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Abstract. We demonstrate that a second countable space is weakly orderable if and
only if it has a continuous weak selection. This provides a partial positive answer to a
question of van Mill and Wattel.

1. Introduction. For a T1-space X, let F (X) be the set of all nonempty
closed subsets of X. Usually, we endow F (X) with the Vietoris topology τV,
and call it the Vietoris hyperspace of X. Recall that τV is generated by all
collections of the form

〈V 〉 =
{

S ∈ F (X) : S ⊂
⋃

V and S ∩ V 6= ∅ whenever V ∈ V

}

,

where V runs over the finite families of open subsets of X.
In the following, all spaces are assumed to be at least Hausdorff, while

any subset D ⊂ F (X) will carry the relative Vietoris topology τV as a
subspace of the hyperspace (F (X), τV). A map f : D → X is a selection

for D if f(S) ∈ S for every S ∈ D . A selection f : D → X is continuous if
it is continuous with respect to the relative Vietoris topology τV on D .

In this paper, we are especially interested in continuous selections for
D when D is the set F2(X) = {S ∈ F (X) : |S| ≤ 2} of all nonempty at
most 2-point subsets of X. Every selection f : F2(X)→ X defines a natural
order-like relation�f on X [10] by letting x �f y if and only if f({x, y}) = x.
For convenience, we write x ≺f y if x �f y and x 6= y. This relation is
similar to a linear order on X in that it is both total and antisymmetric,
but, unfortunately, it may fail to be transitive. In this connection, one of
the fundamental questions in the theory of continuous selections for at most
2-point subsets is the following.
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Question 1 (van Mill and Wattel, [11]). Let X be a space which has
a continuous selection for F2(X). Does there exist a linear order � on X
such that, for each y ∈ X, the sets {x ∈ X : x � y} and {x ∈ X : y � x}
are both closed?

Recall that a space X is orderable (or linearly orderable) if the topology
of X coincides with the open interval topology on X generated by a linear
ordering on X. Following [11], we say that a space X is weakly orderable if
there exists a coarser orderable topology on X. In this terminology, Ques-
tion 1 asks if a space X is weakly orderable provided it has a continuous
selection for F2(X). In view of that, a selection f : F2(X) → X is often
called a weak selection for X. For a detailed discussion of Question 1, we
refer the interested reader to [7].

The purpose of this paper is to prove the following theorem which pro-
vides a partial positive answer to Question 1 (and to [7, Question 381] as
well), as well as some generalizations of results of [1, 3].

Theorem 1.1. A second countable space X is weakly orderable if and

only if it has a continuous weak selection.

It should be remarked that if X is a second countable totally discon-
nected space, then one can easily construct a continuous injective map of X
into the Cantor set C (see Remarks 5.5 and 5.6). Consequently, every second
countable totally disconnected space is weakly orderable. According to [10,
Lemma 7.5.1], this also implies that, in this case, the collection C (X) of all
nonempty compact subsets of X has a continuous selection. This settles [8,
Question 5] and [7, Question 395].

The proof of Theorem 1.1 in the general case is based on Purisch’s tech-
nique [12] that deals with orderability and suborderability of metrizable
spaces (see Sections 3 and 4). To prepare for this, in Section 2 we provide
several facts about continuous weak selections and connected components.
The proof of Theorem 1.1 will be finally accomplished in Section 5. The
technique developed to achieve that proof also allows us to obtain some fur-
ther natural generalizations of Theorem 1.1 (see Section 5). For instance,
we demonstrate that every separable space X with a continuous weak se-
lection must be weakly orderable provided the set {S ∈ F2(X) : |S| = 2} is
collectionwise Hausdorff in the Vietoris topology (Theorem 5.4).

2. Continuous weak selections and components. A subset E ⊂ X2

is usually called a binary relation on X, or just a relation on X, and we write
xE y instead of (x, y) ∈ E . A relation E ⊂ X2 is called a selection relation

[6] if E is total and antisymmetric. A selection relation is a linear order if
and only if it is transitive.
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Note that �f is a selection relation on X whenever f is a weak selection
for X. The converse is also true. Namely, let E ⊂ X2 be a selection relation,
and for x, y ∈ X define fE ({x, y}) = x if xE y. Then fE is a weak selec-
tion for X. Thus, there is a one-to-one correspondence between the weak
selections for X and the selection relations on X.

For a space X, a selection relation E ⊂ X2 and x ∈ X, define the
following E -open intervals:

(←, x)E = {y ∈ X : y 6= x and yE x},

(x,→)E = {y ∈ X : y 6= x and xE y}.

In the same way, we define the corresponding E -closed intervals:

(←, x]E = {y ∈ X : yE x} and [x,→)E = {y ∈ X : xE y}.

