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Topology and dynamics of unstable attractors
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Abstract. This article aims to explore the theory of unstable attractors with topo-
logical tools. A short topological analysis of the isolating blocks for unstable attractors
with no external explosions leads quickly to sharp results about their shapes and some
hints on how Conley’s index is related to stability. Then the setting is specialized to the
case of flows in R

n, where unstable attractors are seen to be dynamically complex since
they must have external explosions.

1. Introduction. In the realm of continuous dynamical systems the
notion of attractor plays a very important role because it captures the long
term evolution of the system in question, and therefore it seems important to
study the structure, both dynamical and topological, of these objects. Very
sharp results, mainly concerning the shape, have been obtained for stable

attractors (see for example [6], [16], [18], [26], [27]), but when it comes to
unstable attractors not much is known, and in fact the bibliography concern-
ing the subject is quite scarce (essentially [1]–[4], [22], [29]). Let us remark
that papers [1] and [29] use Milnor’s notion of attractor which is slightly
different from ours.

We add some contributions to this general picture, namely regarding the
shape of unstable attractors (Example 1, Theorem 7) and the dynamics in
their vicinity (Theorem 17). Other interesting facts are proved in passing,
and relations with Conley’s index are found (Theorem 9).

A general reference for dynamical systems, which we shall follow closely,
is [5]. Conley’s index theory can be found in his monograph [11]. On the
topological side, [7] and [19] give complete information about ANR’s, and
shape theory is thoroughly exposed in [8], [9], [15], [21]. Finally, should a
complement on algebraic topology be needed, [28] covers everything used in
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this article. In the paper singular homology and Čech cohomology are used
throughout.

Our setting will be that of a continuous flow defined on a locally compact
metric space M . A compact invariant set K is stable if it possesses a basis of
positively invariant neighbourhoods (that is, every point which comes near
K stays near K forever). Given any x ∈M , the set

J+(x) := {y ∈M : y = limxn · tn for some xn → x, tn → +∞}

is called the positive prolongational limit set of x and it is easy to check that
K is stable if, and only if, J+(x) ⊆ K for all x ∈ K. The sets J+(x) are
always closed and invariant and, when compact, also connected (at least in
locally compact phase spaces).

A compact invariant set K ⊆M is an attractor if its region of attraction
A(K) := {x ∈ M : ∅ 6= ω(x) ⊆ K} is a neighbourhood of K in M . If an
attractor K is stable then J+(x) ⊆ K for all x ∈ K, but in fact much more
is true since J+(x) ⊆ K for all x ∈ A(K). If we agree to call x ∈ A(K)
an explosion point if J+(x) 6⊆ K (this differs slightly from the convention
used in [2]), then an attractor K is unstable if and only if there exists some
explosion point in K. We shall be primarily interested in unstable attractors

which have only internal explosions, that is, such that every explosion point
is in K. In [3] a measure of the complexity of the flow in A(K) is introduced
under the name of instability depth, which is an ordinal number. Unstable
attractors having only internal explosions correspond to the first nontrivial
case of instability depth 1.

Following Conley we shall deal only with isolated invariant sets. These are
compact invariant sets K which possess a so-called isolating neighbourhood,
that is, a compact neighbourhood N such that K is the maximal invariant
set in N , or setting

N+ := {x ∈ N : x · [0,+∞) ⊆ N}, N− := {x ∈ N : x · (−∞, 0] ⊆ N},

such that K = N+ ∩ N−. We shall make use of a special type of isolating
neighbourhoods, the so-called isolating blocks, which have good topological
properties. More precisely, an isolating block N is an isolating neighbour-
hood such that there are compact sets N i, No ⊆ ∂N , called the entrance

and exit sets, satisfying

(1) ∂N = N i ∪No,
(2) for every x ∈ N i there exists ε > 0 such that x · [−ε, 0) ⊆ M − N

and for every x ∈ No there exists δ > 0 such that x · (0, δ] ⊆M −N ,
(3) for every x ∈ ∂N −N i there exists ε > 0 such that x · [−ε, 0) ⊆ intN

and for every x ∈ ∂N −No there exists δ > 0 such that x · (0, δ] ⊆
intN .

These blocks form a neighbourhood basis of K in M (see [10] and [12]).
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2. On the shape of unstable attractors. It was mentioned in the
introduction that very sharp results are known on the topology of stable
attractors. More precisely, a stable attractor in an ANR has the shape of
a finite-dimensional polyhedron. This situation, which is the best one can
expect, does not carry over to the case of unstable attractors.

