The Boolean space of higher level orderings

by

Katarzyna Osiak (Katowice)

Abstract

Let K be an ordered field. The set $X(K)$ of its orderings can be topologized to make it a Boolean space. Moreover, it has been shown by Craven that for any Boolean space Y there exists a field K such that $X(K)$ is homeomorphic to Y. Becker's higher level ordering is a generalization of the usual concept of ordering. In a similar way to the case of ordinary orderings one can define a topology on the space of orderings of fixed exact level. We show that it need not be Boolean. However, our main theorem says that for any n and any Boolean space Y there exists a field, the space of orderings of fixed exact level n of which is homeomorphic to Y.

1. Notation and terminology. In the terminology introduced by Becker, Harman and Rosenberg [2] a signature of a formally real field K is a character χ of the multiplicative group \dot{K} with values in the group μ of all complex roots of unity, with additively closed kernel. The level $s(\chi)$ of the signature χ, if finite, is defined as $\# \operatorname{Im}(\chi) / 2$. The orderings of higher level are exactly the kernels of signatures with $s(\chi)<\infty$. If χ is a signature with $s(\chi)=n$, then $P=\operatorname{ker}(\chi)$ is called an ordering of exact level n, and an ordering of level m for any m such that $n \mid m$. We denote by $s(P)$ the exact level of the ordering P. In general, several signatures have the same kernel. Note that $P=\operatorname{ker}\left(\chi_{1}\right)=\operatorname{ker}\left(\chi_{2}\right)$ if and only if there exists an automorphism κ of μ such that $\chi_{1}=\kappa \circ \chi_{2}$.

For a field K let $\operatorname{eSgn}_{n}(K)$ be the set of all signatures of K of exact level n and let

$$
\operatorname{Sgn}_{n}(K)=\bigcup\left\{\operatorname{eSgn}_{d}(K): d \mid n\right\} .
$$

Similarly denote by $e X_{n}(K)$ and $X_{n}(K)$ the set of all orderings of exact level n and the set of all orderings of level n, respectively. With the standard topology the space $\operatorname{Sgn}_{n}(K)$ is Boolean (i.e. compact, Hausdorff and totally

[^0]disconnected) [3, Prop. 1.4]. It is known that the set $X_{1}(K)=e X_{1}(K)$ of total orders of the field K can be topologized to make it a Boolean space by using as a subbasis the family of Harrison sets
$$
H(a):=\left\{P \in X_{1}(K): a \in P\right\}, \quad a \in \dot{K}
$$

Since $H(a)^{c}:=\left\{P \in X_{1}(K): a \notin P\right\}=H(-a)$, the sets $H(a)$ are clopen. In fact, $\operatorname{Sgn}_{1}(K)$ and $X_{1}(K)$ are homeomorphic in the natural way.

In a similar way one can define a topology on $X_{n}(K)$ by using as a subbasis the family of sets

$$
H_{n}(a)=\left\{P \in X_{n}(K): a \in P\right\} \quad \text { and } \quad H_{n}^{c}(a)=\left\{P \in X_{n}(K): a \notin P\right\}
$$

This topology makes the space $X_{n}(K)$ Boolean. Moreover, $X_{n}(K)$ is homeomorphic to a quotient space $\operatorname{Sgn}_{n}(K) / \varrho$, where ϱ is the relation

$$
\chi_{1} \varrho \chi_{2} \Leftrightarrow \operatorname{ker}\left(\chi_{1}\right)=\operatorname{ker}\left(\chi_{2}\right)
$$

The details can be found in our earlier paper [8, Prop. 1]. The space

$$
e X_{n}(K)=X_{n}(K) \backslash \bigcup\left\{X_{d}(K): d \mid n, d<n\right\}
$$

is an open subset of the Boolean space $X_{n}(K)$. It need not be clopen and hence Boolean. In the last section we give an example of a field for which the subspace of orderings of exact level n is infinite and its topology is discrete, thus not compact.

However, the converse is true, which is our main theorem.
Theorem 1.1. Let n be any natural number. Every Boolean space Y is homeomorphic to the space e $X_{n}(M)$ of orderings of exact level n for some formally real field M.

In the case $n=1$ the construction of M was given by Craven in [5]. For any n and Y being the Cantor cube it was given in [8], where it was shown that if F is a real closed field of cardinality \mathfrak{m}, then the space $e X_{n}(K)$ for $K:=F(X)(\{\sqrt{(X-a) / X}: a \in \dot{F}\})$ is homeomorphic to the Cantor cube $D_{\mathfrak{m}}$. It was also pointed out that for n odd one could take $K:=$ $F(X)(\{\sqrt{X-a}: a \in \dot{F}\})$ [8, Th. 12], which for $n=1$ was remarked by Craven [5, Remark, p. 230].

The proof of Theorem 1.1 requires considering separately the cases of n even and odd. In the third section, for each even n, we find a field M with $e X_{n}(M)$ homeomorphic to a given Boolean space; for n odd, this is done in Section 4.

Just as Craven did, we start our construction with a field K for which the space $\operatorname{eSgn}_{n}(K)$ is homeomorphic to the Cantor cube $D_{\mathfrak{m}}$ containing Y. We get the field M by extending K in such a way as to eliminate unwanted orderings. However, the problem we have to cope with and which does not appear in the case $n=1$ is controlling the levels of the orderings of K
which extend to M. It turns out that for n odd the field M may be taken the same as in Craven's paper [5] for $n=1$. The case of n even requires a slightly different approach. When constructing M we have to make use of some results on the space $M(K)$ of real places of K and apply the Separation Criterion.

We shall make use of the concept of strong approximation property $(S A P)$. Recall that a formally real field K is said to satisfy SAP if the Harrison subbasis consists of all the clopen subsets of $X_{1}(K)$. This is in fact equivalent to the condition that the Harrison subbasis is a basis for $X_{1}(K)$ [7, Prop. 17.2].
2. Orderings and their extensions. Let K be a formally real field and let P be a higher level ordering of K. Then P determines the valuation ring

$$
A(P):=\left\{a \in K: \exists_{q \in \mathbb{Q}^{+}} q \pm a \in P\right\}
$$

with the maximal ideal

$$
I(P):=\left\{a \in K: \forall_{q \in \mathbb{Q}^{+}} q \pm a \in P\right\}
$$

and the residue field $k(P)$ such that $\bar{P}:=(P \cap \dot{A}(P))+I(P)$ is an archimedean total order of $k(P)$. Here $\dot{A}(P)$ denotes the set of units of the ring $A(P)$.

Definition 2.1. Let K be a formally real field and let P and Q be orderings of higher level of K. We say that P and Q are associated if $A(P)=$ $A(Q)$ and $\bar{P}=\bar{Q}$ on the residue field $k(P)$.

