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The cell-like approximation theorem in dimension 5

by

Robert J. Daverman (Knoxville, TN) and
Denise M. Halverson (Provo, UT)

Abstract. The cell-like approximation theorem of R. D. Edwards characterizes the
n-manifolds precisely as the resolvable ENR homology n-manifolds with the disjoint disks
property for 5 ≤ n < ∞. Since no proof for the n = 5 case has ever been published,
we provide the missing details about the proof of the cell-like approximation theorem in
dimension 5.

1. Introduction. The cell-like approximation theorem of R. D. Ed-
wards states that a cell-like mapping F : M → X from an n-manifold M ,
n ≥ 5, onto a metric space X can be approximated by homeomorphisms
if and only if X is finite-dimensional and has the disjoint disks property.
Its fundamentally important corollary is the following characterization of
topological manifolds: a (metric) space X is an n-manifold, n ≥ 5, if and
only if X is a resolvable ENR homology n-manifold having the disjoint disks
property.

Edwards outlined the proof in [16], and a fairly complete argument ap-
peared in [11]; both focused on the cases n > 5. This paper presents an
argument concerning the special case n = 5, a proof for which has never
been published, and details of which are not widely known. Since many
other applications of the result have been treated elsewhere, we do not dis-
cuss those matters here but, instead, concentrate on the proof itself.

The disjoint disks property is untenable in dimensions less than 5, so
other properties are needed for a topological characterization of low-dimen-
sional manifolds. Daverman and Repovš [12] have shown that a metric space
X is a 3-manifold if and only if X is a resolvable ENR homology 3-manifold
having something called the spherical simplicial approximation property.
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Eliminating the resolvability hypothesis while operating under the assump-
tion that the classical Poincaré conjecture is true, Daverman and Thickstun
[13] proved that X is a 3-manifold if and only if it is an ENR homology
3-manifold having a certain relative simplicial approximation property for
2-complexes. To date no known general position property distinguishes the
genuine 4-manifolds among resolvable ENR homology 4-manifolds.

The hypotheses of the cell-like approximation theorem and the charac-
terization of topological manifolds are more essential than recognized when
these results were first developed. Dranishnikov produced examples show-
ing that cell-like images of n-manifolds, n ≥ 7, are not necessarily finite-
dimensional [14], and Dydak and Walsh improved on his constructions for
n ≥ 5 [15]. Bryant, Ferry, Mio and Weinberger have developed examples [4]
showing that ENR homology n-manifolds, n ≥ 7, need not be resolvable.

To achieve its main purpose, this paper contributes to decomposition
theory by providing conditions under which a cell-like decomposition of a 5-
manifold can be shrunk out while keeping certain special 2-complexes fixed.
Equivalently, it provides conditions under which one cell-like map of a 5-
manifold to itself can be replaced with another such cell-like map that is
the identity on the 2-complex. This is the subject of Section 12. The ar-
gument retraces most of the steps required to establish Edwards’s cell-like
approximation theorem.

The authors are deeply indebted to R. D. Edwards and J. J. Walsh for
helpful discussions in times past. The first author first learned a strategy
of proof of the 5-dimensional cell-like approximation theorem from Walsh.
The argument in the present paper is similar to Walsh’s and, it turns out,
to Edwards’s as well, only with some reduction in the requisite background.

2. Preliminaries. A decomposition G of a space S is upper semicon-

tinuous (usc) if its associated decomposition map π : S → S/G is proper.
Likewise, a proper map F : S → X induces an upper semicontinuous de-
composition G = {F−1(x) | x ∈ X}. The set of all points in S contained
in the nondegenerate elements of G is called the nondegeneracy set and is
denoted by either NG or NF , depending on whether G or F is specified. The
union of all elements of G whose diameter is less than ε will be denoted by
G<ε. The union of all elements of G that are single points is the complement
of NG and will be denoted as N c

G. If U is an open set in S, then we define

Gsat[U ] =
⋃

{g ∈ G | g ⊂ U}.

Upper semicontinuity of G is equivalent to the requirement that, for each
open subset U of S, Gsat[U ] be open. A set A ⊂ S is said to be G-saturated

if Gsat[A] = A.
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A set C embedded in an ANR is said to be cell-like if it contracts in
every neighborhood of itself. A decomposition for which every decomposition
element is cell-like is called a cell-like decomposition. A map F : M → X is a
cell-like map if the induced decompositionG = {F−1(x) | x ∈ X} is cell-like.
A space X is said to be resolvable if there is a cell-like map F : M → X
where M is a manifold. A space X is an ENR homology n-manifold if it can
be embedded in some R

m as a neighborhood retract in R
m and it has the

local homology of an n-manifold.
A metric space (X, ̺) has the disjoint disks property (DDP) if for any

two maps of a 2-disk into X, µ1, µ2 : D2 → X, and ε > 0 there are maps
µ′1, µ

′
2 : D2 → X such that ̺(µi, µ

′
i) < ε and µ′1(D

2) ∩ µ′2(D
2) = ∅.

A set A ⊂ S is said to be locally k-co-connected (k-LCC) in S if for any
x ∈ A∩Cl(S−A) and neighborhood U of x, there is a neighborhood V of x
so that every map of ∂Bk+1 into V −A can be extended to a map of Bk+1

into U −A. If A is j-LCC in S for all 0 ≤ j ≤ k, then A is said to be LCCk

in S.
The restriction of a map F : S → X to A ⊂ S will be denoted by F |⌈A⌋.

For A ⊂ S, a map F : S → X is said to be 1-1 on A if F |⌈A⌋ is 1-1. For
Z ⊂ X, a map F : S → X is said to be 1-1 over Z if F is 1-1 on F−1(Z).

The natural projection maps for a product space S × T will be denoted
as ΠS : S × T → S; (s, t) → s and ΠT : S × T → T ; (s, t) → t.

Given a homotopy H : Y × I → S, for each t ∈ I we define the map

Ht : Y → S such that Ht(x) = H(x, t). The level preserving map H̃ :

Y × I → S × I defined by H̃(x, t) = (H(x, t), t) is the lift of H. Note that
for each level preserving map Λ : Y ×I → S×I, the map H = ΠSΛ satisfies

H̃ = Λ. IfH : Y ×I → S so thatHt is a homeomorphism for each t, thenH is
said to be an isotopy. If H : Y ×I → S is a homotopy such that Ht fails to be
a homeomorphism only at t = 1 then H is said to be a pseudo-isotopy. The
map H1 is said to be the end of the pseudo-isotopy. If H : Y × I → S is an
isotopy (or pseudo-isotopy) and there exists an isotopy (or pseudo-isotopy)
Λ : S × I → S such that Λ0 = id and H = Λ ◦ (H0 × id), then Λ is said
to be a cover of H and H is said to be an ambient isotopy (or an ambient

pseudo-isotopy). If H : Y × I → S is an isotopy (or pseudo-isotopy) and
there exists an isotopy (or pseudo-isotopy) Λ : S×I → S such that Λt0 = id
and H = Λ ◦ (Ht0 × id), then Λ is said to be a cover of H respecting t0.

For convenience, the image of a path γ : I → S will be denoted as γ.
Given the homotopy H : Y × I → S and x ∈ Y , the path of x by H is the

map γ = H|⌈{x} × I⌋. Note that the path of x by H̃ is γ̃, the lift of the
path of x by H. The set of points γ is called the track of x by H.

Given a map ε : Y → (0,∞), then H : Y × I → S is said to be an
ε(x)-homotopy if diam(H({x} × I)) < ε(x) for all x ∈ Y . If in addition,



84 R. J. Daverman and D. M. Halverson

H fixes Z ⊂ Y , i.e., H0|⌈Z⌋ = Ht|⌈Z⌋ for all t ∈ [0, 1], then H is said to
be an (ε(x), Z)-homotopy. If π : S → X and πH is an ε(x)-homotopy, then
we say that H is an ε(x)[π]-homotopy. If A,B ⊂ S, then an (ε,B)-push of
A in S is an ε-isotopy of S into itself that is fixed on B and outside the
ε-neighborhood of A.

If M is a p.l. n-manifold and A ⊂ M , then A has embedding dimension

at most k, denoted as dem(A) ≤ k, if for each (n − k − 1)-dimensional
tamely embedded polyhedron P in M and each open cover V of M , there
is a homeomorphism h : M → M so that h(P ) ∩ A = ∅ and h is V-close to
the identity. We say that A has embedding dimension k if dem(A) ≤ k but
not dem(A) ≤ k − 1.

3. Reduction to the piecewise linear case. For later convenience
we will address the cell-like approximation theorem for cell-like maps F :
M → X defined on compact, p.l. manifolds. In what immediately follows
we explain why treatment of that special case disposes of the general case.

Consider a proper, cell-like map F : M → X from an n-manifold M ,
n ≥ 5, onto a finite-dimensional space X with the DDP. Given any point
x ∈ X, we can produce a compact neighborhood Wx ⊂ X of x such that
the inclusion F−1(Wx) → M is null-homotopic, by cell-likeness of F−1(x).
Cover X by a countable subcollection {Wi} of these compact neighborhoods
and let G(Wi) be the upper semicontinuous decomposition of M given by
the singletons of M−Wi and the cell-like sets F−1(y), y ∈Wi. We claim that
each G(Wi) is shrinkable. Assuming this claim is true, we will find, using
Proposition 23.4 of [11], that F : M → X can be approximated, arbitrarily
closely, by another proper, cell-like map F ′ : M → X which is 1-1 over⋃

iWi = X; the resulting F ′ will be a homeomorphism approximating F , as
desired.

To establish the claim, we transfer the problem to the p.l. setting. By
[17] some neighborhood of F−1(Wi) admits a p.l. triangulation; taking, first,
a simplicial neighborhood of F−1(Wi) in some p.l. triangulation and, next,
a regular neighborhood of that, we obtain a compact, p.l. n-manifold-with-
boundary Ni with F−1(Wi) ⊂ int(Ni) ⊂ Ni ⊂ M . The double of Ni is a
closed, p.l. n-manifold Mi. Specify an embedding θ : Ni →Mi, and cell-like
decomposition Gi of Mi into the singletons of Mi − θF−1(Wi) and the cell-
like sets θF−1(y), y ∈ Wi, with associated decomposition map πi : Mi →
Mi/Gi. Since X is finite-dimensional and has the DDP, the same is true of
Mi/Gi (see Exercise 24.11 of [11]). In this p.l. setting, the argument provided
here shows that each such map πi : Mi → Mi/Gi can be approximated by
homeomorphisms. In the language of decomposition theory, Gi is shrinkable.
Furthermore, by Theorem 13.1 of [11], Gi is strongly shrinkable; accordingly,
there exist homeomorphisms hi : Mi → Mi shrinking the elements of Gi to
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small size while fixing all points of Mi − int(θ(Ni)). Now θ can be used
to transport such shrinking homeomorphisms of Mi to homeomorphisms of
M shrinking the elements of G(Wi) to small size while fixing all points of
M − int(Ni). This establishes the shrinkability of G(Wi) and the claim.

4. The strategy of the cell-like approximation theorem. The
cell-like approximation theorem states that a cell-like map F : M → X
defined on an n-manifold M , where n ≥ 5, can be approximated by homeo-
morphisms if and only if X is finite-dimensional and has the disjoint disks
property. The strategy of the proof of the cell-like approximation theorem
is as follows:

(1) Apply the disjoint disks property to modify the decomposition map
so that the embedding dimension of the nondegeneracy set of the
modified map is ≤ n− 3.