Finally, for x, y ∈ X, we will also use the following composite E -intervals:

(x, y)E = (x,→)E ∩ (←, y)E and [x, y]E = [x,→)E ∩ (←, y]E .

Since E is not necessarily transitive, both (x, y)E and (y, x)E may be non-
empty, and similarly for [x, y]E and [y, x]E .

The following two observations are due to Michael [10] (see also Eilen-
berg [2]).

Proposition 2.1 ([10]). If f is a continuous weak selection for X, then

all �f -open intervals (←, x)�f
and (x,→)�f

, x ∈ X, are open in X. In

particular , all �f -closed intervals (←, x]�f
and [x,→)�f

, x ∈ X, are closed

in X.

Theorem 2.2 ([2, 10]). If C is a connected space and f is a continuous

weak selection for C, then �f is a linear order on C. Also, there exists

exactly one other continuous weak selection for C.

To any selection f : F2(X) → X one can associate another one f⊥ :
F2(X) → X defined by S = {f(S), f⊥(S)}, S ∈ F2(X). Note that if
x, y ∈ X, then x �f⊥ y if and only if y �f x. That is, the �f⊥-relation is
reverse to �f .

In what follows, for convenience, we let Wcs(X) be the set of all contin-
uous weak selections for a space X. It is well-known that f ∈Wcs(X) if and
only if f⊥ ∈ Wcs(X) (see, for instance, [4, Theorem 3.5]). This implies the
following simple observation, which will be found useful.

Proposition 2.3. Let X be a space with Wcs(X) 6= ∅, and let x, y ∈ X.

Then there exist f, g ∈Wcs(X) such that x �f y and y �g x.

For a space X and x ∈ X, we will use C [x] to denote the component of
the point x, and C ∗[x] for the corresponding quasi-component. Recall that
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C [x] =
⋃

{C ⊂ X : x ∈ C and C is connected},

C
∗[x] =

⋂

{C ⊂ X : x ∈ C and C is clopen}.

Theorem 2.4 ([5]). If X has a continuous weak selection, then C [x] =
C ∗[x] for every x ∈ X.

Here are two other properties relating to connected subsets of such
spaces.

Lemma 2.5. If f is a continuous weak selection for X, C is a connected

subset of X, and x, y ∈ C with x ≺f y, then

(a) ∅ 6= (x, y)�f
⊂ C.

(b) [x, y]�f
is a connected subset of X.

Proof. The inclusion (x, y)�f
⊂ C follows by [5, Lemma 3.3]. Suppose

that (x, y)�f
= ∅. Then, by Proposition 2.1, A = (←, y)�f

∩C = (←, x]�f
∩C

is a clopen subset of C such that x ∈ A and y /∈ A, a contradiction, which
demonstrates (a).

To show (b), we follow the proof of Theorem 2.4 in [5]. Suppose that
there exists a clopen (in [x, y]�f

) neighbourhood W ⊂ [x, y]�f
of y such that

[x, y]�f
\W 6= ∅. Choose a point z ∈ [x, y]�f

\W , and set T = W ∩ [z, y]�f
.

Thus, we get a clopen (in [z, y]�f
) neighbourhood T of y, with z /∈ T . Then

the set G = T ∪ [y,→)�f
is clopen in X. Indeed, by Proposition 2.1, G is

closed as a union of two closed sets. Since T ⊂ (z,→)�f
, there exists an

open subset E ⊂ (z,→)�f
with E∩ [z, y]�f

= T . Hence, by Proposition 2.1,
G = E ∪ (y,→)�f

is also open in X. However, this is impossible because,
by (a), z ∈ [x, y]�f

\G ⊂ C \G and y ∈ C ∩G.

Proposition 2.6. If f is a continuous weak selection for X, C is a

connected subset of X, and y ∈ X \C, then C ⊂ (←, y)�f
or C ⊂ (y,→)�f

.

Proof. Since y /∈ C, we have

(←, y)�f
∩ C = (←, y]�f

∩ C and (y,→)�f
∩ C = [y,→)�f

∩ C.

Hence, by Proposition 2.1, (←, y)�f
∩C and (y,→)�f

∩C are disjoint clopen
subsets of C. Since C ⊂ X \ {y} = (←, y)�f

∪ (y,→)�f
, the proof is com-

plete.

A point p of a connected space C is called a cut point if C \ {p} is not
connected, and a noncut point otherwise. We let ct(C) be the set of all cut
points of C, and nct(C) be the set of all noncut points.

Corollary 2.7. Let f be a continuous weak selection for X, C be a

connected subset of X, and let p ∈ C. Then:

(a) p ∈ nct(C) if and only if x �f p for every x ∈ C or p �f x for every

x ∈ C.
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(b) p ∈ ct(C) if and only if there are s, t ∈ C with s ≺f p ≺f t.

