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On 
losed sets with 
onvex proje
tions in Hilbert spa
ebyStoyu Barov (So�a) and Jan J. Dijkstra (Amsterdam)
Abstra
t. Let k be a �xed natural number. We show that if C is a 
losed and non-
onvex set in Hilbert spa
e su
h that the 
losures of the proje
tions onto all k-hyperplanes(planes with 
odimension k) are 
onvex and proper, then C must 
ontain a 
losed 
opyof Hilbert spa
e. In order to prove this result we introdu
e for 
onvex 
losed sets B theset Ek(B) 
onsisting of all points of B that are extremal with respe
t to proje
tions onto

k-hyperplanes. We prove that Ek(B) is pre
isely the interse
tion of all k-imitations C of
B, i.e., 
losed sets C that have the same proje
tions as B onto all k-hyperplanes. For every
losed 
onvex set B in ℓ

2 with nonempty interior we 
onstru
t �minimal� k-imitations C,in the sense that dim(C \ Ek(B)) ≤ 0. Finally, we show that whenever a 
ompa
t set has
onvex proje
tions onto all �nite-dimensional planes, then it must be 
onvex.1. Introdu
tion. Consider the ve
tor spa
e R
n for n ≥ 3. Let us 
all theimage of a subset X of R

n or Hilbert spa
e under an orthogonal proje
tiononto a hyperplane a shadow of X. Borsuk [3℄ has shown that there existCantor sets in R
n su
h that all their shadows 
ontain (n − 1)-dimensional
onvex bodies. In 
ontrast, Cobb [5℄ showed that every 
ompa
tum C in R

nwith the property that all its shadows are 
onvex bodies 
ontains an ar
.Dijkstra, Goodsell, and Wright [6℄ improved on this result by showing thatsu
h a C must 
ontain an (n− 2)-sphere, so in this 
ase proje
tions 
annotraise dimension by more than one.The starting point of the present paper are the results in Barov, Cobb,and Dijkstra [1℄. In that paper 
losed sets C in R
n that have 
onvex proje
-tions onto all k-dimensional planes are 
onsidered. If the proje
tions of C areproper in a su�
ient number of dire
tions, then it is proved that C 
ontainsa 
losed subset that is a (k− 1)-manifold without boundary. Also, for every
losed and 
onvex set B ⊂ R

n with nonempty interior �minimal imitations�2000 Mathemati
s Subje
t Classi�
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18 S. Barov and J. J. Dijkstraare 
onstru
ted, whi
h are 
losed sets that have the same proje
tions onto
k-planes and are minimal with respe
t to dimension. A natural question iswhether one 
an get similar results when the underlying spa
e is the realHilbert spa
e ℓ2 instead of R

n. The answer to this question is positive andthe main purpose of this paper is to formulate and prove these results.In order to formulate the main theorems we need some de�nitions. If
A ⊂ ℓ2 then we de�ne

A⊥ = {v ∈ ℓ2 : v · x = v · y for all x, y ∈ A},where · denotes the inner produ
t. Also we de�ne
codimA = dimA⊥ ∈ {0, 1, . . . ,∞}.A plane in ℓ2 is a 
losed a�ne subspa
e of ℓ2 and a plane L is 
alled a

k-plane if dimL = k. A k-hyperplane H is a plane with codimH = k. If L isa plane then pL : ℓ2 → L denotes the orthogonal proje
tion onto L, de�nedby {pL(x)} = L ∩ (x + L⊥) for x ∈ ℓ2. A basis for ℓ2 is a set of linearlyindependent ve
tors whose linear hull is dense in ℓ2. Finally, A denotes the
losure of A in ℓ2.Theorem 1. Let k ∈ N, let B be a 
losed 
onvex subset of ℓ2, and let Cbe a 
losed set in ℓ2 su
h that B 6= C. Assume that p(C) = p(B) for everyproje
tion p of ℓ2 onto a k-hyperplane. If there exists a basis B for ℓ2 su
hthat pL⊥(C) 6= L⊥ for every linear spa
e L generated by k elements of B,then C 
ontains a 
losed set homeomorphi
 to ℓ2.If k ∈ N then two subsets A and B of ℓ2 are 
alled k-imitations of ea
hother if they have identi
al proje
tions onto all k-hyperplanes or, equiv-alently, a k-plane meets A if and only if it meets B. In order to proveTheorem 1 we introdu
e for 
losed 
onvex sets B the sets Ek(B) 
onsist-ing of points of B that are �extremal with respe
t to proje
tions onto k-hyperplanes�. We prove that Ek(B) is pre
isely the interse
tion of all 
losed
k-imitations of B (Corollary 23) and we �nd the required 
opy of ℓ2 in thisset.In the �nal se
tion we 
onstru
t minimal imitations of B:Theorem 2. If k ∈ N and if B is a 
losed 
onvex subset of ℓ2 su
hthat codimB 6= k, then there exists a 
losed k-imitation C of B su
h that
dim(C \ Ek(B)) ≤ 0.In the pro
ess of proving our results we follow the general approa
h of [1℄,whi
h in turn was based on the method of Dijkstra, Goodsell, and Wright [6℄.However, some of the arguments in [1℄ rely on properties of �nite-dimensionalspa
es that are not valid in Hilbert spa
e su
h as the fa
t that in R

n theinterior of a 
onvex set in its a�ne hull is nonempty and that every 
losed setin R
n is σ-
ompa
t. This 
alls for a di�erent approa
h or a more 
ompli
ated



Closed sets with 
onvex proje
tions 19argument in some pla
es. In parti
ular, the role of 
ompa
ta is very di�erentin ℓ2 and is dis
ussed in �4, a se
tion with no analogue in [1℄.Our paper is organized as follows. In �2 we establish the terminology andwe present basi
 lemmas. Theorem 1 is proved in �3. We deal with proje
tionsonto �nite-dimensional planes and the role of 
ompa
ta in �4. �5 is abouthiding sets behind zero-dimensional sets, and the results from that se
tionare then used to prove Theorem 2 in �6.2. De�nitions and preliminaries. In this se
tion we set up our ter-minology and we give the basi
 lemmas in preparation for the proof of themain theorems. Throughout this paper the underlying spa
e will be the realHilbert spa
e ℓ2, de�ned as follows:
ℓ2 =