For every ordering P there exists a total order P_{0} such that P and P_{0} are associated. In [2] the authors described the connection between the signature χ of the ordering $P=\operatorname{ker}(\chi)$ of exact level n and the signature χ_{0} of the total order P_{0} associated with P. We have

$$
\begin{equation*}
\chi=\chi_{0} \cdot \tau \circ v_{P} \tag{2.1}
\end{equation*}
$$

where v_{P} is the valuation determined by $A(P)$ and τ is a character of the value group of v_{P} such that

$$
\# \operatorname{Im}(\tau)= \begin{cases}2 n & \text { if } n \text { is even } \\ n \text { or } 2 n & \text { if } n \text { is odd }\end{cases}
$$

This fact allows us to determine all orderings of higher level of any formally real field, if we know the total orders. Moreover, the existence of such a representation for every ordering P implies that if P and Q are associated, then

$$
P \cap \dot{A}(P)=Q \cap \dot{A}(Q)
$$

Example 2.2. Let F be a real closed field. Consider the function field $F(X)$ with the total order

$$
P_{0}=\left\{\frac{f}{g} \in F(X): \frac{a_{s}}{b_{t}} \in \dot{F}^{2}\right\}
$$

where a_{s}, b_{t} are the leading coefficients of the polynomials f and g, respectively. Here is a complete list of orderings associated with P_{0} (cf. [8, Sec. 3]).

For any even $n \in \mathbb{N}$ the set

$$
\begin{aligned}
P_{n}=\left\{\frac{f}{g}:\left(\frac{a_{s}}{b_{t}} \in \dot{F}^{2} \wedge t-s \equiv\right.\right. & 0(\bmod 2 n)) \\
& \left.\vee\left(\frac{a_{s}}{b_{t}} \in-\dot{F}^{2} \wedge t-s \equiv n(\bmod 2 n)\right)\right\}
\end{aligned}
$$

is the unique ordering of exact level n associated with P_{0}.
For any odd $n \in \mathbb{N}$ the sets

$$
\begin{aligned}
& \widehat{P}_{n}=\left\{\frac{f}{g}: \frac{a_{s}}{b_{t}} \in \dot{F}^{2} \wedge t-s \equiv 0(\bmod n)\right\} \\
& P_{n}=\left\{\frac{f}{g}:(-1)^{t-s} \frac{a_{s}}{b_{t}} \in \dot{F}^{2} \wedge t-s \equiv 0(\bmod n)\right\}
\end{aligned}
$$

are the unique orderings of exact level n associated with P_{0}. Notice that $\widehat{P}_{1}=P_{0}$, whereas for $n>1$ we have $\widehat{P}_{n} \subset P_{0}$ and $P_{n} \subset P_{1}$.

Now we recall some facts on extensions of orderings (cf. [2], [8]).
Let L / K be a field extension and let P^{L} be an ordering of L. Then $P=P^{L} \cap K$ is an ordering of K and $s(P)$ divides $s\left(P^{L}\right)$. The ordering P^{L} is called an extension of P. If $s\left(P^{L}\right)=s(P)$, then the extension is said to be faithful. If P^{L} is an extension of P, then $A\left(P^{L}\right) \cap K=A(P)$. Notice that if the orderings P^{L} and Q^{L} are associated, then so are $P^{L} \cap K$ and $Q^{L} \cap K$.

Given two formally real fields $K \subset L$, we obtain the natural mapping

$$
\varrho_{L / K}: X_{n}(L) \rightarrow X_{n}(K)
$$

which restricts the orderings of L to the subfield K.
Proposition 2.3. The canonical restriction mapping $\varrho_{L / K}: X_{n}(L) \rightarrow$ $X_{n}(K), \varrho_{L / K}\left(P^{L}\right)=P^{L} \cap K$, is continuous.

Proof. Let $\left[H_{n}(a)\right]_{K}$ be a clopen subbasis set of $X_{n}(K)$. Then

$$
\varrho_{L / K}^{-1}\left(\left[H_{n}(a)\right]_{K}\right)=\left[H_{n}(a)\right]_{L}
$$

a clopen subbasis set of $X_{n}(L)$.
Now we give a necessary condition for the existence of an extension of a given ordering P.

Proposition 2.4. If an ordering P of K extends to L, then there exists a total order P_{0} which is associated with P and has a faithful extension to L.

Proof. Take for P_{0} the image under $\varrho_{L / K}$ of any total order associated with an extension P^{L} of P.■

The converse need not be true. For example, let K be a field with an ordering P of level $n>1$ and let P_{0} be a total order associated with P. Consider a real closure F of $\left(K, P_{0}\right)$. Then \dot{F}^{2} is an extension of P_{0} and it is the unique ordering of F.

In the case of Galois extensions, we have a simple criterion for the existence of an ordering extension. It is a consequence of [2, Th. 4.4, p. 73] which we now recall in the notation of orderings.

Theorem 2.5. Let L / K be a Galois extension of fields and let P be an ordering of K. If P extends to L, then either all extensions are faithful or all have level $2 s(P)$.

Corollary 2.6. Let L / K be a Galois extension and P be an ordering of K. Then P extends to L if and only if there exists a total order P_{0} associated with P which extends faithfully to L.

Proof. Let P_{0} be a total order of K which is associated with P and extends faithfully to L. Let χ be any signature of P and χ_{0} a signature of P_{0}. By [2, Th. 3.4, p. 65], χ extends to L, since χ_{0} does. An extension χ^{L} of χ has a finite level, hence $\operatorname{ker}\left(\chi^{L}\right)$ is an ordering and $\operatorname{ker}\left(\chi^{L}\right) \cap K=P$.

Corollary 2.7. Let L / K be a Galois extension. Let P be an ordering of K with an extension P^{L} to L and let Q be an ordering of K associated with P. Then there exists an extension Q^{L} of Q associated with P^{L}.

Proof. Let χ, η be any signatures of P and Q, respectively. Let χ^{L} be a signature of P^{L} such that $\left.\chi^{L}\right|_{K}=\chi$. By [2, Th. 3.4, p. 65] there exists an extension η^{L} of η such that $A\left(\operatorname{ker}\left(\eta^{L}\right)\right)=A\left(\operatorname{ker}\left(\chi^{L}\right)\right)$ and $\overline{\operatorname{ker}\left(\eta^{L}\right)}=\overline{\operatorname{ker}\left(\chi^{L}\right)}$. By [2, Th. 4.4, p. 73] the exact level of $\operatorname{ker}\left(\eta^{L}\right)$ is finite, thus $Q^{L}:=\operatorname{ker}\left(\eta^{L}\right)$ is an extension of Q associated with P^{L}.

Let L / K be a Galois extension and let $G(L / K)$ be its topological Galois group. Let P^{L} be a higher level ordering of L. It is a routine matter to check that $\sigma\left(P^{L}\right)$ is a higher level ordering of L for every $\sigma \in G(L / K)$. The next theorem is based on [2, Ths. 4.2 and 4.5] and was proved in [8, Th. 7].

Theorem 2.8. Let L / K be a Galois extension and let P be an ordering of K. Let P^{L} be a faithful extension of P. Then the map

$$
G(L / K) \rightarrow \varrho_{L / K}^{-1}(P), \quad \sigma \mapsto \sigma\left(P^{L}\right)
$$

is a homeomorphism.

Now we shall answer the question: When does a given ordering P of K extend faithfully to the Galois extension L of K ?

Let P be an ordering of K of even exact level n and let P_{0} be any total order associated with P. Let χ be any signature of P and χ_{0} a signature of P_{0}. Define

$$
P_{1}:=\operatorname{ker}\left(\chi_{0} \chi^{n}\right)
$$

If χ has a representation of the form (2.1), then $\chi_{0} \chi^{n}=\chi_{0} \cdot \tau^{n} \circ v_{P}$ and P_{1} is a total order of K associated with P_{0} and P. Notice that P_{1} is different from P_{0}.