In particular , |nct(C)| ≤ 2 and ct(C) is open in X.

Proof. First of all, (←, p)�f
∩C is a connected subset of X. Indeed, when-

ever (←, p)�f
∩ C 6= ∅, pick a point c ∈ (←, p)�f

∩ C. Then the statement
follows by Theorem 2.2 and Lemma 2.5 because

(←, p)�f
∩ C =

⋃

{[x, y]�f
: x, y ∈ C and x �f c �f y ≺f p}.

In the same way, (p,→)�f
∩ C is a connected subset of X. On the other

hand, by Proposition 2.6, C \{p} ⊂ (←, p)�f
or C \{p} ⊂ (p,→)�f

provided
C \ {p} is connected. Consequently, C \ {p} is connected if and only if
C \ {p} = (←, p)�f

∩ C or C \ {p} = (p,→)�f
∩ C, which is (a). Since (b)

follows from (a), the proof is complete.

3. Purisch sets. Relying on a construction in [12], to every space X
with Wcs(X) 6= ∅, we are going to associate a totally disconnected subset
Z ⊂ X which preserves the information on the components of X.

Definition 3.1 ([12]). Let X be a space such that |nct(C [x])| ≤ 2 for
every x ∈ X. We shall say that a subset Z ⊂ X is a Purisch set if for every
x ∈ X the following holds:

(a) C [x] ⊂ Z provided C [x] is a singleton.
(b) |C [x] ∩ Z| = 1 provided nct(C [x]) = ∅.
(c) |C [x] ∩ Z| = 2 and nct(C [x]) ⊂ Z otherwise.

Below we summarize some basic properties of Purisch sets. Some of them
are not directly related to the proof of Theorem 1.1, but they show that
Purisch sets are not as arbitrary as it might seem at first.

Proposition 3.2. Let X be a space with Wcs(X) 6= ∅. Then X has at

least one Purisch subset , and any Purisch subset of X is totally disconnected.

Proof. According to Corollary 2.7 and Definition 3.1, X has at least
one Purisch subset. Let Z be any Purisch subset X. On the one hand, the
component of each point of Z is contained in the corresponding component
of that point in X. Consequently, by Definition 3.1, the components (in Z) of
the points of Z must be singletons. On the other hand, Wcs(Z) 6= ∅ because
Wcs(X) 6= ∅. Hence, by Theorem 2.4, Z must be totally disconnected.

Proposition 3.3. Let X be a space with Wcs(X) 6= ∅, and let Z ⊂ X
be a Purisch subset. Then Z is closed in X.

Proof. Fix x ∈ X \ Z. Then, by Definition 3.1, x ∈ ct(C [x]). Since
|C [x] ∩ Z| ≤ 2, by Corollary 2.7, U = ct(C [x]) \ Z is a neighbourhood of x
in X.
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Suppose that Z ⊂ X is a Purisch set. Following [12], for every z ∈ Z we
define a subset nb(z) ⊂ Z by setting nb(z) = C [z]∩Z. The elements of nb(z)
will be called neighbours of z. Clearly, y ∈ nb(z) if and only if nb(y) = nb(z).
Of course, |nb(z)| ≤ 2 for every z ∈ Z.

Definition 3.4. A clopen subset W of a Purisch set Z ⊂ X will be
called order-regular if

(a)
∣

∣{z ∈W : nb(z) \W 6= ∅}
∣

∣ ≤ 1,
(b) W = U ∩ Z for some open U ⊂ X with U ⊂

⋃

{C [z] : z ∈W}.

Let Or(Z) be the set of all order-regular subsets of Z.

Proposition 3.5. Let X be a space with Wcs(X) 6= ∅, Z ⊂ X be a

Purisch set , and let U ⊂ X be clopen. Then U ∩ Z ∈ Or(Z).

Proof. Follows from the fact that C [z] ⊂ U for every z ∈ U .

Proposition 3.6. Let X be a space, f ∈Wcs(X), Z ⊂ X be a Purisch

set , and let x ∈ X \ Z. Then (←, x)�f
∩ Z, (x,→)�f

∩ Z ∈ Or(Z).

Proof. Fix z ∈ (←, x)�f
∩ Z with z /∈ C [x]. Then z ≺f x and, by

Proposition 2.6, nb(z) ⊂ C [z] ⊂ (←, x)�f
. Since the other case is symmetric,

the proof is complete.

Proposition 3.7. Let X be a space with Wcs(X) 6= ∅, Z ⊂ X be a

Purisch set , and let V, W ∈ Or(Z). Then there exists a finite pairwise dis-

joint family U ⊂ Or(Z) such that V ∩W =
⋃

U .

