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The Boolean space of higher level orderings
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Katarzyna Osiak (Katowice)

Abstract. Let K be an ordered field. The set X(K) of its orderings can be topol-
ogized to make it a Boolean space. Moreover, it has been shown by Craven that for any
Boolean space Y there exists a field K such that X(K) is homeomorphic to Y . Becker’s
higher level ordering is a generalization of the usual concept of ordering. In a similar way
to the case of ordinary orderings one can define a topology on the space of orderings of
fixed exact level. We show that it need not be Boolean. However, our main theorem says
that for any n and any Boolean space Y there exists a field, the space of orderings of fixed
exact level n of which is homeomorphic to Y .

1. Notation and terminology. In the terminology introduced by
Becker, Harman and Rosenberg [2] a signature of a formally real field K
is a character χ of the multiplicative group K̇ with values in the group µ
of all complex roots of unity, with additively closed kernel. The level s(χ)
of the signature χ, if finite, is defined as #Im(χ)/2. The orderings of higher

level are exactly the kernels of signatures with s(χ) < ∞. If χ is a signature
with s(χ) = n, then P = ker(χ) is called an ordering of exact level n, and an
ordering of level m for any m such that n |m. We denote by s(P ) the exact
level of the ordering P . In general, several signatures have the same kernel.
Note that P = ker(χ1) = ker(χ2) if and only if there exists an automorphism
κ of µ such that χ1 = κ ◦ χ2.

For a field K let eSgnn(K) be the set of all signatures of K of exact level
n and let

Sgnn(K) =
⋃

{eSgnd(K) : d |n}.
Similarly denote by eXn(K) and Xn(K) the set of all orderings of exact
level n and the set of all orderings of level n, respectively. With the standard
topology the space Sgnn(K) is Boolean (i.e. compact, Hausdorff and totally

2000 Mathematics Subject Classification: Primary 12D15; Secondary 13J30.
Key words and phrases: ordering of higher level, signature.
This paper represents a portion of the author’s Ph.D. thesis written at Silesian Uni-

versity.

[101] c© Instytut Matematyczny PAN, 2007



102 K. Osiak

disconnected) [3, Prop. 1.4]. It is known that the set X1(K) = eX1(K) of
total orders of the field K can be topologized to make it a Boolean space by
using as a subbasis the family of Harrison sets

H(a) := {P ∈ X1(K) : a ∈ P}, a ∈ K̇.

Since H(a)c := {P ∈ X1(K) : a 6∈ P} = H(−a), the sets H(a) are clopen.
In fact, Sgn1(K) and X1(K) are homeomorphic in the natural way.

In a similar way one can define a topology on Xn(K) by using as a
subbasis the family of sets

Hn(a) = {P ∈ Xn(K) : a ∈ P} and Hc
n(a) = {P ∈ Xn(K) : a 6∈ P}.

This topology makes the space Xn(K) Boolean. Moreover, Xn(K) is hom-
eomorphic to a quotient space Sgnn(K)/̺, where ̺ is the relation

χ1̺χ2 ⇔ ker(χ1) = ker(χ2).

The details can be found in our earlier paper [8, Prop. 1]. The space

eXn(K) = Xn(K) \
⋃

{Xd(K) : d |n, d < n}
is an open subset of the Boolean space Xn(K). It need not be clopen and
hence Boolean. In the last section we give an example of a field for which the
subspace of orderings of exact level n is infinite and its topology is discrete,
thus not compact.

However, the converse is true, which is our main theorem.

Theorem 1.1. Let n be any natural number. Every Boolean space Y is

homeomorphic to the space eXn(M) of orderings of exact level n for some

formally real field M .

In the case n = 1 the construction of M was given by Craven in [5].
For any n and Y being the Cantor cube it was given in [8], where it was
shown that if F is a real closed field of cardinality m, then the space eXn(K)
for K := F (X)({

√
(X − a)/X : a ∈ Ḟ}) is homeomorphic to the Cantor

cube Dm. It was also pointed out that for n odd one could take K :=
F (X)({

√
X − a : a ∈ Ḟ}) [8, Th. 12], which for n = 1 was remarked by

Craven [5, Remark, p. 230].
The proof of Theorem 1.1 requires considering separately the cases of n

even and odd. In the third section, for each even n, we find a field M with
eXn(M) homeomorphic to a given Boolean space; for n odd, this is done in
Section 4.

Just as Craven did, we start our construction with a field K for which
the space eSgnn(K) is homeomorphic to the Cantor cube Dm containing Y .
We get the field M by extending K in such a way as to eliminate unwanted
orderings. However, the problem we have to cope with and which does not
appear in the case n = 1 is controlling the levels of the orderings of K
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which extend to M. It turns out that for n odd the field M may be taken
the same as in Craven’s paper [5] for n = 1. The case of n even requires a
slightly different approach. When constructing M we have to make use of
some results on the space M(K) of real places of K and apply the Separation
Criterion.

We shall make use of the concept of strong approximation property

(SAP). Recall that a formally real field K is said to satisfy SAP if the
Harrison subbasis consists of all the clopen subsets of X1(K). This is in fact
equivalent to the condition that the Harrison subbasis is a basis for X1(K)
[7, Prop. 17.2].