Example 1. Every finite-dimensional compact space K can be embed-
ded as an unstable attractor in an ANR. Hence, unstable attractors in ANR’s
need not have polyhedral shape in general.

To prove this, observe first that since K is compact and finite-dimen-
sional we can assume that K is embedded in some n-dimensional cube, say
K ⊆ P := [0, 1]n (see for example [20, Theorem V 2, p. 56]). Consider the
(n + 1)-dimensional cube Q := P × [−1, 1] and the subset R ⊆ Q which is
the union of the copy of K which lies in P × {0} (we shall call it K again)
and the upper and lower lids of Q, that is, R := K ∪ (P × {−1, 1}).

Let en+1 := (0, (n). . . , 0, 1) be the unit vector pointing upwards and in-
tegrate the Lipschitz vector field X : R

n × R ⊇ Q → R
n+1 defined by

X(q) := d(q,R)en+1, where d is any metric for Q, to obtain a global flow
in R

n × R. This flow has as fixed points exactly those in R and otherwise
moves points upwards. Moreover, Q is invariant under ψ and so we shall
restrict ourselves to ψ|Q. This flow has the following properties:

(1) K is a compact invariant isolated set,
(2) every q 6∈ R is moved upwards until it approaches eitherK or P×{1},
(3) if q = (p, s), where −1 < s < 1, we distinguish three cases:

(a) if p 6∈ K then α(q) = (p,−1) and ω(q) = (p, 1),
(b) if p ∈ K, 0 < s < 1 then α(q) = (p, 0) and ω(q) = (p, 1),
(c) if p ∈ K, −1 < s < 0 then α(q) = (p,−1) and ω(q) = (p, 0).

Choose a point p0 in K and let M be the quotient space obtained from Q
by collapsing the upper and lower lids, together with p0, to a single pointm0.
Then M is an adjunction space obtained by gluing P ×{−1, 1} and p0 onto
a single point; as all these spaces are ANR’s, so is M ([19, Theorem 1.2,
p. 178]). Moreover, it is clear that ψ induces a mapping ϕ : M × R → M
because the points we have identified are fixed, and ϕ is continuous because
every restriction ϕ|M×[k,k+1] is continuous by virtue of [14, Theorem 4.1,
p. 262]. Thus we have obtained a flow in a compact ANR M with the
following properties:
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(1) K is a global isolated attractor in M (this follows from property
(3)(a) above),

(2) K is unstable because there are homoclinic orbits (apply (3)(b)
above).

In the example above the attractor K has external explosions. Thus it
is reasonable to focus our interest on unstable attractors which only have
internal explosions.

Example 2. To get an idea of how these might look like, let us mention a
procedure to build them in a fashion similar to that of the previous example.

Start from a compact manifold K (without boundary) endowed with
a flow ϕ1 and consider the unit interval [0, 1] together with a dynamical
system ϕ2 which has 0 and 1 as fixed points and otherwise moves points
away from 0 and towards 1. The product flow ϕ(x, s, t) := (ϕ1(x, t), ϕ2(s, t))
in the phase space K × [0, 1] restricts to ϕ1 on K ×{0} and K ×{1}, hence
these can be identified to get a flow in the quotient space K × S

1 (with the
obvious identifications). Observe that K is an isolated unstable attractor in
K × S

1 whose explosion points are all internal.

Regarding the shape of isolated unstable attractors whose explosions are
all internal, results much in the spirit of the ones cited in the introduction
above hold, and we now aim to prove this. Let us begin with a lemma which
describes the structure of their isolating blocks.

Lemma 3. Let K be an isolated unstable attractor which has only in-

ternal explosions. Then K has a basis (Nk)k∈N of isolating blocks such that

Nk = N+
k ∪N−

k . Moreover , if K is a continuum then every connected iso-

lating block of K is of the form N = N+ ∪N−.