Proof. First of all, let us show that V ∩ W = O ∩ Z for some open
O ⊂ X with O ⊂

⋃

{C [z] : z ∈ V ∩ W}. By hypothesis, there are open
(in X) subsets OV ⊂

⋃

{C [z] : z ∈ V } and OW ⊂
⋃

{C [z] : z ∈ W} such
that V = OV ∩ Z and W = OW ∩ Z. If OV ∩ OW ⊂

⋃

{C [z] : z ∈ V ∩W},
set O = OV ∩OW . If there is a point x ∈ (OV ∩OW )\

⋃

{C [z] : z ∈ V ∩W},
then x ∈ C [zV ] ∩ C [zW ] for some zV ∈ V and zW ∈ W such that zV /∈ W
and zW /∈ V . In particular, zV and zW must be neighbours and, according
to Definition 3.4, there could only be one pair of such neighbours. Conse-
quently,

(

OV ∩OW

)

\
⋃

{C [z] : z ∈ V ∩W} ⊂ C [x] and, in this case, we can

set O =
(

OV ∩OW

)

\ C [x].

Now, suppose V ∩W /∈ Or(Z). Then there are distinct points y, z ∈ V ∩W
such that nb(y) \ V 6= ∅ and nb(z) \W 6= ∅. In this case, y and z cannot
be neighbours. Hence, z /∈ C [y] and, by Theorem 2.4, there is a clopen set
U ⊂ X such that y ∈ U and z /∈ U . Set U = {V ∩W ∩ U, (V ∩W ) \ U}.
To see that this works, fix a point x ∈ V ∩ W with y 6= x 6= z. Then
nb(x) ⊂ V ∩W , while C [x] ⊂ U or C [x] ⊂ X \U . Hence, nb(x) ⊂ V ∩W ∩U
or nb(x) ⊂ (V ∩W ) \ U .
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4. Weak orderability and Purisch sets. We say that a sequence
{Un : n < ω} of covers Un, n < ω, of a space Z is separating for the points

of Z if for any two distinct points y, z ∈ Z there exists an n < ω such that
z /∈

⋃

{U ∈ Un : y ∈ U}.
In this section, we prove a criterion of weak orderability which is actually

inspired by the characterization of orderable and suborderable metrizable
spaces in [12]. To this end, we adopt some of the terminology in [12]. Suppose
that X is a space with Wcs(X) 6= ∅, and Z ⊂ X is a Purisch set. A linear
order ≤ on a pairwise disjoint cover W ⊂ Or(Z) of Z is a W -ordering [12] if
two distinct members of W which contain neighbours have no other member
of W between them with respect to ≤. As usual, if ≤ is a linear order on W ,
we write W < W ′ if W, W ′ ∈ W are distinct and W ≤W ′.

If ≤ is a W -ordering on a pairwise disjoint cover W ⊂ Or(Z) of Z, then
there exists a unique map

f = (g, h) : W → ({Z} × {Z}) ∪ ({Z} × Z) ∪ (Z × {Z}),

called the (W ,≤)-map [12], which is defined in the following way:

(i) if W ∈ W and nb(z) ⊂W for every z ∈W , then f(W ) = (Z, Z),
(ii) if y, y′ ∈ Z are neighbours and W, W ′ ∈ W are such that y ∈ W ,

y′ ∈W ′ and W < W ′, then f(W ) = (Z, y) and f(W ′) = (y′, Z).

Let W ⊂ Or(Z) be a pairwise disjoint cover of Z, ≤W be a W -ordering
on W , and let fW = (gW , hW ) be the corresponding (W ,≤W )-map. Also,
let V ⊂ Or(Z) be another pairwise disjoint cover of Z which is a refinement
of W . Whenever W ∈ W , set V (W ) = {V ∈ V : V ⊂ W}. A V -ordering
≤V on V will be called ≤W -compatible if

(i) V1 <V V2 provided Vi ∈ V (Wi), i = 1, 2, for some W1, W2 ∈ W

with W1 <W W2.
(ii) If gW (W ) 6= Z for some W ∈ W and V ∈ V (W ) contains gW (W ),

then V is the first element of V (W ) with respect to ≤V .
(iii) If hW (W ) 6= Z for some W ∈ W and V ∈ V (W ) contains hW (W ),

then V is the last element of V (W ) with respect to ≤V .

Finally, recall that a subset A ⊂ Z of a linearly ordered set (Z,≤) is
called ≤-convex (or just convex ) if [y, z]≤ ⊂ A for all y, z ∈ A with y ≤ z.

Theorem 4.1. Let X be a space with Wcs(X) 6= ∅, and let Z ⊂ X be a

Purisch set. Suppose that Wn ⊂ Or(Z), n < ω, are pairwise disjoint covers

of Z such that

(a) Wn+1 is a refinement of Wn for every n < ω,
(b) the sequence {Wn : n < ω} is separating for the points of Z.