2. Orderings and their extensions. Let K be a formally real field
and let P be a higher level ordering of K. Then P determines the valuation
ring

A(P ) := {a ∈ K : ∃q∈Q+ q ± a ∈ P}
with the maximal ideal

I(P ) := {a ∈ K : ∀q∈Q+ q ± a ∈ P}

and the residue field k(P ) such that P := (P ∩ Ȧ(P )) + I(P ) is an archime-
dean total order of k(P ). Here Ȧ(P ) denotes the set of units of the ring A(P ).

Definition 2.1. Let K be a formally real field and let P and Q be
orderings of higher level of K. We say that P and Q are associated if A(P ) =
A(Q) and P = Q on the residue field k(P ).

For every ordering P there exists a total order P0 such that P and P0 are
associated. In [2] the authors described the connection between the signature
χ of the ordering P = ker(χ) of exact level n and the signature χ0 of the
total order P0 associated with P . We have

(2.1) χ = χ0 · τ ◦ vP ,

where vP is the valuation determined by A(P ) and τ is a character of the
value group of vP such that

#Im(τ) =

{
2n if n is even,

n or 2n if n is odd.

This fact allows us to determine all orderings of higher level of any formally
real field, if we know the total orders. Moreover, the existence of such a
representation for every ordering P implies that if P and Q are associated,
then

P ∩ Ȧ(P ) = Q ∩ Ȧ(Q).
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Example 2.2. Let F be a real closed field. Consider the function field
F (X) with the total order

P0 =

{
f

g
∈ F (X) :

as

bt
∈ Ḟ 2

}
,

where as, bt are the leading coefficients of the polynomials f and g, respec-
tively. Here is a complete list of orderings associated with P0 (cf. [8, Sec. 3]).

For any even n ∈ N the set

Pn =

{
f

g
:

(
as

bt
∈ Ḟ 2 ∧ t − s ≡ 0 (mod2n)

)

∨
(

as

bt
∈ −Ḟ 2 ∧ t − s ≡ n (mod2n)

)}

is the unique ordering of exact level n associated with P0.

For any odd n ∈ N the sets

P̂n =

{
f

g
:
as

bt
∈ Ḟ 2 ∧ t − s ≡ 0 (modn)

}
,

Pn =

{
f

g
: (−1)t−s as

bt
∈ Ḟ 2 ∧ t − s ≡ 0 (modn)

}

are the unique orderings of exact level n associated with P0. Notice that
P̂1 = P0, whereas for n > 1 we have P̂n ⊂ P0 and Pn ⊂ P1.

Now we recall some facts on extensions of orderings (cf. [2], [8]).

Let L/K be a field extension and let PL be an ordering of L. Then
P = PL ∩ K is an ordering of K and s(P ) divides s(PL). The ordering PL

is called an extension of P . If s(PL) = s(P ), then the extension is said to be
faithful. If PL is an extension of P , then A(PL)∩K = A(P ). Notice that if
the orderings PL and QL are associated, then so are PL ∩ K and QL ∩ K.

Given two formally real fields K ⊂ L, we obtain the natural mapping

̺L/K : Xn(L) → Xn(K)

which restricts the orderings of L to the subfield K.

Proposition 2.3. The canonical restriction mapping ̺L/K : Xn(L) →
Xn(K), ̺L/K(PL) = PL ∩ K, is continuous.

Proof. Let [Hn(a)]K be a clopen subbasis set of Xn(K). Then

̺−1
L/K([Hn(a)]K) = [Hn(a)]L,

a clopen subbasis set of Xn(L).

Now we give a necessary condition for the existence of an extension of a
given ordering P .
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Proposition 2.4. If an ordering P of K extends to L, then there exists

a total order P0 which is associated with P and has a faithful extension to L.

Proof. Take for P0 the image under ̺L/K of any total order associated

with an extension PL of P .

The converse need not be true. For example, let K be a field with an
ordering P of level n > 1 and let P0 be a total order associated with P .
Consider a real closure F of (K, P0). Then Ḟ 2 is an extension of P0 and it
is the unique ordering of F .

In the case of Galois extensions, we have a simple criterion for the ex-
istence of an ordering extension. It is a consequence of [2, Th. 4.4, p. 73]
which we now recall in the notation of orderings.

Theorem 2.5. Let L/K be a Galois extension of fields and let P be an

ordering of K. If P extends to L, then either all extensions are faithful or

all have level 2s(P ).

Corollary 2.6. Let L/K be a Galois extension and P be an ordering

of K. Then P extends to L if and only if there exists a total order P0

associated with P which extends faithfully to L.

Proof. Let P0 be a total order of K which is associated with P and
extends faithfully to L. Let χ be any signature of P and χ0 a signature
of P0. By [2, Th. 3.4, p. 65], χ extends to L, since χ0 does. An extension χL

of χ has a finite level, hence ker(χL) is an ordering and ker(χL)∩K = P .

Corollary 2.7. Let L/K be a Galois extension. Let P be an ordering

of K with an extension PL to L and let Q be an ordering of K associated

with P . Then there exists an extension QL of Q associated with PL.

