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Abstract. We answer several questions of V. Tkachuk [Fund. Math. 186 (2005)] by
showing that

(1) there is a ZFC example of a first countable, 0-dimensional Hausdorff space with
no point-countable π-base (in fact, the minimum order of a π-base of the space
can be made arbitrarily large);

(2) if there is a κ-Suslin line then there is a first countable GO-space of cardinality
κ

+ in which the order of any π-base is at least κ;
(3) it is consistent to have a first countable, hereditarily Lindelöf regular space having

uncountable π-weight and ω1 as a caliber (of course, such a space cannot have a
point-countable π-base).

1. Introduction. V. Tkachuk in [9] has recently proved under CH that
any first countable Hausdorff space that is Lindelöf or CCC has a point-
countable π-base. (Actually, in [9] all spaces are assumed to be Tikhonov,
but the proof only needs Hausdorff.) Tkachuk’s motivation was to extend (at
least partially) Shapirovskĭı’s celebrated ZFC result saying that any count-
ably tight compactum has a point-countable π-base, from compact spaces
to Lindelöf ones. So it was natural to ask if his use of CH was necessary.
Also, 27 years after Shapirovskĭı’s result was published, Tkachuk could not
come up with even a consistent example of a first countable space without
a point-countable π-base.

Our aim here is to remedy this situation and provide ZFC (and several
consistent) examples of first countable (Tikhonov) spaces without point-
countable π-bases, as well as examples which show that Tkachuk’s CH results
cannot be proved in ZFC alone. In this manner we succeeded in answering
seven of the twelve questions that were listed at the end of [9].
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In what follows, we shall use the notation and terminology of [4]. In par-
ticular, πsw(X) denotes the π-separating weight of X, that is, the minimum
order of a π-base of the space X (see p. 74 of [4]). Note that πsw(X) ≤ ω
is then equivalent to the statement: X has a point-countable π-base.

2. ZFC examples. The key to Tkachuk’s above mentioned CH results
in [9] was his Theorem 3.1 which says that if X has countable tightness
and π-character, and moreover d(X) ≤ ω1, then πsw(X) ≤ ω. In his list
of problems (Problem 4.11), Tkachuk asked if the assumption of countable
tightness could be omitted here. It is immediate from our next result that
this question has an affirmative answer.

Theorem 1. Let X be any topological space with d(X) ≤ πχ(X)+. Then
πsw(X) ≤ πχ(X).

Proof. Let us set πχ(X) = κ. If d(X) ≤ κ then we even have π(X) = κ.
So we may assume d(X) = κ+ and, as is well-known, we may then fix a
dense set D = {xα : α < κ+} that is left-separated in this well-ordering.
This means that for every α < κ+ there is a neighbourhood Uα of xα with

{xβ : β < α} ∩ Uα = ∅.

Let us now fix a local π-base Bα of the point xα such that |Bα| ≤ κ and
B ⊂ Uα whenever B ∈ Bα. Then B =

⋃

{Bα : α < κ+} is a π-base of X such
that for every xβ ∈ D we have

ord(xβ,B) = |{B ∈ B : xβ ∈ B}| ≤ κ.

We claim that we then have

ord(B) = sup{ord(x,B) : x ∈ X} ≤ κ

as well. Assume, on the contrary, that ord(x,B) = κ+ for some x ∈ X. Since
πχ(x, X) ≤ κ, this implies that there are κ+ members of B (containing x)
that include a fixed non-empty open set V . This, however, is impossible
because D ∩ V 6= ∅.

We may now turn to our first aim, which is to produce, in ZFC, first
countable spaces without point-countable π-bases.

Theorem 2. There is a first countable, 0-dimensional Hausdorff (hence
Tikhonov) space X with πsw(X) ≥ ℵω.