Then X is weakly orderable.
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Proof. Just as in the proof of [12, Lemma 3.2], using (a), for every n < ω
one can define a Wn-ordering ≤n on Wn such that

(4.1) the Wn+1-ordering ≤n+1 is ≤n-compatible, n < ω.

Also, for every n < ω, let fn = (gn, hn) be the corresponding (Wn,≤n)-map.
Finally, define a relation ≤ on Z by writing y ≤ z if y = z or there exists
an n < ω and members V, W ∈ Wn such that y ∈ V , z ∈ W and V <n W .
According to (4.1), the relation ≤ is well-defined and, in fact, by (a), (b)
and (4.1), it is a linear order on Z.

In what follows, let N (Z) = {nb(z) : z ∈ Z}. Then ν = C [z] ∩ Z for
every ν ∈ N (Z) and z ∈ ν. Observe that

(4.2) ν is ≤-convex for every ν ∈ N (Z).

Indeed, if ν is a singleton, this is obvious. Suppose that y, z ∈ ν and y < z.
If x ∈ Z \ ν, then, by (a) and (b), there exists an n < ω and distinct
U, V, W ∈ Wn such that x ∈ U , y ∈ V and z ∈ W . Since ≤n is a Wn-
ordering, we find that U <n V or W <n U because V <n W . Consequently,
x /∈ [y, z]≤.

Finally, we are going to define a linear order � on X generated by the
≤-order on Z. To this end, by Proposition 2.3, for every ν ∈ N (Z) there
exists a selection fν ∈Wcs(X) such that, whenever y, z ∈ ν,

(4.3) y �fν
z if and only if y ≤ z.

For s, t ∈ X, let ν(s) = C [s] ∩ Z and define s � t if ν = ν(s) = ν(t) and
s �fν

t, or ν(s) 6= ν(t) and y ≤ z for some (every) y ∈ ν(s) and z ∈ ν(t).
In other words, the relation � restricted to the component C [x] of a point
x ∈ X is the selection relation �fν

corresponding to ν = C [x] ∩ Z, while
between distinct components of X it is the linear order ≤ on Z. Since ≤ is a
linear order on Z and, by Theorem 2.2, �fν

, ν ∈ N (Z), is a linear order on
each component of X, (4.2) and (4.3) imply that � is a linear order on X.
So, it only remains to show that X is weakly orderable with respect to this
order. Fix x ∈ X and y ∈ (x,→)�, and let ν = C [y] ∩ Z. We have the
following possibilities:

(WO1) y is a cut point of C [y]. In this case, there are s, t ∈ C [y] such
that x ≺ s ≺fν

y ≺fν
t. Indeed, if x /∈ C [y], then, by the definition of �, we

have x ≺ z for every z ∈ C [y], hence Corollary 2.7 implies the statement. If
x ∈ C [y], then x ≺fν

y, and the existence of s, t follows from Lemma 2.5 and
Corollary 2.7. Thus, in this case, (s, t)�fν

⊂ C [y] by Lemma 2.5; (s, t)�fν
is

open in X by Propositions 2.1; and y ∈ (s, t)�fν
⊂ (x,→)� by the definition

of �.

(WO2) y is a noncut point of C [y] and x ∈ C [y]. By Definition 3.1,
y has a neighbour z in Z, i.e. there exists a point z ∈ ν with z 6= y. By
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(4.3) and Corollary 2.7, this implies that z < y because x ≺fν
y. Now, on

the one hand, there exist n < ω and W (z), W (y) ∈ Wn such that z ∈W (z),
y ∈ W (y) and W (z) <n W (y). On the other hand, by Definition 3.4,
there also exists an open (in X) subset U(y) ⊂

⋃

{C [s] : s ∈ W (y)} with
U(y) ∩ Z = W (y). Then, by Proposition 2.1, O(y) = U(y) ∩ (x,→)�fν

is a
neighbourhood of y in X. We now show that O(y) ⊂ (x,→)�. Fix t ∈ O(y).
If t ∈ C [y], then x ≺ t because x ≺fν

t. If t /∈ C [y], then there exists an
s ∈ C [t] ∩W (y) because U(y) ⊂

⋃

{C [s] : s ∈ W (y)}. In this case, observe
that, by (4.1), gk(W ) = y for every k ≥ n and W ∈ Wk, with y ∈W . Then,
by (a) and (b), there exist m ≥ n, W ∈ Wm and V (y) ∈ Wm+1(W ) such
that y, s ∈W , y ∈ V (y), but s /∈ V (y). According to (4.1) once again, V (y)
is the first element of Wm+1(W ) with respect to ≤m+1 because gm(W ) = y.
Hence, y < s, and therefore, by the definition of �, x ≺ y ≺ t because
t ∈ C [s].