Proof. Let χ, η be any signatures of P and Q, respectively. Let χL be a
signature of PL such that χL|K = χ. By [2, Th. 3.4, p. 65] there exists an

extension ηL of η such that A(ker(ηL)) = A(ker(χL)) and ker(ηL) = ker(χL).
By [2, Th. 4.4, p. 73] the exact level of ker(ηL) is finite, thus QL := ker(ηL)
is an extension of Q associated with PL.

Let L/K be a Galois extension and let G(L/K) be its topological Galois
group. Let PL be a higher level ordering of L. It is a routine matter to check
that σ(PL) is a higher level ordering of L for every σ ∈ G(L/K). The next
theorem is based on [2, Ths. 4.2 and 4.5] and was proved in [8, Th. 7].

Theorem 2.8. Let L/K be a Galois extension and let P be an ordering

of K. Let PL be a faithful extension of P . Then the map

G(L/K) → ̺−1
L/K(P ), σ 7→ σ(PL),

is a homeomorphism.
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Now we shall answer the question: When does a given ordering P of K

extend faithfully to the Galois extension L of K?

Let P be an ordering of K of even exact level n and let P0 be any total
order associated with P . Let χ be any signature of P and χ0 a signature
of P0. Define

P1 := ker(χ0χ
n).

If χ has a representation of the form (2.1), then χ0χ
n = χ0 · τn ◦ vP and P1

is a total order of K associated with P0 and P . Notice that P1 is different
from P0.

Definition 2.9. If n is even, then the pair (P0, P1) defined above is
called a pair of total orders associated with P .

Now let P be an ordering of K of odd exact level n with a signature χ.
Then ker(χn) is a total order associated with P and P ⊂ ker(χn). By [4,
Lem. 1.6] such an order is uniquely determined. We denote it by (P )0.

Proposition 2.10. Let K be a formally real field and n be odd. Then

the map

ϕK : eXn(K) → X1(K), ϕK(P ) = (P )0,

is continuous.

Proof. It is a routine matter to check that for any a ∈ K we have an ∈ P
iff a ∈ (P )0. Let H(a) be a Harrison subbasis set. Then

ϕ−1
K (H(a)) = {P ∈ eXn(K) : a ∈ (P )0} = Hn(an) ∩ eXn(K).

The following proposition was proved in [8, Cor. 11].

Proposition 2.11. Let L/K be a Galois extension and let P be an

ordering of K.

(1) If P is an ordering of even exact level and there exists a pair (P0, P1)
of total orders associated with P such that P0 and P1 extend faithfully

to L, then P also has a faithful extension to L.

(2) If P is an ordering of odd exact level , then P has a faithful extension

to L if and only if (P )0 has a faithful extension to L.

For our next result we need the notion of the real holomorphy ring H(K)
of a formally real field K. Recall that

H(K) =
⋂

P∈X1(K)

A(P ).

We denote the group of units of H(K) by E(K) (cf. [1]). Notice that if
a ∈ E(K), then a is a unit of any real valuation of K. Therefore, if a ∈ E(K),
then a ∈ P or −a ∈ P for any higher level ordering P of K. Moreover, if
a ∈ P , then a ∈ Q for any ordering Q associated with P .
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Now we show how to eliminate higher level orderings of a field by ex-
tending the base field.

Lemma 2.12. Let K be a formally real field , and let a ∈ K with
√

a /∈ K.
Let M := K({ 2

s√
a : s = 1, 2, . . .}). Then

(1) If P ∈ eXn(K) and a ∈ Ȧ(P ) ∩ P , then P has a unique extension

to M and this extension is faithful.

(2) If a ∈ E(K), then the map

eXn(M) → Xn(K), PM 7→ PM ∩ K,

is a bijection onto {P ∈ eXn(K) : a ∈ P}.
Proof. Let Ms := K( 2

s√
a). Then M =

⋃
∞

s=1 Ms.

(1) By induction we shall show that if a ∈ Ȧ(P ) ∩ P , then

• P has exactly two extensions to Ms,
• both extensions are faithful,
• only one of them extends to Ms+1 and this extension is faithful.

First, we deal with the case s = 1. Notice that M1 is a Galois extension
of K. Since a ∈ P ∩ Ȧ(P ) the element a is positive in every total or-
der associated with P . By Proposition 2.11 and Theorem 2.8, P has two
faithful extensions PM1 and σ(PM1), where idM1

6= σ ∈ G(M1/K). Notice
that

√
a ∈ Ȧ(PM1) ∩ Ȧ(σ(PM1)), because a ∈ Ȧ(P ) and the value groups

of the valuations determined by A(PM1) and A(σ(PM1)) are torsion-free.
Thus

√
a ∈ PM1 or −√

a ∈ PM1 . We may assume that
√

a ∈ PM1 and
−√

a ∈ σ(PM1). Then
√

a is positive in every total order associated with
PM1 and negative in every total order associated with σ(PM1). Therefore,
by Proposition 2.11, PM1 extends faithfully to M2, and by Proposition 2.4,
σ(PM1) does not extend to M2.

