(
GL(2,F2) ∗

0 1

)

.

There are two conjugacy classes of involutions, v1 and v2, in W (PE7) with
+1-eigenspace of dimension three corresponding, respectively, to this non-
toral elementary abelian 2-group and to the one discussed later under item
HD

+ . The index

∣
∣
∣
∣
A(PE7)(V

∗) ∩
(

GL(2,F2) 0

∗ 1

)

: A(N(PE7))(V
∗) ∩

(
GL(2,F2) 0

∗ 1

)∣
∣
∣
∣

equals the number of lifts

N(PE7)

��
V ∗ v1 //

µ
;;

W (PE7)

for which CN (PE7)(V
∗) = N(V ∗×PSp(3)). According to magma computa-

tions using the short exact sequence [27, 4.2], this number is 12 and hence
the Quillen automorphism group A(PE7)(V

∗) equals GL(3,F2).

H+: The elementary abelian 2-group V2 = H+ ⊂ PSO(12) is the image

of 21+2
+ = 〈v1, v2〉 ⊂ SO(12) generated by [24, 5.7]

v1 = diag(R,R,R,R,R,R), v2 = diag(T, T, T, T, T, T ).

In Spin(12) we have (v2
1 , v

2
2, [v1, v2]) = (z, z, x), and so in SSpin(12) we

have (v2
1, v

2
2, [v1, v2]) = (z, z, e). To match this we need (u2

1, u
2
2, [u1, u2]) =

(−E,−E,E). The only possibility is u1 = ±diag(i,−i) = u2 and we get

V ∗ = 〈(E, z), (diag(i,−i), v1), (diag(i,−i), v2)〉.
The centralizer of V ∗ has type T1A3, dimension 16, and

V ∗ = 23B1H1A5, CPE7(V
∗) = V ×U(4)/〈−E〉⋊ C2,
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A(PE7)(V
∗) =

〈





0 1 0

1 0 0

0 0 1




 ,






1 0 1

0 1 1

0 0 1






〉

.

HD
+ : The elementary abelian 2-group V2 = HD

+ ⊂ PSO(12) is the im-

age of (21+2
+ )D = 〈vD

1 , v
D
2 〉 ⊂ SO(12) where v1 and v2 are as above. In

Spin(12) we have ((v2
1)

D, (v2
2)

D, [v1, v2]
D) = (z, z, xz) and in SSpin(12) we

have ((v2
1)

D, (v2
2)

D, [v1, v2]
D) = (z, z, z). To match this we need 21+2

− =
〈iR, iT 〉 ⊂ SU(2), which gives

V ∗ = {(E, z), (iR, vD
1 ), (iT, vD

2 )}.

The centralizer V ∗ has type A3, dimension 15, and

V ∗ = 23B3A4, CPE7(V
∗) = V ∗ ◦ SSpin(6) = V × SU(4)/〈−E〉,

A(PE7)(V
∗) =

(
C2 ∗
0 1

)

.

From this list of rank three nontoral elementary abelian 2-groups one may
find some rank four nontoral elementary abelian 2-groups. For instance, one
may replace HD

+ above by HD
+ #L(2, 4) to obtain a rank four nontoral ele-

mentary abelian 2-group with class distribution 24B7H1A7 and use 2.40 to
estimate the Quillen automorphism group. There are the following relations
between the nontorals of rank two or three:

22H3 22H1A2 22A3

23B3A4 23B1H6 23B1H3A3 23B1H2A4 23B1H1A5 23B1A6 23B7

24B3H6A6 24B3H4A8 24B3H2A1024B7H1A7

4
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 1

44
4

��4
44 3

wwww

{{wwww 4

��
2

GGGG

##GGGG 2






��



 4

44
4

��4
44

�� �� ����

where the nontoral elementary abelian 2-groups of the third row contain no
other of the nontoral elementary abelian 2-groups of the second row than
the ones indicated. Using the bases {f−}, {f−}, and {f+, f0} for [H3], [A3],
and [H2A] (2.34) described in (2.37, 2.36), the (1+2+1)×(1+4+3+6+1)
matrix for the first differential

0→ [H3]× [H1A2]× [A3]

d1

−→ [B1H6]× [B1H3A3]× [B1H2A4]× [B1H1A5]× [B1A6]

becomes
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[B1
H

6] [B1
H

3
A

3] [B1
H

2
A

4] [B1
H

1
A

5] [B1
A

6]

[H3] (1) (1 0 0 0)

[H1
A

2]

(
0 1 0 0

0 0 1 0

) (
1 0 0

0 1 0

) (
1 0 0 0 0 0

0 0 0 0 0 0

)

[A3] (0 1 0 0 0 0) (1)

using the basis (2.39) for [B1H3A3] and similar bases for the other sum-
mands. Computations with magma show that [B1H3A3] → [B3H6A6] is
injective, [B1H2A4] → [B3H4A8] has rank at least 2, and [B1H1A5] →
[B3H2A10] at least 5. This means that limj(A(PE7);π1(BZCPE7)) = 0 for
j = 1, 2.