(2) Filter X into σ-compact subsets X = Qn, Qn−1, . . . , Q0, Q−1 = ∅
such that, for i = 0, . . . n,

(a) dim(Qi) ≤ i,
(b) Qi ⊇ Qi−1,
(c) dim(Qi −Qi−1) ≤ 0.

(3) Set F0 = π; in the sequence of i = 0, 1, . . . , n, the decomposition
induced over Qi is “shrunk out” with control thereby determining
a map Fi+1 approximating Fi that is 1-1 over Qi. The result after
the nth step is a homeomorphism F = Fn+1 : M → X that approx-
imates π.

The modification of the decomposition map in Step (1) is crucial to the
shrinking in Step (3). The shrinking in Step (3) is possible since a 0-dimen-
sional decomposition whose nondegeneracy set has embedding dimension at
most n − 3 can be ε-amalgamated, for any ε > 0, to form a decomposition
whose elements form a null sequence and have embedding dimension at most
n − 3. The resulting strong cellularity of the amalgamated decomposition
elements allows for controlled shrinking of the amalgamated decomposition.
The shrinkability of the original decomposition follows from the shrinkability
of the ε-amalgamated decompositions. Therefore, the modification of the
decomposition map in Step (1) to obtain a decomposition map that has
nondegeneracy set having embedding dimension at most n − 3 is essential
to this shrinking argument. The details of the proof are found in [11].

5. The obstacle in the n = 5 case. The majority of the argument
for the proof of the cell-like approximation theorem, found in [11], holds for
n ≥ 5. However, the argument for step (1) is only valid for n ≥ 6. The result
is also claimed for n = 5, but the proof is not provided.
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What sets the n = 5 case apart is the fact that homotopic LCC1 em-
beddings of a 2-complex in a 5-manifold need not be isotopic. (Consider
a homotopy in S5 from a pair of unlinked 2-spheres to a pair of linked
2-spheres.) In the case that n ≥ 6, the following strategy is applied in or-
der to modify the decomposition map so that the nondegeneracy set has
embedding dimension at most n− 3:

Let π : M → M/G denote the decomposition map. Suppose that {αi}
is a countable dense collection of LCC1 embeddings of finite 2-complexes
into the decomposition space M/G. Using Proposition 23.5B of [11], the de-
composition map is modified to be 1-1 over the images of these embeddings.
Assuming that π is now the modified decomposition map, let α∗

i = π−1αi.
Then {α∗

i } is a set of LCC1 embeddings of 2-complexes in M . Therefore,
for a given finite LCC1 embedded 2-complex K ⊂ M , there is a controlled
homotopy between the inclusion of K and a map in {α∗

i } (the control is
measured in M/G). The homotopy is piecewise linear (p.l.) adjusted to re-
move singularities sufficiently so that a controlled ambient isotopy may be
obtained. The p.l. adjustment requires that the self-intersection set of the
image of the homotopy is of dimension at most 0. Hence n ≥ 2(dim(K)+1),
i.e., n ≥ 6. The controlled ambient isotopy is used to modify the decom-
position map to be 1-1 over the image of K. By applying a series of moves
guided by controlled ambient isotopies, the decomposition map is modified
so that the nondegeneracy set misses an infinite 2-skeleton of M , and hence
has embedding dimension ≤ n− 3.

Without the assumption that n ≥ 6, the necessary isotopies may not
exist and therefore this particular strategy fails for n = 5.

6. Overview of the proof in the case n = 5. In this paper we will
demonstrate how to approximate a cell-like map F : M → X, where M is
a 5-manifold, by another cell-like map for which the nondegeneracy set has
embedding dimension at most 2. The proof of the cell-like approximation
theorem in dimension 5 will then be complete. (See [11] for details.) In
particular, we will prove the following theorem:

Theorem 6.1 (Main Theorem). Suppose F : M → X is a cell-like map

defined on a 5-manifold M where dimX = 5 and X has DDP. Then F can

be approximated by a cell-like map Ψ : M → X such that the embedding

dimension of NΨ is at most 2.

The procedure for proving the Main Theorem is outlined as follows:

Step 1. Improve the map F : M → X so that F is 1-1 over a “very
large” countable dense collection of LCC1 embedded 2-complexes in X. The

lifts of the maps in the collection will serve as targets for moves in the next
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step. Now let F : M → X denote the improved map and G denote the
induced decomposition.

Step 2. Establish a procedure to move a 2-complex K in M “near” a
target. In particular, we show that K may be almost entirely pushed onto a
target by an isotopy, the deficit being realized on a finite set of disks in K of
arbitrarily small size and K being mapped into G<ε for some prescribed ε.

Step 3. Determine an ambient pseudo-isotopy of M , the limit of a com-
position of controlled pushes, the covers of isotopies described in Step 2, such
that the end of the ambient pseudo-isotopy h satisfies

(a) h is 1-1 on K and takes K off NG,
(b) Gh = {h−1(x)}, the decomposition induced by h, has nondegeneracy

set Nh such that dem(Nh) ≤ 2.

Step 4. Apply shrinking fixing a 2-complex to obtain a self-homeo-
morphism Φ : M →M such that

(a) Φ|⌈K⌋ = h|⌈K⌋,
(b) Φ = h outside h−1(V ) where V is a small neighborhood of h(K),
(c) ̺(Φ, h) < ε.

Step 5. Given the 2-skeleta of a sequence {Ki} of triangulations whose
mesh tends to zero, apply Steps 3 and 4 to determine homeomorphisms
Φi : M → M , removing Ki from the appropriate nondegeneracy set, and
proper cell-like maps Fi = Fi−1Φi : M → X (F0 = F ) such that the limit
map Ψ of {Fi} is 1-1 over the image of the 2-skeleta. Then Ψ will be an
approximation of F such that NΨ has embedding dimension at most 2, our
desired result.

7. Improving the decomposition map. In this section we will show
how to modify a cell-like map F : M → X, where M is a 5-manifold, so
that F is 1-1 over a “very large” collection of LCC1 embedded 2-complexes
in X. These complexes lift to LCC1 embedded complexes in M which act
as guides for the controlled moves presented in the next step.

Definition 7.1. A map F : M → X is said to be LCC1 refined provided
that F is 1-1 over a countable collection of LCC1 embedded k-complexes in
X, k ≤ 2, denoted by A, satisfying the following:

(1) The Density Property : For any finite k-complexK, k ≤ 2, A contains
a countable dense subset of the collection of all maps of K into X.

(2) The Restriction Property : If λ : K → X is a map in A and L <
sdn(K) for some n ≥ 0, where sdn(K) is the nth barycentric subdi-
vision of K, then λ|⌈L⌋ is also a map in A.
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(3) The Extension Property : If ν : L → X is a map in A, and K is a
finite k-complex, k ≤ 2, such that L < K, then any map λ : K → X
such that λ|⌈L⌋ = ν can be approximated by a map µ : K → X in
A such that µ|⌈L⌋ = λ|⌈L⌋ = ν.

In particular, we say that F is LCC1 refined over A.

In [11] it is shown that if X is a locally compact separable ANR with
DDP and K is a finite 2-complex, then each map λ of a finite 2-complex K
into X can be approximated by an embedding µ : K → X such that µ(K) is
LCC1 in X [11, Proposition 24.1]. For our purposes here we need a relative
version of this result.

Proposition 7.2. Suppose that X is a locally compact separable ANR

that has DDP and λ : K → X is a map defined on a k-complex K, k ≤ 2,
and L is a subcomplex of K such that λ|⌈L⌋ is an LCC1 embedding. Then

λ can be approximated by an LCC1 embedding µ so that µ|⌈L⌋ = λ|⌈L⌋.

Proof. Let {(Dk, D
′
k)} be a countable collection of cell pairs in K − L

of dimension at most 2 which separate the points of K −L (that is, for any
two points x, y ∈ K −L, there is an index k such that x ∈ Dk, y ∈ D′

k). Let
{ςi} be a countable dense collection of pairwise disjoint LCC1 embeddings
of arcs and disks into X missing λ(L).

Let K = {µ : K → X | µ|⌈L⌋ = λ|⌈L⌋}. Define Ok to be the set of maps
µ ∈ K such that:

(1) µ(Dk) ∩ µ(D′
k) = ∅,

(2) (µ(Dk) ∪ µ(D′
k)) ∩ µ(L) = ∅,

(3) µ(K) ∩
⋃k

i=1 im(ςi) = ∅.

Clearly, Ok is open in K. The fact that Ok is dense in K follows from the

fact that λ(L) and
⋃k

i=1 im(ςi) are LCC1 embedded and that X is an ANR.
Let O =

⋂∞

k=1 Ok. For every µ ∈ O:

(1) µ|⌈L⌋ = λ|⌈L⌋,
(2) µ is an embedding,
(3) µ(K) misses

⋃∞

i=1 im(ςi) and is therefore an LCC1 embedding.

The conclusion of the theorem now follows since O is dense in K.

Theorem 7.3. Suppose that F : M → X is a cell-like map where X is a

locally compact separable ANR that has DDP. Then F can be approximated

by a cell-like LCC1 refined map.

Proof. Note that the set of all finite k-complexes, k ≤ 2, is countable.
Therefore, there is a countable dense collection of LCC1 embeddings of finite
k-complexes in X. The set of all restrictions of these maps to the finite
subcomplexes of the nth barycentric subdivisions, n = 0, 1, 2, . . . , of the
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domain is also countable. Denote the countable collection of embeddings
together with their restrictions as A0. We define Ai inductively as follows:
Consider a given map α : K → X in Ai−1. Note that the set of finite
complexes L such that K < L is countable. For each L, use Proposition
7.2 to determine a countable dense collection, denoted Ei[α](L), of LCC1

embeddings that are extensions of α. Let Ei[α] =
⋃

L>K Ei[α](L) and Ei =⋃
α∈Ai−1

Ei[α]. Let Ai be the collection of maps in Ei together with their

restriction maps to subcomplexes of the nth barycentric subdivisions, n =
0, 1, 2, . . . , of the domain. Let

A =
∞⋃

i=1

Ai.

Then A is a countable dense collection of LCC1 embeddings in X that
satisfies the density, restriction and extension properties.

We claim that F : M → X can be approximated arbitrarily closely by
a cell-like map F ′ : M → X that is 1-1 over A. Briefly describing how this
goes, one starts by enumerating the images of the various embeddings from
A as A1, A2, . . . . Then one examines the usc decompositionG1 of M induced
by F over A1; specifically, G1 consists of sets of the form F−1(z), z ∈ A1,
together with the singletons of M − F−1(A1). The possible nonmanifold
set of the associated decompositions space, M/G1, is contained in the 2-
dimensional polyhedron homeomorphic to A1 and equal to the image of
F−1(A1) ≈ A1, which one can readily see is 1-LCC embedded in M/G1,
using lifting properties of cell-like, proper mappings. According to [23], G1

is shrinkable. Thus, there exists a cell-like map µ1 : M → M such that
{µ−1

1 (Z) | z ∈ M} = G1 and F1 = Fµ−1
1 is a close approximation to F .