Now let PMs ∈ eXn(Ms) be the unique extension of P to Ms which
extends to Ms+1. We have 2

s√
a ∈ Ȧ(PMs), since a ∈ Ȧ(PMs) and the value

group of the valuation determined by A(PMs) is torsion-free. Moreover,
2
s√
a ∈ PMs , since PMs extends to Ms+1. To explain the inductive step it

suffices to take Ms instead of K and apply the first part of the proof.

In this way we obtain an increasing chain (PMs)s∈N of orderings of exact
level n of the fields Ms such that PM0 = P and PMs ∩Ms−1 = PMs−1 , where
M0 = K. It is a routine matter to check that the set PM :=

⋃∞

s=0 PMs is an
ordering of M of exact level n. Uniqueness of PM follows from the uniqueness
of PMs .

(2) As pointed out above, if a ∈ E(K) and a is negative in an ordering P ,
then a is negative in any ordering associated with P . Then P does not extend
to M . This fact and (1) imply (2).
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In the above lemma the assumption on a is very restrictive. In the next
lemma we show that for n odd the assumption can be weakened.

Lemma 2.13. Let K be a formally real field , and let a ∈ K with
√

a /∈ K.
Let M := K({ 2

s√
a : s = 1, 2, . . .}). Suppose n is odd.

(1) If PM ∈ eXn(M), then PM ∩ K ∈ eXn(K).
(2) P ∈ eXn(K) has a unique faithful extension to M iff a ∈ (P )0.
(3) The map

eXn(M) → eXn(K), PM 7→ PM ∩ K,

is a bijection onto {P ∈ eXn(K) : a ∈ (P )0}.
Proof. As previously, let M =

⋃∞

s=1 Ms, where Ms := K( 2
s√
a). Since Ms

is a Galois extension of Ms−1 and n is odd, statement (1) is a consequence
of Theorem 2.5.

By induction we show that if a ∈ (P )0, then P has exactly two faithful

extensions to Ms and only one of them extends faithfully to Ms+1.

Notice that if PMs is an extension of P which extends faithfully to PMs+1 ,
then by Proposition 2.11, (PMs)0 extends faithfully to (PMs+1)0, thus a ∈
(PMs)0. Now, it suffices to settle the case s = 1. If a ∈ (P )0 then by Propo-
sition 2.11, P extends faithfully to M1. Moreover, by Theorem 2.8, there
are two faithful extensions PM1 and σ(PM1), where idM1

6= σ ∈ G(M1/K).
We have (PM1)0 ∩K = (P )0 and (σ(PM1))0 ∩K = σ((PM1)0) ∩K = (P )0,
since (P )0 is uniquely determined. We may assume that

√
a ∈ (PM1)0. Thus

by Proposition 2.11, PM1 extends faithfully to M2. But σ(PM1) does not
extend faithfully to M2, since −√

a ∈ (σ(PM1))0.

Let PMs be an extension of P which extends faithfully to Ms+1. It is easy
to check that PM :=

⋃
∞

s=1 PMs is a faithful extension of P to M . Moreover
PM is uniquely determined, since PMs is uniquely determined for any s ∈ N.

The converse is obvious, since P extends faithfully to M1 and this implies
that (P )0 extends faithfully to M1 and a ∈ (P )0.

Statement (3) is a simple consequence of (1) and (2).

Remark 2.14. In the notation of the previous lemma consider the dia-
gram

eXn(M)

ϕM

��

̺M/K // eXn(K)

ϕK

��
X1(M)

̺M/K // X1(K)

where the vertical maps are as in Proposition 2.10. This diagram commutes.
Moreover, if ϕK is a bijection, then so is ϕM .
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Theorem 2.15. Let K be a formally real field and let Y ⊂ eXn(K). As-

sume that there exists a subset B ⊂ E(K) such that Y =
⋂{Hn(β) : β ∈ B}

∩ eXn(K). Then there exists an algebraic extension M of K such that the

restriction map ̺M/K : eXn(M) → Xn(K) is a bijection onto Y . Moreover ,
if eXn(K) is compact , then ̺M/K is a homeomorphism.

Proof. We may assume that B ∩ K̇2 = ∅ since β ∈ K̇2 ∩ E(K) implies
Hn(β) = Xn(K). Define

M = K({ 2
s√

β : β ∈ B, s = 1, 2, . . .}).
Let R be the set of pairs (L, C) where C ⊂ B and L := K({ 2

s√
β : β ∈ C,

s = 1, 2, . . .}) is a subfield of M such that:

(1) ̺L/K(eXn(L)) ⊆ eXn(K),
(2) the restriction ̺L/K |eXn(L) of ̺L/K to eXn(L) is injective,
(3) Y ⊆ ̺L/K(eXn(L)).

Note that R is nonempty, since (K, ∅) ∈ R, and R is partially ordered by
inclusion on the subsets of B. If (L1, C1) and (L2, C2) are in R with C1 ⊂ C2,
then the following diagram commutes:

eXn(L2)

��

// eXn(L1)

��
eXn(K) eXn(K)

Let {(Lξ, Cξ)} be a simply ordered subset of R and let L =
⋃

Lξ,
C =

⋃ Cξ. Then L = K({ 2
s√
β : β ∈ C, s = 1, 2, . . .}).

