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On closed sets with convex projections in Hilbert space
by

Stoyu Barov (Sofia) and Jan J. Dijkstra (Amsterdam)

Abstract. Let k be a fixed natural number. We show that if C' is a closed and non-
convex set in Hilbert space such that the closures of the projections onto all k-hyperplanes
(planes with codimension k) are convex and proper, then C' must contain a closed copy
of Hilbert space. In order to prove this result we introduce for convex closed sets B the
set £F(B) consisting of all points of B that are extremal with respect to projections onto
k-hyperplanes. We prove that £ k(B) is precisely the intersection of all k-imitations C' of
B, i.e., closed sets C that have the same projections as B onto all k-hyperplanes. For every
closed convex set B in ¢2 with nonempty interior we construct “minimal” k-imitations C,
in the sense that dim(C \ £*(B)) < 0. Finally, we show that whenever a compact set has
convex projections onto all finite-dimensional planes, then it must be convex.

1. Introduction. Consider the vector space R™ for n > 3. Let us call the
image of a subset X of R"™ or Hilbert space under an orthogonal projection
onto a hyperplane a shadow of X. Borsuk [3] has shown that there exist
Cantor sets in R™ such that all their shadows contain (n — 1)-dimensional
convex bodies. In contrast, Cobb [5] showed that every compactum C in R"
with the property that all its shadows are convex bodies contains an arc.
Dijkstra, Goodsell, and Wright [6] improved on this result by showing that
such a C' must contain an (n — 2)-sphere, so in this case projections cannot
raise dimension by more than one.

The starting point of the present paper are the results in Barov, Cobb,
and Dijkstra [1]. In that paper closed sets C' in R™ that have convex projec-
tions onto all k-dimensional planes are considered. If the projections of C are
proper in a sufficient number of directions, then it is proved that C' contains
a closed subset that is a (k — 1)-manifold without boundary. Also, for every
closed and convex set B C R™ with nonempty interior “minimal imitations”
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are constructed, which are closed sets that have the same projections onto
k-planes and are minimal with respect to dimension. A natural question is
whether one can get similar results when the underlying space is the real
Hilbert space 2 instead of R”. The answer to this question is positive and
the main purpose of this paper is to formulate and prove these results.

In order to formulate the main theorems we need some definitions. If
A C £? then we define

At ={veP:v-z=v-yforal zyc A},
where - denotes the inner product. Also we define
codim A = dim A+ € {0,1,...,00}.

A plane in £? is a closed affine subspace of ¢? and a plane L is called a
k-plane if dim L = k. A k-hyperplane H is a plane with codim H = k. If L is
a plane then py, : £2 — L denotes the orthogonal projection onto L, defined
by {pr(x)} = LN (x + LY) for x € (2. A basis for £2 is a set of linearly
independent vectors whose linear hull is dense in ¢2. Finally, A denotes the
closure of A in ¢2.

THEOREM 1. Let k € N, let B be a closed convez subset of 2, and let C
be a closed set in (% such that B # C. Assume that p(C) = p(B) for every
projection p of £? onto a k-hyperplane. If there exists a basis B for £* such
that p; . (C) # Lt for every linear space L generated by k elements of B,
then C contains a closed set homeomorphic to (2.

If k € N then two subsets A and B of £ are called k-imitations of each
other if they have identical projections onto all k-hyperplanes or, equiv-
alently, a k-plane meets A if and only if it meets B. In order to prove
Theorem 1 we introduce for closed convex sets B the sets £¥(B) consist-
ing of points of B that are “extremal with respect to projections onto k-
hyperplanes”. We prove that £%(B) is precisely the intersection of all closed
k-imitations of B (Corollary 23) and we find the required copy of £? in this
set.

In the final section we construct minimal imitations of B:

THEOREM 2. If k € N and if B is a closed convex subset of € such
that codim B # k, then there exists a closed k-imitation C' of B such that
dim(C \ €¥(B)) < 0.

In the process of proving our results we follow the general approach of [1],
which in turn was based on the method of Dijkstra, Goodsell, and Wright [6].
However, some of the arguments in [1] rely on properties of finite-dimensional
spaces that are not valid in Hilbert space such as the fact that in R™ the
interior of a convex set in its affine hull is nonempty and that every closed set
in R™ is o-compact. This calls for a different approach or a more complicated
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argument in some places. In particular, the role of compacta is very different
in /2 and is discussed in §4, a section with no analogue in [1].

Our paper is organized as follows. In §2 we establish the terminology and
we present basic lemmas. Theorem 1 is proved in §3. We deal with projections
onto finite-dimensional planes and the role of compacta in §4. §5 is about
hiding sets behind zero-dimensional sets, and the results from that section
are then used to prove Theorem 2 in §6.