{

x = (xn)∞n=1 : xn ∈ R and
∞

∑

i=1

x2
i <∞

}

.The origin of ℓ2 will be denoted by 0. Let u=(u1, u2, . . . ) and v=(v1, v2, . . . )be elements of ℓ2. We shall use the standard dot produ
t: u · v =
∑∞

i=1 uivi.The norm on ℓ2 is given by ‖u‖ =
√
u · u and the metri
 d by d(u, v) =

‖v− u‖. Throughout this paper Bε(x) stands for the open ε-neighbourhoodof the point x. Let {e1, e2, . . . } denote the standard orthonormal basis for ℓ2,that is, ei is the unit ve
tor in the positive dire
tion of the xi-axis.A plane in ℓ2 is a 
losed a�ne subspa
e of ℓ2, thus planes have the form
v + L where v ∈ ℓ2 and L is a 
losed linear subspa
e of ℓ2. Note that theset A⊥ as de�ned in the introdu
tion is a 
losed linear subspa
e of ℓ2. If Lis a plane in ℓ2, then L⊥ is 
alled the ortho
omplement of L. Note that wehave extended the usual de�nition of ortho
omplement from linear spa
esto a�ne spa
es in su
h a way that L⊥ = (v + L)⊥. A k-plane in ℓ2 isa k-dimensional a�ne subspa
e of ℓ2 and a k-subspa
e is a k-dimensionallinear subspa
e of ℓ2. We will identify the spa
e R

k with the k-subspa
e
{x ∈ ℓ2 : xk+1 = xk+2 = · · · = 0}. The unit sphere in ℓ2 is denoted by
S∞. By proje
tion we mean orthogonal proje
tion. If L is a plane in ℓ2, then
pL : ℓ2 → L denotes the orthogonal proje
tion onto L. The 
losure of a set
A in ℓ2 is denoted by A. The interior of a set A in ℓ2 is denoted by intA.Definition 1. Let L be a plane in ℓ2. A plane H ⊂ L is 
alled a k-hyperplane in L if dim(H⊥ ∩ L) = k. In other words, a k-hyperplane is aplane with 
odimension k in the ambient spa
e. A hyperplane H of L isa plane of L of 
odimension 1. A shadow of a set A is a proje
tion of Aonto a hyperplane. The two 
omponents of L \H are 
alled the sides of thehyperplane H. We say that H 
uts a subset A of L if A 
ontains points onboth sides of H. A subset V of L is 
alled a halfspa
e of L if it is the unionof a hyperplane and one of its sides. If L is a k-plane, k ∈ N, then V is 
alleda k-halfplane in ℓ2. A 1-halfplane is 
alled a halfline or a ray .



20 S. Barov and J. J. DijkstraDefinition 2. Let A be a nonempty subset of ℓ2. We denote the 
onvexhull of A by 〈A〉. The a�ne hull aff A of A is the interse
tion of all planesof ℓ2 that 
ontain A. Note that codimA = codim(aff A). Let ∂A stand forthe boundary of A with respe
t to aff A and let A◦ = A \ ∂A.If A is a �nite-dimensional 
onvex set, then A◦ 6= ∅. For in�nite-dimen-sional 
onvex sets this is not true (see Example 1).Lemma 3. Let B be a 
onvex set in ℓ2 with B◦ = ∅. If A is a subset of
B with �nite 
odimension in ℓ2, then A◦ = ∅.Proof. Striving for a 
ontradi
tion, we assume that there is an X ⊂ Bsu
h that X◦ 6= ∅ and codimX < ∞. Now, let n be the minimum integerwith the following property:

• There is a set A ⊂ B su
h that A◦ 6= ∅ and codimA = n.Put H = aff A and F = B ∩H so H = aff F and F ◦ 6= ∅. Note that F 6= Band sele
t an x ∈ B\H. Consider H ′ = aff(F ∪{x}). Note that {x+t(y−x) :
0 < t < 1, y ∈ F ◦} is a nonempty open subset of H ′ that is 
ontained in B.So we have (H ′ ∩ B)◦ 6= ∅. Clearly, codim(H ′ ∩ B) = codimH ′ = n − 1 inviolation of the minimality of n.Definition 3. Let B be a 
losed 
onvex set in ℓ2. A nonempty subset
F of B is 
alled a fa
e of B if there is a hyperplane H of aff B that does not
ut B with the property F = B ∩H. Note that F is also 
losed and 
onvex,and codimF > codimB whenever codimB is �nite. If F is a fa
e of B wewrite F ≺ B. We say that a subset F of B is a derived fa
e of B if F = Bor there exists a sequen
e F = F1 ≺ · · · ≺ Fm = B for some m.Remark 1. Let F ≺ B and assume that m = codimF is �nite. Put
Hm = aff F , k = codimB, and Hk = aff B. There is a hyperplane Hk+1 of
Hk that does not 
ut B and has the property F = B∩Hk+1. If Hk+1 6= aff Fthen m > k + 1 and we 
an �ll in the missing dimensions and 
onstru
t asequen
e Hm ⊂ Hm−1 ⊂ · · · ⊂ Hk of a�ne spa
es su
h that codimHi = ifor i ∈ {k, . . . ,m}. Note that if k + 1 < i ≤ m then

B ∩Hi−1 ⊂ B ∩Hk+1 = F ⊂ Hm ⊂ Hiand hen
e Hi is a hyperplane Hi−1 that does not 
ut B ∩Hi−1.Observe now that if F is a derived fa
e of B and m ≤ codimF , thenwe 
an �nd a sequen
e of a�ne spa
es Hm ⊂ Hm−1 ⊂ · · · ⊂ H0 su
h that
codimHi = i for ea
h i, aff F ⊂ Hm, and Hi is a hyperplane in Hi−1 thatdoes not 
ut B ∩Hi−1 for i ∈ {1, . . . ,m}.Remark 2. We list a few fa
ts 
on
erning 
losed 
onvex sets and hyper-planes. Note that if F ≺ B then F ⊂ ∂B. Let B be a 
losed 
onvex set in ℓ2with B◦ 6= ∅. Sin
e intB = B (see [4, p. TVS II.14℄), a hyperplane H 
uts
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B if and only if H meets the interior of B. A

ording to the Hahn�Bana
htheorem (see [10, p. 197℄) every point in ∂B is 
ontained in a hyperplane Hof aff B that does not 
ut B. In other words, ∂B equals the union of thefa
es of B. However, if B◦ = ∅ then ∂B = B may not equal the union of allits fa
es as the following example shows.Example 1. Consider the 
onvex 
ompa
tum