Definition 2.9. If n is even, then the pair $\left(P_{0}, P_{1}\right)$ defined above is called a pair of total orders associated with P.

Now let P be an ordering of K of odd exact level n with a signature χ. Then $\operatorname{ker}\left(\chi^{n}\right)$ is a total order associated with P and $P \subset \operatorname{ker}\left(\chi^{n}\right)$. By [4, Lem. 1.6] such an order is uniquely determined. We denote it by $(P)_{0}$.

Proposition 2.10. Let K be a formally real field and n be odd. Then the map

$$
\varphi_{K}: e X_{n}(K) \rightarrow X_{1}(K), \quad \varphi_{K}(P)=(P)_{0}
$$

is continuous.
Proof. It is a routine matter to check that for any $a \in K$ we have $a^{n} \in P$ iff $a \in(P)_{0}$. Let $H(a)$ be a Harrison subbasis set. Then

$$
\varphi_{K}^{-1}(H(a))=\left\{P \in e X_{n}(K): a \in(P)_{0}\right\}=H_{n}\left(a^{n}\right) \cap e X_{n}(K)
$$

The following proposition was proved in [8, Cor. 11].
Proposition 2.11. Let L / K be a Galois extension and let P be an ordering of K.
(1) If P is an ordering of even exact level and there exists a pair $\left(P_{0}, P_{1}\right)$ of total orders associated with P such that P_{0} and P_{1} extend faithfully to L, then P also has a faithful extension to L.
(2) If P is an ordering of odd exact level, then P has a faithful extension to L if and only if $(P)_{0}$ has a faithful extension to L.
For our next result we need the notion of the real holomorphy ring $\mathcal{H}(K)$ of a formally real field K. Recall that

$$
\mathcal{H}(K)=\bigcap_{P \in X_{1}(K)} A(P)
$$

We denote the group of units of $\mathcal{H}(K)$ by $\mathbb{E}(K)$ (cf. [1]). Notice that if $a \in \mathbb{E}(K)$, then a is a unit of any real valuation of K. Therefore, if $a \in \mathbb{E}(K)$, then $a \in P$ or $-a \in P$ for any higher level ordering P of K. Moreover, if $a \in P$, then $a \in Q$ for any ordering Q associated with P.

Now we show how to eliminate higher level orderings of a field by extending the base field.

Lemma 2.12. Let K be a formally real field, and let $a \in K$ with $\sqrt{a} \notin K$. Let $M:=K(\{\sqrt[2^{s}]{a}: s=1,2, \ldots\})$. Then
(1) If $P \in e X_{n}(K)$ and $a \in \dot{A}(P) \cap P$, then P has a unique extension to M and this extension is faithful.
(2) If $a \in \mathbb{E}(K)$, then the map

$$
e X_{n}(M) \rightarrow X_{n}(K), \quad P^{M} \mapsto P^{M} \cap K
$$

is a bijection onto $\left\{P \in e X_{n}(K): a \in P\right\}$.
Proof. Let $M_{s}:=K(\sqrt[2^{s}]{a})$. Then $M=\bigcup_{s=1}^{\infty} M_{s}$.
(1) By induction we shall show that if $a \in \dot{A}(P) \cap P$, then

- P has exactly two extensions to M_{s},
- both extensions are faithful,
- only one of them extends to M_{s+1} and this extension is faithful.

First, we deal with the case $s=1$. Notice that M_{1} is a Galois extension of K. Since $a \in P \cap \dot{A}(P)$ the element a is positive in every total order associated with P. By Proposition 2.11 and Theorem $2.8, P$ has two faithful extensions $P^{M_{1}}$ and $\sigma\left(P^{M_{1}}\right)$, where $\operatorname{id}_{M_{1}} \neq \sigma \in G\left(M_{1} / K\right)$. Notice that $\sqrt{a} \in \dot{A}\left(P^{M_{1}}\right) \cap \dot{A}\left(\sigma\left(P^{M_{1}}\right)\right)$, because $a \in \dot{A}(P)$ and the value groups of the valuations determined by $A\left(P^{M_{1}}\right)$ and $A\left(\sigma\left(P^{M_{1}}\right)\right)$ are torsion-free. Thus $\sqrt{a} \in P^{M_{1}}$ or $-\sqrt{a} \in P^{M_{1}}$. We may assume that $\sqrt{a} \in P^{M_{1}}$ and $-\sqrt{a} \in \sigma\left(P^{M_{1}}\right)$. Then \sqrt{a} is positive in every total order associated with $P^{M_{1}}$ and negative in every total order associated with $\sigma\left(P^{M_{1}}\right)$. Therefore, by Proposition $2.11, P^{M_{1}}$ extends faithfully to M_{2}, and by Proposition 2.4 , $\sigma\left(P^{M_{1}}\right)$ does not extend to M_{2}.

Now let $P^{M_{s}} \in e X_{n}\left(M_{s}\right)$ be the unique extension of P to M_{s} which extends to M_{s+1}. We have $\sqrt[2^{s}]{a} \in \dot{A}\left(P^{M_{s}}\right)$, since $a \in \dot{A}\left(P^{M_{s}}\right)$ and the value group of the valuation determined by $A\left(P^{M_{s}}\right)$ is torsion-free. Moreover, $\sqrt[2]{a} \sqrt{a} \in P^{M_{s}}$, since $P^{M_{s}}$ extends to M_{s+1}. To explain the inductive step it suffices to take M_{s} instead of K and apply the first part of the proof.

In this way we obtain an increasing chain $\left(P^{M_{s}}\right)_{s \in \mathbb{N}}$ of orderings of exact level n of the fields M_{s} such that $P^{M_{0}}=P$ and $P^{M_{s}} \cap M_{s-1}=P^{M_{s-1}}$, where $M_{0}=K$. It is a routine matter to check that the set $P^{M}:=\bigcup_{s=0}^{\infty} P^{M_{s}}$ is an ordering of M of exact level n. Uniqueness of P^{M} follows from the uniqueness of $P^{M_{s}}$.
(2) As pointed out above, if $a \in \mathbb{E}(K)$ and a is negative in an ordering P, then a is negative in any ordering associated with P. Then P does not extend to M. This fact and (1) imply (2).

In the above lemma the assumption on a is very restrictive. In the next lemma we show that for n odd the assumption can be weakened.

Lemma 2.13. Let K be a formally real field, and let $a \in K$ with $\sqrt{a} \notin K$. Let $M:=K(\{\sqrt[2^{s}]{a}: s=1,2, \ldots\})$. Suppose n is odd.
(1) If $P^{M} \in e X_{n}(M)$, then $P^{M} \cap K \in e X_{n}(K)$.
(2) $P \in e X_{n}(K)$ has a unique faithful extension to M iff $a \in(P)_{0}$.
(3) The map

$$
e X_{n}(M) \rightarrow e X_{n}(K), \quad P^{M} \mapsto P^{M} \cap K
$$

is a bijection onto $\left\{P \in e X_{n}(K): a \in(P)_{0}\right\}$.
Proof. As previously, let $M=\bigcup_{s=1}^{\infty} M_{s}$, where $M_{s}:=K(\sqrt[2]{a} \sqrt{a})$. Since M_{s} is a Galois extension of M_{s-1} and n is odd, statement (1) is a consequence of Theorem 2.5.