Proof. Let U be a neighbourhood of K in A(K) and take an isolating

block (N,N i, No) of K with N ⊆ U . We claim that N̂ = N+ ∪ N− is a
(compact) neighbourhood of K. If not, there would exist a sequence xn → K

contained in N − N̂ , and this last condition amounts to the existence of
sequences sn ≤ 0 ≤ tn with yn = xn · sn ∈ N i, zn = xn · tn ∈ No and
xn · [sn, tn] ⊆ N . As N i and No are compact we can, taking subsequences
if necessary, assume that yn → y ∈ N i and zn → z ∈ No. If sn were
bounded then it would have a convergent subsequence snk

→ s0 and xnk
=

ynk
· (−snk

) → y · (−s0) 6∈ K, contradicting the fact that xn → K. Hence we
can assume that sn → −∞ and consequently tn − sn → ∞, so z ∈ J+(y). It
follows that J+(y) 6⊆ K and the flow explodes at y 6∈ K, thus contradicting
our hypothesis and proving the claim.

We shall prove that N̂ is open and closed in N , which shows that N̂ is
also an isolating block of K. If N̂ were not open in N there would exist a
sequence xn contained in N − N̂ and converging to x ∈ N̂ = N+ ∪N−. As
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N̂ is a neighbourhood of K, in fact x ∈ N+ −K or x ∈ N− −K. Thus, by
the same argument as before, we can obtain sequences of times sn ≤ 0 ≤ tn
such that yn = xn · sn ∈ N i, zn = xn · tn ∈ No and xn · [sn, tn] ⊆ N .
Furthermore we shall assume that yn → y ∈ N i and zn → z ∈ No. Suppose
x ∈ N+ − K. Then tn must be bounded since otherwise we could argue
as before to show that z ∈ J+(y), contrary to our hypothesis. Hence there
exists a convergent subsequence tnk

→ t0 and xnk
· tnk

→ x · t0, which
implies that z = x · t0 ∈ No, a contradiction with the fact that x ∈ N+. The
argument for the case x ∈ N− −K is similar.

Finally, if K is a continuum and N is a connected isolating block of K,
then N = N+ ∪N− since N+ ∪N− is open and closed in N .

Remark 4. If N = N+ ∪N− ⊆ A(K) is an isolating block for K, every
point in No must return to K, hence enter N again some time in the future.
But this happens uniformly: since No is a compact set contained in A(K)
and no point of No is an explosion point, there exists some T > 0 such
that No · [T,+∞) ⊆ N+ ∪N− because this set is a neighbourhood of K. In
particular, N− · R = N− ∪ No · [0, T ] ∪ No · [T,+∞) is compact since the
first two summands are compact and every limit point of the third either
belongs to that set or to K ⊆ N−.

Proposition 5. Let K be an isolated unstable attractor with only in-

ternal explosions and let N be an isolating block of the form N = N+∪N−.

Then the inclusion i : K →֒ N is a shape equivalence.

Proof. We first show that if N1 is an isolating block contained in the
interior of N and with the structure N1 = N+

1 ∪ N−
1 then N1 is a retract

of N . To prove this consider for every x ∈ N − intN1 the time tx such that
x · tx ∈ ∂N+

1 if x ∈ N+ and x · tx ∈ ∂N−
1 if x ∈ N−. Define the map

r : N → N1 in the following way:

r(x) =

{
x · tx if x ∈ N − intN1,

x otherwise.

It is easy to see that r is continuous, hence a retraction, since K has no
external explosions.

Consider now a sequence of conveniently chosen isolating blocks of K,
Nk+1 ⊂ intNk (all of them with the structure Nk = N+

k ∪ N−
k ) and a

sequence of retractions rk : N → Nk defined as before. We shall use tkx
to denote the time such that x · tkx ∈ ∂N+

k or ∂N−
k for x outside intNk.

We may assume that the isolating blocks Nk form a fundamental system of
neighbourhoods of K in M . The map ϕk : N × [0, 1] → Nk given by

ϕk(x, s) =

{
rk(x) · st

k+1
rk(x)

if x ∈ N − intNk+1,

x otherwise,
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defines a homotopy rk ≃ rk+1 in Nk. Moreover, the map φk : N × [0, 1] → N
given by

φk(x, s) =

{
x · stkx if x ∈ N − intNk,

x otherwise,

defines a homotopy rk ≃ idN (the identity in N). Now it is easy to deduce
that i : K →֒ N is a shape equivalence.

As a consequence we obtain a cohomological criterion to detect external
explosions.

Corollary 6. Let K be a continuum which is an isolated unstable at-

tractor. If there is a connected isolating block N such that H∗(K) 6= H∗(N)
then K has external explosions.