Proof. The underlying set of our space is X =
∏

{ωn : n < ω}. For
f, g ∈ X we write f ≤ g to denote that f(n) ≤ g(n) for all n < ω. The
topology τ that we shall consider on X will be generated by all sets of the
form Un(f) (with f ∈ X and n < ω), where

Un(f) = {g ∈ X : f ≤ g and f↾n = g↾n}.
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Note that if g ∈ Un(f) then Un(g) ⊂ Un(f), and if g /∈ Un(f) then there is
k < ω such that Uk(g)∩Un(f) = ∅. It follows that, for any f ∈ X, the family
{Un(f) : n < ω} forms a clopen neighbourhood base of f with respect to
the topology τ , and consequently the space 〈X, τ〉 is indeed first countable,
0-dimensional, and Hausdorff.

It is also easy to see from the definitions that if {Unα(fα) : α < κ} is a
π-base of τ then {fα : α < κ} must be cofinal in the partial order 〈X,≤〉.
But it is well-known that the cofinality of 〈X,≤〉 is greater than ℵω, so
π(X) > ℵω. (Actually, it is easy to see that π(X) = cf(〈X,≤〉) but we shall
not need this.)

Next we claim that, for any k < ω, the pair (ℵω+1,ℵk) is a pair caliber
of the space X, i.e. among any ℵω+1 open sets one can find ℵk whose in-
tersection is non-empty. Without any loss of generality, it suffices to check
this for a family of basic open sets of the form {Un(f) : f ∈ F} where
F ∈ [X]ℵω+1 and n > k is fixed. We may also assume that f↾n = σ for a
fixed σ ∈

∏

i<n ωi whenever f ∈ F . Now let G ⊂ F with |G| = ℵk. Then
there is g ∈ X with g↾n = σ and f(i) < g(i) for all i ≥ n and f ∈ G. But
then we have g ∈

⋂

{Un(f) : f ∈ G}.

Putting together the previous two paragraphs we conclude that the order
of any π-base of 〈X, τ〉 must be at least ℵω, that is, πsw(X) ≥ ℵω.

It is clear that if we replace in the above proof the sequence 〈ωn : n < ω〉
with any other strictly increasing ω-sequence of regular cardinals, say 〈κn :
n < ω〉, then we obtain a first countable, 0-dimensional space in which the
order of any π-base is at least

∑

n<ω κn.

The referee has pointed out that the method of constructing such spaces
was published by Todorčević in [10, Theorem 0.5] (of course, the fact that
they do not have a point-countable π-base is not mentioned there).

The cardinality of our example is ℵℵ0
ω , which is much larger than the

optimal value ℵ2 permitted by Theorem 1. So it is natural to raise the
question if we could find other examples of smaller cardinality. It turns
out that we can do slightly better by choosing an appropriate subspace
Y of the space X from Theorem 2. First, however, we need to fix some
notation. For f, g ∈ X =

∏

{ωn : n < ω} we write f <∗ g to denote that
|{n < ω : f(n) ≥ g(n)}| is finite, i.e. f is below g modulo finite. Similarly,
we write f =∗ g to denote that |{n < ω : f(n) 6= g(n)}| is finite. Finally, it
is well-known that there is in X a transfinite sequence of order type ωω+1

that is increasing with respect to <∗.

Theorem 3. Let {fα : α < ωω+1} ⊂ X be an increasing sequence with
respect to <∗ and set

Y = {f ∈ X : ∃α < ωω+1 with f =∗ fα}.
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Then the subspace Y of X, with the subspace topology inherited from τ , also
satisfies πsw(Y ) ≥ ℵω.

Proof. The proof is very similar to that of Theorem 2. First we note
that, trivially, we again have π(Y ) > ℵω. Next, (ℵω+1,ℵk) is a pair caliber
of Y for each k < ω. To see this, we again consider a family {Un(f) : f ∈ F}
where F ∈ [Y ]ℵω+1 and n > k > 0, and also f↾n = σ for a fixed σ ∈

∏

i<n ωi

whenever f ∈ F . Let us choose any subset G ⊂ F with |G| = ℵk. Then
there is an ordinal α < ωω+1 such that g <∗ fα for all g ∈ G. We may find
an integer m ≥ n such that the set

G∗ = {g ∈ G : ∀i ≥ m (g(i) < fα(i))}

also has cardinality ℵk.
Note that if n ≤ j < m then {g(j) : g ∈ G∗} is bounded in ωj , hence we

may find a function f ∈ Y such that f↾n = σ, if n ≤ j < m then g(j) < f(j)
for all g ∈ G∗, and f(i) = fα(i) whenever m ≤ i < ω. Clearly, we then have
f ∈

⋂

{Un(g) : g ∈ G∗} ∩ Y .