By induction we show that if $a \in(P)_{0}$, then P has exactly two faithful extensions to M_{s} and only one of them extends faithfully to M_{s+1}.

Notice that if $P^{M_{s}}$ is an extension of P which extends faithfully to $P^{M_{s+1}}$, then by Proposition 2.11, $\left(P^{M_{s}}\right)_{0}$ extends faithfully to $\left(P^{M_{s+1}}\right)_{0}$, thus $a \in$ $\left(P^{M_{s}}\right)_{0}$. Now, it suffices to settle the case $s=1$. If $a \in(P)_{0}$ then by Proposition $2.11, P$ extends faithfully to M_{1}. Moreover, by Theorem 2.8 , there are two faithful extensions $P^{M_{1}}$ and $\sigma\left(P^{M_{1}}\right)$, where $\operatorname{id}_{M_{1}} \neq \sigma \in G\left(M_{1} / K\right)$. We have $\left(P^{M_{1}}\right)_{0} \cap K=(P)_{0}$ and $\left(\sigma\left(P^{M_{1}}\right)\right)_{0} \cap K=\sigma\left(\left(P^{M_{1}}\right)_{0}\right) \cap K=(P)_{0}$, since $(P)_{0}$ is uniquely determined. We may assume that $\sqrt{a} \in\left(P^{M_{1}}\right)_{0}$. Thus by Proposition 2.11, $P^{M_{1}}$ extends faithfully to M_{2}. But $\sigma\left(P^{M_{1}}\right)$ does not extend faithfully to M_{2}, since $-\sqrt{a} \in\left(\sigma\left(P^{M_{1}}\right)\right)_{0}$.

Let $P^{M_{s}}$ be an extension of P which extends faithfully to M_{s+1}. It is easy to check that $P^{M}:=\bigcup_{s=1}^{\infty} P^{M_{s}}$ is a faithful extension of P to M. Moreover P^{M} is uniquely determined, since $P^{M_{s}}$ is uniquely determined for any $s \in \mathbb{N}$.

The converse is obvious, since P extends faithfully to M_{1} and this implies that $(P)_{0}$ extends faithfully to M_{1} and $a \in(P)_{0}$.

Statement (3) is a simple consequence of (1) and (2).
REMARK 2.14. In the notation of the previous lemma consider the diagram

where the vertical maps are as in Proposition 2.10. This diagram commutes. Moreover, if φ_{K} is a bijection, then so is φ_{M}.

Theorem 2.15. Let K be a formally real field and let $Y \subset e X_{n}(K)$. Assume that there exists a subset $\mathcal{B} \subset \mathbb{E}(K)$ such that $Y=\bigcap\left\{H_{n}(\beta): \beta \in \mathcal{B}\right\}$ $\cap e X_{n}(K)$. Then there exists an algebraic extension M of K such that the restriction map $\varrho_{M / K}: e X_{n}(M) \rightarrow X_{n}(K)$ is a bijection onto Y. Moreover, if $e X_{n}(K)$ is compact, then $\varrho_{M / K}$ is a homeomorphism.

Proof. We may assume that $\mathcal{B} \cap \dot{K}^{2}=\emptyset$ since $\beta \in \dot{K}^{2} \cap \mathbb{E}(K)$ implies $H_{n}(\beta)=X_{n}(K)$. Define

$$
M=K(\{\sqrt[2 s]{\beta}: \beta \in \mathcal{B}, s=1,2, \ldots\})
$$

Let \mathcal{R} be the set of pairs (L, \mathcal{C}) where $\mathcal{C} \subset \mathcal{B}$ and $L:=K(\{\sqrt[2^{s}]{\beta}: \beta \in \mathcal{C}$, $s=1,2, \ldots\}$) is a subfield of M such that:
(1) $\varrho_{L / K}\left(e X_{n}(L)\right) \subseteq e X_{n}(K)$,
(2) the restriction $\left.\varrho_{L / K}\right|_{e X_{n}(L)}$ of $\varrho_{L / K}$ to $e X_{n}(L)$ is injective,
(3) $Y \subseteq \varrho_{L / K}\left(e X_{n}(L)\right)$.

Note that \mathcal{R} is nonempty, since $(K, \emptyset) \in \mathcal{R}$, and \mathcal{R} is partially ordered by inclusion on the subsets of \mathcal{B}. If $\left(L_{1}, \mathcal{C}_{1}\right)$ and $\left(L_{2}, \mathcal{C}_{2}\right)$ are in \mathcal{R} with $\mathcal{C}_{1} \subset \mathcal{C}_{2}$, then the following diagram commutes:

Let $\left\{\left(L_{\xi}, \mathcal{C}_{\xi}\right)\right\}$ be a simply ordered subset of \mathcal{R} and let $L=\bigcup L_{\xi}$, $\mathcal{C}=\bigcup \mathcal{C}_{\xi}$. Then $L=K(\{\sqrt[2^{s}]{\beta}: \beta \in \mathcal{C}, s=1,2, \ldots\})$.

Let $P^{L} \in e X_{n}(L)$ and let χ^{L} be any signature of P^{L}. There exists $\omega \in L$ such that $\chi^{L}(\omega)=\epsilon_{2 n}$, a primitive $2 n$th root of unity. But $\omega \in L_{\xi}$ for some ξ, hence $\left.\chi^{L}\right|_{L_{\xi}} \in \operatorname{eSgn}_{n}\left(L_{\xi}\right)$. This means that $\operatorname{ker}\left(\left.\chi^{L}\right|_{L_{\xi}}\right)=P^{L} \cap L_{\xi} \in e X_{n}\left(L_{\xi}\right)$ and $P^{L} \cap K=P^{L} \cap L_{\xi} \cap K \in e X_{n}(K)$. Thus (L, \mathcal{C}) satisfies condition (1). The map $\left.\varrho_{L / K}\right|_{e X_{n}(L)}$ is injective since $\left.\varrho_{L_{\xi} / K}\right|_{e X_{n}\left(L_{\xi}\right)}$ is, so (L, $\left.\mathcal{C}\right)$ satisfies (2). Each ordering of Y extends faithfully to each L_{ξ} and hence to $L=\bigcup L_{\xi}$, so (L, \mathcal{C}) satisfies (3). Therefore $(L, \mathcal{C}) \in \mathcal{R}$.