(WO3) y is a noncut point of C [y] and x /∈ C [y]. Fix z ∈ C [x] ∩ Z.
Since x ≺ y, we have z < y. Hence, there exist n < ω and W (z), W (y) ∈ Wn

such that z ∈ W (z), y ∈ W (y) and W (z) <n W (y). Let U(y) be an open
(in X) subset of

⋃

{C [s] : s ∈ W (y)} with U(y) ∩ Z = W (y). On the other
hand, by Theorem 2.4, there exists a clopen subset V of X such that x /∈ V
and C [y] ⊂ V . We now show that O(y) = V ∩U(y) ⊂ (x,→)�. Fix t ∈ O(y).
Then there exists an s ∈W (y) such that t ∈ C [s]. Since t ∈ V , this implies
that C [s] ⊂ V . Hence, by the definition of �, we have x ≺ t because z < s,
x ∈ C [z], t ∈ C [s] and C [z] ∩ C [s] = ∅.

This completes the verification that (x,→)� is open in X. The proof
that (←, x)� is open in X is completely analogous.

5. Separating points in Purisch sets. In this section, we finish the
proof of Theorem 1.1. To prepare for this, we need the following consequence
of Theorem 4.1.

Corollary 5.1. Let X be a space with Wcs(X) 6= ∅, Z ⊂ X be a

Purisch set , and let Un ⊂ Or(Z), n < ω, be pairwise disjoint covers of Z
such that the sequence {Un : n < ω} is separating for the points of Z. Then

X is weakly orderable.

Proof. According to Theorem 4.1, it suffices to show that Z has a se-
quence of pairwise disjoint covers Wn ⊂ Or(Z), n < ω, satisfying (a) and (b)
of that theorem. To this end, set W0 = U0, and proceed by induction. Sup-
pose that Wn ⊂ Or(Z) is a pairwise disjoint cover of Z for some n < ω. Then,
by Proposition 3.7, for any W ∈ Wn and U ∈ Un+1, there exists a finite pair-
wise disjoint family Wn+1(W, U) ⊂ Or(Z) such that W ∩U =

⋃

Wn+1(W, U).
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Finally, set

Wn+1 =
⋃

{Wn+1(W, U) : W ∈ Wn and U ∈ Un+1}.

The sequence {Wn : n < ω} is as required.

In fact, we will mainly rely on the following special case of Corollary 5.1.
In what follows, for a set Z, we let [Z]2 = {S ⊂ Z : |S| = 2}.

Corollary 5.2. Let X be a space with Wcs(X) 6= ∅, Z ⊂ X be a

Purisch set , and let Un ⊂ Or(Z), n < ω, be a sequence of 2-element disjoint

covers of Z such that [Z]2 =
⋃

{〈Un〉 : n < ω}. Then X is weakly orderable.

Proof. Fix n < ω and distinct y, z ∈ Z. Then y and z are in distinct
members of Un if and only if {y, z} ∈ 〈Un〉. Consequently, the hypothesis
that [Z]2 =

⋃

{〈Un〉 : n < ω} implies that the sequence {Un : n < ω} is
separating for the points of Z. Thus, Corollary 5.1 completes the proof.

For a space Y , we will use ℓ(Y ) to denote the Lindelöf number of Y . Note
that, by [10, Lemma 7.5.1], every weakly orderable space has a continuous
weak selection. Hence, Theorem 1.1 is a consequence of the following more
general result.

Theorem 5.3. Let X be a space with Wcs(X) 6= ∅ and ℓ([X]2) ≤ ω.

Then X is weakly orderable.

Proof. Choose a Purisch set Z ⊂ X. According to Corollary 5.2, it suf-
fices to show that there exists a sequence Un ⊂ Or(Z), n < ω, of 2-element
disjoint covers of Z such that [Z]2 =

⋃
{

〈Un〉 : n < ω
}

. To this end, fix
a selection f ∈ Wcs(X) and an α = {y, z} ∈ [Z]2. We can assume that
y ≺f z. If y and z are not neighbours, then C [y] ∩ C [z] = ∅. Hence, by
Theorem 2.4, there exists a clopen subset V of X such that C [y] ⊂ V and
C [z] ⊂ X \ V . Then set Uα = {V ∩ Z, Z \ V }, which is a 2-element disjoint
cover of Z such that α ∈ 〈Uα〉 and, by Proposition 3.5, Uα ⊂ Or(Z). If y
and z are neighbours, then C [y] = C [z] and, by Lemma 2.5, there exists a
point x ∈ (y, z)�f