We can now state the following result.

Theorem 7. Let M be an ANR and let K be an isolated unstable at-

tractor in M which has only internal explosions. Then K has polyhedral

shape.

Proof. Let N be an isolating block of K. In Proposition 5 it is proved
that if N1 is an isolating block contained in the interior of N and with the
structure N1 = N+

1 ∪ N−
1 then N1 is a retract of N . Since M is an ANR,

it follows that N1 is also an ANR, which again by Proposition 5 and West’s
theorem [30] implies that K has polyhedral shape.

For every unstable attractor K the smallest stable set K̂ which contains
K (it always exists since an intersection of stable sets is again stable) turns
out to be an attractor contained in A(K) and with the same region of

attraction, that is, A(K̂) = A(K). Specifically, K̂ := {x ∈ A(K) : J−(x) ∩

K 6= ∅} (see [5, Theorem 1.25, p. 64]). We shall call K̂ the stabilization

of K. In the particular case of interest to us this stabilization has a simple
description.

Proposition 8. Let K be an isolated unstable attractor which does not

have external explosions and let N = N+∪N− ⊆ A(K) be an isolating block

for K (exists by Proposition 3). Then K̂ = N− · R.

Proof. We need to check that J−(x) ∩K 6= ∅ if and only if x ∈ N− · R.
Assuming first that J−(x) ∩ K 6= ∅, there exist sequences xn → x and
tn → −∞ such that xn · tn → K, so (xn · tn)n≥n0

⊆ N for some n0 ∈ N

because N is a neighbourhood of K. Since N = N+ ∪ N−, by taking an
appropriate subsequence we can suppose that either (xn · tn)n≥n0

⊆ N+ or
(xn·tn)n≥n0

⊆ N−. In the first case it is clear that x ∈ K and we are finished.
In the second case (xn)n≥n0

⊆ N− ·R, which is compact (Remark 4), hence
x ∈ N− · R.
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The other implication is easier: if x ∈ N− · R, then for some t ∈ R we
have x · t ∈ N− and K ⊇ α(x · t) ⊆ J−(x · t) = J−(x). Since α(x · t) 6= ∅,
the proof is complete.

Recall that the Conley index of an isolated invariant set K with isolating
blockN is the homotopy type of the compact pair (N,No),No being the exit
set. However, the cohomology module CH∗(K) := H∗(N,No) is normally
used for computational purposes, and is called the cohomological Conley

index. In the case of interest to us this index gives some information about
the unstability taking place in K.

Theorem 9. Let K be a connected isolated unstable attractor which has

only internal explosions. Then #(components of K̂−K)≤ rankCH1(K)+1.
Moreover , if H1(K) is trivial , then equality holds.

Proof. Let N be an isolating block for K of the form N = N+ ∪ N−

contained in A(K). The first half of Athanassopoulos’ proof of [2, Proposi-
tion 3.2, p. 205] shows that ϕ|No×R : No×R → No ·R is a homeomorphism.

Now observe that by Proposition 8, K̂−K = (N− ·R)−K = (N−−K) ·R =

No ·R, hence No is a deformation retract of K̂−K and both have the same
number of connected components. Now, it can be proved as in Proposition 5
that the inclusion j : (N−, No) →֒ (N,No) is a shape equivalence, which
implies that CH∗(K) is also given by the Čech cohomology of (N−, No).
The cohomology sequence of the pair (N−, No) then reads

0 = H̃0(N−) → H̃0(No) → CH1(K) → H1(N−) = H1(K) → · · · ,

where the equality H∗(K) = H∗(N−) (which is readily deduced from the
proof of Proposition 5) and the hypothesis that K is connected have been
used. Truncating this sequence to obtain

0 → H̃0(No) → CH1(K) → imCH1(K) ⊆ H1(K) → 0

and applying the rank formula we get rank H̃0(No) = rankCH1(K) −
rank imCH1(K) ≤ rankCH1(K) (clearly, equality holds if H1(K) = 0).

It only remains to observe that rank H̃0(No) = #(components of N0)− 1 =

#(components of K̂ −K) − 1, and the inequality is proved.

Corollary 10. Let K be a connected isolated unstable attractor whose

Conley index satisfies CH1(K) = 0. If K disconnects K̂ then external ex-

plosions occur in A(K).