By Zorn's lemma, \mathcal{R} has a maximal element $\left(L_{0}, \mathcal{C}_{0}\right)$. Suppose $L_{0} \neq M$. Then there exists $\beta_{0} \in \mathcal{B} \backslash \mathcal{C}_{0}$. Since $\beta_{0} \in \mathbb{E}(K) \subset \mathbb{E}\left(L_{0}\right)$, by Lemma 2.12 the restriction map

$$
e X_{n}\left(L_{0}\left(\left\{\sqrt[2 s]{\beta_{0}}: s=1,2, \ldots\right\}\right)\right) \rightarrow X_{n}\left(L_{0}\right)
$$

is a bijection onto the set $\left\{P^{L_{0}} \in e X_{n}\left(L_{0}\right): \beta_{0} \in P^{L_{0}}\right\}$.
Thus $L_{0}\left(\left\{\sqrt[2^{s}]{\beta_{0}}: s=1,2, \ldots\right\}\right)$ satisfies conditions (1)-(3) and

$$
\left(L_{0}\left(\left\{\sqrt[2 s]{\beta_{0}}: s=1,2, \ldots\right\}\right), \mathcal{C}_{0} \cup\left\{\beta_{0}\right\}\right) \in \mathcal{R}
$$

contradicting the maximality of $\left(L_{0}, \mathcal{C}_{0}\right)$. Therefore $L_{0}=M$.

Now it suffices to show that $\varrho_{M / K}\left(e X_{n}(M)\right) \subseteq Y$. Notice that if $\beta \in \mathcal{B}$, then $\beta \in \dot{M}^{2}$. Let $P^{M} \in e X_{n}(M)$ and let P_{0}^{M} be a total order associated with P^{M}. The orderings $P^{M} \cap K$ and $P_{0}^{M} \cap K$ are associated and $\beta \in$ $P_{0}^{M} \cap \mathbb{E}(K)$. Hence $\beta \in P^{M} \cap K$ and $P^{M} \in H_{n}(\beta)$ for every $\beta \in \mathcal{B}$.

For the next lemma we need the notion of the space $M(K)$ of \mathbb{R}-valued places of the field K. Any ordering P of K leads to the \mathbb{R}-valued place $\lambda_{K}(P): K \rightarrow \mathbb{R} \cup\{\infty\}$ attached to a unique order imbedding of the archimedean ordered field $(k(P), \bar{P})$ into $\left(\mathbb{R}, \dot{\mathbb{R}}^{2}\right)$. Thus we have a map

$$
\lambda_{K}: \bigcup_{n=1}^{\infty} X_{n}(K) \rightarrow M(K)
$$

which sends an ordering $P \in X_{n}(K)$ to $\lambda_{K}(P)$, its associated \mathbb{R}-valued place. Notice that two orderings P and Q determine the same \mathbb{R}-valued place $\lambda_{K}(P)=\lambda_{K}(Q)$ if and only if they are associated.

Lemma 2.16. Let P be an ordering of the field F and let

$$
K=F\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{s}}\right), \quad \text { where } a_{i} \in 1+I(P), i=1, \ldots, s
$$

Then the restriction $\lambda_{K, P}$ of

$$
\lambda_{K}: \bigcup_{n=1}^{\infty} X_{n}(K) \rightarrow M(K)
$$

to the set $\varrho_{K / F}^{-1}(P)$ is injective.
Proof. It suffices to show that the map $P^{K} \mapsto A\left(P^{K}\right)$ is injective.
First, we consider the case $s=1$. Let $K:=F(\sqrt{a}), P \in e X_{n}(F)$. Since $a \in 1+I(P), a$ is positive in every total order associated with P. By Proposition 2.11, P has exactly two extensions P^{K} and $\sigma\left(P^{K}\right)$, where id \neq $\sigma \in G(K / F)$, and they are both faithful. We may assume that $\sqrt{a} \in P^{K}$, since $a \in P$. Then $-\sqrt{a} \in \sigma\left(P^{K}\right)$. Suppose that $A\left(P^{K}\right)=A\left(\sigma\left(P^{K}\right)\right)=: A$ with maximal ideal $I=I(A)$ and residue field $k=k(A)$. Then $\sqrt{a}+I=1+I$ or $-\sqrt{a}+I=1+I$, since $a+I=1+I$. Thus $\sqrt{a} \in P^{K} \cap \sigma\left(P^{K}\right)$ or $-\sqrt{a} \in P^{K} \cap \sigma\left(P^{K}\right)$, a contradiction.

Let now $K:=F\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{s}}\right)$ and let P^{K}, Q^{K} be different extensions of P to K. Let $F_{1}:=F\left(\sqrt{a_{2}}, \ldots, \sqrt{a_{s}}\right)$. If $P^{K} \cap F_{1} \neq Q^{K} \cap F_{1}$, then by the induction assumption $A\left(P^{K} \cap F_{1}\right) \neq A\left(Q^{K} \cap F_{1}\right)$, hence $A\left(P^{K}\right) \neq A\left(Q^{K}\right)$. If $P^{K} \cap F_{1}=Q^{K} \cap F_{1}$ then apply the case $s=1$ with $F=F_{1}, P=P^{K} \cap F_{1}$ and $K=F_{1}\left(\sqrt{a_{1}}\right)$.

Let L / K be a field extension. The restriction map $\varrho_{L / K}$ induces the map

$$
\omega_{L / K}: M(L) \rightarrow M(K), \quad \omega_{L / K}\left(\lambda_{L}\left(P^{L}\right)\right)=\lambda_{K}\left(\varrho_{L / K}\left(P^{L}\right)\right)
$$

This definition makes sense, because if $\lambda_{L}\left(P^{L}\right)=\lambda_{L}\left(Q^{L}\right)$ (i.e. P^{L} and Q^{L} are associated), then $\lambda_{K}\left(P^{L} \cap K\right)=\lambda_{K}\left(Q^{L} \cap K\right)$ (i.e. $P^{L} \cap K$ and $Q^{L} \cap K$ are associated). Moreover, the following diagram commutes:

$$
\begin{gathered}
X(L) \xrightarrow{\lambda_{L}} M(L) \\
\varrho_{L / K} \downarrow \stackrel{\omega_{L / K}}{\downarrow} \downarrow \\
X(K) \xrightarrow{\lambda_{K}} M(K)
\end{gathered}
$$

As an obvious consequence of this fact and Lemma 2.16 we have
Corollary 2.17. Let P be a higher level ordering of the field F and let

$$
K=F(\{\sqrt{a}: a \in \mathcal{A}\})
$$

where $\mathcal{A} \subset 1+I(P)$. Then the restriction $\lambda_{K, P}$ of $\lambda: \bigcup_{n=1}^{\infty} X_{n}(K) \rightarrow M(K)$ to the set $\varrho_{K / F}^{-1}(P)$ is injective.