⊂ C [y]. Now, set Uα = {(←, x)�f
∩ Z, (x,→)�f

∩ Z}.
Then α ∈ 〈Uα〉, and the family Uα is a 2-element disjoint cover of Z be-
cause x /∈ Z, while, by Proposition 3.6, Uα ⊂ Or(Z). Thus, we get an
open cover

{

Uα : α ∈ [Z]2
}

of [Z]2. By Proposition 3.3, Z is a closed
subset of X. Hence, [Z]2 is τV-closed in [X]2, and therefore ℓ([Z]2) ≤ ω.
So, there exists a countable subset {α(n) ∈ [Z]2 : n < ω} ⊂ [Z]2 such that
[Z]2 =

⋃

{〈Uα(n)〉 : n < ω}. Finally, let Un = Uα(n), n < ω, which completes
the proof.

Motivated by Theorem 5.3, we have the following natural question.

Question 2. Let X be a space such that ℓ(X2) ≤ ω and Wcs(X) 6= ∅.
Is then X weakly orderable?
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The answer to Question 2 is “Yes” if ∆(X) = {(x, x) : x ∈ X} is a Gδ-
set in X2. In this case, ℓ(X2 \∆(X)) ≤ ω, which implies that ℓ([X]2) ≤ ω
because the map h : X2 \∆(X)→ [X]2, defined by h(x, y) = {x, y}, x, y ∈
X2 \∆(X), is a continuous surjection.

We finish this paper by demonstrating the following further generaliza-
tion of Theorem 1.1, in particular of [1, Theorem 2.2] as well.

Theorem 5.4. Let X be a separable space such that [X]2 is collection-

wise Hausdorff and Wcs(X) 6= ∅. Then X is weakly orderable.

Proof. Choose a Purisch set Z ⊂ X. Just as in the previous proof, it
suffices to show that there exists a countable family Uα ⊂ Or(Z), α ∈ A ,
of two-element disjoint covers of Z such that [Z]2 =

⋃
{

〈Uα〉 : α ∈ A
}

.
Pick a selection f ∈ Wcs(X), a countable dense subset D ⊂ X, and a pair
of distinct points γ = {s, t} ∈ [D]2 with s ≺f t. If C [s] = C [t], then as in
the proof of Theorem 5.3, there exists a point x ∈ C [s]\Z with x ∈ (s, t)�f

.
In this case, set Us = (←, x)�f

∩ Z and Ut = (x,→)�f
∩ Z. If C [s] 6= C [t],

then again as in the proof of Theorem 5.3, choose a clopen set V ⊂ X with
C [s] ⊂ V and V ∩C [t] = ∅, but now set W = (←, t)�f

∩ V , which is clopen
in X because W = (←, t]�f

∩ V . Finally, set Us = ((←, s)�f
∪W ) ∩ Z and

Ut = Z \ Us. In each of these cases, the Us and Ut so constructed form a
clopen partition Uγ = {Us, Ut} of Z such that Uγ ⊂ Or(Z) and

(5.1) {y, z} ∈ 〈Uγ〉 for all y, z ∈ Z with y �f s �f z and t �f z.

Let D0 be the set of all isolated points of D (hence, of X as well).
Whenever s ∈ D0, let σ = {s} be the corresponding singleton, and let
Uσ = {(←, s]�f

∩ Z, (s,→)�f
∩ Z}. Since σ = {s} is a clopen set in X, by

Proposition 2.1, both �f -intervals (←, s]�f
and (s,→)�f

are clopen in X.
Hence, by Proposition 3.5, Uσ ⊂ Or(Z), and clearly it is a 2-element disjoint
cover of Z. Finally, set D = [D]2 ∪ {{s} : s ∈ D0} and F = [Z]2 \

⋃

{〈Uδ〉 :
δ ∈ D}. Then F is a closed discrete subset of [X]2. To see this, let us show
that

(5.2) (y, z)�f
= ∅ = (z, y)�f

for every {y, z} ∈ F .

The verification of (5.2) follows in part [1, Fact 5]. Fix a pair {y, z} ∈ F .
Since {y, z} /∈〈Uγ〉 for every γ∈ [D]2, by (5.1), we now have |(y, z)�f

∩D|≤1.
Consequently, if s ∈ (y, z)�f

∩D, then σ = {s} = (y, z)�f
∩D, and therefore

s must be an isolated point of D. In this case, by construction, {y, z} ∈
〈Uσ〉, which is impossible. Hence, (y, z)�f

= ∅, which, in fact, completes the
verification of (5.2).