In [2, Proposition 3.6, p. 208] another bound for the number of connected

components of K̂−K is given, namely rankH1(A(K)). It should be observed
that our bound is of a genuinely different nature, because it depends only on
the local dynamics near K. This can be checked in the following example.
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Example 11. Consider the cylinder C := S
1 × [0, 1] ⊆ R

3 and the C∞

vector field, defined in cylindrical coordinates,

X(θ, h) := (− sin(θ), cos(θ), h(1 − h)).

The flow obtained by integrating this field has the property that every point
in S

1 × (0, 1) spirals forwards to S
1 × {1} and backwards to S

1 × {0}, both
of which are periodic orbits. Identify these two orbits to a single periodic
orbit to get an unstable attractor K for a flow in the 2-dimensional torus.
Its Conley index is easily calculated and turns out to be that of a pointed
cone, therefore trivial. Hence Theorem 9 is sharp, because it asserts K̂ −K
is connected, as it effectively is (here K̂ is the whole torus, which is not
disconnected by K). On the other hand, the bound in [2] informs us that

the number of components in K̂ −K is less than or equal to 2.

In [2, Theorem 3.7, p. 200] it is proven that the cohomology groups of
K are finitely generated. This agrees with the fact just shown that K has
the shape of a polyhedron.

3. Isolated unstable attractors in R
n. This section is devoted to an

analysis of isolated unstable attractors in R
n, together with some particular

results in the plane (Theorem 18). Our aim is to prove that every connected
isolated unstable attractor in R

n must have external explosions, and this
will be done by showing that no isolating blocks of the form prescribed in
Lemma 3 can ever exist. The rest of the proof is purely topological in nature
and is contained in the lemmata which precede Theorem 17.

Lemma 12. Let K ⊆ R
n be a continuum. Then

(1) R
n−K is an open set with a finite or countable number of connected

components,
(2) for every neighbourhood V of K in R

n, almost all connected compo-

nents of R
n −K (i.e., all but a finite number) lie in V .

The proof of this lemma is easy and we omit it.

Lemma 13. Let K ⊆ R
n be connected and compact. There exists a de-

creasing neighbourhood basis (Vk)k∈N of K in R
n such that

(1) each Vk is a connected and compact (C∞) n-manifold ,
(2) for every component U of R

n −K and every k ∈ N the set U − Vk

is connected (possibly empty).

Proof. First of all we show that for every ε > 0 there exists a neighbour-
hood W of K satisfying (1) and the condition W ⊆ Bε(K). Then it will be
proven that every such W can be reduced so that it also satisfies (2).

Fix ε > 0 and approximate the continuous function dK(x) := d(x,K),
where d denotes Euclidean distance, by a C∞ function δK : R

n → [0,+∞)
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such that dK ≤ δK ≤ dK + ε/3 (see [25, Exercise 36, p. 152]). Observe
that these inequalities and the fact that dK |K = 0 imply that δK(Rn) ⊇
[ε/3,+∞) and, by Sard’s theorem ([23, Corollary, p. 11]), a regular value
a ∈ (ε/3, 2ε/3) can be found. Then δ−1

K ((−∞, a]) is a compact n-manifold
([23, Lemma 3, p. 12]) in R

n which is a neighbourhood of K because for
x ∈ K we have δK(x) ≤ dK(x)+ε/3 = ε/3 < a, soK ⊆ δ−1

K ((−∞, a)), which

is an open set contained in δ−1
K ((−∞, a]). Setting W equal to the component

of δ−1
K ((−∞, a]) which contains K completes the first step of the proof.

Now we shall modify W in such a way that it also satisfies (2). Because
of Lemma 12 almost every component of R

n −K is contained in W , so we
only have to deal with a finite number of them. Call one of these U and let us
show first that U−W has a finite number of components. In fact, since U is a
component of R

n−K, we have ∂U ⊆ K, and as W is a neighbourhood of K,
it follows that ∂U ∩∂W ⊆ K ∩∂W = ∅, hence U ∩∂W = (U ∪∂U)∩∂W =
(U ∩∂W )∪ (∂U ∩∂W ) = U ∩∂W . We then see that U ∩∂W is an open and
closed set in ∂W , so it must be a union of some of its (finite) components
(remember that ∂W is a closed (n − 1)-manifold, being the boundary of a
compact n-manifold). In particular, U∩∂W is again a closed (n−1)-manifold
so it separates U into a finite number of components, by Lefschetz duality
([28, Theorem 19, p. 297]). Now, if two points p, q ∈ U − W cannot be
connected by a path in U −W (path connectedness and connectedness are
equivalent because we are dealing with open sets in R

n), then every path in
U joining them (U is connected) meets W , so it must also meet ∂W . Hence
they cannot be connected in U − (U ∩ ∂W ) either, which means they are in
different components of U − (U ∩ ∂W ). But these are finite in number, so
the same can be said about U −W .