Note that F1 : M → X is a cell-like map which is 1-1 over A1.
Repeat the process, using F1 in place of F , to obtain a new cell-like map

F2 approximating F1 which is 1-1 over A1 ∪A2. Since F1 is already 1-1 over
A1, one can do the shrinking that determines F2 while keeping points of
F−1

1 (A1) fixed, so that F1 and F2 agree on F−1
1 (A1) = F−1

2 (A1). Continue
in this fashion, obtaining successive cell-like maps Fk : M → X which are

1-1 over
⋃k

i=1Ai, Just as in the proof of [11, Theorem 23.2], one can impose
controls on the successive approximations Fk to ensure that limk→∞ Fk is
a cell-like map F ′ : M → X that is 1-1 over

⋃
iAi. Therefore F ′ is an

approximation of F that is LCC1 refined over A.

8. Isotopies and covers. In this section we note some results about
isotopies and covers that will be needed in later sections. It follows from the
first result, due to Bryant and Seebeck [5], that it will be sufficient to estab-
lish our technology in the p.l. setting. The second theorem is due to Hudson
[19] and the third is a controlled version of the same result. The fourth
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is primarily attributed to Connelly [10] and Miller [20] with contributions
made by Cobb [8], Akin [1], and Bryant and Seebeck [5] (see [3]).

Theorem 8.1 (Bryant–Seebeck). Suppose f : K → M is an LCC1

embedding of a k-dimensional polyhedron K into a p.l. n-manifold M , and

n− k ≥ 3, n ≥ 5. Then for every ε > 0, there is an ε-push H of f(K) such

that H1f is p.l.

Theorem 8.2 (Hudson). Suppose that K is a compact k-dimensional

polyhedron, M is a p.l. n-manifold , and n− k ≥ 3. Then any p.l. isotopy of

K in M is ambient.

Given such a p.l. isotopy, after taking a general position approximation
as in [2] (see also [24]), one can obtain a controlled analog of the Hudson
ambient isotopy result.

Theorem 8.3. Suppose that K is a compact k-dimensional polyhedron,
M is a p.l. n-manifold where n − k ≥ 3, κ > 0, h : K × I → M is a p.l.

isotopy such that diam(h(x×I)) < κ for all x ∈ K, and W is a neighborhood

of h(K×I). Then there exists an ambient isotopy H : M×I →M supported

in W such that the track of each point under H has diameter less than nκ
and Hh0 = h1.

Theorem 8.4 (Miller, Connelly). Suppose that K is a k-dimensional

compact polyhedron, M is a p.l. n-manifold , and f : K → M is a proper

topological embedding , n−k ≥ 3. Then for every ε > 0 there is a δ > 0 such

that if λi : K →M are p.l. embeddings, i = 0, 1, within δ of f , then there is

an ε-push H of f(K) in M such that Hλ0 = λ1.

Next, we establish a basic fact about covers:

Lemma 8.5. If Λ is a cover of H respecting t1 then Λ′ = Λ(Λ−1
t2

× id) is

a cover of H respecting t2.

Proof. Suppose that Λ is a cover of H respecting t1. Then Λt1 = id and
Λ ◦ (Ht1 × id) = H. Let Λ′ = Λ(Λ−1

t2
× id). Note that Λ′

t2
= Λt2Λ

−1
t2

= id.
Furthermore, Ht2 = Λt2Ht1 . Hence

Λ′◦(Ht2×id)=Λ(Λ−1
t2

×id)◦(Ht2×id) = Λ◦(Λ−1
t2
Ht2×id) = Λ◦(Ht1×id)=H.

Therefore Λ′
t1

= id and Λ′ ◦ (Ht2 × id) = H so Λ′ is a cover of H respect-
ing t2.

Lemma 8.5 motivates the following definition.

Definition 8.6. If Λ is a cover of an isotopy H, then the t0-shift of Λ
is the isotopy Λ′ = Λ(Λ−1

t0
× id).
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9. Singularity structures and structure maps. The failure of ho-
motopic LCC1 embeddings of a 2-complex K in a 5-manifold M to be iso-

topic is illustrated in Figure 1. The picture is of the lift H̃ : K × I →M × I
of a homotopy H : K × I → M in general position. Note that the embed-
dings of the 2-complex K in M × {0} and M × {1} appear 1-dimensional,
but the nature of the problem is correctly represented. In this case, the
paths of two distinct 2-simplexes in K cross in a single point p. Due to
dimension constraints, this intersection cannot always be removed. In the
n ≥ 6 case of the cell-like approximation theorem, where a decomposition
G of M is specified, the extra dimension allows for the removal of such a
singularity so that K can be pushed to the end of H, which is determined
to miss NG. We will demonstrate that in the n = 5 case, the goal of push-
ing K off NG may be accomplished through a sequence of pushes that end
“near” target 2-complexes embedded inM away from the nondegeneracy set.

Fig. 1. The obstruction to adjusting a homotopy to an isotopy. The 2-complex K is
represented by two disjoint copies of S1.

In this section, we identify structures associated with singularities of
homotopies that will serve as guides for modifications in the next section
that will produce nearby isotopies. In particular, we will do the following:

(1) Define singularity structures for p.l. level preserving maps H̃ : K ×
I →M × I whose singularities consist of isolated double points.

(2) Use the singularity structures to define an isotopy J : K∗ × I →M ,
where K∗ is the complex formed by identifying points xi and yi in

K that correspond to the double points (xi, ti) and (yi, ti) of H̃ :
K × I →M × I.

(3) Show that the isotopy J can be further approximated by a p.l. iso-
topy, with sufficient controls to achieve the goals of the next sections.

It is the p.l. condition that requires extra special care and is the ultimate
goal of this section. The p.l. condition will be needed later in the application
of Theorem 8.3.
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Definition 9.1. Suppose that H̃ : K × I → M × I is a p.l. level pre-

serving map so that q = H̃(x, t0) = H̃(y, t0) and the tracks of x and y by H̃
in M ×I meet only at q. Then an artifact map for q is a p.l. level preserving
map ψ : I × I →M × I such that

(1) ψ(0, t) = H̃(x, t),

(2) ψ(1, t) = H̃(y, t),
(3) ψ(I × {t0}) = q,
(4) ψ|⌈I × (I − {t0})⌋ is an embedding,

(5) ψ|⌈(I − ∂I) × (I − {t0})⌋ misses im(H̃).

If β denotes the path ψ|⌈I × {1}⌋ that connects H̃(x, 1) to H̃(y, 1) in M ×
{1}, then we say that the artifact map ends in β or ends at β (see Figure 2).

Fig. 2. An artifact map. The shaded region is im(ψ).

Definition 9.2. Suppose that H : K × I → M is a homotopy so that

the lift H̃ : K × I →M × I is a level preserving p.l. map in general position
such that the following hold:

(a) The only singularities of H̃ are double points occurring at{q1, . . . , qm}

⊂ M × I such that for qi = H̃(xi, ti) = H̃(yi, ti), {x1, . . . , xm,
y1, . . . , ym} is a set of distinct points in K.

(b) For each qi, there is an artifact map ψi : I × I →M × I.
(c) The images of the maps ψi are mutually disjoint.

Then H is a well-behaved homotopy and the collection of artifact maps is
said to be a singularity structure for H.

The following result demonstrates the existence of singularity structures
for well-behaved homotopies.

Proposition 9.3. Suppose that H̃ : K×I →M×I is a level preserving

p.l. map in general position so that q = H̃(x, t0) = H̃(y, t0) and the tracks

of x and y by H̃ in M × I meet only at q. Let γ1 and γ2 denote the paths
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of x and y by H̃, respectively. Suppose that V is an open set in M and

β : I → V × {1} is a p.l. embedding connecting H̃(x, 1) to H̃(y, 1) such

that Q = β ∪ γ1 ∪ γ2 contracts in V × I. Then there is an artifact map

ψ : I × I → V × I for q ending at β. Moreover , for any prescribed p.l.

3-complex in M × I, we may assume that im(ψ) misses the 3-complex away

from Q.

Proof. Since Q contracts in V × I, it is straightforward to determine a
map ω : I × I → V × I satisfying

(1) ω(0, t) = H̃(x, t),

(2) ω(1, t) = H̃(y, t),
(3) ω(I × {t0}) = q,
(4) ω(s, 1) = β(s).

Define φ = (ΠV ◦ω)×ΠI , and note that φ is level preserving. Approximate
φ by a p.l. level preserving map fixed on the 1-complex (∂I×I)∪(I×{t0, 1})
and supported in V . General position may then be applied to remove any
unnecessary singularities and any intersections with a prescribed 3-complex
away from Q while preserving the levels. The resulting map ψ is the desired
artifact map.

Definition 9.4. Suppose that H : K × I → M is a well-behaved
homotopy with a singularity structure specified as in Definition 9.2 and
φ : M × I →M × I is a map such that

(1) φ is level preserving,
(2) φ = id outside N(

⋃m
i=1 im(ψi); ε),

(3) φ = id on each N(im(ψi); ε) ∩ (M × ti),

(4) φ = id on H̃({y1, . . . , ym} × I),
(5) {ψi(I×t) | t ∈ I−{ti} and i = 1, . . . ,m} are the only nondegenerate

elements of the decomposition Gφ induced by φ.

Then φ is said to be an (H, ε)-buttressing map.

Proposition 9.5. Suppose that H : K × I → M is a well-behaved

homotopy with singularity structure specified as in Definition 9.2 (or 9.1).
Then for any ε > 0 there exists an (H, ε)-buttressing map. Moreover , if

L < K such that {x1, . . . , xm} ⊂ K − L and {y1, . . . , ym} ⊂ L, we may

require that the (H, ε)-buttressing map is the identity on H(L× I).

Proof. Let H and L be given as in the hypothesis (if not otherwise
specified, let L = {y1, . . . , ym}). Without loss of generality, suppose that ε
is sufficiently small so that the ε-neighborhoods of im(ψi) are disjoint. Let
G∗ be the decomposition of M×I with nondegeneracy set NG∗ = {ψi(I×t) |
t ∈ I−{ti} and i = 1, . . . ,m} (see Figure 3). It follows from the p.l. structure
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Fig. 3. A level preserving decomposition induced by an artifact map.

of H and ψi that G∗ is strongly shrinkable preserving levels and fixing

H̃(L × I). (Section 12 provides details reinforcing this statement.) Hence
the decomposition map π∗ : M × I → (M × I)/G∗ is a (level preserving)
near-homeomorphism. Thus there is a level preserving homeomorphism h :
(M × I)/G∗ →M × I so that for φ = hπ∗,

(1) φ = id outside N(
⋃m

i=1 im(ψi); ε),
(2) φ = id on N(im(ψi); ε) ∩ (M × ti),

(3) φ = id on H̃(L× I).

Then φ is level preserving and {ψi(I × t) | t ∈ I − {ti} and i = 1, . . . ,m}
are the only nondegenerate elements of the decomposition Gφ induced by φ.
Thus φ is an (H, ε)-buttressing map.

Fig. 4. The lift of an isotopy J : K∗

× I →M that is U -near H respecting the singularity
at q.

Definition 9.6. Suppose that H : K× I →M is a well-behaved homo-
topy with singularity structure specified as in Definition 9.2. Let θ denote
the quotient map defined on K that identifies xi and yi. Let K∗ be the com-
plex that is the image of θ. Let U be an open set containing

⋃m
i=1 im(ψi).