We have been unable to produce a ZFC example of a first countable
space without a point-countable π-base of cardinality less than ℵω+1. This
leads us to the following intriguing open question.

Problem 4. Is there, in ZFC , a first countable (Tikhonov) space of
cardinality less than ℵω that has no point-countable π-base?

Actually, at present we do not even have such an example of cardinality
ℵω. We conjecture, however, that having such an example is equivalent to
having one of size < ℵω. In fact, we can confirm this conjecture under the
assumption 2ℵ1 < ℵω.

Theorem 5. Assume that 2ℵ1 < ℵω and X is a first countable space
of cardinality ℵω. If every subspace of X of cardinality < ℵω has a point-
countable π-base then so does X.

Proof. Let us start by giving a (very natural) definition. A family B of
non-empty open sets in X is said to be an outer π-base of a subspace Y ⊂ X
if for every open set U with U ∩ Y 6= ∅ there is a member B ∈ B such
that B ⊂ U . We claim that, under the assumptions of our theorem, every
subspace of X of cardinality < ℵω has a point-countable outer π-base. Thus
if X =

⋃

n<ω Yn where |Yn| < ℵω for all n < ω and Bn is a point-countable
outer π-base of Yn in X then

⋃

n<ω Bn is a point-countable π-base of X.
To prove the above claim let us consider an ω1-closed elementary sub-

model M of a “universe” H(θ) with |M | < ℵω. (As usual, here θ is a large
enough regular cardinal, H(θ) is the collection of all sets of hereditary car-
dinality < θ, and for M to be ω1-closed means that [M ]≤ω1 ⊂ M .) The
regular cardinal θ is chosen so large that H(θ) (and also M) contains X and
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everything else that is relevant, e.g. a map V that assigns to every point
x ∈ X a countable open neighbourhood base Vx. Now, 2ℵ1 < ℵω implies
that for every Y ∈ [X]<ℵω there is such an elementary submodel M with
Y ⊂M . Consequently, our claim will be proven if we show that X ∩M has
a point-countable outer π-base in X whenever M is as above.

To see this, note first that for every x ∈ X ∩M we have Vx ∈ M and
hence Vx ⊂M as well. Consequently, VM =

⋃

{Vx : x ∈ X ∩M} ⊂M is an
outer base of X ∩M in X, hence we may choose a subfamily B ⊂ VM such
that B↾M = {B ∩M : B ∈ B} is a point-countable π-base of the subspace
X ∩M .

It suffices to show now that B is a point-countable outer π-base of X∩M
in X. Indeed, B is point-countable, for if U ∈ [B]ω1 then U ∈M because M is
ω1-closed, and thus

⋂

U 6= ∅ would imply
⋂

U∩M 6= ∅, contradicting the fact
that B↾M is point-countable. (Here we used the fact that, by elementarity,
the correspondence B 7→ B ∩M is one-to-one on B ⊂ M .) Finally, B is an
outer π-base of X ∩M in X, because if U is open with x ∈ U ∩M 6= ∅ then
there is V ∈ Vx ⊂ M with V ⊂ U , hence if B ∈ B with B ∩M ⊂ V ∈ M
then we also have B ⊂ V ⊂ U .

3. Examples from higher Suslin lines. We start this section by
giving a theorem that, quite naturally, will turn out to be very useful in
finding (first countable) spaces without point-countable π-bases.

Theorem 6. Assume that X is a topological space which has a π-base
B such that ord(B)+ < d(X). Then X has a discrete subspace D with |D| ≥
d(X).