To complete the proof it will be enough to show that W can be reduced
so that U −W is connected. This can be done as follows: suppose as be-
fore that there exist p, q ∈ U −W which cannot be connected by any path
in U −W . Since U is connected, we can find a polygonal path in U con-
necting p and q, and this path can be easily chosen so that it crosses ∂W
transversally. Deleting an appropriate tubular neighbourhood of this path
from W such that the result is an n-manifold we get a new neighbourhood
of K which we shall denote again by W and which still satisfies (1) (observe
that this process may disconnect W—just in the 2-dimensional case, if the
tubular neighbourhood is reasonably chosen—but then only the component
containing K should be kept). But now p and q are connected in U −W ,
and any two points which were connected before are still connected. Hence
this new W separates U into at least one component less than the previous
one, and since the number of components of U −W was finite, repeating
this process finitely many times proves the claim.
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Lemma 14. Let R
n be the disjoint union of two connected sets A and B.

If ∂A (or ∂B) is compact , then it is connected.

Proof. For every k ∈ N let Ak and Bk be the open balls of radius 1/k
centred at A and B respectively. Observe that, since for every x ∈ ∂A = ∂B
we have d(x,A) = 0 = d(x,B), the inclusion ∂A ⊆

⋂
k∈N

Ak ∩ Bk follows.
Moreover, if x ∈ Ak ∩ Bk then B1/k(x) ∩ A 6= ∅ and B1/k(x) ∩ B 6= ∅
so B1/k(x) ∩ ∂A 6= ∅ because the balls in R

n are connected. Therefore

x ∈ B1/k(∂A) and we deduce that (Ak ∩Bk)k∈N is a neighbourhood ba-
sis of ∂A in R

n. If we prove that every Ak ∩ Bk is connected the proof will
be finished, since then the compact set ∂A will be the intersection of a de-
creasing neighbourhood basis of closed connected sets, hence connected. But
this is easy, because the Mayer–Vietoris exact sequence in reduced singular
homology for the union R

n = Ak ∪Bk,

· · · → H̃1(R
n) → H̃0(Ak ∩Bk) → H̃0(Ak) ⊕ H̃0(Bk) → · · · ,

reads
· · · → 0 → H̃0(Ak ∩Bk) → 0 → · · ·

and so H̃0(Ak ∩Bk) = 0 and Ak ∩Bk is connected.

Lemma 15. Let K ⊆ R
n be connected and compact. There exists a de-

creasing neighbourhood basis (Vk)k∈N of K such that

(1) each Vk is a connected and compact (C∞) n-manifold ,
(2) for every component U of R

n −K and every k ∈ N the set U ∩ ∂Vk

is connected (possibly empty).

Proof. We shall see that the neighbourhood basis satisfying (1) and (2)
in Lemma 13 suffices. So choose a particular V belonging to this basis and let
us show (using Lemma 14) that U ∩∂V is connected, if not empty, for every
component U of R

n −K. Set A = U − V and B = V ∪ (Rn −U). It is clear
that R

n is the disjoint union of A and B, because R
n − B = (Rn − V ) ∩ U

= A. Observe that A is connected because of the special properties of V ,
so A ⊆ R

n − K is also connected and it must lie entirely in a component
of R

n − K, which can only be U . Hence A ⊆ U ∩ Rn − V and the reverse
inclusion is easily seen to hold because U is open, so A = U ∩ Rn − V .
Therefore ∂A = A ∩ B = Rn − V ∩ V ∩ U = ∂V ∩ U . This set is compact
(see the proof of Lemma 13) so if B is connected Lemma 14 would apply
and finish the proof. But B is indeed connected, because

R
n − U =

⋃

U ′ 6=U

(K ∪ U ′),

where U ′ ranges over the components of R
n−K. Hence R

n−U is a union of
connected sets (because U ′ and K are connected and ∅ 6= ∂U ′ ⊆ K) which
have nonempty intersection, so it is connected. Then B = V ∪ (Rn − U) is
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a union of two connected sets with ∅ 6= ∂(Rn − U) = ∂U ⊆ K ⊆ V , hence
connected.