2. Definitions and preliminaries. In this section we set up our ter-
minology and we give the basic lemmas in preparation for the proof of the
main theorems. Throughout this paper the underlying space will be the real
Hilbert space £2, defined as follows:

2= {z = (2n)p=q : Tn € R and fo < oo}.
i=1

The origin of £? will be denoted by 0. Let u= (uy, us,...) and v=(v1, vz, ... )
be elements of £2. We shall use the standard dot product: u-v = Efil U; ;-
The norm on ¢? is given by |lu| = v/u-u and the metric d by d(u,v) =
|lv — u||. Throughout this paper B.(z) stands for the open e-neighbourhood
of the point x. Let {e!,e?,...} denote the standard orthonormal basis for £2,
that is, e’ is the unit vector in the positive direction of the z;-axis.

A plane in 2 is a closed affine subspace of £2, thus planes have the form
v+ L where v € £? and L is a closed linear subspace of ¢2. Note that the
set AL as defined in the introduction is a closed linear subspace of ¢2. If L
is a plane in ¢2, then L' is called the orthocomplement of L. Note that we
have extended the usual definition of orthocomplement from linear spaces
to affine spaces in such a way that L+ = (v + L)*. A k-plane in ¢? is
a k-dimensional affine subspace of 2 and a k-subspace is a k-dimensional
linear subspace of 2. We will identify the space R* with the k-subspace
{x € £? : 41 = T2 = --- = 0}. The unit sphere in ¢? is denoted by
S By projection we mean orthogonal projection. If L is a plane in ¢2, then
pr, : 02 — L denotes the orthogonal projection onto L. The closure of a set
A in ¢? is denoted by A. The interior of a set A in ¢ is denoted by int A.

DEFINITION 1. Let L be a plane in ¢2. A plane H C L is called a k-
hyperplane in L if dim(H+ N L) = k. In other words, a k-hyperplane is a
plane with codimension k in the ambient space. A hyperplane H of L is
a plane of L of codimension 1. A shadow of a set A is a projection of A
onto a hyperplane. The two components of L\ H are called the sides of the
hyperplane H. We say that H cuts a subset A of L if A contains points on
both sides of H. A subset V of L is called a halfspace of L if it is the union
of a hyperplane and one of its sides. If L is a k-plane, k € N, then V is called
a k-halfplane in (2. A 1-halfplane is called a halfline or a ray.
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DEFINITION 2. Let A be a nonempty subset of 2. We denote the convex
hull of A by (A). The affine hull aff A of A is the intersection of all planes
of /2 that contain A. Note that codim A = codim(aff A). Let A stand for
the boundary of A with respect to aff A and let A° = A\ 0A.

If A is a finite-dimensional convex set, then A° # (). For infinite-dimen-
sional convex sets this is not true (see Example 1).

LEMMA 3. Let B be a convex set in > with B® = (. If A is a subset of
B with finite codimension in (%, then A° = ().

Proof. Striving for a contradiction, we assume that there is an X C B
such that X° # () and codim X < oco. Now, let n be the minimum integer
with the following property:

e There is a set A C B such that A° # () and codim A = n.

Put H=aff Aand F = BN H so H = aff F and F° # (). Note that F' # B
and select an € B\ H. Consider H' = aff(FU{z}). Note that {z+t(y—z) :
0 <t<1,y € F°}is a nonempty open subset of H' that is contained in B.
So we have (H' N B)°® # (. Clearly, codim(H' N B) = codimH' =n — 1 in
violation of the minimality of n. =

DEFINITION 3. Let B be a closed convex set in £2. A nonempty subset
F of B is called a face of B if there is a hyperplane H of aff B that does not
cut B with the property F' = BN H. Note that F' is also closed and convex,
and codim F' > codim B whenever codim B is finite. If F' is a face of B we
write F' < B. We say that a subset F' of B is a deriwved face of B if FF = B
or there exists a sequence F' = F} < --- < F,,, = B for some m.

REMARK 1. Let FF < B and assume that m = codim F' is finite. Put
H,, =aff F, k = codim B, and Hy = aff B. There is a hyperplane Hy,, of
Hj. that does not cut B and has the property F' = BN Hy 1. If Hpy 1 # aff F
then m > k + 1 and we can fill in the missing dimensions and construct a
sequence H,, C H,,_1 C -+ C H}, of affine spaces such that codim H; = 4
for i € {k,...,m}. Note that if £ + 1 < ¢ < m then

BNH,_,CBNHy1=FCH,CH,

and hence H; is a hyperplane H;_1 that does not cut BN H;_;.

Observe now that if F' is a derived face of B and m < codim F', then
we can find a sequence of affine spaces H,, C H,,_1 C --- C Hy such that
codim H; = i for each i, aff FF C H,,, and H; is a hyperplane in H;_; that
does not cut BN H;_1 fori e {1,...,m}.

REMARK 2. We list a few facts concerning closed convex sets and hyper-
planes. Note that if ' < B then F C 0B. Let B be a closed convex set in £2
with B® # (). Since int B = B (see |4, p. TVS IL.14]), a hyperplane H cuts
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B if and only if H meets the interior of B. According to the Hahn—Banach
theorem (see [10, p. 197]) every point in OB is contained in a hyperplane H
of aff B that does not cut B. In other words, 0B equals the union of the
faces of B. However, if B® = () then B = B may not equal the union of all
its faces as the following example shows.