B = {x ∈ ℓ2 : xn ∈ [−2−n, 2−n] for all n ∈ N}.Assume that H is a hyperplane through the origin. Then H 
an be rep-resented as H = {v ∈ ℓ2 : v · u = 0} for some u ∈ S∞. Thus, thereis a k ∈ N su
h that uk 6= 0. Let v1 = (0, . . . , 0, 2−k, 0, . . .) and v2 =
(0, . . . , 0,−2−k, 0, . . .). Then v1 and v2 are on di�erent sides of H be
ause
u · v1 and u · v2 have opposite signs. Consequently, H 
uts B and hen
e0 is 
ontained in no fa
e of B. This also means that B is 
ontained in nohyperplane and hen
e aff B = ℓ2 and B◦ = ∅ be
ause B is 
ompa
t.However, the union of the fa
es is always dense in ∂B.Lemma 4. Let B be a 
losed 
onvex set in ℓ2 with B◦ = ∅. Then the set
⋃{F : F is a fa
e of B} is dense in B.Proof. Let x ∈ B = ∂B and ε > 0. Pi
k z ∈ Bε(x)∩(aff B\B). A

ordingto [10, p. 347℄ there is a unique point y ∈ B with minimal distan
e to z.By the Hahn�Bana
h theorem there is a hyperplane H in aff B separating
B and Bδ(z), where δ = ‖z − y‖. Observe that y ∈ H. Hen
e y is a point ofthe fa
e H ∩B. Also,

‖x− y‖ ≤ ε+ δ ≤ 2ε.Sin
e ε is arbitrary, this 
ompletes the proof.Definition 4. Let B be a 
losed 
onvex set in ℓ2 and let k ∈ N. Wede�ne Ek(B) as the 
losure of
⋃

{F : F is a derived fa
e of B with codimF > k}.Lemma 5. Let B be a 
losed 
onvex set in ℓ2 with B◦ = ∅. Then Ek(B)
= B for every k ∈ N.Proof. Assume that Ek(B) 6= B and 
onsider the 
olle
tion

F = {F : F is a derived fa
e of B su
h that F \ Ek(B) 6= ∅}.Sin
e B is a derived fa
e of itself we have B ∈ F . By the de�nition of Ek(B),every F ∈ F has codimF ≤ k. So we 
an sele
t an F in F with maximal
odimension. By Lemma 3 we have F ◦ = ∅. Sin
e F \ Ek(B) is a nonemptyopen subset of F , Lemma 4 shows that there is a fa
e G of F su
h that
G \ Ek(B) 6= ∅ and hen
e G ∈ F . Sin
e codimG > codimF , we have a
ontradi
tion with the maximality of codimF .



22 S. Barov and J. J. DijkstraDefinition 5. Let B be a 
losed 
onvex set in ℓ2. We de�ne the 
har-a
teristi
 
one of B by
ccB = {y ∈ ℓ2 : there is an x with x+ αy ∈ B for all α ≥ 0}.The 
hara
teristi
 linear spa
e of B is de�ned by LB = ccB ∩ − ccB. The
ross se
tion of B is the set csB = B ∩ L ⊥

B .Remark 3. If B ⊂ ℓ2 is 
losed and 
onvex, then we have the followingfa
ts (see [8, �2.5℄ and [2, p. 93℄). The 
one ccB is 
losed and 
onvex. If x isany �xed element of B, then
ccB = {y ∈ ℓ2 : x+ αy ∈ B for all α ≥ 0}.

LB is a 
losed linear spa
e: the unique maximal linear subspa
e of ℓ2 su
hthat B = B + LB.The following lemma is analogous to [1, Lemma 4℄ with a virtually iden-ti
al proof.Lemma 6. Let B be a 
losed 
onvex set in ℓ2. If F is a (derived) fa
eof B, then LF = LB and csF is a (derived) fa
e of csB. If , on the otherhand , F is a (derived) fa
e of csB, then LB + F is a (derived) fa
e of B.Remark 4. We will need information about the topology of boundariesof 
onvex bodies B in ℓ2, i.e. 
losed 
onvex sets with nonempty interior.A

ording to [2, Proposition III.6.1℄ the boundary of a 
onvex body is eitherempty or homeomorphi
 to ℓ2 or Sn × ℓ2 for some n-sphere Sn. Thus ∂B iseither empty or it 
ontains 
losed 
opies of ℓ2.3. Proje
ting onto k-hyperplanes. The main purpose of this se
tionis to establish Theorem 1. We shall need the following result from [1℄, knownas the Tipping Lemma.Lemma 7. Let B be a 
losed 
onvex set in R
m for m ≥ 2, let C be a
losed subset of B, and let H be a hyperplane of R

m that does not 
ut B. If Vis a halfspa
e of H su
h that V ∩C = ∅ and V ∩B is nonempty and bounded ,then there exists a halfspa
e V ′ of R
m su
h that V ⊂ V ′, V ′ ∩ C = ∅, and

V ′ ∩B is bounded.Before getting to the main theorems we need one more lemma.Lemma 8. Let C be a subset of ℓ2 and let D = 〈C〉. If p is a proje
tiononto a plane su
h that p(C) is 
onvex , then p(C) = p(D). If B is a 
losed
onvex set su
h that pℓ(C) ⊂ pℓ(B) for every line ℓ in ℓ2, then D ⊂ B.Proof. If p(C) is 
onvex then
p(C) ⊂ p(D) = p(〈C〉) ⊂ p(〈C〉) = 〈p(C)〉 ⊂ 〈p(C)〉 = p(C) = p(C),thus p(C) = p(D).
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onvex proje
tions 23For the se
ond part, assume that there is an x ∈ D \B. Sin
e B is 
losedand 
onvex we may assume that x ∈ C \ B. Then by [10, p. 191℄ there is ahyperplane H su
h that x and B are on di�erent sides of H. Let ℓ be theline H⊥ and note that pℓ(x) and pℓ(B) are separated in ℓ by the point ofinterse
tion of ℓ and H. Thus pℓ(x) /∈ pℓ(B), whi
h 
ontradi
ts the premisethat pℓ(C) ⊂ pℓ(B). We 
on
lude that D ⊂ B.The following theorem is analogous to [1, Theorem 3℄. It tells us whi
hpoints are �extremal� with respe
t to proje
tions onto k-hyperplanes.Theorem 9. Let k ∈ N, let B be a 
losed 
onvex subset of ℓ2, and let
C be a 
losed set in ℓ2. If p(C) = p(B) for every proje
tion p of ℓ2 onto a
k-hyperplane, then Ek(B) ⊂ C ⊂ B.Proof. We �rst verify that C ⊂ B. Let ℓ be a line in ℓ2. Sele
t a k-hyperplane H that 
ontains ℓ. Then