Then J : K∗ × I → M is an isotopy U -near H respecting the singularities

{q1, . . . , qm} if for i = 1, . . . ,m there are neighborhoods Ui ⊂ U of im(ψi)
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such that

J ◦ (θ × id) = H on H−1
([

(M × I) −
m⋃

i=1

Ui

]
∪

m⋃

i=1

[(M × {ti}) ∩ Ui]
)

(see Figure 4).

Proposition 9.7. Suppose that H : K × I → M is a well-behaved

homotopy with singularity structure as specified in Definition 9.2. Then for

any ε > 0 and L < K such that {x1, . . . , xm} ⊂ K−L and {y1, . . . , ym} ⊂ L,
there is an isotopy J : K∗ × I → M that is N(

⋃m
i=1 im(ψi); ε)-near H and

J ◦ (θ × id) = H on L× I.

Proof. By Proposition 9.5 there is an (H, ε)-buttressing map φ that is
the identity on H(L×I). Let J = φH ◦(θ−1× id). Note that J ◦(θ× id) = H
on L× I. Hence J is the desired isotopy.

Remark 9.8. One should note here that the isotopy J found in the proof
of Theorem 9.7 is not p.l., primarily due to the failure of φ = hπ∗ to be a
p.l. map. To see this, recall that for m ≥ 2, a map from R

m to itself whose
only nontrivial point preimage is a segment cannot be p.l. Thus, in general,
even the level maps of J fail to be p.l. We must do extra work to overcome
this difficulty. because the p.l. condition aids in ensuring the existence of a
cover. Therefore, it will be desirable to approximate J by a p.l. map that is
again N(

⋃m
i=1 im(ψi); ε)-near H without moving points of L × I. The next

propositions will establish the parameters in which the adjustment is made.

Proposition 9.9. Let K be a compact k-dimensional polyhedron, L a

subpolyhedron of K, and M an n-manifold such that n − k ≤ 3. Suppose

that J : K × I →M is an isotopy so that J̃ |⌈L× I⌋ is p.l. and ε > 0. Then

there is a p.l. isotopy J ′ : K × I →M such that

(1) J = J ′ on L× I,
(2) ̺(J, J ′) < ε,
(3) J = J ′ on any finite set of levels for which J is p.l.

Proof. We will first show the theorem is true in the case that J is con-
stant on L. Using a relative version of Theorem 8.4, for each t ∈ I, there
is a δt such that if f1, f2 : K → M are p.l. embeddings δt close to Jt and
agreeing with Jt on L, then f1 and f2 are p.l. (ε, L)-isotopic. Let η be a
Lebesgue number for {N(t, δt)}. Choose 0 = t0 < t1 < · · · < tn−1 < tn = 1
so that ̺(Jti+1

, Jti) < η/3. The set of levels {t0, t1, . . . , tn} should include
the finite set of levels for which J is specified to be p.l. from the hypotheses.
If Jti is p.l., define λti = Jti . Otherwise, let λti be an η/3-approximation of
Jti by a p.l. embedding that agrees with Jti on L. Thus ̺(λti+1

, λti) < η/3.
Then λti+1

and λti are p.l. (ε, L)-isotopic. The homotopy product J ′ of these
isotopies is a p.l. isotopy satisfying the conclusion.
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To prove the general case, apply Theorem 8.2 to determine a p.l. cover Λ

of the p.l. isotopy J |⌈L× I⌋. Note that Λ̃ and Λ̃−1 are p.l. level preserving

homeomorphisms. Let J∗ = ΠM Λ̃
−1J̃ . It follows from the fact J |⌈L⌋ =

Λ ◦ (J0|⌈L⌋ × id) that

J∗|⌈L⌋ = ΠM Λ̃
−1Λ̃ ◦ (J0 × id) = J0|⌈L⌋.

Thus J∗ is an isotopy fixed on L. Choose ξ > 0 so that if diamA < ξ,

then Λ̃(A) < ε. It follows from the special case proved above that there is
a p.l. isotopy J∗∗ fixed on L such that ̺(J∗∗, J∗) < ξ and J∗∗ = J∗ on the

specified levels. Then the isotopy J ′ defined by J̃ ′ = Λ̃J̃∗∗ is the desired
isotopy.

Theorem 9.10. Suppose that H : K × I → M is a well-behaved homo-

topy with singularity structure specified as in Definition 9.2.Then for any

ε > 0 and L < K such that {x1, . . . , xm} ⊂ K − L, {y1, . . . , ym} ⊂ L, and

H|⌈L × I⌋ is a p.l. map, there is a p.l. isotopy J : K∗ × I → M that is

N(
⋃m

i=1 im(ψi); ε)-near H so that J ◦ (θ × id) = H on L × I. Moreover , if

φ : M × I →M × I is an (H, ε)-buttressing map fixed on H̃(L× I) so that

φH is p.l. on K × {t1, . . . , tm}, we may require that J̃ ◦ (θ × id) = φH̃ on

K × {t1, . . . , tm}.

Proof. Let L′<K so that L<L′, {x1, . . . , xm}⊂K−L′ and H̃(K−L′ × I)
⊂ N(

⋃m
i=1 im(ψi); ε). By Proposition 9.7 there is an isotopy J ′ : K∗×I →M

that is N(
⋃m

i=1 im(ψi); ε)-near H so that J ′ ◦ (θ × id) = H on L′ × I. Note

that J̃ ′ ◦ (θ × id)(K − L′ × I) ⊂ N(
⋃m

i=1 im(ψi); ε). Choose η > 0 so that

N(J̃ ′ ◦ (θ × id)(K − L′ × I); η) ⊂ N(
⋃m

i=1 im(ψi); ε). By Proposition 9.9,
there is a p.l. isotopy J : K × I →M such that

(1) J = J ′ on L′ × I, and
(2) ̺(J, J ′) < η.

Note that J is N(
⋃m

i=1 im(ψi); ε)-near H and J ◦ (θ × id) = H on L′ × I.
Therefore, J is the desired isotopy.

To satisfy the “moreover” condition, let φ be as in the formulation of

the theorem and J ′ = φH̃ ◦ (θ−1× id). By applying Proposition 9.9, we may
obtain a p.l. isotopy J : K∗ × I →M approximating J ′ so that

(1) J = J ′ = H ◦ (θ × id) on L× I,
(2) J is sufficiently close to J ′ so that J is also N(

⋃m
i=1 im(ψi); ε)-

near H,
(3) J ◦ (θ × id) = J ′ ◦ (θ × id) = φH on K × {t1, . . . , tm}.

It follows that J is the desired p.l. isotopy.
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10. Moving a 2-complex “near” a target. Given a well-behaved

homotopy with singularity occurring at q = H̃(x, t0) = H̃(y, t0), our strat-
egy will be to identify a particularly nice thin product neighborhood within
an ε-neighborhood of the image of an artifact map for q. The product neigh-

borhood will allow us to determine a modification of H̃, by a replacement
procedure within the ε-neighborhood, that removes the singularity at q. In
the setting of the next section where a decomposition is specified, it will be
shown that for any ε > 0 it can be arranged that the corresponding modified
H ends in G<ε on a neighborhood of x and ends in N c

G elsewhere.
Our first theorem provides a key step to the replacement procedure de-

tailed in the final theorem of this section.

Theorem 10.1. Suppose that H : K × I →M is a homotopy such that

the lift H̃ : K × I →M × I is a level preserving p.l. map in general position

with one singularity , a double point , at q = H̃(x, t0) = H̃(y, t0) (t0 6= 0, 1),
and ψ is an artifact map for q. Then for any ε > 0 and disjoint p.l. disks

D,D′ ⊂ K such that x ∈ int(D), y ∈ int(D′), and H̃((D ∪ D′) × I) ⊂
N(im(ψ); ε), there are p.l. isotopies e : B5 × I → M and Γ : M × I → M
so that

(1) (∂D ∪D′) × I ⊂ H̃−1(im(ẽ)) ⊂ (D ∪D′) × I,
(2) im(ψ) ⊂ im(ẽ) ⊂ N(im(ψ); ε),
(3) Γ is a cover of H|⌈K −D × I⌋ respecting t0,
(4) Γ is a cover of e respecting t0.

Furthermore, if J : K∗ × I → M is an isotopy N(im(ψ); ε)-near H so that

J ◦ (θ× id) = H on K −D× I, Λ is a cover of J respecting t0, φ : M × I →
M × I is an (H, ε)-buttressing map, and Ω is an open set containing im(ψ),

then we may require that Γ̃ Λ̃−1 = id on [(M×I)−N(im(ψ); ε)]∪ [M×{t0}]

and Γ̃ Λ̃−1φ = id on (M × I) −Ω.

Proof. LetD andD′ be disjoint p.l. disks inK as above. Let J : K∗×I →
M be a p.l. isotopy N(im(ψ); ε)-near H so that

J ◦ (θ × id) = H on K −D × I

and let Λ be a cover of J respecting t0. Note that J and Λ are given or may
be constructed by applying Theorem 9.10. Moreover,

J = Λ ◦ (Jt0 × id).

By Theorem 9.5, there is an (H, ε)-buttressing map φ that is the identity
on H(K −D × I).

Let B be a p.l. 5-ball in M × {t0} so that q ∈ int(B) × {t0} and
θ−1J−1

t0
(B) = D ∪ D′. Such a B may be found by taking a small regular
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neighborhood of H((D ∪D′) × {t0}) in M × {t0}. Let

T = φ−1Λ̃(B × I).

Without loss of generality we may assume that B is sufficiently small so
that

T ⊂ N(im(ψ); ε).

Choose ε′ > 0 so that N(im(ψ); ε′) ⊂ T or N(im(ψ); ε′) ∩ Ω ⊂ T if Ω
is given. Let φ′ be an (H, ε′)-buttressing map. Let ẽ : B5 × I → M × I be
defined by

ẽ = φ′φ−1Λ̃ ◦ (j × id)

where j : B5 → B is a p.l. homeomorphism. Note that since im(ẽ) = T ,
then

im(ψ) ⊂ im(ẽ) ⊂ N(im(ψ); ε).

Since on (∂D ∪D′) × I, J ◦ (θ × id) = H and φ = id, we have

H̃((∂D∪D′)×I) = φ−1J̃ ◦ (θ × id)((∂D ∪D′) × I)

= φ−1Λ̃ ◦ (Jt0 × id) ◦ (θ × id)((∂D ∪D′) × I)

= φ−1Λ̃ ◦ (Jt0θ(∂D ∪D′)×I)⊂φ−1Λ̃(B × I) = T = im(ẽ).

Also,

H̃((K −D ∪D′) × I) ∩ im(ẽ) = φ−1J̃((K −D ∪D′) × I) ∩ T = ∅.

Hence
H̃−1(im(ẽ)) ⊂ D ∪D′ × I.

Therefore, ẽ is the desired embedding.

Now define Γ̃ = φ′φ−1Λ̃. It is clear that Γt0 is the identity map since

φ′φ−1 and Λ̃ are the identity map on the t0 level. Note also that

Jt0θ|⌈K −D⌋ = J ◦ (θ × id)|⌈K −D × {t0}⌋

= ΠM J̃ ◦ (θ × id)|⌈K −D × {t0}⌋ = ΠMφH̃|⌈K −D × {t0}⌋

= ΠM ◦ (φ|⌈M × {t0}⌋) ◦ (H̃|⌈K −D × {t0}⌋)

= ΠMH̃|⌈K−D × {t0}⌋ = H|⌈K−D × {t0}⌋ = Ht0 |⌈K−D⌋.