ExAMPLE 1. Consider the convex compactum
B={rxecl?:a,c[-27",27" for all n € N}.
Assume that H is a hyperplane through the origin. Then H can be rep-
resented as H = {v € 2 : v-u = 0} for some u € S*®. Thus, there
is a k € N such that up # 0. Let vy = (0,...,0,27%,0,...) and vy =
(0,...,0,—27%.0,...). Then v; and vy are on different sides of H because
u - v; and u - v2 have opposite signs. Consequently, H cuts B and hence

0 is contained in no face of B. This also means that B is contained in no
hyperplane and hence aff B = ¢? and B° = () because B is compact.

However, the union of the faces is always dense in 0B.

LEMMA 4. Let B be a closed convez set in £? with B® = (). Then the set
\U{F : F is a face of B} is dense in B.

Proof. Letxz € B= 0B and ¢ > 0. Pick z € B.(z)N(aff B\ B). According
to [10, p. 347] there is a unique point y € B with minimal distance to z.
By the Hahn—-Banach theorem there is a hyperplane H in aff B separating
B and Bs(z), where 6 = ||z — y/||. Observe that y € H. Hence y is a point of
the face H N B. Also,
|z —yl| <e+6d< 2.

Since ¢ is arbitrary, this completes the proof. m

DEFINITION 4. Let B be a closed convex set in ¢2 and let & € N. We
define £¥(B) as the closure of

U{F : F is a derived face of B with codim F' > k}.
LEMMA 5. Let B be a closed convex set in €2 with B® = (). Then E¥(B)
= B for every k € N.
Proof. Assume that £¥(B) # B and consider the collection
F ={F : F is a derived face of B such that F'\ £¥(B) # (}.

Since B is a derived face of itself we have B € F. By the definition of £¥(B),
every F' € F has codim F' < k. So we can select an F' in F with maximal
codimension. By Lemma 3 we have F° = (). Since F\ £¥(B) is a nonempty
open subset of F', Lemma 4 shows that there is a face G of F' such that
G\ E¥(B) # 0 and hence G € F. Since codimG > codim F, we have a

contradiction with the maximality of codim F'. =
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DEFINITION 5. Let B be a closed convex set in 2. We define the char-
acteristic cone of B by

cc B = {y € £? : there is an z with z + ay € B for all a > 0}.

The characteristic linear space of B is defined by Lp = cc BN —cc B. The
cross section of B is the set cs B = BN EEJ;.

REMARK 3. If B C £2 is closed and convex, then we have the following
facts (see [8, §2.5] and |2, p. 93|). The cone cc B is closed and convex. If x is
any fixed element of B, then

ccB={yecl*:z+ay¢c B forall a>0}

Lp is a closed linear space: the unique maximal linear subspace of ¢ such

that B= B+ Lp.

The following lemma is analogous to |1, Lemma 4| with a virtually iden-
tical proof.

LEMMA 6. Let B be a closed convex set in ¢2. If F is a (derived) face
of B, then Lp = Lp and cs F is a (derived) face of cs B. If, on the other
hand, F is a (derived) face of cs B, then Lp + F' is a (derived) face of B.

REMARK 4. We will need information about the topology of boundaries
of convex bodies B in (2, i.e. closed convex sets with nonempty interior.
According to [2, Proposition II1.6.1] the boundary of a convex body is either
empty or homeomorphic to £2 or S™ x ¢2 for some n-sphere S™. Thus OB is
either empty or it contains closed copies of £2.

3. Projecting onto k-hyperplanes. The main purpose of this section
is to establish Theorem 1. We shall need the following result from [1], known
as the Tipping Lemma.

LEMMA 7. Let B be a closed convex set in R™ for m > 2, let C be a
closed subset of B, and let H be a hyperplane of R™ that does not cut B. If V
is a halfspace of H such that VNC = 0 and VN B is nonempty and bounded,
then there exists a halfspace V' of R™ such that V. C V', V' NC =0, and
V' N B is bounded.

Before getting to the main theorems we need one more lemma.

LEMMA 8. Let C be a subset of £? and let D = (C). If p is a projection
onto a plane such that p(C) is convex, then p(C) = p(D). If B is a closed
convex set such that py(C) C pe(B) for every line £ in (2, then D C B.

Proof. 1f p(C') is convex then

p(C) C p(D) =p((C)) C p({C)) = (p(C)) C (p(C)) = p(C) = p(C),
thus p(C) = p(D).
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For the second part, assume that there is an 2z € D\ B. Since B is closed
and convex we may assume that z € C'\ B. Then by [10, p. 191] there is a
hyperplane H such that x and B are on different sides of H. Let ¢ be the
line H+ and note that p,(z) and p¢(B) are separated in ¢ by the point of

intersection of ¢ and H. Thus py(z) ¢ p¢(B), which contradicts the premise
that ps(C) C pe(B). We conclude that D C B.