The functor π2(BZCPE7) is trivial on all the rank three nontoral elemen-
tary abelian 2-groups in PE7. Let now V be a nontoral elementary abelian
2-group of rank four. Again, the orthogonality relations imply that V con-
tains an involution from class 2B so that V is contained in and contains
the center of SU(2) ◦ SSpin(12). The image of V in SO(3)× PSO(12) must
be nontoral of rank three and the image of V in PSO(12) nontoral of rank
two or three. In any case, V = V ∗ × L where V ∗ is one of the rank three
nontorals and L is generated by an involution in CPE7(V

∗) not contained
in V ∗. Going through the list of nontoral rank three objects V ∗, one sees
that π2(BZCPE7) is trivial on all rank four objects V ∗ × L as well. In most
cases, the identity component of CPE7(V

∗ × L) is semisimple. In the case
where CPE7(V

∗) = V ×U(4) ⋊C2, note that the centralizers have the form
V × U(i) ◦ U(j) ⋊ C2, i + j = 4, and that these compact Lie groups have
finite center. Consequently, limj(A(PE7);π2(BZCPE7)) = 0 for j = 2, 3.

5.3. Limits over the Quillen category of E8. As for E6, inspection of
A(E8)

≤t:

A

B

A2B1

A1B2

A3

B3

A4B3

A6B1

A4B3

A2B5

B7

A10B5

A12B3

A8B7

A6B9

A4B11

A8B7

B15

A20B11

A16B15

A16B15

A12B19

A8B23

A36B27

A32B31

A28B35

A24B39

A64B63

A56B71
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shows that the problem of computing the higher limits of the functors
πi(BZCPE7) is concentrated on the nontoral objects of the Quillen cate-
gory.

Let V be a nontoral rank three elementary abelian 2-group in E8. Unless
V is A-pure, V is contained in and contains the center of the maximal
rank subgroup SSpin(16) of E8. Let V ⊂ PSO(16), V ∗ ⊂ Spin(16), and
V ∗ ⊂ SO(16) be the (pre)images of V under the isogenies

SSpin(16)

〈z〉
��

Spin(16)

〈z〉
��

〈x〉oo

PSO(16) SO(16)
〈−E〉oo

of compact Lie groups. Then V is a nontoral rank two elementary abelian 2-
group in PSO(16). If V ∗ is abelian, also V ∗ is abelian and, in fact, elementary
abelian, for if V ∗ contains an element of order 4 it is toral (2.10). Thus V
is one of the nontoral elementary abelian 2-groups described in Chapter 2,
§4, contradicting that [V ∗, V ∗] = 〈z〉 for all these groups [24, Lemma 5.28].
Therefore V ∗ is not abelian and then [V ∗, V ∗] = 〈x〉 so that [V , V ] 6= 0
and V = H±, H

D
± is one of the nontoral rank 2 elementary abelian 2-groups

described in 2.51. However, V cannot be both H+ and HD
+ as [V ∗, V ∗] = 〈x〉

for one of these alternatives and [V ∗, V ∗] = 〈xz〉 for the other choice [24,
Lemma 5.28], [14, 2.9].

So there are, up to conjugation in SSpin(16), just two possibilities for V .
The class distributions, which we get from the orthogonality relations [14,
1.5], are 23A1B6 (projecting onto H+) and 23A3B4 (projecting onto H−),
and the centralizers are

CE8(2
3A1B6) = CSSpin(16)(V ) = V × PSO(8),

CE8(2
3A3B4) = CSSpin(16)(V ) = V × PSp(4).

In particular, A(E8)(V ) cannot be all of GL(3,F2). Computations with
preferred lifts based on the exact sequence [27, 4.2] show that these auto-
morphism groups have index at most 7 in GL(3,F2). Then there are only
two possibilities and the class distributions force

A(E8)(2
3A1B6) =

(
1 ∗
0 GL(2,F2)

)

, A(E8)(2
3A3B4) =

(
GL(2,F2) ∗

0 1

)