Hence

Γ̃ ◦ (Ht0 |⌈K−D⌋×id)

= φ′φ−1Λ̃ ◦ (Ht0 |⌈K −D⌋ × id)

= φ′φ−1J̃(Jt0 × id)−1 ◦ (Ht0 |⌈K −D⌋ × id)

= φ′φ−1J̃(J−1
t0

× id) ◦ (Ht0 |⌈K −D⌋ × id)

= φ′φ−1φH̃ ◦ (θ−1 × id) ◦ (J−1
t0

× id) ◦ (Ht0 |⌈K−D⌋×id)
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= φ′H̃ ◦ (θ−1J−1
t0
Ht0 |⌈K −D⌋ × id)

= φ′H̃ ◦ ((θ−1J−1
t0
Ht0 × id)|⌈K −D × I⌋)

= φ′H̃|⌈K −D × I⌋ = H̃|⌈K −D × I⌋.

Therefore

H|⌈K −D × I⌋ = Γ ◦ (Ht0 |⌈K −D⌋ × id)

and so Γ is a cover of H|⌈K −D × I⌋ respecting t0.
Note also that

et0 = ΠMφ
′φ−1Λ̃(j × id)|⌈B5 × {t0}⌋

= ΠM ◦ (φ′φ−1Λ̃|⌈M × {t0}⌋) ◦ ((j × id)|⌈B5 × {t0}⌋)

= ΠM ◦ ((j × id)|⌈B5 × {t0}⌋) = j

and hence

Γ̃ (et0 × id) = Γ̃ (j × id) = φ′φ−1Λ̃ ◦ (j × id) = ẽ.

Therefore

e = Γ ◦ (et0 × id)

and so Γ is a cover of e respecting t0.

Further note that Γ̃ Λ̃−1 = φ′φ−1 = id on [(M ×I)−N(im(ψ); ε)]∪ [M×

{t0}] and Γ̃ Λ̃−1φ = φ′ = id on (M × I)−Ω. In conclusion, Γ is the desired
cover of H|⌈K −D × I⌋ and e.

Theorem 10.2. Suppose that H : K × I → M is a well-behaved homo-

topy such that the lift H̃ : K×I →M×I is a level preserving p.l. map in gen-

eral position with one singularity , a double point , at q = H̃(x, t0) = H̃(y, t0)
(t0 6= 0, 1), and ψ is an artifact map for q. Then for any ε > 0 there exist a

p.l. disk D in K and an isotopy H ′ : K × I →M so that

(1) x ∈ D,
(2) diam(D) < ε,

(3) H̃ ′(D × I) ⊂ N(im(ψ); ε),
(4) H ′ = H on K −D × I,
(5) H ′

0 = H0.

Furthermore, if J : K∗ × I → M is an isotopy N(im(ψ); ε)-near H so that

J◦(θ×id) = H on K −D×I and Λ is a cover of J respecting t0, φ : M×I →
M × I is an (H, ε)-buttressing map and Ω is an open set containing im(ψ),
then we may require that H ′ is covered by an isotopy Γ : M × I → M

respecting t0 so that Γ̃ Λ̃−1 = id on [(M × I)−N(im(ψ); ε)]∪ [M ×{t0}] and

Γ̃ Λ̃−1φ = id on (M × I) −Ω.
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Proof. Let ε > 0. Let D,D′ be p.l. disks in K such that x ∈ int(D),

y ∈ int(D′), diam(D) < ε and H̃((D ∪ D′) × I) ⊂ N(im(ψ); ε). Let J :
K∗ × I →M be an isotopy N(im(ψ); ε)-near H so that J ◦ (θ× id) = H on
K −D × I and let Λ be a cover of J respecting t0. Note that J and Λ are
given or may be constructed by applying Theorem 9.10. By Theorem 10.1
there are p.l. isotopies e : B5 × I →M and Γ : M × I →M so that

(1) (∂D ∪D′) × I ⊂ H̃−1(im(ẽ)) ⊂ (D ∪D′) × I,
(2) im(ψ) ⊂ im(ẽ) ⊂ N(im(ψ); ε),
(3) Γ is a cover of H|⌈K −D × I⌋ respecting t0,
(4) Γ is a cover of e respecting t0,

(5) Γ̃ Λ̃−1 = id on [(M × I)−N(im(ψ); ε)]∪ [M ×{t0}] and Γ̃ Λ̃−1φ = id
on (M × I) −Ω.

Fig. 5. The result of a replacement procedure

Our strategy will be to remove the intersection point q by replacing the

map H̃|⌈D × I⌋ with an embedding into N(im(ψ); ε) that does not meet

H̃|⌈K−D × I⌋ (see Figure 5). Let Q = ΠB5 ◦ (ẽ)−1H̃(D × 0). Let µ :

D×I → Q×I be such that µ(x, t) = (s, t) where ẽ(s, 0) = H̃(x, 0). Note that

H̃|⌈∂D × I⌋ = ẽµ|⌈∂D × I⌋. Now let H̃ ′ = H̃ ∪ ẽµ. Note that H̃ ′(D × I) ⊂
N(im(ψ); ε), H ′ = H on K −D × I, and H ′

0 = H0. Also note that the
map Γ : M × I → M is a cover of H ′ respecting t0 since it is a cover of
H|⌈K −D × I⌋ respecting t0 and a cover of e respecting t0, or in particular
a cover of eµ respecting t0. By construction, H ′

0 = H0. Then H ′ and Γ are
the desired isotopies.

Corollary 10.3. Suppose that H : K × I → M is a well-behaved ho-

motopy so that the lift H̃ : K × I →M × I is a level preserving p.l. map in

general position such that the following hold :

(a) The only singularities of H̃ are double points occurring at {q1, . . . , qm}

⊂ M × I such that for qi = H̃(xi, ti) = H̃(yi, ti), {x1, . . . , xm,
y1, . . . , ym} is a set of distinct points in K.

(b) For each qi, there is an artifact map ψi : I × I →M × I.
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(c) The images of the maps ψi are mutually disjoint.

(d) There are mutually disjoint open sets {U1, . . . , Um} so that Ui is a

neighborhood of im(ψi).

Then for any ε > 0 there is a finite set {D1, . . . , Dm} of disjoint p.l. disks

in K and an isotopy H ′ : K × I →M so that

(1) xi ∈ Di,
(2) diam(Di) < ε,

(3) H̃ ′(Di × I) ⊂ N(im(ψi); ε),

(4) H ′ = H on K −
⋃m

i=1Di × I,
(5) H ′

0 = H0.

Furthermore, if N(im(ψi); ε) ⊂ Ui and J : K∗ × I → M is an isotopy

N(im(ψ); ε)-near H so that J ◦ (θ × id) = H on K −
⋃m

i=1Di × I, Λ is a

cover of J , φ : M × I → M × I is an (H, ε)-buttressing map, and Ω is

an open set containing
⋃m

i=1 im(ψ)i, then we may require that H ′ is covered

by an isotopy Γ : M × I → M respecting the singularities of H̃ so that

Γ̃ Λ̃−1 = id on [(M × I) − N(
⋃

im(ψi); ε)] ∪ [
⋃m

i=1(Ui ∩ (M × {ti}))] and

Γ̃ Λ̃−1φ = id on (M × I) −Ω.

Proof. Without loss of generality, assume ε>0 is given so thatN(im(ψi);ε)
⊂ Ui for each i = 1, . . . ,m. Choose p.l. disks Di, D

′
i ⊂ K so that diam(Di)

< ε and H̃((Di∪D
′
i)×I) ⊂ N(im(ψi); ε). Let J : K∗×I →M be an isotopy

as in the statement, and let Λ be a cover of J : K∗ × I → M . Both J and
Λ are specified or may be constructed by applying Theorem 9.10.

We will proceed inductively on i = 1, . . . ,m by performing a replacement
procedure to remove each singularity, one at a time. Let K[i] be the complex
formed from K by attaching xj to yj for j > i. Note that K[0] = K∗. Let
θ[i] : K → K[i] denote the attaching map. Let Θ[i] : K[i] → K[i]∗ = K[i−1]
denote the map that attaches xi to yi in K[i]. Define φ[i] = φ on Ui and
φ[i] = id otherwise. Note that φ = φ[1] . . . φ[m].

Case i = 1. Define H[1] : K[1]×I →M so that H[1] = H ◦(θ[1]−1× id)

on D1 × I and H[1] = J ◦ (Θ[1] × id) on (K[1] − D1) × I. Then H̃[1] is

a p.l. map with one singularity at q1 = H̃(x1, t1) = H̃(y1, t1) and ψ1 is
an artifact map for q1. Let J [1] = J and note that K[1]∗ = K[0] = K∗.
Hence J [1] is an isotopy of K[1]∗ that is N(im(ψ1); ε)-near H[1] so that
J [1] ◦ (Θ[1] × id) = H[1] on (K[1] −D1) × I. Let Λ[1] be the t1-shift of Λ.
Then Λ[1] is a cover of J [1] respecting t1. Thus φ[1] is an (H[1], ε)-buttressing
map. By Theorem 10.2 there exist an isotopy H ′[1] : K[1] × I → M and a
disk D1 in K so that

(1) x ∈ D1,
(2) diam(D1) < ε,
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(3) H̃ ′[1](D1 × I) ⊂ N(im(ψ1); ε),
(4) H ′[1] = H[1] on (K −D1) × I,
(5) H ′[1]0 = H[1]0.

Furthermore, we may require that H ′[1] is covered by an isotopy Γ [1] :M ×I

→ M respecting t1 so that Γ̃ [1]Λ̃[1]−1 = id on [(M × I) − N(im(ψ1); ε)] ∪

[U1 ∩ (M × {t1})] and Γ̃1Λ̃
−1
1 φ[1] = id on (M × I) −Ω.

Case i > 1. Define H[i] : K[i]× I →M so that H[i] = H ◦ (θ[i]−1 × id)

on Di × I and H[i] = H ′[i− 1] on (K[i] −Di) × I. Then H̃[i] is a p.l. map

with one singularity at qi = H̃(xi, ti) = H̃(yi, ti) and ψi is an artifact map
for qi. Let J [i] = H ′[i− 1] and note that K[i]∗ = K[i− 1]. Hence J [i] is an
isotopy of K[i]∗ that is N(im(ψi); ε)-near H[i] so that J [i]◦(Θ[i]×id) = H[i]
on (K[i] −Di) × I. Let Λ[i] be the ti-shift of Γ [i− 1]. Then Λ[i] is a cover
of J [i] respecting ti. Thus φ[i] is an (H[i], ε)-buttressing map. By Theorem
10.2 there exist an isotopy H ′[i] : K[i]× I →M and a disk Di in K so that

(1) x ∈ Di,
(2) diam(Di) < ε,

(3) H̃ ′[i](Di × I) ⊂ N(im(ψi); ε),
(4) H ′[i] = H[i] on (K −Di) × I,
(5) H ′[i]0 = H[i]0.