The following theorem is analogous to [1, Theorem 3]. It tells us which
points are “extremal” with respect to projections onto k-hyperplanes.

THEOREM 9. Let k € N, let B be a closed convex subset of (2, and let
C be a closed set in (2. If p(C) = p(B) for every projection p of (> onto a
k-hyperplane, then £¥(B) C C C B.

Proof. We first verify that C' C B. Let ¢ be a line in ¢2. Select a k-
hyperplane H that contains £. Then

pe(C) = pe(pu(C)) C pe(pr(B)) C pe(pu(B)) = pe(B),

thus C' C (C) C B by Lemma 8.

In order to prove that £¥(B) C C it suffices to show that every derived
face of B with codimension greater than k is contained in C'. So assume that
F'is a derived face of B with codimension m > k (m could be co) and F'\ C
# ). Choose a rectangular coordinate system for 2 such that 0 € F'\ C. By
Remark 1 we can find a sequence of affine spaces 2 = Hy D Hy D --- D Hy
such that codim H; = i for each ¢, aff F C Hy,1, and H; is a hyperplane in
H;_1 that does not cut BN H;_q for i € {1,...,k+ 1}.

We construct by induction a sequence 0 € V; C --- C Vj41 such that for
1<i<k+1:

(1) V; is an é-halfplane in Hy 1,
(2) inC =19,
(3) ViN B is bounded.

Let V7 be a ray in Hj that emanates from 0 into the side of Hy,; that
is disjoint from B. Note that V; N B = {0} and hence V1 N C = ) so the
induction hypotheses are satisfied.

Now let 1 < i < k and assume that V; has been found. Let £ C Hy_; be
the line through 0 that is perpendicular to Hy_;,1 and let M C Hj_; be the
(i+1)-plane £ +aff V;. Put H = H,_; ;1N M,C'=CNM and B'= BN M.
Apply Lemma 7 to M, H, C’, B’, and V;. We obtain a halfspace V;;1 of M
such that V; C Viy1, Vixay NC' =V NC =P and Vi1 N B =V N B is
bounded. This completes the induction.

Since 0 is an element of the (k + 1)-halfplane Vi1, there is a (unique)
k-plane N such that 0 € N C Viyq1. Of course, NNC = () and NN B is
bounded.
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Next we prove that d(N,C) > 0. Since N N B is bounded we can
find an a > 0 such that the sphere S = {z € N : ||z|| = a} is dis-
joint from B. By compactness of S and of K = {x € N : ||z| < a} we
have ¢ = min{d(S, B),d(K,C)} > 0. Let x € C and y € N be such that
|l —y|| < e. Then x € B and b = ||y|| > a. By convexity of B and 0 € B
we have 2/ = (a/b)x € B. Put y = (a/b)y and note that y' € S and
l2" — /|| = (a/b)||x — y|| < &. So we have a contradiction with d(S,B) > ¢
and we may conclude that d(N,C) > e.

Let O be the subspace of £ that is the orthocomplement of N. Clearly,
the codimension of O is k. Then d(0,po(C)) = d(N,C) > 0 and hence
0 ¢ po(C) = po(B), which contradicts the fact 0 = pp(0) € po(B). We
may conclude that F C C. =

COROLLARY 10. Let k € N and let B be a closed and convex set in
0?2 with B° = 0. If C is a closed set such that p(B) = pu(C) for every
k-hyperplane H in €2, then B = C.

Proof. This follows directly from Lemma 5 and Theorem 9. u

The following theorem is analogous to [1, Theorem 4] with an important
distinction: the essential property (cf. Remark 4) that F° # () is gratis in
finite-dimensional spaces whereas here it is based on Lemma 4.

THEOREM 11. Let k € N, let B be a closed convex set in €2, and let C be
a closed subset of (> such that C' # B and p(C) = p(B) for every projection

p of €2 onto a k-hyperplane. Then there exists a derived face F of B such
that F° # 0, codim F < k and OF C C.

Proof. Consider the collection D of all derived faces of B that are not
contained in C. By Theorem 9, C C B so B # C implies that B € D. Also
by Theorem 9 every element of D has codimension at most k so there is
an F € D with maximal codimension in 2. Every face of F' has a higher
codimension than F so all the faces of F' are subsets of C. If F’° = () then by
Lemma 4 the union of its faces is dense in F' and hence F' C C because C' is
closed. This result contradicts F € D so we have F° # (). Then by Remark 2
every point of OF is contained in some face of F' and hence OF C C.

The zero-dimensional closed sets 3. of Theorem 19 below have convex
projections onto every hyperplane. However, they have the property that the
boundary of every derived face of (3.) is empty, making Theorem 11 void
when applied to such a set. Now the properness of certain projections in the
premise of Theorem 1 comes into play.