Proof. Let us first choose a point xB ∈ B from each B ∈ B. Then the
set S = {xB : B ∈ B} is dense in X, hence we have

|S| ≥ d(X) > ord(B)+.

We now define a set mapping F on S by setting, for any x ∈ S,

F (x) = {xB ∈ S : x ∈ B} ∈ [S]≤ord(B).

By Hajnal’s set mapping theorem (see [2]) there is then a free set D ⊂ S
for the set mapping F with |D| = |S|. This means that for every x ∈ D we
have D ∩ F (x) ⊂ {x}. But every member of D is of the form xB for some
B ∈ B, and we claim that for this point we have B ∩ D = {xB}. Indeed,
xB ∈ B ∩D is obvious, and if x ∈ D is different from xB then xB /∈ F (x)
implies x /∈ B. Consequently, D is as required.

The referee has pointed out that Theorem 6 is an easy consequence of the
following result of Shapirovskĭı ([7, Lemma 3.1], see also [4, 3.26]): If B is any
family of non-empty open sets in a space X with ord(B) ≤ κ then there are
discrete subspaces {Dα : α < κ+} of X such that

⋃

{Dα : α < κ+} ∩B 6= ∅



144 I. Juhász et al.

for any B ∈ B. Since our proof of Theorem 6 is quite different and very
short, for the reader’s convenience we decided to keep it.

It is an immediate consequence of Theorem 6 that a space X satisfying
s(X) < d(X) ≥ ω2 cannot have a point-countable π-base. Unfortunately, we
do not know if there is in ZFC a first countable Tikhonov space like that.
(Recall that solving Tkachuk’s problems from [9] requires Tikhonov exam-
ples.) If, however, we are satisfied with Hausdorff examples then we are much
better off. In fact, it was shown in [3] that there is a natural left-separated
refinement σ of the euclidean topology τ on the real line R that is first
countable and hereditarily Lindelöf. Consequently, by Theorem 6, a sub-
space of 〈R, σ〉 which is left-separated in order-type ω2, and thus of density
ω2, has no point-countable π-base. This shows that, at least for Hausdorff
spaces, Tkachuk’s CH results mentioned in the introduction simply fail to
hold without CH, for 〈R, σ〉 is hereditarily Lindelöf. Actually, it is very easy
to show that something stronger than CCC can be established for such a
subspace, namely that ω1 is a caliber of it. For Hausdorff spaces, this settles
one more question of Tkachuk from [9]. In the next section we shall produce
(consistent) Tikhonov examples with these properties but that will require
more work.

Next we shall consider higher Suslin lines; these are ordered spaces whose
spread (equal in this case to cellularity) is less than their density. More
precisely, we shall consider first countable variations of them that retain
this property. For different purposes, this construction was already used in
Theorem 1.1 of [5], although there CH was additionally assumed.

Let κ be an infinite cardinal. We shall call a continuous linear order
〈L, <〉, equipped with the order topology generated by <, a κ-Suslin line if
there are no more than κ disjoint open intervals in L (i.e. c(L) ≤ κ), although
the density d(L) of L is larger than κ. (It is known that the existence of a
κ-Suslin line is equivalent to the existence of a κ-Suslin tree, but this will be
irrelevant for us.) Thus, an ordinary Suslin line is the same as an ω-Suslin
line and by a higher Suslin line we mean a κ-Suslin line where κ > ω.

The main result of this section is the following theorem, which in par-
ticular yields a consistent example of a first countable GO-space without
a point-countable π-base of the minimum possible cardinality ω2. (Recall
that GO-spaces, or generalized ordered spaces, are the subspaces of linearly
ordered spaces.)

Theorem 7. If there is a κ-Suslin line 〈L, <〉 then there is a first count-
able GO-space X with |X| = κ+ and πsw(X) = κ.