pℓ(C) = pℓ(pH(C)) ⊂ pℓ(pH(B)) ⊂ pℓ(pH(B)) = pℓ(B),thus C ⊂ 〈C〉 ⊂ B by Lemma 8.In order to prove that Ek(B) ⊂ C it su�
es to show that every derivedfa
e of B with 
odimension greater than k is 
ontained in C. So assume that
F is a derived fa
e of B with 
odimension m > k (m 
ould be ∞) and F \C
6= ∅. Choose a re
tangular 
oordinate system for ℓ2 su
h that 0 ∈ F \C. ByRemark 1 we 
an �nd a sequen
e of a�ne spa
es ℓ2 = H0 ⊃ H1 ⊃ · · · ⊃ Hk+1su
h that codimHi = i for ea
h i, aff F ⊂ Hk+1, and Hi is a hyperplane in
Hi−1 that does not 
ut B ∩Hi−1 for i ∈ {1, . . . , k + 1}.We 
onstru
t by indu
tion a sequen
e 0 ∈ V1 ⊂ · · · ⊂ Vk+1 su
h that for
1 ≤ i ≤ k + 1:(1) Vi is an i-halfplane in Hk+1−i,(2) Vi ∩ C = ∅,(3) Vi ∩B is bounded.Let V1 be a ray in Hk that emanates from 0 into the side of Hk+1 thatis disjoint from B. Note that V1 ∩ B = {0} and hen
e V1 ∩ C = ∅ so theindu
tion hypotheses are satis�ed.Now let 1 ≤ i ≤ k and assume that Vi has been found. Let ℓ ⊂ Hk−i bethe line through 0 that is perpendi
ular to Hk−i+1 and let M ⊂ Hk−i be the
(i+1)-plane ℓ+aff Vi. Put H = Hk−i+1 ∩M , C ′ = C ∩M and B′ = B∩M .Apply Lemma 7 to M , H, C ′, B′, and Vi. We obtain a halfspa
e Vi+1 of Msu
h that Vi ⊂ Vi+1, Vi+1 ∩ C ′ = Vi+1 ∩ C = ∅ and Vi+1 ∩ B′ = Vi+1 ∩ B isbounded. This 
ompletes the indu
tion.Sin
e 0 is an element of the (k + 1)-halfplane Vk+1, there is a (unique)
k-plane N su
h that 0 ∈ N ⊂ Vk+1. Of 
ourse, N ∩ C = ∅ and N ∩ B isbounded.



24 S. Barov and J. J. DijkstraNext we prove that d(N,C) > 0. Sin
e N ∩ B is bounded we 
an�nd an a > 0 su
h that the sphere S = {x ∈ N : ‖x‖ = a} is dis-joint from B. By 
ompa
tness of S and of K = {x ∈ N : ‖x‖ ≤ a} wehave ε = min{d(S,B), d(K,C)} > 0. Let x ∈ C and y ∈ N be su
h that
‖x − y‖ < ε. Then x ∈ B and b = ‖y‖ > a. By 
onvexity of B and 0 ∈ Bwe have x′ = (a/b)x ∈ B. Put y′ = (a/b)y and note that y′ ∈ S and
‖x′ − y′‖ = (a/b)‖x − y‖ < ε. So we have a 
ontradi
tion with d(S,B) ≥ εand we may 
on
lude that d(N,C) ≥ ε.Let O be the subspa
e of ℓ2 that is the ortho
omplement of N . Clearly,the 
odimension of O is k. Then d(0, pO(C)) = d(N,C) > 0 and hen
e0 /∈ pO(C) = pO(B), whi
h 
ontradi
ts the fa
t 0 = pO(0) ∈ pO(B). Wemay 
on
lude that F ⊂ C.Corollary 10. Let k ∈ N and let B be a 
losed and 
onvex set in
ℓ2 with B◦ = ∅. If C is a 
losed set su
h that pH(B) = pH(C) for every
k-hyperplane H in ℓ2, then B = C.Proof. This follows dire
tly from Lemma 5 and Theorem 9.The following theorem is analogous to [1, Theorem 4℄ with an importantdistin
tion: the essential property (
f. Remark 4) that F ◦ 6= ∅ is gratis in�nite-dimensional spa
es whereas here it is based on Lemma 4.Theorem 11. Let k ∈ N, let B be a 
losed 
onvex set in ℓ2, and let C bea 
losed subset of ℓ2 su
h that C 6= B and p(C) = p(B) for every proje
tion
p of ℓ2 onto a k-hyperplane. Then there exists a derived fa
e F of B su
hthat F ◦ 6= ∅, codimF ≤ k and ∂F ⊂ C.Proof. Consider the 
olle
tion D of all derived fa
es of B that are not
ontained in C. By Theorem 9, C ⊂ B so B 6= C implies that B ∈ D. Alsoby Theorem 9 every element of D has 
odimension at most k so there isan F ∈ D with maximal 
odimension in ℓ2. Every fa
e of F has a higher
odimension than F so all the fa
es of F are subsets of C. If F ◦ = ∅ then byLemma 4 the union of its fa
es is dense in F and hen
e F ⊂ C be
ause C is
losed. This result 
ontradi
ts F ∈ D so we have F ◦ 6= ∅. Then by Remark 2every point of ∂F is 
ontained in some fa
e of F and hen
e ∂F ⊂ C.The zero-dimensional 
losed sets Zε of Theorem 19 below have 
onvexproje
tions onto every hyperplane. However, they have the property that theboundary of every derived fa
e of 〈Zε〉 is empty, making Theorem 11 voidwhen applied to su
h a set. Now the properness of 
ertain proje
tions in thepremise of Theorem 1 
omes into play.Proof of Theorem 1. Let k, B and C be as in the statement. Assume that
p(C) = p(B) for every proje
tion p of ℓ2 onto a k-hyperplane and there exists
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onvex proje
tions 25a basis B for ℓ2 su
h that pL⊥(C) 6= L⊥ for every linear spa
e L generatedby k elements of B.By Theorem 11 we 
an �nd a derived fa
e F of B su
h that codimF ≤ k,
∂F ⊂ C, and F ◦ 6= ∅. Let H be a k-hyperplane 
ontained in aff F andmeeting F ◦. If we put G = F ∩H then codimG = k and G◦ 6= ∅. Thus Gis a 
onvex body in aff G = H, a spa
e isomorphi
 to ℓ2. Clearly, ∂G is asubset of ∂F and C. By Remark 4, ∂G is empty or it 
ontains a 
losed 
opyof Hilbert spa
e. So, we only need to show that ∂G 6= ∅.Striving for a 
ontradi
tion, assume that ∂G = ∅. Hen
e G = H. Wewill show that there exists a k-hyperplane L su
h that L⊥ is generated byelements of B and pL(H) = L. Let ψ stand for the proje
tion pH⊥ and notethat sin
e B is a basis for ℓ2, the set {ψ(v) : v ∈ B} 
ontains a basis for H⊥,say {ψ(v1), . . . , ψ(vk)}. LetM be the k-dimensional linear spa
e spanned by
{v1, . . . , vk} and put L = M⊥. Pi
k an arbitrary y ∈ L and let us show thatthere is an x ∈ H su
h that pL(x) = y. Indeed,