Let PL ∈ eXn(L) and let χL be any signature of PL. There exists ω ∈ L
such that χL(ω) = ǫ2n, a primitive 2nth root of unity. But ω ∈ Lξ for some ξ,
hence χL|Lξ

∈ eSgnn(Lξ). This means that ker(χL|Lξ
) = PL∩Lξ ∈ eXn(Lξ)

and PL ∩ K = PL ∩ Lξ ∩ K ∈ eXn(K). Thus (L, C) satisfies condition (1).
The map ̺L/K |eXn(L) is injective since ̺Lξ/K |eXn(Lξ) is, so (L, C) satisfies (2).
Each ordering of Y extends faithfully to each Lξ and hence to L =

⋃
Lξ, so

(L, C) satisfies (3). Therefore (L, C) ∈ R.
By Zorn’s lemma, R has a maximal element (L0, C0). Suppose L0 6= M .

Then there exists β0 ∈ B \ C0. Since β0 ∈ E(K) ⊂ E(L0), by Lemma 2.12
the restriction map

eXn(L0({ 2
s√

β0 : s = 1, 2, . . .})) → Xn(L0)

is a bijection onto the set {PL0 ∈ eXn(L0) : β0 ∈ PL0}.
Thus L0({ 2

s√
β0 : s = 1, 2, . . .}) satisfies conditions (1)–(3) and

(L0({ 2
s√

β0 : s = 1, 2, . . .}), C0 ∪ {β0}) ∈ R,

contradicting the maximality of (L0, C0). Therefore L0 = M .
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Now it suffices to show that ̺M/K(eXn(M)) ⊆ Y. Notice that if β ∈ B,

then β ∈ Ṁ2. Let PM ∈ eXn(M) and let PM
0 be a total order associated

with PM . The orderings PM ∩ K and PM
0 ∩ K are associated and β ∈

PM
0 ∩ E(K). Hence β ∈ PM ∩ K and PM ∈ Hn(β) for every β ∈ B.

For the next lemma we need the notion of the space M(K) of R-valued
places of the field K. Any ordering P of K leads to the R-valued place
λK(P ) : K → R∪{∞} attached to a unique order imbedding of the archime-
dean ordered field (k(P ), P ) into (R, Ṙ2). Thus we have a map

λK :
∞⋃

n=1

Xn(K) → M(K)

which sends an ordering P ∈ Xn(K) to λK(P ), its associated R-valued
place. Notice that two orderings P and Q determine the same R-valued
place λK(P ) = λK(Q) if and only if they are associated.

Lemma 2.16. Let P be an ordering of the field F and let

K = F (
√

a1, . . . ,
√

as), where ai ∈ 1 + I(P ), i = 1, . . . , s.

Then the restriction λK,P of

λK :
∞⋃

n=1

Xn(K) → M(K)

to the set ̺−1
K/F (P ) is injective.

Proof. It suffices to show that the map PK 7→ A(PK) is injective.

First, we consider the case s = 1. Let K := F (
√

a), P ∈ eXn(F ).
Since a ∈ 1 + I(P ), a is positive in every total order associated with P . By
Proposition 2.11, P has exactly two extensions PK and σ(PK), where id 6=
σ ∈ G(K/F ), and they are both faithful. We may assume that

√
a ∈ PK ,

since a ∈ P . Then −√
a ∈ σ(PK). Suppose that A(PK) = A(σ(PK)) =: A

with maximal ideal I = I(A) and residue field k = k(A). Then
√

a+I = 1+I
or −√

a + I = 1 + I, since a + I = 1 + I. Thus
√

a ∈ PK ∩ σ(PK) or
−√

a ∈ PK ∩ σ(PK), a contradiction.

Let now K := F (
√

a1, . . . ,
√

as) and let PK , QK be different extensions
of P to K. Let F1 := F (

√
a2, . . . ,

√
as). If PK ∩ F1 6= QK ∩ F1, then by the

induction assumption A(PK ∩ F1) 6= A(QK ∩ F1), hence A(PK) 6= A(QK).
If PK ∩F1 = QK ∩F1 then apply the case s = 1 with F = F1, P = PK ∩F1

and K = F1(
√

a1).

Let L/K be a field extension. The restriction map ̺L/K induces the map

ωL/K : M(L) → M(K), ωL/K(λL(PL)) = λK(̺L/K(PL)).
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This definition makes sense, because if λL(PL) = λL(QL) (i.e. PL and QL

are associated), then λK(PL ∩K) = λK(QL ∩K) (i.e. PL ∩K and QL ∩K
are associated). Moreover, the following diagram commutes:

X(L)

̺L/K

��

λL // M(L)

ωL/K

��
X(K)

λK // M(K)

As an obvious consequence of this fact and Lemma 2.16 we have

Corollary 2.17. Let P be a higher level ordering of the field F and let

K = F ({√a : a ∈ A}),
where A ⊂ 1+I(P ). Then the restriction λK,P of λ :

⋃
∞

n=1 Xn(K) → M(K)
to the set ̺−1

K/F (P ) is injective.