REMARK 2.18. In the notation of this corollary suppose that Q is an ordering of F associated with P. Consider the following diagram:

Since K / F is a Galois extension, by Corollaries 2.7 and 2.17 , we can complete the above diagram to

where $\phi_{P, Q}$ is bijective. In fact, if P^{K} is a fixed extension of P and Q^{K} is an extension of Q associated with P^{K}, then $\phi_{P, Q}\left(\sigma\left(P^{K}\right)\right)=\sigma\left(Q^{K}\right)$ for any $\sigma \in G(K / F)$ and the diagram

commutes. By Theorem 2.8, $\phi_{P, Q}$ is a homeomorphism.
3. Boolean space as a space of orderings of even exact level. As we have pointed out, every Boolean space is a closed subspace of some Cantor cube. For each infinite cardinal \mathfrak{m}, let $D_{\mathfrak{m}}$ denote the Cantor cube of weight \mathfrak{m}. It was shown in [8] that if F is a real closed field of cardinality \mathfrak{m} and n is a fixed natural number, then the space $e X_{n}(K)$ for

$$
K:=F(X)\left(\left\{\sqrt{\frac{X-a}{X}}: a \in \dot{F}\right\}\right)
$$

is homeomorphic to $D_{\mathfrak{m}}$. Now we briefly recall the explanation of this fact. The reader can find the details in [8, Th. 12].
(1) $K / F(X)$ is a Galois extension with Galois group homeomorphic to $D_{\mathfrak{m}}$.
(2) We have

$$
X_{1}(K)=H(X) \dot{\cup} H(-X)
$$

where $H(X), H(-X)$ are Harrison subbasis sets. Let P_{0}, P_{1} be the total orders of $F(X)$ as in Example 2.2. Then

$$
H(X)=\varrho_{K / F(X)}^{-1}\left(P_{0}\right) \quad \text { and } \quad H(-X)=\varrho_{K / F(X)}^{-1}\left(P_{1}\right)
$$

(3) By Corollary 2.6 and Proposition 2.11, every higher level ordering of K is a faithful extension of some ordering P of $F(X)$ associated with P_{0} and P_{1}. Therefore if n is even, then

$$
e X_{n}(K)=\varrho_{K / F(X)}^{-1}\left(P_{n}\right)
$$

where P_{n} is the unique ordering of $F(X)$ of exact level n associated with P_{0} and P_{1}, and if n is odd, then

$$
e X_{n}(K)=\varrho_{K / F(X)}^{-1}\left(P_{n}\right) \dot{\cup} \varrho_{K / F(X)}^{-1}\left(\widehat{P}_{n}\right)
$$

where P_{n}, \widehat{P}_{n} are the orderings of exact level n as in Example 2.2.
(4) If P is a higher level ordering of $F(X)$ which extends to K, then by Theorem 2.8, the space $\varrho_{K / F(X)}^{-1}(P)$ is homeomorphic to $G(K / F(X))$, hence to $D_{\mathfrak{m}}$.

Now we are able to prove the first part of our main theorem.
Theorem 3.1. Let n be even. Every Boolean space Y is homeomorphic to the space of orderings of exact level n for some formally real field M.

Proof. Let F be a real closed field of cardinality \mathfrak{m} and let

$$
K:=F(X)\left(\left\{\sqrt{\frac{X-a}{X}}: a \in \dot{F}\right\}\right)
$$

Let P_{0} be the total order of $F(X)$ as in Example 2.2 and let P be any higher level ordering of $F(X)$ associated with P_{0} (as yet, we do not assume that
the exact level of P is even). Note that

$$
\frac{X-a}{X} \in 1+I\left(P_{0}\right)=1+I(P)
$$

for every $a \in \dot{F}$. By Remark 2.18, we have a homeomorphism

$$
\phi_{P}: \varrho_{K / F(X)}^{-1}(P) \rightarrow \varrho_{K / F(X)}^{-1}\left(P_{0}\right)
$$

where $\phi_{P}\left(P^{K}\right)$ is the unique extension of P_{0} associated with P^{K}.
If we take as P the total order P_{1}, then we get a bijection which pairs orders in $H(-X)$ with the associated orders in $H(X)$. Therefore

$$
\bigcap_{P^{K} \in H(X)} \dot{A}\left(P^{K}\right)=\bigcap_{P^{K} \in X_{1}(K)} \dot{A}\left(P^{K}\right)=\mathbb{E}(K)
$$

Let Y be a closed subspace of $D_{\mathfrak{m}}$. Denote by Y_{P} the subset of $\varrho_{K / F(X)}^{-1}(P)$ homeomorphic to Y. We shall show that there exists a subset $\mathcal{B} \subset \mathbb{E}(K)$ such that

$$
Y_{P}=\bigcap_{\beta \in \mathcal{B}} H_{n}(\beta) \cap \varrho_{K / F(X)}^{-1}(P)
$$

The set $\phi_{P}\left(Y_{P}\right)$ is a closed subspace of $H(X)$, and $\phi_{P}\left(Y_{P}\right)^{c}$, the complement of $\phi_{P}\left(Y_{P}\right)$, is an open subset of $X_{1}(K)$. Moreover, $\phi_{P}\left(Y_{P}\right)^{c} \cap H(X)$ is open. By [6, Th. 3 and Theorem, p. 346], K satisfies SAP. Therefore,

$$
\phi_{P}\left(Y_{P}\right)^{c} \cap H(X)=\bigcup_{\alpha \in \mathcal{A}} H(-\alpha)
$$

For every $\alpha \in \mathcal{A}$ one observes that $H(\alpha) \cap H(X)$ and $H(-\alpha) \cap H(X)$ are closed and disjoint subsets of $X_{1}(K)$. By Corollary 2.17, the sets $\lambda(H(\alpha)$ $\cap H(X))$ and $\lambda(H(-\alpha) \cap H(X))$ are disjoint. By the Separation Criterion [7, Prop. 9.13], there exists $\beta \in \bigcap\left\{\dot{A}\left(P^{K}\right): P^{K} \in H(X)\right\}=\mathbb{E}(K)$ such that $H(\alpha) \cap H(X) \subset H(\beta)$ and $H(-\alpha) \cap H(X) \subset H(-\beta)$. It is not difficult to check that $H(-\alpha)=H(-\beta) \cap H(X)$, since $H(-\alpha) \subset H(X)$. Let \mathcal{B} be the set of β 's determined in this way. Then $\phi_{P}\left(Y_{P}\right)=\bigcap\{H(\beta): \beta \in \mathcal{B}\} \cap H(X)$ and $Y_{P}=\bigcap\left\{H_{n}(\beta): \beta \in \mathcal{B}\right\} \cap \varrho_{K / F(X)}^{-1}(P)$.

As we have pointed out, if n is even, then $e X_{n}(K)=\varrho_{K / F(X)}^{-1}\left(P_{n}\right)$, where P_{n} is the unique ordering of exact level n of $F(X)$ associated with P_{0} and P_{1}. We use Theorem 2.15 to get a field M with a bijective correspondence between $e X_{n}(M)$ and Y. Notice that $e X_{n}(M)$ equals $\varrho_{M / F(X)}^{-1}\left(P_{n}\right) \cap X_{n}(M)$, so it is compact. Thus $e X_{n}(M)$ and Y are homeomorphic.