Choose now β = {y, z} ∈ F , with y ≺f z, and let

(5.3) Oβ = {(←, z)�f
, (y,→)�f

}.
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Then 〈Oβ〉 ∩ F = {β}. Indeed, if γ = {s, t} ∈ 〈Oβ〉 ∩ F , then, say, s ∈
(←, z)�f

and t ∈ (y,→)�f
. Therefore, s �f y and z �f t because, by

(5.2), (y, z)�f
= ∅. According to (5.2) once again, we also have (s, t)�f

= ∅,
which implies that β = {y, z} ⊂ [s, t]�f

= {s, t} = γ, so γ = β. Thus,

F is discrete in [X]2, while, by Proposition 3.3, it is closed in [X]2, being
closed in [Z]2. Hence, it must be countable, because [X]2 is collectionwise
Hausdorff and X is separable. Finally, for every such β = {y, z} ∈ F , let
Uβ = {O ∩ Z : O ∈ Oβ}, where Oβ is defined as in (5.3). By Proposition
3.5, Uβ ⊂ Or(Z), while, by (5.2), Uβ is a 2-element disjoint cover of Z, with
β ∈ 〈Uβ〉, because (y, z)�f

= ∅ = (z, y)�f
. Then Uα ∈ Or(Z), α ∈ A , is as

required, where A = F ∪D .

The following question is motivated by Theorem 5.4.

Question 3. Let X be a separable collectionwise Hausdorff space such
that Wcs(X) 6= ∅. Is then X weakly orderable?

Remark 5.5. If X is an infinite totally disconnected space and ℓ([X]2)
≤ ω, then there exists an injective continuous map h of X into the Cantor
set C. To see this, construct a sequence {Un : n < ω} of finite pairwise
disjoint open covers of X which is separating for the points of X. This
can be done by following precisely the arguments of Theorem 5.3. Namely,
whenever α = {x, y} ∈ [X]2, choose a clopen set V ⊂ X with x ∈ V and
y /∈ V , and set Uα = {V, X \ V }. Then, just as in Theorem 5.3, there
exists a countable subset {α(n) ∈ [X]2 : n < ω} ⊂ [X]2 such that [X]2 =
⋃

{〈Uα(n)〉 : n < ω}. The covers Un = Uα(n), n < ω, are as required. Now,
endow each Un, n < ω, with the discrete topology, and, for every n < ω,
define a map hn : X → Un by letting hn(x) be the element of Un with
x ∈ hn(x). Then each hn, n < ω, is continuous, hence so is the diagonal
map

h = ∆{hn : n < ω} : X →
∏

{Un : n < ω}.

On the one hand,
∏

{Un : n < ω} is homeomorphic to the Cantor set C

because each Un, n < ω, is a 2-point space. On the other hand, h is injective
because the sequence {Un : n < ω} is separating for the points of X.

Remark 5.6. Suppose that X is a second countable totally disconnected
space. Another very elegant construction of a countable family {Uα : α ∈ A }
of clopen subsets of X, which is separating for the points of X, was suggested
to the author by Jan van Mill. Namely, take a countable base B of X, and
consider the set A of all pairs (B, D) of members of B for which there
exists a clopen set V ⊂ X such that B ⊂ V and V ∩D = ∅. Fix one such
clopen set Uα per pair α ∈ A . Then {Uα : α ∈ A } is as required. Indeed,
if x, y ∈ X and x 6= y, then there exists a clopen set V ⊂ X with x ∈ V
and y /∈ V . Select B, D ∈ B such that x ∈ B ⊂ V and y ∈ D ⊂ X \ V .
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Then α = (B, D) ∈ A , while the clopen set Uα corresponding to α has the
property that x ∈ Uα and y ∈ X \ Uα.

Acknowledgements. The author would like to express his gratitude to
Professor Jan van Mill and Professor Tsugunori Nogura for several valuable
remarks.

Addendum (August, 2007). At the time when this manuscript was in
the process of being accepted for publication, Michael Hrušák and Iván
Mart́ınez-Ruiz announced that they answered Question 1 in the negative by
constructing a separable, first countable locally compact space which admits
a continuous weak selection but is not weakly orderable. Their manuscript
[9] is in preparation.
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[3] S. Garćıa-Ferreira, V. Gutev, T. Nogura, M. Sanchis, and A. Tomita, Extreme se-

lections for hyperspaces of topological spaces, Topology Appl. 122 (2002), 157–181.
[4] V. Gutev and T. Nogura, Selections and order-like relations, Appl. Gen. Topol. 2

(2001), 205–218.
[5] —, Vietoris continuous selections and disconnectedness-like properties, Proc. Amer.

Math. Soc. 129 (2001), 2809–2815.
[6] —, A topology generated by selections, Topology Appl. 153 (2005), 900–911.
[7] —, Selection problems for hyperspaces, in: Open Problems in Topology 2, E. Pearl

(ed.), Elsevier, Amsterdam, 2007, 161–170.
[8] —, Selections and totally disconnected spaces, Topology Appl. (2007), to appear.
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