Proof of Theorem 1. Let k, B and C be as in the statement. Assume that

p(C) = p(B) for every projection p of £2 onto a k-hyperplane and there exists
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a basis B for £? such that p; . (C) # L+ for every linear space L generated
by k elements of B.

By Theorem 11 we can find a derived face F' of B such that codim F’ < k,
OF C C, and F° # (). Let H be a k-hyperplane contained in aff F' and
meeting F°. If we put G = F'N H then codimG = k and G° # (). Thus G
is a convex body in aff G = H, a space isomorphic to £2. Clearly, 0G is a
subset of 0F and C'. By Remark 4, G is empty or it contains a closed copy
of Hilbert space. So, we only need to show that G # (.

Striving for a contradiction, assume that G = 0. Hence G = H. We
will show that there exists a k-hyperplane L such that L' is generated by
elements of B and pr(H) = L. Let ¢ stand for the projection py1 and note
that since B is a basis for 2, the set {1(v) : v € B} contains a basis for H,
say {¢(v1),...,¥(v")}. Let M be the k-dimensional linear space spanned by
{v',...,v*} and put L = M~. Pick an arbitrary y € L and let us show that
there is an x € H such that pz(z) = y. Indeed,

2
P(y) = anp(vh).
=1

Set
k

r=1y— Z a;v'.
=1
Then x € H since ¢ (x) = 0. Moreover, pr(z) = y since y = = + Zle a; v’
with x € H and Zle a;v' € M = L. That completes the proof of the
theorem. m

The following result is a reformulation of Theorem 1 without reference
to the convex set B.

THEOREM 12. Let k € N and let C be a closed nonconvex subset of (2.
Assume that p(C) is convex for every projection p of £2 onto a k-hyperplane.

If there exists a basis B for £2 such that p; 1 (C) # L* for all k-subspaces L
that have a subset of B as basis, then C contains a closed copy of (2.

Proof. Put B = (C). Since C is nonconvex we have C' # B. According

to Lemma 8, p(C) = p(B) for every projection p onto a k-hyperplane. Now
apply Theorem 1. m

4. Projecting onto finite-dimensional planes. Consider a compact
set C' in ¢? such that all projections onto k-hyperplanes are convex. Put
B = (C) and note that B is also compact (see [10, p. 244]). If B® = {)
then according to Lemma 8 and Corollary 10, C' is convex because C' = B.

If B° # () then aff B is finite-dimensional and we can find a k-hyperplane
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H that contains aff B. Thus C' = py(C) and C is convex. The following
theorem improves on this observation.

THEOREM 13. If C is a compactum in €% such that pgn(C) is convex for
eachn € N, then C' is conver. Thus C' is either an n-cell or the Hilbert cube.

Proof. Let B = (C). Striving for a contradiction, assume that B # C,
that is, there exists an x € B\ C. Observe that by Lemma 8,

prn(B) = prn(C)  for every n € N.
Thus, for every n € N we can pick a y" € C such that
yi' =x; for1<i<n.
Consequently, the sequence (y"), converges coordinatewise to z. On the
other hand, since C' is compact we can find a subsequence (y™); of (y")n
converging with respect to the norm topology to a point, say z, in C'. That
implies that (y™); converges coordinatewise to z. Hence z = x. We have
arrived at a contradiction with € B \ C' and hence B = C. Therefore C is

convex and by Keller’s theorem [9] it is homeomorphic either to some n-cell
or to the Hilbert cube. m

As an immediate consequence of Theorem 13 we get the following corol-
lary.

COROLLARY 14. Let C be a compactum in (% all of whose projections
onto finite-dimensional planes are convexr. Then C must be conver.

EXAMPLE 2. Consider the unit sphere S in ¢2. It is a bounded, closed,
nonconvex set all of whose shadows are convex.

We finish this section with a more interesting example.

EXAMPLE 3. Let K be a Cantor set in [1/2,1], and for each n € N, let
fn : K — J"™ be a continuous surjection, where J = [—1, 1]. Define

Cp = {(fn(c),¢,0,0,..):ce K} c J"t c /2

Basically, the C),’s are the graphs of the f,’s, so each (), is homeomorphic
to K. Put

¢ = UC" and B ={zxc*: x,cJforallnecN}
neN
Note that € is zero-dimensional by [7, Theorem 1.5.3] and that B is a closed
convex set that contains € and has a nonempty interior. Clearly, J" =
pr (Cr) C pre(€) and on the other hand pgrn(€) C prn(B) = J".

To prove that € is closed it suffices to show that {C,, : n € N} is a
locally finite family. Indeed, fix € ¢2. There exists an m € N such that
S0 x? < 1/16 and hence |z;| < 1/4 for each i > m. Now, if z € C, with
n > m, then
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HZ - CEH > Zn+1 — Tn+41 >

N | —
>~ =

1
4
f

Consequently, z ¢ By 4(x) and Cp, N By () = 0 for all n > m.