Remark 2.18. In the notation of this corollary suppose that Q is an
ordering of F associated with P . Consider the following diagram:

̺−1
K/F (P )

λK,P $$JJJJJJJJJ

̺−1
K/F (Q)

λK,Qzzttttttttt

M(K)

Since K/F is a Galois extension, by Corollaries 2.7 and 2.17, we can complete
the above diagram to

̺−1
K/F (P )

λK,P $$JJJJJJJJJ

φP,Q // ̺−1
K/F (Q)

λK,Qzzttttttttt

M(K)

where φP,Q is bijective. In fact, if PK is a fixed extension of P and QK is
an extension of Q associated with PK , then φP,Q(σ(PK)) = σ(QK) for any
σ ∈ G(K/F ) and the diagram

̺−1
K/F (P )

φP,Q // ̺−1
K/F (Q)

G(K/F )

eeKKKKKKKKKK

99ssssssssss

commutes. By Theorem 2.8, φP,Q is a homeomorphism.
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3. Boolean space as a space of orderings of even exact level.

As we have pointed out, every Boolean space is a closed subspace of some
Cantor cube. For each infinite cardinal m, let Dm denote the Cantor cube
of weight m. It was shown in [8] that if F is a real closed field of cardinality
m and n is a fixed natural number, then the space eXn(K) for

K := F (X)

({√
X − a

X
: a ∈ Ḟ

})

is homeomorphic to Dm. Now we briefly recall the explanation of this fact.
The reader can find the details in [8, Th. 12].

(1) K/F (X) is a Galois extension with Galois group homeomorphic
to Dm.

(2) We have

X1(K) = H(X) ∪̇ H(−X)

where H(X), H(−X) are Harrison subbasis sets. Let P0, P1 be the
total orders of F (X) as in Example 2.2. Then

H(X) = ̺−1
K/F (X)(P0) and H(−X) = ̺−1

K/F (X)(P1).

(3) By Corollary 2.6 and Proposition 2.11, every higher level ordering
of K is a faithful extension of some ordering P of F (X) associated
with P0 and P1. Therefore if n is even, then

eXn(K) = ̺−1
K/F (X)

(Pn),

where Pn is the unique ordering of F (X) of exact level n associated
with P0 and P1, and if n is odd, then

eXn(K) = ̺−1
K/F (X)(Pn) ∪̇ ̺−1

K/F (X)(P̂n),

where Pn, P̂n are the orderings of exact level n as in Example 2.2.
(4) If P is a higher level ordering of F (X) which extends to K, then by

Theorem 2.8, the space ̺−1
K/F (X)(P ) is homeomorphic to G(K/F (X)),

hence to Dm.

Now we are able to prove the first part of our main theorem.

Theorem 3.1. Let n be even. Every Boolean space Y is homeomorphic

to the space of orderings of exact level n for some formally real field M .

Proof. Let F be a real closed field of cardinality m and let

K := F (X)

({√
X − a

X
: a ∈ Ḟ

})
.

Let P0 be the total order of F (X) as in Example 2.2 and let P be any higher

level ordering of F (X) associated with P0 (as yet, we do not assume that
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the exact level of P is even). Note that

X − a

X
∈ 1 + I(P0) = 1 + I(P )

for every a ∈ Ḟ . By Remark 2.18, we have a homeomorphism

φP : ̺−1
K/F (X)(P ) → ̺−1

K/F (X)(P0),

where φP (PK) is the unique extension of P0 associated with PK .
If we take as P the total order P1, then we get a bijection which pairs

orders in H(−X) with the associated orders in H(X). Therefore
⋂

P K∈H(X)

Ȧ(PK) =
⋂

P K∈X1(K)

Ȧ(PK) = E(K).

Let Y be a closed subspace of Dm. Denote by YP the subset of ̺−1
K/F (X)

(P )

homeomorphic to Y . We shall show that there exists a subset B ⊂ E(K)
such that

YP =
⋂

β∈B

Hn(β) ∩ ̺−1
K/F (X)(P ).

The set φP (YP ) is a closed subspace of H(X), and φP (YP )c, the comple-
ment of φP (YP ), is an open subset of X1(K). Moreover, φP (YP )c ∩H(X) is
open. By [6, Th. 3 and Theorem, p. 346], K satisfies SAP. Therefore,

φP (YP )c ∩ H(X) =
⋃

α∈A

H(−α).

For every α ∈ A one observes that H(α) ∩ H(X) and H(−α) ∩ H(X) are
closed and disjoint subsets of X1(K). By Corollary 2.17, the sets λ(H(α)
∩ H(X)) and λ(H(−α) ∩ H(X)) are disjoint. By the Separation Criterion
[7, Prop. 9.13], there exists β ∈ ⋂{Ȧ(PK) : PK ∈ H(X)} = E(K) such that
H(α) ∩ H(X) ⊂ H(β) and H(−α) ∩ H(X) ⊂ H(−β). It is not difficult to
check that H(−α) = H(−β) ∩ H(X), since H(−α) ⊂ H(X). Let B be the
set of β’s determined in this way. Then φP (YP ) =

⋂{H(β) : β ∈ B}∩H(X)
and YP =

⋂{Hn(β) : β ∈ B} ∩ ̺−1
K/F (X)(P ).