ψ(y) =
k

∑

i=1

αiψ(vi).Set
x = y −

k
∑

i=1

αiv
i.

Then x ∈ H sin
e ψ(x) = 0. Moreover, pL(x) = y sin
e y = x +
∑k

i=1 αiv
iwith x ∈ H and ∑k

i=1 αiv
i ∈ M = L⊥. That 
ompletes the proof of thetheorem.The following result is a reformulation of Theorem 1 without referen
eto the 
onvex set B.Theorem 12. Let k ∈ N and let C be a 
losed non
onvex subset of ℓ2.Assume that p(C) is 
onvex for every proje
tion p of ℓ2 onto a k-hyperplane.If there exists a basis B for ℓ2 su
h that pL⊥(C) 6= L⊥ for all k-subspa
es Lthat have a subset of B as basis, then C 
ontains a 
losed 
opy of ℓ2.Proof. Put B = 〈C〉. Sin
e C is non
onvex we have C 6= B. A

ordingto Lemma 8, p(C) = p(B) for every proje
tion p onto a k-hyperplane. Nowapply Theorem 1.4. Proje
ting onto �nite-dimensional planes. Consider a 
ompa
tset C in ℓ2 su
h that all proje
tions onto k-hyperplanes are 
onvex. Put

B = 〈C〉 and note that B is also 
ompa
t (see [10, p. 244℄). If B◦ = ∅then a

ording to Lemma 8 and Corollary 10, C is 
onvex be
ause C = B.If B◦ 6= ∅ then aff B is �nite-dimensional and we 
an �nd a k-hyperplane
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H that 
ontains aff B. Thus C = pH(C) and C is 
onvex. The followingtheorem improves on this observation.Theorem 13. If C is a 
ompa
tum in ℓ2 su
h that pRn(C) is 
onvex forea
h n ∈ N, then C is 
onvex. Thus C is either an n-
ell or the Hilbert 
ube.Proof. Let B = 〈C〉. Striving for a 
ontradi
tion, assume that B 6= C,that is, there exists an x ∈ B \ C. Observe that by Lemma 8,

pRn(B) = pRn(C) for every n ∈ N.Thus, for every n ∈ N we 
an pi
k a yn ∈ C su
h that
yn

i = xi for 1 ≤ i ≤ n.Consequently, the sequen
e (yn)n 
onverges 
oordinatewise to x. On theother hand, sin
e C is 
ompa
t we 
an �nd a subsequen
e (yni)i of (yn)n
onverging with respe
t to the norm topology to a point, say z, in C. Thatimplies that (yni)i 
onverges 
oordinatewise to z. Hen
e z = x. We havearrived at a 
ontradi
tion with x ∈ B \C and hen
e B = C. Therefore C is
onvex and by Keller's theorem [9℄ it is homeomorphi
 either to some n-
ellor to the Hilbert 
ube.As an immediate 
onsequen
e of Theorem 13 we get the following 
orol-lary.Corollary 14. Let C be a 
ompa
tum in ℓ2 all of whose proje
tionsonto �nite-dimensional planes are 
onvex. Then C must be 
onvex.Example 2. Consider the unit sphere S∞ in ℓ2. It is a bounded, 
losed,non
onvex set all of whose shadows are 
onvex.We �nish this se
tion with a more interesting example.Example 3. Let K be a Cantor set in [1/2, 1], and for ea
h n ∈ N, let
fn : K → Jn be a 
ontinuous surje
tion, where J = [−1, 1]. De�ne

Cn = {(fn(c), c, 0, 0, . . .) : c ∈ K} ⊂ Jn+1 ⊂ ℓ2.Basi
ally, the Cn's are the graphs of the fn's, so ea
h Cn is homeomorphi
to K. Put
C =

⋃

n∈N

Cn and B = {x ∈ ℓ2 : xn ∈ J for all n ∈ N}.Note that C is zero-dimensional by [7, Theorem 1.5.3℄ and that B is a 
losed
onvex set that 
ontains C and has a nonempty interior. Clearly, Jn =
pRn(Cn) ⊂ pRn(C) and on the other hand pRn(C) ⊂ pRn(B) = Jn.To prove that C is 
losed it su�
es to show that {Cn : n ∈ N} is alo
ally �nite family. Indeed, �x x ∈ ℓ2. There exists an m ∈ N su
h that
∑∞

i=m x2
i < 1/16 and hen
e |xi| ≤ 1/4 for ea
h i ≥ m. Now, if z ∈ Cn with

n ≥ m, then
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‖z − x‖ ≥ zn+1 − xn+1 ≥ 1