To summarize:
CLaM 15. € is a closed zero-dimensional o-compactum such that
prn (€) = pre (B) = J"  for allm € N.

The following result shows that in Theorem 1 we cannot replace projec-
tions onto k-hyperplanes with projections onto finite-dimensional planes.

CLAIM 16. For every finite-dimensional plane L in £?> we have
pr(€) = pr(B).
Proof. Let L be a finite-dimensional plane in ¢2. Since we may assume

that 0 € L we can choose an orthonormal basis {u!,...,u*} for L. Pick
arbitrary v € 8 and ¢ € (0, 1) and choose an n € N such that

oo €2 oo 62
2 i\ 2 .
E ’l)j<m and E (U;) <4—k‘2 fOI‘Z—l,...,/{.
]:n+1 jZTL-‘rl

Observe that there is a ¢ € K such that w = (v1,...,v,,¢,0,0,...) is in €.
Then

k
s ) = pa )l = s o = w)ll = || 32((w = w

k
SZ v—w ’L|—Z‘—cun+1+2v]

i=1 j=n+1
Fle &2
<Zz_:<2k 4k2) =

Thus pr,(€) is dense in pr(B) and the proof is complete. =

We do not know whether Theorem 1 remains true if we consider projec-
tions onto planes of infinite codimension instead of k-hyperplanes. However,
the example € is well behaved with respect to such planes provided that they
are associated with the standard basis. If A C N then we define the plane

M(A) = {2z € (*:2; =0 for every i € A}.

CrLAIM 17. For every infinite subset A of N we have

Par(a)(€) = par(a)(B).

Proof. Let A C N be infinite. Pick arbitrary veEBand 0 < e <1 and

choose an n € A such that ZJ i1 7)] < €2 Observe that there is a c € K
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such that w = (v1,...,vp-1,¢,0,0,...) is in €. Then

19310y () = Brcay (@)1 = Doarcay(e —w)ll = || 3 (0 = wi)e
iEN\A

Thus pys(4)(€) is dense in py;4)(B) and the proof is complete.

5. Zero-dimensional screens

DEFINITION 6. Let A, B C ¢?. We say that B is a screen for A if every
line in ¢2 that meets A also meets B, or equivalently, every shadow of B
contains the corresponding shadow of A.

Borsuk [3| has shown that there are Cantor sets in R™ that act as screens
for e-balls (see |6] for a simple proof). Since in infinite-dimensional vector
spaces compacta are nowhere dense, we need a different approach to find
zero-dimensional screens in £2.

DEFINITION 7. Let z € ¢2 and let a,b € R with 0 < a < b. Define the
open set sh (z) = {y : a < ||y — x| < b}. We call any set of this form a shell
with thickness b — a.

Let A stand for the Lebesgue measure on R. We extend the use of A to
lines ¢ in Hilbert space as follows: If A is a measurable set in R, z € ¢, and
w is a unit vector parallel to ¢, then A({z +tu:t € A}) = A\(A).

LEMMA 18. If 0<a <b, p € (2, and { is a line in (2, then A\(¢Nsh?(p))
< 2vVb? — a?.

Proof. We may assume that p = 0. Let « be the point on £ that is closest
to 0 and note that

AfNshl(0)) = X{t eR:a? — |jz|*> < t? < b* — ||z||*}).
If ||z > b then £ N sh®(0) = 0. If @ < ||z|| < b then
A(¢Nsh?(0)) < 2/02 — |[z]]2 < 2V/b2 — a2.
If ||z]] < a then
AN shy(0)) < 2(V? — ]2 = Va? — [l]?) < 2v/b? — a2,
where we have used the fact /I + 5 <Vt -+ /5. =

THEOREM 19. For every € > 0 there exists a zero-dimensional closed set
3. in 02 such that A\(£\ 3:) < € for every line ¢ in €%, and hence 3. is a
screen for (2.
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Proof. Let € > 0 and select a countable base B = {B,, (v,) : n € N}
of neighbourhoods for ¢2. We may assume that v, < 1 for all n. Define
6n = (1 +e24 " H1/4 > 1 for every n € N and put

3 =02\ U sy (v

Since the complement of 3. contains the boundary of every element of the
base B, the closed set 3. is zero-dimensional. Let £ be an arbitrary line in
£? and note that by Lemma 18 we have

A\ 3) < 22\/7,2;5,% B Z'Y” 2 n <Zgz—

COROLLARY 20. If F is a closed subset of (> and U 18 an open neigh-
bourhood of F', then there exists a zero-dimensional closed screen for F in (2
that is contained in U.

Proof. Let G = %\ U. We define the following closed sets:
Fo={z el :dxG)>1/8)
and for n € N,
Fo={xef?:dz F)<2"and 27" < d(z,G) < 27"}.