Proof. Let Z be the set of all those points x ∈ L that have left charac-
ter ω, that is, the open half line (←, x) has cofinality ω with respect to <.
Since 〈L, <〉 is continuous, Z is dense in L. It follows that d(Z) = d(L) = κ+
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because d(L) ≤ c(L)+ for any linearly ordered space L (see e.g. [1]). Now
let X be any dense subspace of Z (and hence of L) with |X| = κ+.

We consider X with the left Sorgenfrey topology σ, i.e. for any x ∈ X
the half-open intervals (y, x] form a σ-local base. Then σ is finer than the
order topology on X, hence the density of 〈X, σ〉 must be larger than κ. It
is clear from the definition that σ is a first countable topology.

Also, 〈X, σ〉 is a GO-space because it is homeomorphic to the subspace
topology on X × {0} inherited from the order topology on L × 2 taken
with the lexicographic order. Finally, we have c(X, σ) = c(L); moreover,
s(X, σ) = c(X, σ) is known to hold for GO-spaces (see 2.23 of [4]). Con-
sequently, s(X) ≤ κ < d(X) and so Theorem 6 implies πsw(X) ≥ κ. By
Theorem 1, then πsw(X) = κ.

In particular, the existence of an ω1-Suslin line implies the existence of a
first countable GO-space of cardinality ω2 without a point-countable π-base.

Finally, we mention here the curious fact that it is an outstanding open
question of set theory whether one can find a model of ZFC that does not
contain any higher Suslin line. Consequently, there is a chance that Theo-
rem 7 yields a ZFC example of a first countable GO-space with no point-
countable π-base.

4. Examples from subfamilies of P(ω). In this section we are going
to introduce a (quite simple but apparently new) way of constructing first
countable, 0-dimensional Hausdorff topologies on subfamilies of P(ω), the
power set of ω. Then we shall use some of the spaces obtained in this manner
to present examples that demonstrate the necessity of the use of CH in
Tkachuk’s results mentioned in the introduction.

We start by fixing some notation and terminology. We shall use U to
denote the family of all co-finite subsets of ω. For a given family I ⊂ P(ω)
and for I ∈ I and U ∈ U we put

[I, U)I = {J ∈ I : I ⊂ J ⊂ U}.

If I = P(ω) then we shall omit the subscript.
Finally, we say that the family I ⊂ P(ω) is stable if I ∈ I and I =∗ J

for J ⊂ ω imply J ∈ I as well. (Of course, here I =∗ J means that I and J
are equal mod finite, i.e. their symmetric difference I △ J is finite.)

Definition 8. Let us fix a family I ⊂ P(ω). We shall denote by τI the
topology on I generated by all sets of the form [I, U)I , where I ∈ I and
U ∈ U , and by XI the space 〈I, τI〉.

Of course, XI is identical with the appropriate subspace of the maximal
such space XP(ω). A few basic (pleasant) properties of the spaces XI are
given in the following proposition.
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Proposition 9. The spaces XI are first countable, 0-dimensional and
Hausdorff.

Proof. It suffices to show this for I = P(ω) because all three properties
are inherited by subspaces.

Observe first that if J ∈ [I, U) ∩ [I ′, U ′) then

J ∈ [J, U ∩ U ′) ⊂ [I, U) ∩ [I ′, U ′),

hence the “intervals” [I, U) form an open basis of τP(ω), and {[I, U) : I ⊂
U ∈ U} forms a countable neighbourhood base of the point I of XI .

Next, if J /∈ [I, U) then either J \ U 6= ∅ and then [J, ω) ∩ [I, U) = ∅,
or J ⊂ U and I \ J 6= ∅. In the latter case we may pick n ∈ I \ J and
have J ⊂ U \ {n}, and also [J, U \ {n}) ∩ [I, U) = ∅ because n ∈ I. This
means that all basic open sets [I, U) are also closed, hence XP(ω) is indeed
0-dimensional.

Finally, for every I ∈ P(ω) we have
⋂

{[I, U) : I ⊂ U ∈ U} = {I},

implying that XP(ω) is also Hausdorff.