Remark 16. The situation described above can be easily pictured when
n = 2 because then for every bounded component U of R

2−K the set U−Vk

is homeomorphic to a disk (if not empty). To see this, think of R
2 ⊆ S

2 and
recall from the proof that R

2−(U−Vk) is connected, hence so is S
2−(U−Vk).

Now U − Vk is an open set in S
2 which is connected and whose complement

is connected, so [13, Theorem 2.2, p. 202] shows that U−Vk is an open disk.

Theorem 17. Let K ⊆ R
n be a connected isolated attractor. If K is

unstable, then it must have external explosions.

Proof. Assume that K has no external explosions and pick an isolating
block N = N+ ∪N− for K contained in its basin of attraction, which exists
by Lemma 3. Let V be a neighbourhood of K contained in N with the
properties given by Lemma 15. Then for every component U of R

n −K the
set U ∩ ∂V is a connected subset of N+ ∪ N−, both of which are closed.
Since N+ ∩N− = K is disjoint from ∂V , it follows that U ∩ ∂V ⊆ N+ or
U ∩ ∂V ⊆ N−.

As K is assumed to be an isolated unstable attractor there must exist a
homoclinic orbit, i.e. there exists some x 6∈ K such that ∅ 6= α(x), ω(x) ⊆ K
([5, Theorem 1.1, p. 114 and Corollary 1.2, p. 116]). This homoclinic orbit is
contained in some component U of R

n −K but cannot be wholly contained
in N (otherwise N would not isolate K), so it must meet ∂N and U ∩ ∂V
in at least two points. But then neither U ∩ ∂V ⊆ N+ nor U ∩ ∂V ⊆ N−,
which is a contradiction.

If we restrict ourselves to the case n = 2 (the plane), quite strong results
are available.

Theorem 18. Every connected isolated global attractor K in R
2 is

stable.

Proof. IfK were unstable there would exist a point x0 ∈ R
2−K such that

∅ 6= ω(x0), α(x0) ⊆ K, and we can assume that x0 lies in the unbounded
component U of R

2 − K (if not, the argument is only slightly different).
CollapseK to a single point p and consider the flow ϕ̂ induced in the quotient
space R

2/K. Then {p} is an isolated global attractor of ϕ̂ and U = U ∪ {p}
is homeomorphic to R

2 (where the closure of U is taken in R
2/K). This last

assertion can be proved as follows: the set K∗ := R
2 − U ⊇ K (equal to

K plus the bounded components of R
2 −K) does not disconnect the plane.

Then D := {K∗}∪{{x} : x 6∈ K∗} is an upper semicontinous decomposition
of R

2 none of whose elements separates the plane, hence the quotient space
R

2/K∗ ∼= R
2/D is homeomorphic to R

2 by [24, Theorem 22]. But the closure
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of U in R
2/K is homeomorphic R

2/K∗, so the assertion follows and we have
reduced the proof to the case where K is a single point p.

In R
2/K the condition about the limit sets of x0 says ω(x0) = α(x0)

= {p}. This implies that γ(x0) is disjoint from its limit sets and homeomor-
phic to R. But then γ(x0) = γ(x0) ∪ {p} is a one-point compactification of
γ(x0) ∼= R, hence it must be homeomorphic to S

1. It follows that γ(x0) sep-
arates U into two connected components, exactly one of which is bounded
(say Ux0

), and with common boundary γ(x0) = γ(x0) ∪ {p}. Observe that
Ux0

and Ux0
are invariant and homeomorphic to an open disk and a closed

disk, respectively.

Now x0 ∈ J+(p), so x0 ∈ {̂p} (the stabilization of the attractor {p}), and

since {̂p} is compact and invariant, γ(x0) ⊆ {̂p}. But now {̂p} is a global
stable attractor in U ∼= R

2, hence by [17] its shape must be trivial, so it

does not disconnect U and it follows that Ux0
⊆ {̂p}. By [2, Proposition 4.4,

p. 211] this implies that α(x) = {p} for every x ∈ Ux0
so the argument and

notations introduced above for x0 extend to all x ∈ Ux0
. That is, if x ∈ Ux0

then γ(x) = γ(x) ∪ {p} separates R
2 into two connected components. If we

denote by Ux the bounded one, it is an invariant set with boundary γ(x).
Observe that if y ∈ Ux then γ(y) ⊆ Ux, and since Ux is homeomorphic to a
disk, Uy ⊆ Ux.