Invoking Theorem 19 we define

o0
Z = J(Fnn3y-n2).
Since every F,, is disjoint from G we have Z C U. We prove that Z is closed
by showing that {F,, N Zy—n—2 : n € {0} UN} is a locally finite family. If
x € (2 then d(z, F) > 0 or d(z,G) > 0. If « = d(z, F') > 0 then B, j5(z) will
miss every F, with 27"*! < o and n > 0. Likewise, if 3 = d(z,G) > 0 then
Bgo(x) will miss every F, with 27" < 3 and n > 0.

It remains to show that Z is a screen for F. Consider an arbitrary line £
such that z € /N F. We need to show that /N Z # (). Note that d(z, G) > 0.
If d(x,G) > 1/4 then By g(w) C Fp, which means that A(¢ N Fp) > A(£N
Byg(x)) = 1/4. Since A(€\ 31/4) < 1/4 we have £ N Fy N 314 # () and
hence ¢ N Z # 0. So we may assume that d(z,G) < 1/4. Then there is an
n € N such that 27772 < d(x,G) < 27!, Thus, By-n-3(x) C F, and hence
AN EF,) > MlN By—n-s(x)) = 27772, Since A\(£\ 33-n-2) < 27" 2 we have
LN F,N39-n—2# 0 and hence £ N Z # ).

Finally, observe that Z is zero-dimensional as a countable union of zero-
dimensional closed sets. m

The next corollary explains why we consider only projections of closed
sets in this paper.
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COROLLARY 21. If U is an open set in (2, then there is a zero-dimen-
sional closed subset Z of U such that pg(Z) = py(U) for every hyperplane
H in (2.

Proof. Take a locally finite open cover U = {U; : i € N} of the space U
such that U; C U for every i € N. Shrink U to a closed cover {V; : i € N}
of U. Note that every V; is closed in ¢2. Now, for each pair (V;, U;) we apply

Corollary 20 to find a zero-dimensional closed set Z; C U; that is a screen
for V;. The set Z = J;2, Z; is as required. =

6. Imitating arbitrary closed convex sets. Suppose B is a closed
convex set in £2. If C is a closed set such that B and C have the same
projections onto k-hyperplanes, then Theorem 9 implies that C' contains at
least the set £¥(B). We show that for every B there exist “minimal” examples
of such “imitations” C' of B, in the sense that dim(C'\ £¥(B)) < 0. This was
proved for closed sets B in R™ in [1, Theorem 6]. Our starting point is the
construction given in [1] but again some of the details are more complicated
when dealing with sets in Hilbert space.

DEFINITION 8. If A is a nonempty set in 2, then star A = {tx : 0 <t < 1
and x € A}, that is, the union of all line segments that connect the origin
to points of A. If A is closed and convex, 0 € A°, and k € N, then we define
KF(A) = star(£F(A)) U cc A. Note that KF(A) is a closed subset of A and
that A N KF(A) = EF(A).

The following lemma extends [1, Lemma 3] to sets in ¢2.

LEMMA 22. If k € N and B is a closed conver set with 0 € B°, then
KF(B) and B have identical projections onto all k-hyperplanes H such that
LpNHt = {0}.

Proof. Let H be a k-hyperplane such that py(K¥(B)) # pu(B) and
Lp N H* = {0}. Since K¥(B) C B there is a w € B such that the k-plane
M = w + H* is disjoint from KF(B). Consider the collection

F ={F : F a derived face of B with F N M # (}.

Note that B € F because B is a derived face of itself and w € BN M. Since
E¥(B) c KF¥(B) c £2\ M it follows that codim F < k for each F € F.
Thus we can choose a derived face F € F with maximal codimension in ¢2.
If F° = () then Lemma 5 yields F = &¥(F) c £¥(B) c K¥(B) and we have
a contradiction with M NK*(B) = 0 and F N M # (. Thus F° # (). Let
ue FNM.

Assume that dim(M Naff F') > 1 and so there is a line ¢ through u such
that £ C MNaff F. If £ contains points outside F', then £ will have to meet OF.
Since F° # () Remark 2 implies that £ meets some face G of F'. Consequently,



Closed sets with convex projections 31

codim G > codim F' and G € F, in violation of the maximality of codim F'.
Thus £ is contained in F' and hence / —u C Lr C Lp. On the other hand,
¢ —uC M —u= H*, which violates the assumption £z N H+ = {0}.