Remark 3.2. Let n be odd and let K be as in the above theorem. Then $e X_{n}(K)=\varrho_{K / F(X)}^{-1}\left(P_{n}\right) \dot{\cup} \varrho_{K / F(X)}^{-1}\left(\widehat{P}_{n}\right)$, where P_{n} and \widehat{P}_{n} are orderings of exact level n as in Example 2.2. If $\beta \in \mathbb{E}(K)$, then $H_{n}(\beta)$ contains an ordering $P_{n}^{K} \in \varrho_{K / F(X)}^{-1}\left(P_{n}\right)$ iff $H_{n}(\beta)$ contains an ordering $\widehat{P}_{n}^{K} \in \varrho_{K / F(X)}^{-1}\left(\widehat{P}_{n}\right)$
such that P_{n}^{K} and \widehat{P}_{n}^{K} are associated. Let Y be any closed subspace of the Cantor cube $D_{\mathfrak{m}}$. In the proof of Theorem 3.1 we have shown that there exists a subset $\mathcal{B} \subset \mathbb{E}(K)$ such that Y is homeomorphic to $\bigcap\left\{H_{n}(\beta): \beta \in \mathcal{B}\right\}$ $\cap \varrho_{K / F(X)}^{-1}\left(P_{n}\right)$ and to $\bigcap\left\{H_{n}(\beta): \beta \in \mathcal{B}\right\} \cap \varrho_{K / F(X)}^{-1}\left(\widehat{P}_{n}\right)$. Then $Y \dot{\cup} Y$ is homeomorphic to $\bigcap\left\{H_{n}(\beta): \beta \in \mathcal{B}\right\} \cap e X_{n}(K)$. Let M be as in Theorem 2.15. Then $e X_{n}(M)$ equals $\left(\varrho_{M / F(X)}^{-1}\left(P_{n}\right) \dot{\cup} \varrho_{M / F(X)}^{-1}\left(\widehat{P}_{n}\right)\right) \cap X_{n}(M)$, so it is compact. Therefore $e X_{n}(M)$ is homeomorphic to $Y \dot{\cup} Y \cong D(2) \times Y$, where $D(2)$ is the two-point discrete space.
4. Boolean space as a space of orderings of odd exact level. In this section we prove Theorem 1.1 for odd n. The proof is based on the result of Craven in [5]. Let F be a real closed field of cardinality \mathfrak{m} and let

$$
K:=F(X)(\{\sqrt{X-a}: a \in \dot{F}\})
$$

By [8, Th. 12], the space $e X_{n}(K)$ is homeomorphic to the Cantor cube $D_{\mathfrak{m}}$ for any odd n. In particular, $X_{1}(K)$ is homeomorphic to $D_{\mathfrak{m}}$. Moreover, in the proof of that theorem we have seen that $X_{1}(K)=\varrho_{K / F(X)}^{-1}\left(P_{0}\right)$ and $e X_{n}(K)=\varrho_{K / F(X)}^{-1}\left(\widehat{P}_{n}\right)$, where P_{0}, \widehat{P}_{n} are the orderings of $F(X)$ from Example 2.2. Let Y be any closed subset of $X_{1}(K)$. Since K satisfies SAP, the space Y^{c} is a union of sets of the Harrison subbasis of $X_{1}(K)$. Write

$$
Y^{c}=\bigcup_{\alpha \in \mathcal{A}} H(-\alpha)
$$

As shown by Craven [5, Prop. 2, p. 227], the space $X_{1}(M)$ is homeomorphic to Y for

$$
M:=K(\{\sqrt[2 s]{\alpha}: \alpha \in \mathcal{A}, s=1,2, \ldots\})
$$

We shall show that the spaces $e X_{n}(M)$ and $X_{1}(M)$ are homeomorphic.
Theorem 4.1. Let n be odd. Every Boolean space Y is homeomorphic to the space of orderings of exact level n for some formally real field M.

Proof. Let F, K, M be the fields defined above. Let \mathcal{R} be the set of pairs (L, \mathcal{B}), where $\mathcal{B} \subset \mathcal{A}$, and let

$$
L:=K(\{\sqrt[2 s]{\alpha}: \alpha \in \mathcal{B}, s=1,2, \ldots\})
$$

be a subfield of M such that
(1) $P^{L} \in e X_{n}(L) \Rightarrow P^{L} \cap K \in e X_{n}(K)$,
(2) the $\operatorname{map} \varphi_{L}: e X_{n}(L) \rightarrow X_{1}(L), \varphi_{L}\left(P^{L}\right)=\left(P^{L}\right)_{0}$, is a bijection.

The set \mathcal{R} is nonempty, since $(K, \emptyset) \in \mathcal{R}$, and it is partially ordered by inclusion on the subsets of \mathcal{A}. Notice that if $\left(L_{1}, \mathcal{B}_{1}\right)$ and $\left(L_{2}, \mathcal{B}_{2}\right)$ are in \mathcal{R}
with $\mathcal{B}_{1} \subset \mathcal{B}_{2}$, then the following diagram commutes:

Let $\left\{\left(L_{\xi}, \mathcal{B}_{\xi}\right)\right\}$ be a simply ordered subset of \mathcal{R} and set $L=\bigcup L_{\xi}, \mathcal{B}=\bigcup \mathcal{B}_{\xi}$. Then $L:=K(\{\sqrt[2]{\alpha} / \alpha \in \mathcal{B}, s=1,2, \ldots\})$. Let $P^{L} \in e X_{n}(L)$ and let χ^{L} be any signature of P^{L}. There exists $\omega \in L$ such that $\chi^{L}(\omega)=\epsilon_{2 n}$, a primitive $2 n$th root of unity. But $\omega \in L_{\xi}$ for some ξ, hence $\left.\chi^{L}\right|_{L_{\xi}} \in$ $\operatorname{eSgn}_{n}\left(L_{\xi}\right)$. Therefore $\operatorname{ker}\left(\left.\chi^{L}\right|_{L_{\xi}}\right)=P^{L} \cap L_{\xi} \in e X_{n}\left(L_{\xi}\right)$ and $P^{L} \cap K \in$ $e X_{n}(K)$. Thus (L, \mathcal{B}) satisfies condition (1). The map φ_{L} is injective since $\varphi_{L_{\xi}}$ is. If P_{0}^{L} is a fixed order of L then $P^{L}=\bigcup \varphi_{L_{\xi}}^{-1}\left(P_{0}^{L} \cap L_{\xi}\right)$ is an ordering of exact level n contained in P_{0}^{L}, hence (L, \mathcal{B}) satisfies (2). Thus $(L, \mathcal{B}) \in \mathcal{R}$.

By Zorn's lemma, \mathcal{R} has a maximal element $\left(L_{0}, \mathcal{B}_{0}\right)$. Suppose $L_{0} \neq M$. Then there exists $\alpha_{0} \in \mathcal{A} \backslash \mathcal{B}_{0}$. By Lemma 2.13 and Remark 2.14, the field

$$
L_{0}\left(\left\{\sqrt[2 s]{\alpha_{0}}: s=1,2, \ldots\right\}\right)
$$

satisfies conditions $(1),(2)$, so

$$
\left(L_{0}\left(\left\{\sqrt[2 s]{\alpha_{0}}: s=1,2, \ldots\right\}\right), \mathcal{B}_{0} \cup\left\{\alpha_{0}\right\}\right) \in \mathcal{R}
$$

contradicting the maximality of $\left(L_{0}, \mathcal{B}_{0}\right)$. Therefore $L_{0}=M$.
It suffices to show that the bijection φ_{M} is a homeomorphism. As pointed out above, $e X_{n}(K)=\varrho_{K / F(X)}^{-1}\left(\widehat{P}_{n}\right)$. Therefore $e X_{n}(M)$ equals $\varrho_{M / F(X)}^{-1}\left(\widehat{P}_{n}\right)$ $\cap X_{n}(M)$ and is compact. By Proposition 2.10, the map φ_{M} is continuous. A continuous bijection of a compact space onto a Hausdorff space is a homeomorphism.
5. The space of orderings of exact level n of $\mathbb{R}(X)$. All total orders of $\mathbb{R}(X)$ were described in [9, Example 1.1.4]. They are as follows:

$$
P=\left\{\frac{f}{g} \in \mathbb{R}(X): \frac{a_{s}}{b_{t}} \in \dot{\mathbb{R}}^{2}\right\}, \quad Q=\left\{\frac{f}{g} \in \mathbb{R}(X):(-1)^{t-s} \frac{a_{s}}{b_{t}} \in \dot{\mathbb{R}}^{2}\right\}
$$

where a_{s}, b_{t} are the leading coefficients of the polynomials f and g, respectively, and for any $a \in \mathbb{R}$,

$$
\begin{aligned}
& P^{a}=\left\{(X-a)^{k} \frac{f}{g} \in \mathbb{R}(X): \frac{f(a)}{g(a)} \in \dot{\mathbb{R}}^{2}\right\} \\
& Q^{a}=\left\{(X-a)^{k} \frac{f}{g} \in \mathbb{R}(X):(-1)^{k} \frac{f(a)}{g(a)} \in \dot{\mathbb{R}}^{2}\right\}
\end{aligned}
$$

where $f(a) \neq 0$ and $g(a) \neq 0$. The orderings P and Q are associated, as also are P^{a} and Q^{a} for any $a \in \mathbb{R}$.

Let n be even. Then

$$
\begin{aligned}
P_{n}=\left\{\frac{f}{g}:\left(\frac{a_{s}}{b_{t}} \in \dot{\mathbb{R}}^{2} \wedge t-s \equiv\right.\right. & 0(\bmod 2 n)) \\
& \left.\vee\left(\frac{a_{s}}{b_{t}} \in-\dot{\mathbb{R}}^{2} \wedge t-s \equiv n(\bmod 2 n)\right)\right\}
\end{aligned}
$$

is the unique ordering of $\mathbb{R}(X)$ of exact level n associated with P and Q, and

$$
\begin{aligned}
P_{n}^{a}=\left\{(X-a)^{k} \frac{f}{g}:\left(\frac{f(a)}{g(a)} \in \dot{\mathbb{R}}^{2}\right.\right. & \wedge k \equiv 0(\bmod 2 n)) \\
& \left.\vee\left(\frac{f(a)}{g(a)} \in-\dot{\mathbb{R}}^{2} \wedge k \equiv n(\bmod 2 n)\right)\right\}
\end{aligned}
$$

is the unique ordering of $\mathbb{R}(X)$ of exact level n associated with P^{a} and Q^{a}. Let n be odd. Then

$$
\begin{aligned}
P_{n} & =\left\{\frac{f}{g}: \frac{a_{s}}{b_{t}} \in \dot{\mathbb{R}}^{2} \wedge t-s \equiv 0(\bmod n)\right\} \\
Q_{n} & \left.=\left\{\frac{f}{g}:(-1)^{t-s} \frac{a_{s}}{b_{t}} \in \dot{\mathbb{R}}^{2} \wedge t-s \equiv 0(\bmod n)\right)\right\}
\end{aligned}
$$

are the unique orderings of $\mathbb{R}(X)$ of exact level n associated with P and Q, and

$$
\begin{aligned}
P_{n}^{a} & =\left\{(X-a)^{k} \frac{f}{g}: \frac{f(a)}{g(a)} \in \dot{\mathbb{R}}^{2} \wedge k \equiv 0(\bmod n)\right\} \\
Q_{n}^{a} & =\left\{(X-a)^{k} \frac{f}{g}:(-1)^{k} \frac{f(a)}{g(a)} \in \dot{\mathbb{R}}^{2} \wedge k \equiv 0(\bmod n)\right\}
\end{aligned}
$$

are the unique orderings of $\mathbb{R}(X)$ of exact level n associated with P^{a} and Q^{a}. It is readily verified that for n even we have

$$
\left\{P_{n}\right\}=\bigcap\left\{H_{n}^{c}\left(X^{2 d}\right): d \mid n, d<n\right\}
$$

and for $a \in \mathbb{R}$ we have

$$
\left\{P_{n}^{a}\right\}=H_{n}\left(X^{n}\right) \cap \bigcap\left\{H_{n}^{c}\left((X-a)^{2 d}\right): d \mid n, d<n\right\}
$$

Thus all one-point sets are open and the topology induced on $e X_{n}(\mathbb{R}(X))$ from $X_{n}(\mathbb{R}(X))$ is discrete.

Similarly, one checks that if $n>1$ is odd, then

$$
\begin{gathered}
\left\{P_{n}\right\}=H_{n}\left(X^{n}\right) \cap \bigcap\left\{H_{n}^{c}\left(X^{2 d}\right): d \mid n, d<n\right\} \\
\left\{Q_{n}\right\}=H_{n}\left(-X^{n}\right) \cap \bigcap\left\{H_{n}^{c}\left(X^{2 d}\right): d \mid n, d<n\right\}
\end{gathered}
$$

and for $a \in \mathbb{R}$,

$$
\begin{aligned}
& \left\{P_{n}^{a}\right\}=H_{n}\left(X^{2}\right) \cap H_{n}\left((X-a)^{n}\right) \cap \bigcap\left\{H_{n}^{c}\left((X-a)^{2 d}\right): d \mid n, d<n\right\} \\
& \left\{Q_{n}^{a}\right\}=H_{n}\left(X^{2}\right) \cap H_{n}\left(-(X-a)^{n}\right) \cap \bigcap\left\{H_{n}^{c}\left((X-a)^{2 d}\right): d \mid n, d<n\right\},
\end{aligned}
$$

which proves that the topological space $e X_{n}(\mathbb{R}(X))$ is discrete. Since it is infinite, it cannot be compact.

References

[1] E. Becker, The real holomorphy ring and sums of $2 n$-th powers, in: Lecture Notes Math. 959, Springer, Berlin, 1982, 139-181.
[2] E. Becker, J. Harman and A. Rosenberg, Signatures of fields and extension theory, J. Reine Angew. Math. 330 (1982), 53-75.
[3] E. Becker and A. Rosenberg, Reduced forms and reduced Witt rings of higher level, J. Algebra 92 (1985), 477-503.
[4] R. Berr, Sums of mixed powers in fields and orderings of prescribed level, Math. Z. 210 (1992), 513-528.
[5] T. C. Craven, The Boolean space of orderings of the field, Trans. Amer. Math. Soc. 209 (1975), 225-235.
[6] -, The topological space of orderings of rational function field, Duke Math. J. 41 (1974), 339-347.
[7] T. Y. Lam, Orderings, Valuations and Quadratic Forms, CBMS Reg. Conf. Ser. Math. 52, Amer. Math. Soc., 1983.
[8] K. Osiak, A Cantor cube as a space of higher level orderings, Tatra Mt. Math. Publ. 32 (2005), 71-84.
[9] A. Prestel and Ch. N. Delzell, Positive Polynomials, Springer Monogr. Math., Springer, Berlin, 2001.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice, Poland
E-mail: kosiak@ux2.math.us.edu.pl

Received 23 March 2006; in revised form 10 September 2007

[^0]: 2000 Mathematics Subject Classification: Primary 12D15; Secondary $13 J 30$.
 Key words and phrases: ordering of higher level, signature.
 This paper represents a portion of the author's Ph.D. thesis written at Silesian University.