2
− 1

4
=

1

4
.Consequently, z 6∈ B1/4(x) and Cn ∩B1/4(x) = ∅ for all n ≥ m.To summarize:Claim 15. C is a 
losed zero-dimensional σ-
ompa
tum su
h that

pRn(C) = pRn(B) = Jn for all n ∈ N.The following result shows that in Theorem 1 we 
annot repla
e proje
-tions onto k-hyperplanes with proje
tions onto �nite-dimensional planes.Claim 16. For every �nite-dimensional plane L in ℓ2 we have
pL(C) = pL(B).Proof. Let L be a �nite-dimensional plane in ℓ2. Sin
e we may assumethat 0 ∈ L we 
an 
hoose an orthonormal basis {u1, . . . , uk} for L. Pi
karbitrary v ∈ B and ε ∈ (0, 1) and 
hoose an n ∈ N su
h that

∞
∑

j=n+1

v2
j <

ε2

4k2
and

∞
∑

j=n+1

(ui
j)

2 <
ε2

4k2
for i = 1, . . . , k.Observe that there is a c ∈ K su
h that w = (v1, . . . , vn, c, 0, 0, . . .) is in C.Then

‖pL(v) − pL(w)‖ = ‖pL(v − w)‖ =
∥

∥

∥

k
∑

i=1

((v − w) · ui)ui
∥

∥

∥

≤
k

∑

i=1

|(v − w) · ui| =
k

∑

i=1

∣

∣

∣
−cui

n+1 +
∞
∑

j=n+1

vju
i
j

∣

∣

∣

<
k

∑

i=1

(

ε

2k
+

ε2

4k2

)

< ε.Thus pL(C) is dense in pL(B) and the proof is 
omplete.We do not know whether Theorem 1 remains true if we 
onsider proje
-tions onto planes of in�nite 
odimension instead of k-hyperplanes. However,the example C is well behaved with respe
t to su
h planes provided that theyare asso
iated with the standard basis. If A ⊂ N then we de�ne the plane
M(A) = {x ∈ ℓ2 : xi = 0 for every i ∈ A}.Claim 17. For every in�nite subset A of N we have

pM(A)(C) = pM(A)(B).Proof. Let A ⊂ N be in�nite. Pi
k arbitrary v ∈ B and 0 < ε < 1 and
hoose an n ∈ A su
h that ∑∞
j=n+1 v

2
j < ε2. Observe that there is a c ∈ K
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h that w = (v1, . . . , vn−1, c, 0, 0, . . .) is in C. Then
‖pM(A)(v) − pM(A)(w)‖ = ‖pM(A)(v − w)‖ =

∥

∥

∥

∑

i∈N\A

(vi − wi)e
i
∥

∥

∥

=
∥

∥

∥

∑

i∈N\A
i>n

vie
i
∥

∥

∥
≤

√

√

√

√

∞
∑

i=n+1

v2
i < ε.

Thus pM(A)(C) is dense in pM(A)(B) and the proof is 
omplete.5. Zero-dimensional s
reensDefinition 6. Let A,B ⊂ ℓ2. We say that B is a s
reen for A if everyline in ℓ2 that meets A also meets B, or equivalently, every shadow of B
ontains the 
orresponding shadow of A.Borsuk [3℄ has shown that there are Cantor sets in R
n that a
t as s
reensfor ε-balls (see [6℄ for a simple proof). Sin
e in in�nite-dimensional ve
torspa
es 
ompa
ta are nowhere dense, we need a di�erent approa
h to �ndzero-dimensional s
reens in ℓ2.Definition 7. Let x ∈ ℓ2 and let a, b ∈ R with 0 ≤ a < b. De�ne theopen set shb

a(x) = {y : a < ‖y− x‖ < b}. We 
all any set of this form a shellwith thi
kness b− a.Let λ stand for the Lebesgue measure on R. We extend the use of λ tolines ℓ in Hilbert spa
e as follows: If A is a measurable set in R, x ∈ ℓ, and
u is a unit ve
tor parallel to ℓ, then λ({x+ tu : t ∈ A}) = λ(A).Lemma 18. If 0 ≤ a < b, p ∈ ℓ2, and ℓ is a line in ℓ2, then λ(ℓ∩ shb

a(p))
≤ 2

√
b2 − a2.Proof. We may assume that p = 0. Let x be the point on ℓ that is 
losestto 0 and note that

λ(ℓ ∩ shb
a(0)) = λ({t ∈ R : a2 − ‖x‖2 < t2 < b2 − ‖x‖2}).If ‖x‖ > b then ℓ ∩ shb

a(0) = ∅. If a ≤ ‖x‖ ≤ b then
λ(ℓ ∩ shb

a(0)) ≤ 2
√

b2 − ‖x‖2 ≤ 2
√

b2 − a2.If ‖x‖ < a then
λ(ℓ ∩ shb

a(0)) ≤ 2(
√

b2 − ‖x‖2 −
√

a2 − ‖x‖2) ≤ 2
√

b2 − a2,where we have used the fa
t √t+ s ≤
√
t+

√
s.Theorem 19. For every ε > 0 there exists a zero-dimensional 
losed set

Zε in ℓ2 su
h that λ(ℓ \ Zε) < ε for every line ℓ in ℓ2, and hen
e Zε is as
reen for ℓ2.
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tions 29Proof. Let ε > 0 and sele
t a 
ountable base B = {Bγn
(vn) : n ∈ N}of neighbourhoods for ℓ2. We may assume that γn < 1 for all n. De�ne

δn = (1 + ε24−n−1)1/4 > 1 for every n ∈ N and put
Zε = ℓ2 \

∞
⋃

n=1

shγnδn

γn/δn
(vn).Sin
e the 
omplement of Zε 
ontains the boundary of every element of thebase B, the 
losed set Zε is zero-dimensional. Let ℓ be an arbitrary line in

ℓ2 and note that by Lemma 18 we have
λ(ℓ \ Zε) ≤

∞
∑

n=1

2

√

γ2
nδ

2
n − γ2

nδ
−2
n =

∞
∑

n=1

γn

δn
ε2−n <

∞
∑

n=1

ε2−n = ε.Corollary 20. If F is a 
losed subset of ℓ2 and U is an open neigh-bourhood of F , then there exists a zero-dimensional 
losed s
reen for F in ℓ2that is 
ontained in U .Proof. Let G = ℓ2 \ U . We de�ne the following 
losed sets:
F0 = {x ∈ ℓ2 : d(x,G) ≥ 1/8}and for n ∈ N,