,

both of order 22 · |GL(2,F2)| = 24. The remaining case is when V is A-
pure. Then V is contained in and contains the center of the maximal rank
subgroup SU(2) ◦ E7 of E8. Let V ⊂ PU(2) × PE7 be the image of V .
The centralizer of V in E8 has rank four as seen by inspecting the non-
connected rank two centralizers (Table 4) in E8. Therefore the embedding
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V → PU(2) × PE7 must have the form V ∋ v 7→ (ϕ1(v), ϕ2(v)) where ϕ1

is the nontoral embedding of V in PU(2) [24, Corollary 3.19] and ϕ2 one of
the three nontoral embeddings in PE7. The preimage V ∗ of V in SU(2)×E7

is then V ∗ = 〈(−E, e)〉 × 21+2
− → SU(2) × E7, the monomorphism being

V ∗ ⊃ 21+2
− ∋ g 7→ (ϕ1(g), ϕ2(g)) where ϕ1 is the faithful representation of

the extraspecial group 21+2
− in SU(2) and ϕ2 is one of the three nontoral

embeddings of 21+2
− in E7 [14, 9.5], and CSU(2)×E7

(V ∗) = 〈−E〉 × 〈z〉 × X
where X is PSO(8), PSp(4), or F4 (and z generates the center of E7). The
commutative diagram, where the exact row is [28, 5.11],

1 // CSU(2)×E7
(V ∗)/〈(−E, z)〉 // CSU(2)◦E7

(V ) // Hom(V, 〈(−E, z)〉)

V
?�

OO

[·,·]

66lllllllllllllll

can be used to show that CSU(2)◦E7
(V ) = V × X. Since we are assum-

ing that V is A-pure, the dimension of this centralizer is 52 so CE8(V ) =
CSU(2)◦E7

(V ) = V × F4 and there is only one possibility in this case. The

Quillen automorphism group A(E8)(2
3A) = GL(3,F2) can be determined

by computations based on the short exact sequence [27, 4.2].

The contribution, [V ] = HomA(E8)(V )(St(V ), V ), to Oliver’s cochain

complex [31] for computing lim∗(A(E8);π1(BZCE8)) is 0 when V = 23A7.

When V = 23A1B6, the stabilizers for the action of A(E8)(V ) on planes
P < V have orders 6 or 8. The F2-vector space [V ] is 1-dimensional and the
homomorphism

f [P > L] =

{
L, |A(E8)(V )P | = 8,

0, |A(E8)(V )P | = 6,

where A(E8)(V )P is the stabilizer at the plane P < V , is a nontrivial vector
in [V ]. There is a rank one elementary abelian 2-group L(1, 3) ⊂ PSO(8)
such that (2.14) the centralizer of V × L(1, 3) ⊂ V × PSO(8) ⊂ E8 is
CE8(V × L(1, 3)) = V × CPSO(8)(L(1, 3)) = V × SO(2) ◦ SO(6) ⋊ C2 =
V ×U(4)/〈−E〉⋊ C2. The class distribution of this rank four elementary
abelian 2-group in E8 is 24A9B6 according to the orthogonality relations.
The only rank three nontoral contained in this subgroup is 23A1B6, for
SO(2) ◦ SO(6) does not occur as the identity component of a rank one cen-
tralizer in F4 (Table 1) or PSp(4) (Chap. 4, §1). The Quillen automorphism
group of V × L(1, 3) is contained in the subgroup

A =

(
A(E8)(V ) 0

∗ 1

)

of order 23 · |A(E8)(V )| = 192 because conjugation in E8 takes the subgroup
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V into itself since this subgroup is determined up to conjugacy by its class
distribution. The differential d in Oliver’s cochain complex is an isomorphism
between [V ] and the 1-dimensional subspace

HomA(St(V × L), V × L) ⊂ [V × L] = HomA(E8)(V ×L)(St(V × L), V × L)

as

df [E > P > L] =

{
L, |AE | = 192, |AP | = 8,

0, otherwise,

is nontrivial in HomA(St(V × L), V × L) ∼= F2.
When V = 23A3B4, the stabilizers for the action of A(E8)(V ) on planes

P < V have orders 24 or 4. The F2-vector space [V ] is 1-dimensional and
the homomorphism

f [P > L] =

{
L, |A(E8)(V )P | = 24,

0, |A(E8)(V )P | = 4,

where A(E8)(V )P is the stabilizer at the plane P < V , is a nontrivial
vector in [V ]. There is a rank one elementary abelian 2-group L(1, 3) ⊂
PSp(4) such that the centralizer of V × L(1, 3) ⊂ V × PSp(4) ⊂ E8 is
CE8(V × L(1, 3)) = V × CPSp(4)(L(1, 3)) = V × Sp(1) ◦ Sp(3) (4.1). The

class distribution is 24A5B10. The only rank three nontoral contained in
this subgroup is 23A3B4, for Sp(1) ◦ Sp(3) does not occur as the identity
component of a rank one centralizer in F4 (Table 1) or PSO(8) (Chap. 2,
§1). The Quillen automorphism group is contained in the group A defined
as above but in fact the class distribution forces