For any family I ⊂ P(ω) we shall denote by cof(I) the cofinality of the
partial order 〈I,⊂〉. Also, we say that a cardinal number κ is a set caliber
of I if for every subfamily J ∈ [I]κ there are K ∈ [J ]κ and I ∈ I such that
⋃

K ⊂ I or, less formally, among any κ members of I there are κ that have
an upper bound in I. We now connect these concepts concerning I with the
properties of the associated space XI .

Proposition 10. For any subfamily I ⊂ P(ω) we have

(i) d(XI) = cof(I) · ω;
(ii) if I is stable and κ is a cardinal with cf(κ) > ω then κ is a caliber

of the space XI if and only if κ is a set caliber of I.

Proof. (i) and the left-to-right direction of (ii) follow immediately from
the fact that K ⊂ I has an upper bound in I iff

⋂

{[I, ω)I : I ∈ K} 6= ∅.
To see the other direction, assume that κ is a set caliber of I and consider
a family B of κ basic open sets. Since cf(κ) > ω we may assume that
B = {[I, U) : I ∈ J } for J ∈ [I]κ and a fixed U ∈ U . By our assumption
there is a K ∈ [J ]κ which has an upper bound K ∈ I. Then K ∩ U ∈ I, as
I is stable and

K ∩ U ∈
⋂

{

[I, U) : I ∈ K
}

.

After these preparatory propositions we can now present a result that will
yield further nice examples of first countable spaces without point-countable
π-bases.
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Theorem 11. Assume that I ⊂ P(ω) is stable, cof(I) > ω, and ω1 is a
set caliber of I. Then πsw(XI) > ω.

Proof. Since XI is first countable, and by Proposition 10(i), we have

π(XI) = d(XI) = cof(I) > ω.

But, in view of Proposition 10(ii), ω1 is a caliber of XI , and hence no π-base
of XI can be point-countable.

Corollary 12. Assume that there is a mod finite strictly increasing
ω2-sequence in P(ω). Then there is a first countable, 0-dimensional and
Hausdorff space of cardinality ω2 which has ω1 as a caliber. In particular ,
MAω1

implies the existence of such a space.

Proof. Let {Aα : α < ω2} ⊂ P(ω) be a mod finite strictly increasing
ω2-sequence, i.e. |Aα \Aβ| < ω and |Aβ \Aα| = ω whenever α < β < ω2. It
is obvious that the family

I = {I ⊂ ω : ∃α < ω2 with I =∗ Aα}

is stable and satisfies |I| = cof(I) = ω2. Next, we claim that ω1 is a set
caliber of I.

To see this, consider any family J = {Iα : α ∈ a} ⊂ I where a ∈ [ω2]
ω1

and Iα =∗ Aα for all α ∈ a, and pick β < ω2 such that a ⊂ β. Then
|Aα \ Aβ| < ω for all α ∈ a, hence there is a fixed s ∈ [ω]<ω such that

b = {α ∈ a : Aα \Aβ ⊂ s}

is uncountable, while s ∪ Aβ is an upper bound of {Iα : α ∈ b} in I. By
Theorem 11, the space XI is as required.

This result takes care of Problems 4.6 and 4.7 from [9] by showing that
it is consistent to have first countable Tikhonov spaces with caliber ω1 (and
hence also CCC) without any point-countable π-base. With some further
elaboration we shall find examples that, in addition, are also hereditarily
Lindelöf, and thus provide a solution to Problem 4.3 from [9] as well.

Theorem 13. Let {Aα : α < ω2} ⊂ P(ω) be a mod finite strictly in-
creasing ω2-sequence with the additional property that in every uncountable
index set a ∈ [ω2]

ω1 there is a pair {α, β} ∈ [a]2 such that Aα ⊂ Aβ (i.e.
Aα is really a subset of Aβ, not just mod finite). Then, with I defined as in
Corollary 12, the space XI is hereditarily Lindelöf.