As we have pointed out, if n is even, then eXn(K) = ̺−1
K/F (X)(Pn), where

Pn is the unique ordering of exact level n of F (X) associated with P0 and P1.
We use Theorem 2.15 to get a field M with a bijective correspondence be-
tween eXn(M) and Y . Notice that eXn(M) equals ̺−1

M/F (X)(Pn) ∩ Xn(M),

so it is compact. Thus eXn(M) and Y are homeomorphic.

Remark 3.2. Let n be odd and let K be as in the above theorem. Then
eXn(K) = ̺−1

K/F (X)(Pn) ∪̇ ̺−1
K/F (X)(P̂n), where Pn and P̂n are orderings of

exact level n as in Example 2.2. If β ∈ E(K), then Hn(β) contains an order-

ing PK
n ∈ ̺−1

K/F (X)(Pn) iff Hn(β) contains an ordering P̂K
n ∈ ̺−1

K/F (X)(P̂n)
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such that PK
n and P̂K

n are associated. Let Y be any closed subspace of the
Cantor cube Dm. In the proof of Theorem 3.1 we have shown that there ex-
ists a subset B ⊂ E(K) such that Y is homeomorphic to

⋂{Hn(β) : β ∈ B}
∩ ̺−1

K/F (X)(Pn) and to
⋂{Hn(β) : β ∈ B} ∩ ̺−1

K/F (X)(P̂n). Then Y ∪̇ Y is

homeomorphic to
⋂{Hn(β) : β ∈ B} ∩ eXn(K). Let M be as in Theo-

rem 2.15. Then eXn(M) equals (̺−1
M/F (X)(Pn) ∪̇ ̺−1

M/F (X)(P̂n)) ∩ Xn(M), so

it is compact. Therefore eXn(M) is homeomorphic to Y ∪̇ Y ∼= D(2) × Y ,
where D(2) is the two-point discrete space.

4. Boolean space as a space of orderings of odd exact level. In
this section we prove Theorem 1.1 for odd n. The proof is based on the
result of Craven in [5]. Let F be a real closed field of cardinality m and let

K := F (X)({
√

X − a : a ∈ Ḟ}).
By [8, Th. 12], the space eXn(K) is homeomorphic to the Cantor cube Dm

for any odd n. In particular, X1(K) is homeomorphic to Dm. Moreover, in
the proof of that theorem we have seen that X1(K) = ̺−1

K/F (X)(P0) and

eXn(K) = ̺−1
K/F (X)(P̂n), where P0, P̂n are the orderings of F (X) from Ex-

ample 2.2. Let Y be any closed subset of X1(K). Since K satisfies SAP, the
space Y c is a union of sets of the Harrison subbasis of X1(K). Write

Y c =
⋃

α∈A

H(−α).

As shown by Craven [5, Prop. 2, p. 227], the space X1(M) is homeomorphic
to Y for

M := K({ 2
s√
α : α ∈ A, s = 1, 2, . . .}).

We shall show that the spaces eXn(M) and X1(M) are homeomorphic.

Theorem 4.1. Let n be odd. Every Boolean space Y is homeomorphic

to the space of orderings of exact level n for some formally real field M .

Proof. Let F , K, M be the fields defined above. Let R be the set of
pairs (L,B), where B ⊂ A, and let

L := K({ 2
s√
α : α ∈ B, s = 1, 2, . . .})

be a subfield of M such that

(1) PL ∈ eXn(L) ⇒ PL ∩ K ∈ eXn(K),
(2) the map ϕL : eXn(L) → X1(L), ϕL(PL) = (PL)0, is a bijection.

The set R is nonempty, since (K, ∅) ∈ R, and it is partially ordered by
inclusion on the subsets of A. Notice that if (L1,B1) and (L2,B2) are in R
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with B1 ⊂ B2, then the following diagram commutes:

eXn(L2)

��

// eXn(L1)

��
X1(L2) // X1(L1)

Let {(Lξ,Bξ)} be a simply ordered subset of R and set L =
⋃

Lξ, B =
⋃Bξ.

Then L := K({ 2
s√
α : α ∈ B, s = 1, 2, . . .}). Let PL ∈ eXn(L) and let

χL be any signature of PL. There exists ω ∈ L such that χL(ω) = ǫ2n,
a primitive 2nth root of unity. But ω ∈ Lξ for some ξ, hence χL|Lξ

∈
eSgnn(Lξ). Therefore ker(χL|Lξ

) = PL ∩ Lξ ∈ eXn(Lξ) and PL ∩ K ∈
eXn(K). Thus (L,B) satisfies condition (1). The map ϕL is injective since
ϕLξ

is. If PL
0 is a fixed order of L then PL =

⋃
ϕ−1

Lξ
(PL

0 ∩Lξ) is an ordering

of exact level n contained in PL
0 , hence (L,B) satisfies (2). Thus (L,B) ∈ R.

By Zorn’s lemma, R has a maximal element (L0,B0). Suppose L0 6= M .
Then there exists α0 ∈ A \ B0. By Lemma 2.13 and Remark 2.14, the field

L0({ 2
s√
α0 : s = 1, 2, . . .})

satisfies conditions (1), (2), so

(L0({ 2
s√
α0 : s = 1, 2, . . .}),B0 ∪ {α0}) ∈ R,

contradicting the maximality of (L0,B0). Therefore L0 = M .