Fn = {x ∈ ℓ2 : d(x, F ) ≤ 2−n and 2−n−3 ≤ d(x,G) ≤ 2−n}.Invoking Theorem 19 we de�ne
Z =

∞
⋃

n=0

(Fn ∩ Z2−n−2).Sin
e every Fn is disjoint from G we have Z ⊂ U . We prove that Z is 
losedby showing that {Fn ∩ Z2−n−2 : n ∈ {0} ∪ N} is a lo
ally �nite family. If
x ∈ ℓ2 then d(x, F ) > 0 or d(x,G) > 0. If α = d(x, F ) > 0 then Bα/2(x) willmiss every Fn with 2−n+1 < α and n > 0. Likewise, if β = d(x,G) > 0 then
Bβ/2(x) will miss every Fn with 2−n+1 < β and n > 0.It remains to show that Z is a s
reen for F . Consider an arbitrary line ℓsu
h that x ∈ ℓ∩F . We need to show that ℓ∩Z 6= ∅. Note that d(x,G) > 0.If d(x,G) > 1/4 then B1/8(x) ⊂ F0, whi
h means that λ(ℓ ∩ F0) ≥ λ(ℓ ∩
B1/8(x)) = 1/4. Sin
e λ(ℓ \ Z1/4) < 1/4 we have ℓ ∩ F0 ∩ Z1/4 6= ∅ andhen
e ℓ ∩ Z 6= ∅. So we may assume that d(x,G) ≤ 1/4. Then there is an
n ∈ N su
h that 2−n−2 ≤ d(x,G) ≤ 2−n−1. Thus, B2−n−3(x) ⊂ Fn and hen
e
λ(ℓ∩Fn) ≥ λ(ℓ∩B2−n−3(x)) = 2−n−2. Sin
e λ(ℓ \ Z2−n−2) < 2−n−2 we have
ℓ ∩ Fn ∩ Z2−n−2 6= ∅ and hen
e ℓ ∩ Z 6= ∅.Finally, observe that Z is zero-dimensional as a 
ountable union of zero-dimensional 
losed sets.The next 
orollary explains why we 
onsider only proje
tions of 
losedsets in this paper.
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losed subset Z of U su
h that pH(Z) = pH(U) for every hyperplane
H in ℓ2.Proof. Take a lo
ally �nite open 
over U = {Ui : i ∈ N} of the spa
e Usu
h that U i ⊂ U for every i ∈ N. Shrink U to a 
losed 
over {Vi : i ∈ N}of U . Note that every Vi is 
losed in ℓ2. Now, for ea
h pair (Vi, Ui) we applyCorollary 20 to �nd a zero-dimensional 
losed set Zi ⊂ Ui that is a s
reenfor Vi. The set Z =

⋃∞
i=1 Zi is as required.6. Imitating arbitrary 
losed 
onvex sets. Suppose B is a 
losed
onvex set in ℓ2. If C is a 
losed set su
h that B and C have the sameproje
tions onto k-hyperplanes, then Theorem 9 implies that C 
ontains atleast the set Ek(B). We show that for every B there exist �minimal� examplesof su
h �imitations� C of B, in the sense that dim(C \ Ek(B)) ≤ 0. This wasproved for 
losed sets B in R

n in [1, Theorem 6℄. Our starting point is the
onstru
tion given in [1℄ but again some of the details are more 
ompli
atedwhen dealing with sets in Hilbert spa
e.Definition 8. If A is a nonempty set in ℓ2, then starA = {tx : 0 ≤ t ≤ 1and x ∈ A}, that is, the union of all line segments that 
onne
t the originto points of A. If A is 
losed and 
onvex, 0 ∈ A◦, and k ∈ N, then we de�ne
Kk(A) = star(Ek(A)) ∪ ccA. Note that Kk(A) is a 
losed subset of A andthat ∂A ∩ Kk(A) = Ek(A).The following lemma extends [1, Lemma 3℄ to sets in ℓ2.Lemma 22. If k ∈ N and B is a 
losed 
onvex set with 0 ∈ B◦, then
Kk(B) and B have identi
al proje
tions onto all k-hyperplanes H su
h that
LB ∩H⊥ = {0}.Proof. Let H be a k-hyperplane su
h that pH(Kk(B)) 6= pH(B) and
LB ∩H⊥ = {0}. Sin
e Kk(B) ⊂ B there is a w ∈ B su
h that the k-plane
M = w +H⊥ is disjoint from Kk(B). Consider the 
olle
tion

F = {F : F a derived fa
e of B with F ∩M 6= ∅}.Note that B ∈ F be
ause B is a derived fa
e of itself and w ∈ B ∩M . Sin
e
Ek(B) ⊂ Kk(B) ⊂ ℓ2 \ M it follows that codimF ≤ k for ea
h F ∈ F .Thus we 
an 
hoose a derived fa
e F ∈ F with maximal 
odimension in ℓ2.If F ◦ = ∅ then Lemma 5 yields F = Ek(F ) ⊂ Ek(B) ⊂ Kk(B) and we havea 
ontradi
tion with M ∩ Kk(B) = ∅ and F ∩M 6= ∅. Thus F ◦ 6= ∅. Let
u ∈ F ∩M .Assume that dim(M ∩ aff F ) ≥ 1 and so there is a line ℓ through u su
hthat ℓ ⊂M∩aff F . If ℓ 
ontains points outside F , then ℓ will have to meet ∂F .Sin
e F ◦ 6= ∅ Remark 2 implies that ℓ meets some fa
e G of F . Consequently,
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codimG > codimF and G ∈ F , in violation of the maximality of codimF .Thus ℓ is 
ontained in F and hen
e ℓ − u ⊂ LF ⊂ LB . On the other hand,
ℓ− u ⊂M − u = H⊥, whi
h violates the assumption LB ∩H⊥ = {0}.Thus M ∩ aff F = {u} and the two planes are transverse. We have k ≥
codimF = codim(aff F ) ≥ dimM = k and hen
e codimF = k, whi
h meansthat M and aff F are 
omplementary planes. This allows us to de�ne a (notne
essarily orthogonal) proje
tion ψ : ℓ2 → aff F by the rule {ψ(x)} =
(x− u+M) ∩ aff F . If ψ(0) = u then 0 ∈ M ∩ Kk(B) and we are done. Soassume that ψ(0) 6= u and 
onsider the ray R = {t(u− ψ(0)) : t ≥ 0} thatemanates from the origin. Observe that sin
e u ∈ F and ψ(0) ∈ aff F the ray
u+R is 
ontained in aff F . We �rst 
onsider the 
ase that u+R ⊂ F . Then
R ⊂ ccB ⊂ Kk(B). Note that u = ψ(u − ψ(0)) ∈ ψ(R) so M = ψ−1(u)interse
ts R and Kk(B). If, on the other hand, the ray u+R is not 
ontainedin F , then it interse
ts ∂F in some point v = u+t(u−ψ(0)). Note that sin
e
F ◦ 6= ∅, v is 
ontained in some fa
e G of F and codimG > codimF = k,so v ∈ Ek(B). The line segment σ that 
onne
ts 0 to v is 
ontained in
Kk(B). Note that ψ(σ) is a line segment that 
onne
ts ψ(0) to v and hen
eit 
ontains the point u = (v + tψ(0))/(1 + t). Consequently, M interse
ts σand hen
e it interse
ts Kk(B).Proof of Theorem 2. Let B be a 
losed 
onvex set in ℓ2 su
h that codimB
6= k ∈ N. If B◦ = ∅ then a