Proof. Assume, on the contrary, that XI has an uncountable right-
separated subspace. Without loss of generality this may be taken of the
form {Iα : α ∈ a}, right-separated in the natural well-ordering of its indices,
where a ∈ [ω2]

ω1 and Iα =∗ Aα for all α ∈ a. Moreover, we may assume that
we have a fixed U ∈ U such that [Iα, U)I is a right-separating neighbourhood
of Iα for any α ∈ a.
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Now, there is a fixed finite set s ∈ [ω]<ω such that

b = {α ∈ a : Iα △Aα = s}

is uncountable. By our assumption, there is a pair {α, β} ∈ [b]2 (with
α < β) for which Aα ⊂ Aβ and hence Iα ⊂ Iβ . This, however, would im-
ply Iβ ∈ [Iα, U)I , contradicting the fact that [Iα, U)I is a right-separating
neighbourhood of Iα.

Note that a space as in Theorem 13 is a first countable L-space, hence
unlike the spaces in Corollary 12, it does not exist under MAω1

(see [8]).
Instead, there is a “natural” forcing construction that produces mod finite
strictly increasing ω2-sequences in P(ω) with the additional property re-
quired in Theorem 13.

Theorem 14. There is a CCC forcing that , to any ground model , adds
a mod finite strictly increasing sequence {Aα : α < ω2} ⊂ P(ω) in any un-
countable subsequence of which there are two members with proper inclusion.

Proof. Let P consist of those finite functions p ∈ Fn(ω2×ω, 2) for which
dom(p) = a×n with a ∈ [ω2]

<ω and n < ω. We define p′ ≤ p (i.e. p′ extends
p) as follows: p′ ⊃ p, and p′(α, i) = 1 implies p′(β, i) = 1 whenever α, β ∈ a
with α < β and i ∈ n′ \ n (of course, here dom(p) = a × n and dom(p′) =
a′×n′). It is straightforward to show that 〈P,≤〉 is a CCC notion of forcing.

Let G ⊂ P be generic. Then it follows from standard density arguments
that g = ∪G maps ω2 × ω into 2 and if we set

Aα = {i < ω : g(α, i) = 1}

then {Aα : α < ω2} is mod finite strictly increasing.
To finish the proof, assume that p ∈ P forces that ḣ is an order preserving

injection of ω1 into ω2. It suffices to show that p has an extension q which
forces Aḣ(ξ) ⊂ Aḣ(η) for some ξ < η < ω1.

To see this, choose first for each ξ < ω1 a condition pξ ≤ p and an

ordinal αξ < ω2 such that pξ  ḣ(ξ) = αξ. We may assume without any loss
of generality that for some n < ω we have dom(pξ) = aξ×n and αξ ∈ aξ for
all ξ. Using standard △-system and counting arguments, it is easy to find
then ξ < η < ω1 such that pξ and pη are compatible as functions and for
any i < n we have pξ(αξ, i) = pη(αη, i). But then we have q = pξ ∪ pη ∈ P

and q ≤ p; moreover, it is obvious that q forces Aαξ
⊂ Aαη and hence

Aḣ(ξ) ⊂ Aḣ(η) as well.

From Theorems 13 and 14 we immediately obtain a joint solution to
Problems 4.3 and 4.7 (and hence 4.6) of Tkachuk from [9].

Corollary 15. It is consistent that there exists a first countable, hered-
itarily Lindelöf 0-dimensional space X of size ω2 which has no point-count-
able π-base while ω1 is a caliber of X.
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Let us recall here that the failure of CH is not sufficient to produce a
mod finite strictly increasing ω2-sequence in P(ω), the basic ingredient of
our examples in this section. In fact, Kunen proved (see e.g. [6]) that if
one adds ω2 Cohen reals to a model of CH then no such sequence exists
in the extension. Actually, we have shown the following strengthening of
this: In the same model, if ω1 is a set caliber of a subfamily I of P(ω) then
cof(I) ≤ ω. This implies that we may not use the methods of this section
to find similar examples just assuming the negation of CH. The following
natural problem can thus be raised.

Problem 16. Does 2ω > ω1 imply the existence of a first countable
Lindelöf and/or CCC Tikhonov space having no point-countable π-base?
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