Thus M N aff F = {u} and the two planes are transverse. We have k >
codim F' = codim(aff F') > dim M = k and hence codim F' = k, which means
that M and aff F' are complementary planes. This allows us to define a (not
necessarily orthogonal) projection @ : 2 — aff F' by the rule {¢(z)} =
(r —u+ M)Naff F. If 1)(0) = u then 0 € M N K¥(B) and we are done. So
assume that 1(0) # u and consider the ray R = {t(u — ¢ (0)) : t > 0} that
emanates from the origin. Observe that since u € F' and ¥ (0) € aff I the ray
u+ R is contained in aff F'. We first consider the case that u+ R C F. Then
R C cc B C K¥(B). Note that u = ¥(u — 9(0)) € ¥(R) so M = ¢~ (u)
intersects R and KC¥(B). If, on the other hand, the ray v+ R is not contained
in F, then it intersects OF in some point v = u+t(u—1(0)). Note that since
F° # (), v is contained in some face G of F' and codimG > codim F = k,
so v € E¥(B). The line segment o that connects 0 to v is contained in
KC¥(B). Note that (o) is a line segment that connects 1/(0) to v and hence
it contains the point u = (v + t1(0))/(1 + t). Consequently, M intersects o
and hence it intersects KF(B). m

Proof of Theorem 2. Let B be a closed convex set in £2 such that codim B
# k € N. If B° = () then according to Lemma 5, £¥(B) = B and there is
nothing to prove. If k < codim B then also £¥(B) = B. So we may assume
that B° # () and k > codim B. Choose a coordinate system such that 0 € B°.
We first prove the assertion for the case aff B = (2.

The k-imitation C' will have the form £¥(B)UZ; U Zs, where both Z; and
Z5 are zero-dimensional sets. We first construct Z;. Consider the open subset
D = B\ €¥(B) of B and the set K = K*(B) \ £¥(B), which is closed in D.
Choose a locally finite open cover {U; : i € N} for K in D consisting of sets
whose closures are in D. Since K N 9B = () we may assume that the sets U;
are open in aff B = ¢2. Shrink this cover to a cover {V; : i € N} of K by closed
sets such that V; C U; for every ¢ € N. According to Corollary 20 we can find
for each 7 € N a zero-dimensional screen F; for V; that is contained in U; and
hence every line in ¢ that intersects V; also meets F;. Put Z; = Uf; F; and
note that every line that intersects K also meets Z;. Then, since {F; : i € N}
is a locally finite collection of closed zero-dimensional sets in D, it follows
that Z; is closed in D and zero-dimensional. Consequently, £¥(B) U Z; is
closed in B and in ¢2. For Z; we simply take B N 3; (see Theorem 19).

It remains to show that C and B have identical projections onto k-
hyperplanes. Let H be an arbitrary k-hyperplane and let v € B. Let M

be the k-dimensional plane u + H+ = py'(pg(u)). First consider the case
Lp N HL # {0}. Then Lz N H* contains a line ¢ through 0. Thus u + £ C
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BN M and we see that w + £ N 31 # () and hence u + £ N Zy # (. Thus M
intersects C. If Lg N H+ = {0} then Lemma 22 shows that M meets K*(B)
and therefore it meets £¥(B) or Z; by the construction of Z;. Consequently,
M intersects C' and the theorem is proved for codim B = 0.

Finally, consider the remaining case £ > codimB > 0. Put n = k —
codim B and note that H = aff B is a copy of £? that can be used as the
ambient space. Applying what we have just proved to B C H and the integer
n we find a closed set C' C B such that every n-plane in H that meets B also
meets C' and dim(C\ &} (B)) < 0, where £} is determined with H as ambient
space. Note that £%(B) = £¥(B). If M is a k-plane in £? that meets B, then
dim(M N H) > nso M N H must meet C. The proof is complete. m

REMARK 5. If codim B = k, then the conclusion of Theorem 2 becomes
invalid. Consider a B with B° # () and codim B = k. According to Remark 2,
OB is the union of the faces of B so £¥(B) = 0B and B\ £¥(B) is homeo-
morphic to £2. However, if we project onto aff B we find that B is the only
k-imitation of B.

Let 2 be an arbitrary vector in ¢2. Note that in the proof of Theorem 2
the zero-dimensional set Z; U Zy = C'\ £¥(B) is constructed as a subset of
U>0 3¢ (see also the proof of Corollary 20). If in the proof of Theorem 19
we use a fixed base B such that x is contained in the boundary of one of
the basic neighbourhoods, then we find that = ¢ C'\ £¥(B). Combining this
observation with Theorem 9 we find:

COROLLARY 23. If B is a closed convexr set with codim B # k, then
Ek(B) equals the intersection of all closed k-imitations of B.

We conclude with an example that shows that in Theorem 1 not even
one of the directions in which the projections are proper can be missed. So
the theorem is sharp in that respect.

EXAMPLE 4. Consider the standard basis B = {e!,e? ...} in /2. Fix
k€ Nand let B = {z € ¢*: Zlex% < 1}. Note that Lp = {z € ¢ :
xy = -+ = x = 0} is a k-hyperplane. According to Lemma 6 we have
E¥(B) = 0 so by Theorem 2 the convex body B has a zero-dimensional
closed k-imitation C. Consider the set H of all k-hyperplanes H such that

0 € H and H* has a subset of B as a basis. Then we have the following:
Lp €M, pcy(B)=Ls,

it H+# Lp, H € H, then py(B) # H.
So, in other words, the closure of the projections onto all elements of H
but one are proper and the k-imitation C', being zero-dimensional, does not
contain a copy of £2.
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