ording to Lemma 5, Ek(B) = B and there isnothing to prove. If k < codimB then also Ek(B) = B. So we may assumethat B◦ 6= ∅ and k > codimB. Choose a 
oordinate system su
h that 0 ∈ B◦.We �rst prove the assertion for the 
ase aff B = ℓ2.The k-imitation C will have the form Ek(B)∪Z1∪Z2, where both Z1 and
Z2 are zero-dimensional sets. We �rst 
onstru
t Z1. Consider the open subset
D = B \ Ek(B) of B and the set K = Kk(B) \ Ek(B), whi
h is 
losed in D.Choose a lo
ally �nite open 
over {Ui : i ∈ N} for K in D 
onsisting of setswhose 
losures are in D. Sin
e K ∩ ∂B = ∅ we may assume that the sets Uiare open in aff B = ℓ2. Shrink this 
over to a 
over {Vi : i ∈ N} ofK by 
losedsets su
h that Vi ⊂ Ui for every i ∈ N. A

ording to Corollary 20 we 
an �ndfor ea
h i ∈ N a zero-dimensional s
reen Fi for Vi that is 
ontained in Ui andhen
e every line in ℓ2 that interse
ts Vi also meets Fi. Put Z1 =

⋃∞
i=1 Fi andnote that every line that interse
ts K also meets Z1. Then, sin
e {Fi : i ∈ N}is a lo
ally �nite 
olle
tion of 
losed zero-dimensional sets in D, it followsthat Z1 is 
losed in D and zero-dimensional. Consequently, Ek(B) ∪ Z1 is
losed in B and in ℓ2. For Z2 we simply take B ∩ Z1 (see Theorem 19).It remains to show that C and B have identi
al proje
tions onto k-hyperplanes. Let H be an arbitrary k-hyperplane and let u ∈ B. Let Mbe the k-dimensional plane u + H⊥ = p−1

H (pH(u)). First 
onsider the 
ase
LB ∩H⊥ 6= {0}. Then LB ∩H⊥ 
ontains a line ℓ through 0. Thus u+ ℓ ⊂
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B ∩M and we see that u + ℓ ∩ Z1 6= ∅ and hen
e u + ℓ ∩ Z2 6= ∅. Thus Minterse
ts C. If LB ∩H⊥ = {0} then Lemma 22 shows that M meets Kk(B)and therefore it meets Ek(B) or Z1 by the 
onstru
tion of Z1. Consequently,
M interse
ts C and the theorem is proved for codimB = 0.Finally, 
onsider the remaining 
ase k > codimB > 0. Put n = k −
codimB and note that H = aff B is a 
opy of ℓ2 that 
an be used as theambient spa
e. Applying what we have just proved to B ⊂ H and the integer
n we �nd a 
losed set C ⊂ B su
h that every n-plane in H that meets B alsomeets C and dim(C\En

H(B)) ≤ 0, where En
H is determined withH as ambientspa
e. Note that En

H(B) = Ek(B). If M is a k-plane in ℓ2 that meets B, then
dim(M ∩H) ≥ n so M ∩H must meet C. The proof is 
omplete.Remark 5. If codimB = k, then the 
on
lusion of Theorem 2 be
omesinvalid. Consider a B with B◦ 6= ∅ and codimB = k. A

ording to Remark 2,
∂B is the union of the fa
es of B so Ek(B) = ∂B and B \ Ek(B) is homeo-morphi
 to ℓ2. However, if we proje
t onto aff B we �nd that B is the only
k-imitation of B.Let x be an arbitrary ve
tor in ℓ2. Note that in the proof of Theorem 2the zero-dimensional set Z1 ∪ Z2 = C \ Ek(B) is 
onstru
ted as a subset of
⋃

ε>0 Zε (see also the proof of Corollary 20). If in the proof of Theorem 19we use a �xed base B su
h that x is 
ontained in the boundary of one ofthe basi
 neighbourhoods, then we �nd that x /∈ C \ Ek(B). Combining thisobservation with Theorem 9 we �nd:Corollary 23. If B is a 
losed 
onvex set with codimB 6= k, then
Ek(B) equals the interse
tion of all 
losed k-imitations of B.We 
on
lude with an example that shows that in Theorem 1 not evenone of the dire
tions in whi
h the proje
tions are proper 
an be missed. Sothe theorem is sharp in that respe
t.Example 4. Consider the standard basis B = {e1, e2, . . . } in ℓ2. Fix
k ∈ N and let B = {x ∈ ℓ2 :

∑k
i=1 x

2
i ≤ 1}. Note that LB = {x ∈ ℓ2 :

x1 = · · · = xk = 0} is a k-hyperplane. A

ording to Lemma 6 we have
Ek(B) = ∅ so by Theorem 2 the 
onvex body B has a zero-dimensional
losed k-imitation C. Consider the set H of all k-hyperplanes H su
h that0 ∈ H and H⊥ has a subset of B as a basis. Then we have the following:

LB ∈ H, pLB
(B) = LB,if H 6= LB , H ∈ H, then pH(B) 6= H.So, in other words, the 
losure of the proje
tions onto all elements of Hbut one are proper and the k-imitation C, being zero-dimensional, does not
ontain a 
opy of ℓ2.
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