Furthermore, we may require that H ′[i] is covered by an isotopy Γ [i] : M ×I

→ M respecting ti so that Γ̃ [i]Λ̃[i]−1 = id on [(M × I) − N(im(ψi); ε)] ∪

[Ui ∩ (M × {ti})] and Γ̃iΛ̃
−1
i φ[i] = id on (M × I) −Ω.

At the mth step, K[m] = K. The desired isotopy is H ′ = H ′[m] and the
desired cover Γ is the 0-shift of Γ [m].

11. Moving a 2-complex off the nondegeneracy set. In this sec-
tion, our focus will be on a 5-manifoldM and a cell-like usc decomposition G
such that M/G is finite-dimensional and has DDP. The map π : M →M/G
will denote the associated decomposition map. In view of Theorem 7.3, we
may assume that π is LCC1 refined over a collection A of LCC1 embeddings
satisfying the density, restriction and extension properties of the definition
of a LCC1 refined map. The collection of lifts of maps in A will be denoted
by A∗. In particular

A∗ = {α∗ | α∗ = π−1α, α ∈ A}.

Note that A∗ is a countable collection of LCC1 embeddings of 2-complexes
in M .

Given a 2-complex K in M we desire to push K off the nondegeneracy
set NG by a pseudo-isotopy that is small as viewed in M/G. This will be
accomplished by a sequence of moves that takes K successively closer to
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a controlled limit of maps in A∗. The following theorem will be key to
obtaining the control needed for these pushes.

Theorem 11.1. Let π : M → X be a cell-like map of a compact p.l. n-
manifold M onto a finite-dimensional metric space X. Then for every ε > 0,
there is a δ > 0 so that if f, f ′ : K → M are LCC1 embeddings of a finite

k-complex K, where k ≤ n − 3 and H : K × I → M is a (δ, L)[π]-isotopy
between f and f ′ supported in an open set U , then there is an ε[π]-push

Λ : M × I →M of f(K − L) supported in U that is a cover of H.

This theorem follows from 8.3 and the techniques established by Miller
in [20] with special care taken to measure controls in the decomposition
space.

The pseudo-isotopy sought for in this section will be comprised of a
sequence of moves which are detailed in the following theorem.

Theorem 11.2. Let G be a cell-like usc decomposition of a 5-manifold

M with associated decomposition map π : M → M/G such that π is LCC1

refined over A. Suppose K is a finite 2-complex and f∗ : K →M is an LCC1

embedding such that f∗(K) ⊂ G<η. Furthermore, suppose that L < K and

L′ is a simplicial neighborhood of L in some nth barycentric subdivision of K
such that f∗|⌈L′⌋ ∈ A∗. Then for any ε > 0 and G-saturated neighborhood

U∗ of f∗(K − L′), there exist a finite set D consisting of disjoint p.l. disks

in K − L′ and an isotopy Γ : M × I →M so that

(1) Γ is supported in U∗,
(2) Γ ◦ (f∗ × id) is a (4η, L′)-isotopy ,
(3) Γ is also an ε[π]-isotopy ,
(4) Γ pushes f∗(K) into G<ε,
(5) for D ∈ D, diam(D) < ε,

(6) Γ1f
∗|⌈K −

⋃
D⌋ ∈ A∗,

(7) if D ∈ D, then πΓ1f
∗(D) ∩ πΓ1f

∗(K −D) = ∅,
(8) for all D ∈ D, diam(Γ1f

∗(D)) < 4η.

Moreover , if Z is a compact subset of M that misses f∗(K) and π(Z) is

LCC1, we may also require that πΓ1(Z) ∩ πΓ1f
∗(K) = ∅.

Proof. Let ε > 0 and U∗ be a G-saturated neighborhood of K − L′

missing L. Choose δ > 0 (δ < ε/2) to satisfy Theorem 11.1 for ε. Let
f = πf∗.

Our first goal is to identify an embedding of λ : K → M/G in A suffi-
ciently close to f∗ to act as a target for the desired isotopy. Define

V ∗ = π−1(N(f(K − L′); δ)) and W ∗ = Gsat[N(f∗(K − L′); η)].

Note that W ∗ is a neighborhood of f∗(K − L′) since f∗(K) ⊂ G<η. Let

O∗ = U∗ ∩ V ∗ ∩W ∗.
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In particular, O∗ is the intersection of G-saturated neighborhoods of
f∗(K−L′) and is therefore a G-saturated neighborhood of f∗(K − L′). Thus
O = π(O∗) is a neighborhood of f(K − L′).

Let 3ζ < δ be a Lebesgue number for the cover

F = {π(Gsat[N(x; η)]) ∩O | x ∈ f∗(K − L′)}

of f(K − L′) in M/G. Let λ ∈ A such that λ is (ζ, L′)-homotopic to f and
define λ∗ = π−1λ. Then there is an approximate lift to a (ζ, L′)[π]-homotopy
H : K × I → O∗ such that H0 = f∗ and H1 = λ∗, which we also note is

a (2η, L′)-homotopy. We may assume that H̃ is in general position so that
the singular set consists of double points occurring at {q1, . . . , qm} ⊂M×I.
We may also assume that the double points have distinct M -coordinates so

that for H̃(xi, ti) = H̃(yi, ti) = qi, the elements of {x1, y1, . . . , xm, ym} are

distinct. It follows that the track of xi by H̃ meets only the track of yi by H̃
and vice versa, the intersection occurring at qi. Without loss of generality,
we may also assume that xi and yi are the vertices of some nth barycentric
subdivision ofK. Note that sinceH is supported in an open set away from L,
neither xi nor yi are in L. Since H is constant on L′, at least one of xi or
yi is in K − L′ for each i. By relabeling points if necessary, we impose the
condition that xi ∈ K − L′.

Our next goal is to construct the guiding structure for our isotopy. We
begin by defining artifact maps for each qi. Let αi = H|⌈{xi} × I⌋ and
βi = H|⌈{yi} × I⌋. Let

E∗
i = π−1(N(πΠM (qi); ζ)) ⊂ O∗ ∩Gsat[N(ΠM (qi); 2η)].

Note that αi ∪ βi ⊂ E∗
i . Let γi : I → M be a p.l. path connecting H(xi, 1)

to H(yi, 1), and otherwise missing H(K×{1}) so that αi ∪βi ∪γi contracts
in E∗

i . By the extendability condition on A we may, and do, require that
λ∗ ∪

⋃m
i=1 γi ∈ A∗. By Proposition 9.3, there are artifact maps ψi : I × I →

E∗
i × I ending at γi × {1} so that im(ψi) ∩ im(ψj) = ∅ if i 6= j.

To establish the appropriate control for the replacement procedure,
choose ξ so that

• 0 < ξ < ε,
• d({x1, . . . , xm}, {y1, . . . , ym}) > ξ in K,
• N(im(ψi); ξ) ⊂ E∗

i × I,
• N(im(ψi); ξ) ∩N(im(ψj); ξ) = ∅ for i 6= j,
• N(γi; ξ) ⊂ G<ε,
• π(N(γi; ξ)) ∩ π(N(γj; ξ)) = ∅ whenever i 6= j.

Note that the last two conditions are possible since λ∗ ∪
⋃m

i=1 γi ∈ A∗. Now
let Y ∗ =

⋃m
i=1N(im(ψi); ξ) and K∗ be the complex obtained by identifying

each xi to yi in K.
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By Corollary 10.3, there exist a finite set {D1, . . . , Dm} of disjoint p.l.
disks in K and an isotopy H ′ : K × I →M so that

(1) xi ∈ Di,
(2) diam(Di) < ξ,

(3) H̃ ′(Di × I) ⊂ N(im(ψi); ξ),

(4) H ′ = H on K −
⋃m

i=1Di × I,
(5) H ′

0 = H0.

Note that H ′ is a (3ζ, L′)[π]-isotopy and hence a (δ, L′)[π]-isotopy.
By Theorem 11.1 and our choices of ζ and δ, there is a cover Γ of H ′

that is an ε[π]-push of f∗(K − L′ × I) supported in U∗.
Now we verify that Γ is the desired isotopy.

(1) Γ is supported in U∗ by construction.
(2) Since f∗ = H0 = H ′

0 and H ′ = Γ ◦ (H ′
0× id), we have Γ ◦ (f∗× id) =

H ′. Note that H ′(Di × I) ⊂ E∗
i and diam(E∗

i ) < 4η. Furthermore,
H ′ = H away from

⋃m
i=1Di×I and H is a (2η, L′)-isotopy. It follows

that H ′ is a (4η, L′)-isotopy. Hence Γ ◦ (f∗× id) is a (4η, L′)-isotopy.
(3) By construction Γ is an ε[π]-isotopy.
(4) Γ pushes f∗(K) into G<ε as a result of the choice of ξ.
(5) diam(D) < ξ < ε for D ∈ D.

(6) Γ1f
∗|⌈K −

⋃
D⌋ ∈ A∗ is a result of the choice of λ.

(7) Since Γ1f
∗ is an embedding on K × I and πΓ1f

∗ is an embedding

on K −
⋃

D × I, by (6) and the choice of ξ it follows that for each
Di ∈ D, πΓ1f

∗(Di) ∩ πΓ1f
∗(K −Di) = ∅.

(8) It follows from the choice of E∗
i that diam(Γ1f

∗(Di)) < 4η for i =
1, . . . ,m.

Therefore Γ is the desired isotopy.
The proof of the “moreover” part of this theorem follows from the ap-

plication of the “moreover” conditions of the theorems of Section 10. Let Z
be a subset of M missing f∗(K) such that π(Z) is LCC1 in M/G. Without
loss of generality, we may assume that the artifact maps are chosen so that
the projection of the initial ends π(

⋃m
i=1ΠM ((ψi)0)) misses π(Z). Choose

φ : M ×I →M ×I to be an (H, ξ)-buttressing map where ξ is chosen as be-
fore. Since on each levelM×{t}, φ collapses an arc not bounding a simplex in

H̃(K×I), we may select φ so that φH is p.l. onK×{0, t1, . . . , tm, 1}. By The-
orem 9.10, there is a p.l. isotopy J : K∗× I →M that is N(

⋃m
i=1 im(ψi); ξ)-

near H so that J ◦ (θ × id) = H on K − L′ × I and J̃ ◦ (θ × id) = φH̃ on
K × {0, t1, . . . , tm, 1}. Note that J is a (δ, L)[π]-isotopy. By Theorem 11.1,
there is an ε[π]-push Λ : M × I → M of f∗(K − L′) supported in Y ∗ =⋃m

i=1N(im(ψi); ξ) that is a cover of J . Let A = π−1π(ΠMφ
−1Λ̃(Z × {1})).
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Since the ends of the artifact maps ψi are contained in the nondegen-
eracy set of G × {1} and (Z × {0}) ∩

⋃m
i=1 ψi(I × {0}) = ∅, we have

(A × {1}) ∩
⋃m

i=1 ψi(I × {1}) = ∅. The problem is, when we do the re-
placement procedures, as outlined in the proof of Corollary 10.3, if we are
not careful, A may meet the images H ′

1(Di), thereby causing failure of the
“moreover” condition. To address this problem, letΩ be an open set inM×I
containing

⋃m
i=1 im(ψi) and missing A × {1}. For convenience, we also re-

quire that Ω∩ (M ×{1}) is a (G×{1})-saturated open set in M ×{1}. Now
when applying Corollary 10.3, we require, in addition to the five previously
required conditions, that

(6) H ′ is covered by an isotopy Γ : M × I → M respecting the singu-

larities of H̃ so that Γ̃ Λ̃−1 = id on [(M × I) − N(
⋃

im(ψi); ξ)] ∪⋃m
i=1(N(ψi; ξ) ∩ (M × {ti})) and Γ̃ Λ̃−1φ = id on (M × I) −Ω.