Let N be an isolating neighbourhood for p. It is clear that for every
p 6= x ∈ Ux0

the inclusion γ(x) ⊆ N cannot hold since otherwise p would not
be isolated by N , hence γ(x)∩∂N 6= ∅ and Ux∩∂N 6= ∅. If x, y ∈ Ux0

are not
in the same trajectory, then x ∈ Uy or y ∈ Ux, so Ux ⊆ Uy or Ux ⊆ Uy. In

any case the intersection Ux∩Uy∩∂N coincides with either Ux∩∂N or Uy∩

∂N and therefore the family {Ux ∩ ∂N}p6=x∈Ux0
has the finite intersection

property. By the compactness of ∂N there exists y ∈
⋂

p6=x∈Ux0

Ux ∩ ∂N ,

and in particular y 6= p. However, y ∈ Ux0
, hence Uy is an open disk whose

boundary contains p. Consequently, there must exist some x ∈ Uy ∩ intN ,
which implies Ux ⊆ Uy and y ∈ Ux = Ux ∪ γ(x) ∪ {p} ⊆ Uy ∪ {p}; but this
is a contradiction since y 6∈ Uy ∪ {p}.

Let us remark here that the conclusion of Theorem 18 is false if the
attractor K is not global, as Mendelson’s famous example of an isolated
unstable attractor in the plane shows ([22]). However, every isolated invari-
ant continuum K ⊆ R

2 has polyhedral shape. To prove this note that by
Alexander’s duality H1(K) ∼= H̃0(R

2 −K), hence H1(K) is free and finitely
generated. Now it follows from a theorem of Borsuk on plane continua [9,
Theorem 7.1, p. 221] that K has the shape of a polyhedron (in fact, a finite
bouquet of circles).



Topology and dynamics of unstable attractors 251

References

[1] P. Ashwin and M. Timme, Unstable attractors: existence and robustness in networks

of oscillators with delayed pulse coupling , Nonlinearity 18 (2005), 2035–2060.

[2] K. Athanassopoulos, Explosions near isolated unstable attractors, Pacific J. Math.
210 (2003), 201–214.

[3] —, Remarks on the region of attraction of an isolated invariant set , Colloq. Math.
104 (2006), 157–167.

[4] J. Auslander, N. P. Bhatia, and P. Seibert, Attractors in dynamical systems, Bol.
Soc. Mat. Mexicana (2) 9 (1964), 55–66.
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Warszawa, 1975.

[10] R. C. Churchill, Isolated invariant sets in compact metric spaces, J. Differential
Equations 12 (1972), 330–352.

[11] C. Conley, Isolated Invariant Sets and the Morse Index , CBMS Reg. Conf. Ser.
Math. 38, Amer. Math. Soc., 1978.

[12] C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer.
Math. Soc. 158 (1971), 35–61.

[13] J. B. Conway, Functions of One Complex Variable, 2nd ed., Grad. Texts in Math.
11, Springer, 1978.

[14] J. Dugundji, Topology, Allyn and Bacon, 1966.

[15] J. Dydak and J. Segal, Shape Theory. An Introduction, Lecture Notes in Math. 688,
Springer, 1978.

[16] A. Giraldo, M. A. Morón, F. R. Ruiz del Portal, and J. M. R. Sanjurjo, Shape of

global attractors in topological spaces, Nonlinear Anal. 60 (2005), 837–847.

[17] A. Giraldo and J. M. R. Sanjurjo, On the global structure of invariant regions of

flows with asymptotically stable attractors, Math. Z. 232 (1999), 739–746.

[18] B. Günther and J. Segal, Every attractor of a flow on a manifold has the shape of

a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993), 321–329.

[19] S. Hu, Theory of Retracts, Wayne State Univ. Press, 1965.

[20] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Math. Ser. 4, Prince-
ton Univ. Press, 1948.
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[25] E. Outerelo and J. M. Ruiz, Topoloǵıa diferencial , Addison-Wesley Iberoamericana,
1998.



252 M. A. Morón et al.
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