A(E8)(V × L(1, 3)) ⊂
(
A(E8)(V ) 0

0 1

)

= A

of order 24. The corresponding space of equivariant linear maps St(V ×L)→
V × L is 10-dimensional and the image of f under the differential d,

df [E > P > L] =

{
L, |AE | = 24 and E ∼=F2A(E8)(V ) V ,

0, otherwise,

is nonzero.
We conclude that lim1(A(E8);π1(BZCE8)) = 0 since there are no non-

toral elementary abelian 2-groups of rank two, and that

lim2(A(E8);π1(BZCE8)) = 0

since the differential is injective.
We have already seen that the functor π2(BZCE8) has value 0 on all non-

toral elementary abelian 2-groups of rank at most three. Consider a nontoral
elementary abelian 2-groups of rank four, E ⊂ E8 say. If E is A-pure, then
E contains the A-pure nontoral elementary abelian 2-group V of rank three.
Otherwise, E is contained in and contains the center of SSpin(16). As before,
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let E ⊂ PSO(16), E∗ ⊂ SO(16), and E∗ ⊂ Spin(16) be the groups corre-
sponding to E. The image E in PSO(16) is a rank three nontoral elementary
abelian 2-group. If [E,E] 6= 0, then E contains a nontoral rank two group
(2.52), which means that E contains a nontoral rank three group. In these
cases, CE8(E) = V ×CX(L) where V has rank three and L rank one and X
is PSO(8), PSp(4), or F4. In all cases, the center ZCE8(E) of the centralizer
equals E (2.14, 2.15, 4.1, 4.2, Table 1). In the remaining cases, [E,E] = 0
and q(E) = 0 as E is nontoral (2.10) so that E∗ ⊂ SO(16) is elementary
abelian. This faithful representation of E has the form

∑

̺∈E∨ i̺̺ for certain
integers i̺ ≥ 0. As [E∗, E∗] ⊂ 〈x〉 it follows from [24, Lemma 5.28] that all
the numbers i̺ have the same parity, which must be odd since E∗ is non-
toral. Since CSO(16) = SO(16)∩

∏

̺ O(i̺), where the i̺ are odd, the centers
of this centralizer and the closely related centralizer CSSpin(16)(E) are finite.
We conclude that the functor π2(BZCE8) has value zero on all nontoral el-
ementary abelian 2-groups of rank at most four. Oliver’s cochain complex
now immediately shows that limj(A(E8);π2(BZCE8)) = 0 for j = 2, 3.

6. Proofs of 1.1, 1.2, and 1.3 from Part I. At this stage we know
that DI(4) and any compact, connected simple, centerless Lie group G are
uniquely N -determined when considered as 2-compact groups.

Proof of Theorem 1.1 and Corollary 1.2 from Part I. Let X be a con-
nected 2-compact group. From [12, 1.12] we know that N(X) = N(G) ×
N(DI(4))t for some integer t ≥ 0. From [24, 2.38, 2.39, 2.42, 2.43] we know
that G×DI(4)t is uniquely N -determined. In particular, X and G×DI(4)t

are isomorphic.
Let next X be any 2-compact group, not necessarily connected. By the

remarks at the beginning of [24, Chapter 3, §2], the H i-injectivity, i = 1, 2,
condition holds for X. Thus X has N -determined automorphisms by [24,
Lemma 2.35] and X is N -determined by [24, Lemma 2.40] if it is LHS [24,
Definition 2.27].

Proof of Corollary 1.3 from Part I. Let BL be a connected finite loop
space with maximal torus BT → BL and let BN → BL be the normalizer
of the maximal torus [29, 1.1, 1.3, 1.4]. For each prime p, the p-completion,
BLp, of BL is a connected p-compact group with maximal torus normalizer
BNp → BLp, the fiberwise p-completion of BN → BL. In particular, at
p = 2, BN2 is BN(G)2 for some connected compact Lie group G [12, 1.12]
and there is [24, Theorem 1.1] a commutative diagram

BN2

��

∼= // BN(G)2

��
BL2

∼= // BG2
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where the horizontal maps are homotopy equivalences. There is no BDI(4)-
factor in the 2-compact group BL2 because the Weyl group of the finite
loop space L is a reflection group at all primes [29, 1.2]. We also see that
BNp

∼= BN(G)p at all odd primes because the extension class is trivial at
odd primes [2]. The classification theorem for p-compact groups at p > 2
[3] provides homotopy equivalences BLp → BGp for primes p > 2. Using
Sullivan’s Arithmetic Square, these maps combine, since they are all defined
as maps under BN , to a homotopy equivalence BL→ BG.
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