It suffices to show that the bijection ϕM is a homeomorphism. As pointed

out above, eXn(K) = ̺−1
K/F (X)(P̂n). Therefore eXn(M) equals ̺−1

M/F (X)(P̂n)

∩ Xn(M) and is compact. By Proposition 2.10, the map ϕM is continu-
ous. A continuous bijection of a compact space onto a Hausdorff space is a
homeomorphism.

5. The space of orderings of exact level n of R(X). All total orders
of R(X) were described in [9, Example 1.1.4]. They are as follows:

P =

{
f

g
∈ R(X) :

as

bt
∈ Ṙ

2

}
, Q =

{
f

g
∈ R(X) : (−1)t−s as

bt
∈ Ṙ

2

}
,

where as, bt are the leading coefficients of the polynomials f and g, respec-
tively, and for any a ∈ R,

P a =

{
(X − a)k f

g
∈ R(X) :

f(a)

g(a)
∈ Ṙ

2

}
,

Qa =

{
(X − a)k f

g
∈ R(X) : (−1)k f(a)

g(a)
∈ Ṙ

2

}
,

where f(a) 6= 0 and g(a) 6= 0. The orderings P and Q are associated, as also
are P a and Qa for any a ∈ R.
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Let n be even. Then

Pn =

{
f

g
:

(
as

bt
∈ Ṙ

2 ∧ t − s ≡ 0 (mod2n)

)

∨
(

as

bt
∈ −Ṙ

2 ∧ t − s ≡ n (mod2n)

)}

is the unique ordering of R(X) of exact level n associated with P and Q,
and

P a
n =

{
(X − a)k f

g
:

(
f(a)

g(a)
∈ Ṙ

2 ∧ k ≡ 0 (mod2n)

)

∨
(

f(a)

g(a)
∈ −Ṙ

2 ∧ k ≡ n (mod2n)

)}

is the unique ordering of R(X) of exact level n associated with P a and Qa.
Let n be odd. Then

Pn =

{
f

g
:
as

bt
∈ Ṙ

2 ∧ t − s ≡ 0 (modn)

}
,

Qn =

{
f

g
: (−1)t−s as

bt
∈ Ṙ

2 ∧ t − s ≡ 0 (modn))

}

are the unique orderings of R(X) of exact level n associated with P and Q,
and

P a
n =

{
(X − a)k f

g
:
f(a)

g(a)
∈ Ṙ

2 ∧ k ≡ 0 (modn)

}
,

Qa
n =

{
(X − a)k f

g
: (−1)k f(a)

g(a)
∈ Ṙ

2 ∧ k ≡ 0 (modn)

}

are the unique orderings of R(X) of exact level n associated with P a and
Qa. It is readily verified that for n even we have

{Pn} =
⋂

{Hc
n(X2d) : d |n, d < n},

and for a ∈ R we have

{P a
n} = Hn(Xn) ∩

⋂
{Hc

n((X − a)2d) : d |n, d < n}.

Thus all one-point sets are open and the topology induced on eXn(R(X))
from Xn(R(X)) is discrete.

Similarly, one checks that if n > 1 is odd, then

{Pn} = Hn(Xn) ∩
⋂

{Hc
n(X2d) : d |n, d < n},

{Qn} = Hn(−Xn) ∩
⋂

{Hc
n(X2d) : d |n, d < n},
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and for a ∈ R,

{P a
n} = Hn(X2) ∩ Hn((X − a)n) ∩

⋂
{Hc

n((X − a)2d) : d |n, d < n},

{Qa
n} = Hn(X2) ∩ Hn(−(X − a)n) ∩

⋂
{Hc

n((X − a)2d) : d |n, d < n},
which proves that the topological space eXn(R(X)) is discrete. Since it is
infinite, it cannot be compact.

References

[1] E. Becker, The real holomorphy ring and sums of 2n-th powers, in: Lecture Notes
Math. 959, Springer, Berlin, 1982, 139–181.

[2] E. Becker, J. Harman and A. Rosenberg, Signatures of fields and extension theory,
J. Reine Angew. Math. 330 (1982), 53–75.

[3] E. Becker and A. Rosenberg, Reduced forms and reduced Witt rings of higher level,
J. Algebra 92 (1985), 477–503.

[4] R. Berr, Sums of mixed powers in fields and orderings of prescribed level, Math. Z.
210 (1992), 513–528.

[5] T. C. Craven, The Boolean space of orderings of the field, Trans. Amer. Math. Soc.
209 (1975), 225–235.

[6] —, The topological space of orderings of rational function field, Duke Math. J. 41
(1974), 339–347.

[7] T. Y. Lam, Orderings, Valuations and Quadratic Forms, CBMS Reg. Conf. Ser.
Math. 52, Amer. Math. Soc., 1983.

[8] K. Osiak, A Cantor cube as a space of higher level orderings, Tatra Mt. Math. Publ.
32 (2005), 71–84.

[9] A. Prestel and Ch. N. Delzell, Positive Polynomials, Springer Monogr. Math., Sprin-
ger, Berlin, 2001.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice, Poland
E-mail: kosiak@ux2.math.us.edu.pl

Received 23 March 2006;

in revised form 10 September 2007