We now desire to show that

πΓ1(Z) ∩ πΓ1f
∗(K) = ∅.

It suffices to prove that

[π−1πΓ1(Z) × {1}] ∩ [π−1πΓ1f
∗(K) × {1}] = ∅.

Note that

π−1πΓ1(Z) = π−1πΠM Γ̃ (Z × {1}) = π−1πΠMφ
−1Λ̃(Z × {1}) = A.

From the details of proofs of Theorems 10.1 and 10.2 and our choice of Ω,
we have

Γ1f
∗
( m⋃

i=1

Di

)
× {1} ⊂ Ω.

Thus

[π−1πΓ1(Z) × {1}] ∩
[
π−1πΓ1f

∗
( m⋃

i=1

Di

)
× {1}

]
⊂ (A× {1}) ∩Ω = ∅.

Also Z∩f∗(K) = ∅ so Γ1(Z)∩Γ1f
∗(K) = ∅. Since Γ1f

∗(K−
⋃m

i=1Di) ⊂ NG,

[π−1πΓ1(Z) × {1}] ∩
[
π−1πΓ1f

∗
(
K −

m⋃

i=1

Di

)
× {1}

]
= ∅.

Therefore

[π−1πΓ1(Z) × {1}] ∩ [π−1πΓ1f
∗(K) × {1}] = ∅.

We conclude that

πΓ1(Z) ∩ πΓ1f
∗(K) = ∅

so the “moreover” condition is satisfied.
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We need just one more result which, in combination with Theorem 11.2,
ensures that K can be pushed into N c

G.

Proposition 11.3. Let K be a finite 2-complex and M a 5-manifold.

Suppose for i = 1, 2, . . . that :

(1) The set Di consists of mi pairwise disjoint p.l. disks in K so that

(a) for each D ∈ Di+1 there is a D′ ∈ Di so that D ⊂ int(D′) (in
this case we denote D′ as pre(D)),

(b) limi→∞ max{diam(D) | D ∈ Di} = 0.

(2) There is a sequence of homeomorphisms λi : K → M such that

λi+k|⌈K −
⋃

Di⌋ = λi|⌈K −
⋃

Di⌋ for all k > 0.
(3) The set Ui consists of mi pairwise disjoint open sets such that

(a) each D ∈ Di corresponds to a unique U ∈ Ui such that λi(D) ∪
λi+1(D) ⊂ U and λ−1

i (U) ⊂ pre(D),

(b)
⋃

U1 ⊃
⋃

U2 ⊃
⋃

U2 ⊃
⋃

U3 ⊃ · · · ,
(c) limi→∞ max{diam(U) | U ∈ Ui} = 0.

Then λ = limi→∞ λi is an embedding of K.

Proof. It is clear from (2) and (3) that λ = limi→∞ λi exists and is
continuous. To see that λ is 1-1, let x, y ∈ K. Let Z =

⋂
∞

i=1(
⋃
Di). There

are three cases to consider:

Case 1: x, y ∈ K −Z. There is some i so that x, y ∈ K −
⋃

Di. By (2),
λ(x) 6= λ(y).

Case 2: x ∈ K − Z and y ∈ Z or y ∈ K − Z and x ∈ Z. Without
loss of generality let x ∈ K − Z and y ∈ Z. From (1a), there exists an N
so that x /∈

⋃
Di for all i ≥ N . From (3a), λ−1

i+1(
⋃

Ui+1) ⊂
⋃
Di. Hence

λi+1(x) /∈
⋃

Ui+1 for all i ≥ N . By (2), λi(x) = λ(x) for all i ≥ N . It is then
clear from (3b) that λ(x) /∈

⋂
∞

i=1(
⋃
Ui). On the other hand, it follows from

(3a) and (3b) that λ(y) ∈
⋂∞

i=1(
⋃
Ui). Therefore λ(x) 6= λ(y).

Case 3: y ∈ Z and x ∈ Z. By (1b) there is an i so that there are disjoint
balls Dx, Dy ∈ Di such that x ∈ Dx and y ∈ Dy. It follows from (3a) and
(3b) that there are disjoint open sets Ux, Uy ∈ Ui+1 such that λi+1(x) ∈ Ux,

λi+1(y) ∈ Uy and Ux ∩ Uy = ∅. It is also clear from (3a) and (3b) that

λi+k(x) ∈ U1 and λi+k(y) ∈ Uy for all k ≥ 1. It follows that λ(x) ∈ Ux and

λ(y) ∈ Uy. Since Ux ∩ Uy = ∅, we conclude that λ(x) 6= λ(y).

Therefore λ is 1-1 and gives an embedding of K.

The following corollary is the main result for this section.

Corollary 11.4. Let G be a cell-like usc decomposition of a 5-manifold

M for which dim(M/G) < ∞ and the associated decomposition map π :
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M → M/G is LCC1 refined over A. Suppose that K is a finite 2-complex

and f : K → M is an LCC1 embedding. Then for any ε > 0, there is a

cell-like map h : M →M that is the end of an ε[π]-pseudo-isotopy such that

h|⌈f(K)⌋ is an LCC1 embedding , hf(K) ∩ NG = ∅, h(Nh) ⊂ hf(K), and

dem(Nh) ≤ 2. Moreover , if Ω is a G-saturated neighborhood of f(K) we

may assume that h is supported in Ω.

Proof. Let ε > 0 be given. Using Theorem 11.2, we will define h as the
limit of a sequence of pushes of f(K) whose restrictions to f(K) satisfy the
hypotheses of Proposition 11.3.

In order to ensure that the end of the pending pseudo-isotopy, which will
be denoted as h, has the property that hf(K) is LCC1 and dem(Nh) ≤ 2,
we identify a sequence of triangulations of M , namely T1, T2, . . . , such that

• mesh(Ti) → 0,

• the 2-skeleton T
(2)
i of each Ti misses f(K) ∪

⋃
{im(α∗

i ) | α∗
i ∈ A∗}.

This condition is possible because f(K) is an LCC1 embedding and
because π is LCC1 refined over A.

We will implement controls in the construction of the desired pseudo-isotopy
so that hf(K) and Nh miss

⋃
∞

i=1 Ti. It will follow that the end of the pseudo-
isotopy will take f(K) to an LCC1 embedding and that dem(Nh) ≤ 2.

Let Zi = π−1π(
⋃i

j=1 T
(2)
j ). By our choice of Ti and since π is LCC1

refined over A, each π(Zi) misses the set
⋃
{im(αi) | αi ∈ A}. Hence π(Zi)

is LCC1.

Step 1: The first push. Choose η1 sufficiently large so that f(K) ⊂ Gη1
.

Let ε1 = min{ε/4, η1}, L1 = L′
1 = ∅ and U1 = Ω. By Theorem 11.2 there

is a set D1 consisting of disjoint p.l. disks in K − L1 and an isotopy Γ 1 :
M × I →M so that

(1) Γ 1 is supported in U1,
(2) Γ 1 ◦ (f × id) is a (4η1, L

′
1)-isotopy,

(3) Γ 1 is also an ε1[π]-isotopy,
(4) Γ 1 pushes f(K) into G<ε1

,
(5) for D ∈ D1, diam(D) < ε1,

(6) Γ 1
1 f |⌈K −

⋃
D1⌋ ∈ A∗,

(7) if D ∈ D1, then πΓ 1
1 f(D) ∩ πΓ 1

1 f(K −D) = ∅,
(8) for all D ∈ D1, diam(Γ 1

1 f(D)) < 4η1,
(9) πΓ 1

1 (Z1) ∩ πΓ
1
1 f(K) = ∅.

Define h1 = Γ 1
1 and λ1 = Γ 1

1 f .

Step 2: The ith push for i > 1. Suppose that εi−1, λi−1, and Di−1 are
given. Let ηi = εi−1. Note that λi−1(K) ⊂ Gηi

. Define εi = min{ε/2i+1, ηi}
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and L′
i = K −

⋃
Di−1. Let D′

i−1 be a collection of disjoint disk neighbor-
hoods of the elements of Di−1 in some kith barycentric subdivision of K
where ki is chosen sufficiently large so that the disks in D′

i−1 satisfy con-
ditions (5) through (8) listed above when D′

i−1 is replaced with Di−1. Let

Li = K −
⋃

D′
i−1.

Now let Ui denote a collection of G-saturated neighborhoods of the ele-
ments of {λi−1(D) | D ∈ Di}, one neighborhood for each disk in Di, so that⋃

Ui ⊂
⋃
Ui−1. Let Ui =

⋃
Ui. From condition (7) and the choice of D′

i, we
may assume that these neighborhoods are pairwise disjoint and if U is an
element of Ui containing D ∈ Di, and D′ ∈ D′

i is the disk such that D ⊂ D′,

then λ−1
i−1(U) ∩K ⊂ int(D′). We impose the following conditions on Ui:

• π(Ui) ∩ πhi−1(Zi−1) = ∅ (see condition (9)),
• π(Ui) ∩ π(Zi) = ∅ (from the choice of Zi), and
• if U ∈ Ui then diam(U) < 4ηi−1 + 2εi−1 < 6ηi (see conditions (4)

and (8)).

By Theorem 11.2 there is a set Di consisting of disjoint p.l. disks in K −Li

and an isotopy Γ i : M × I →M so that

(1) Γ i is supported in Ui,
(2) Γ i ◦ (λi−1 × id) is a (4η1, L

′
i)-isotopy,

(3) Γ i is also an εi[π]-isotopy,
(4) Γ i pushes λi−1(K) into G<εi

,
(5) for D ∈ Di, diam(D) < εi,

(6) Γ i
1λi−1|⌈K −

⋃
Di⌋ ∈ A∗.

(7) if D ∈ Di, then πΓ i
1λi−1(D) ∩ πΓ i

1λi−1(K −D) = ∅,
(8) for all D ∈ Di, diam(Γ i

1λi−1(D)) < 4η,
(9) πΓ i

1(Zi) ∩ πΓ
i
1f(K) = ∅.

Define hi = Γ i
1 ◦ Γ

i−1
1 ◦ · · · ◦ Γ 1

1 and λi = Γ i
1λi−1. Note that

• The set Di consists of a finite number, say mi, of disjoint p.l. disks
in K so that

(a) for each D ∈ Di+1 there is a D′ ∈ Di so that D ⊂ int(D′),
(b) limi→∞ max{diam(D) | D ∈ Di} ≤ limi→∞ εi = 0.

• The sequence of homeomorphisms λi :K→M satisfies λi+k|⌈K−
⋃

Di⌋

= λi|⌈K −
⋃

Di⌋ for all k > 0.
• The set Ui consists of mi disjoint open sets such that

(a) each D ∈ Di corresponds to a U ∈ Ui such that λi(D) ∪ λi+1(D)
⊂ U and λ−1

i (U) ⊂ pre(D),

(b)
⋃

U1 ⊃
⋃

U2 ⊃
⋃
U2 ⊃

⋃
U3 ⊃ · · · ,

(c) limi→∞ max{diam(U) | U ∈ Ui} ≤ limi→∞ 6ηi = 0.
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Let
h = lim

i→∞
hi and λ = lim

i→∞
λi.

Note that h is the end of the pseudo-isotopy Γ = limi→∞ Γ i ∗Γ i−1 ∗ · · · ∗Γ 1.
By condition (3) of the construction of Γ i, Γ is an ε[π]-pseudo-isotopy. It
follows from Proposition 11.3 that λ = hf is an embedding. Since hf(K) ⊂
G<ηi

for all i, we have hf(K) ⊂ N c
G.

To see that h(Nh) ⊂ hf(K), we first show that
⋂∞

i=1

⋃
Ui ⊂ h(K).

Suppose that y ∈
⋂∞

i=1

⋃
Ui. Then for each i there is an open set Ui ∈

Ui so that y ∈ U i. Since diam(Ui) < 6ηi, it follows that
⋂∞

i=1 U i = y.
Also for each i there is a disk Di ⊂ K so that hif(K) = λi(Di) ⊂ Ui,
Di+1 ⊂ Di, and U i+1 ⊂ Ui. Let x ∈

⋂
∞

i=1Di. Then hif(x) ⊂ Ui for all i.

Hence hf(x) ∈
⋂

∞

i=1 U i so hf(x) = y. Therefore h(Nh) ⊂ hf(K). Now

suppose that h(p) = h(q) ∈ h(K). Then for some i, h(p) = h(q) /∈ U i. But
then by construction, h(p) = hi(p) 6= hi(q) = h(q), which contradicts our
supposition. Therefore, h(Nh) ⊂ hf(K).

We claim that hf(K) misses
⋃

∞

i=1 Zi. If x ∈ K −
⋂

∞

i=1(
⋃
Di) then there

is an i so that x ∈ K −
⋃

Di. It follows that hf(x) = λi(x) /∈
⋃

∞

i=1 Zi.
If x ∈

⋂
∞

i=1(
⋃

Di), then for all i, hf(x) ∈ Ui which misses Zi. Again it
follows that fh(x) /∈

⋃
∞

i=1 Zi. Therefore, for all x ∈ K, fh(x) /∈
⋃

∞

i=1 Zi.

Hence hf(K) misses
⋃

∞

i=1 T
(2)
i , which ensures that h|⌈f(K)⌋ is an LCC1

embedding.
We also claim that Nh misses

⋃∞

i=1 Zi. If p /∈
⋂∞

i=1 Ui, then there is
a j so that p /∈ Ui for all i ≥ j. If q ∈ Zk and m = max{j, k}, then
h(p) = hm(p) 6= hm(q) = h(q). Suppose p ∈

⋂
∞

i=1 Ui and q ∈ Zk. Then

h(p) ∈
⋂

∞

i=1 U i =
⋂

∞

i=1 Ui. However, h(q) = hk(q) /∈ Uk. Thus
⋃

∞

i=1 Zi

does not meet Nh. It follows that Nh misses
⋃∞

i=1 T
(2)
i , which ensures that

dem(Nh) ≤ 2. Clearly, h is supported in Ω. Therefore h is the desired map.

12. Shrinking fixing a complex. In this section we will describe the
technology for shrinking a decomposition while fixing a 2-complex K. The
symbol M will be used throughout to denote a compact p.l. 5-manifold. The
notation π will denote an arbitrary decomposition map, and is not intended
to represent the decomposition map specified in the previous section. The
purpose is to establish a procedure by which we can shrink out the decompo-
sition of M induced by the map h given in the conclusion of Corollary 11.4
without perturbing the complex K. In particular, this section is devoted to
proving the following theorem:

Theorem 12.1. Suppose K is a finite 2-complex LCC1 embedded in M ,
and G is a cell-like usc decomposition of M for which the decomposition

map π : M → M/G is 1-1 on K, NG ⊂ π−1π(K) and dem(NG) ≤ 2.
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Then for each ε > 0 and each neighborhood U of NG in M there exists a

homeomorphism F : M →M/G such that

(1) F |⌈K⌋ = π|⌈K⌋,
(2) F |⌈M − U⌋ = π|⌈M − U⌋,
(3) ̺(F, π) < ε.

The proof of this theorem will follow from standard shrinking technology,
as developed by Edwards [16], modified to perform that shrinking while
fixing a preassigned subset.

Definition 12.2. Suppose S is a metric space, K is a subset of S, G is
a usc decomposition of S, and π : S → X is the associated decomposition
map. Then G is strongly shrinkable fixing K provided that for every ε > 0
and every neighborhood U of NG, there is a homeomorphism Φ : S → S
satisfying

(1) Φ|⌈K⌋ = id |⌈K⌋,
(2) Φ is supported in U ,
(3) diam(Φ(g)) < ε for all g ∈ G,
(4) ̺(π, πΦ) < ε.

Note that if G is strongly shrinkable fixing K, then π is necessarily 1-1 on K.

The proofs of the next two propositions are exactly the same as those
found in [11, Theorem 5.2] and [11, Corollary 5.2D], respectively, with added
stipulations that the relevant maps and homeomorphisms fix K.

Proposition 12.3. Suppose G is a usc decomposition of a compact met-

ric space S and K is a closed subset of S. Then the decomposition map

π : S → S/G can be approximated , arbitrarily closely, by homeomorphisms

fixing K and supported in any preassigned neighborhood U of NG if and only

if G is strongly shrinkable fixing K.

Proposition 12.4. Suppose G is a usc decomposition of a compact met-

ric space S with associated decomposition map π : S → S/G, and K is a

closed subset of S. Then G is strongly shrinkable fixing K if and only if , for

each ε > 0 and each neighborhood U of NG, there exists a map µ : S → S
such that

• µ|⌈K⌋ = id |⌈K⌋,
• µ is supported in U ,
• G = {µ−1(s) | s ∈ S},
• ̺(πµ−1, π) < ε.

Proposition 12.5. Suppose K is a finite 2-complex LCC1 embedded

in M, C is a cell-like set such that dem(C) ≤ 2 and C ∩ K is cell-like,
ε > 0, and D is a topological cone neighborhood of C ∩ K in K such that
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C ∩ K ⊂ int(D) ⊂ D ⊂ N(C ∩ K; ε). Then there exists a 5-cell B in M
such that C ⊂ int(B) ⊂ B ⊂ N(C; ε) and B ∩K = D, and D is standardly

embedded (i.e., equivalent to a subcone of B ∼= O ∗ S4) in B.

Proof. Treat K as a subcomplex of M [5]. Start with a 5-cell E that is
a combinatorial cone neighborhood in M of some point p ∈ C ∩K, where
E ∩ K = D is a subcone of E (for instance, when D is a 2-cell then E ∼=
B2×B3 with D = B2×0 ⊂ B2×B3) and E ⊂ N(C; ε). Standard engulfing
techniques give a homeomorphism Θ : M → M fixing K ∪ (M − N(C; ε))
such that, for B = Θ(E), C ⊂ int(B).

Here is an outline of how the engulfing works. Specify a triangulation
T of M having very small mesh, with K carried by the 2-skeleton of T .
Let V be a compact subpolyhedron carried by a subcomplex of T , with
C ⊂ int(V ) ⊂ V ⊂ N(C; ε), and let P denote the 2-skeleton of V relative
to T . With appropriate size controls, V can be chosen so that there exists an
engulfing homeomorphism θ1 : M →M fixed outsideN(C; ε) and onK such
that P ⊂ θ1(int(E)). In the first barycentric subdivision V ′ of the simplicial
structure on V inherited from T , let Q denote the dual 2-skeleton to P . Since
C ∩K misses Q and dem(C) ≤ 2, there exists another homeomorphism θ2 :
M →M (moving points very little) which is fixed on K∪(M−V ) and moves
C off Q, achieving Q ⊂ θ2(M −C). Finally, stretch across the join structure
of V ′ via a third homeomorphism θ3 : M → M , fixing P ∪ Q ∪ (M − V ),
such that

θ3θ1(int(E)) ∪ θ2(M − C) = M.

Set Θ = θ−1
2 θ3θ1, and note that Θ fixes K. Applying θ−1

2 to the above
equality, we find

Θ(int(E)) ∪ (M − C) = θ−1
2 (M) = M,

so clearly C ⊂ Θ(int(E)) = int(B), and B ⊂ N(C; ε), since Θ restricts to
the identity outside N(C; ε).

Lemma 12.6. Consider Bn as a cone O ∗ ∂Bn. Suppose Z is a compact

set in ∂Bn and Y is a compact set in int(Bn). Then for any ε > 0 there is

a homeomorphism θ : Bn → Bn fixing ∂Bn and O ∗ Z such that ψ(Y ) is

contained in the ε-neighborhood of O ∗ Z.

Proof. It suffices to prove this proposition in the case of Bn = {x ∈ R
n |

‖x‖ < 1} where O is the origin 0. Choose γ > 0 so that Y ⊂ int(γBn).
Assume without loss of generality that ε < γ and obtain a continuous func-
tion τ : ∂Bn → [ε, γ] so that τ(Z) = γ and τ(∂Bn −N(Z, ε)) = ε. Define a
homeomorphism ψ : Bn → Bn such that ψ is the identity map on ∂Bn∪{0},
ψ(x) = (τ(x)/γ)x for each x such that ‖x‖ = γ, and for the remaining points
ψ is a linear extension on each segment {tx | t ∈ [0, 1], x ∈ ∂Bn}. Then ψ
is the desired homeomorphism.
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A similar argument establishes the next lemma. It enables us to obtain
homeomorphisms like ψ : Bn → Bn of Lemma 12.6 as the composition of
finitely many homeomorphisms, each one moving points less than a prede-
termined constant amount.

Lemma 12.7. Consider Bn as a cone O ∗ ∂Bn. Suppose γ ∈ (0, 1), η ∈
(0, γ), Z and Z ′ are compact subsets of ∂Bn with Z ⊃ Z ′, Y is a compact

set in (0 ∗Z)∩ γBn, and U is a neighborhood of (O ∗Z)∩ γBn. Then there

is a homeomorphism ψ : Bn → Bn such that

(1) ψ|⌈∂Bn ∪ (O ∗ Z) ∪ (Bn − U)⌋ = id |⌈∂Bn ∪ (O ∗ Z) ∪ (Bn − U)⌋,
(2) ̺(ψ, id) < η,
(3) ψ(Y ) ⊂ (γ − η)(O ∗ Z) ∪ [N(O ∗ Z ′; η) ∩ (O ∗ Z)].

Proposition 12.8. Suppose K is a 2-complex LCC1 embedded in M ,
f : M → X is a cell-like mapping that is 1-1 on K and that induces a

decomposition Gf = {f−1(x) | x ∈ X} for which the nondegeneracy set Nf

has embedding dimension at most 2 and satisfies f(Nf ) ⊂ f(K), and V is

a neighborhood of f(Nf ). Then f can be approximated , arbitrarily closely,
by a cell-like map F : M →M satisfying

(1) F is 1-1 on K,
(2) F |⌈M − f−1(V )⌋ = f |⌈M − f−1(V )⌋,
(3) the nondegeneracy set NF has embedding dimension at most 2,
(4) F (NF ) ⊂ F (K −K(0)).

Proof. Let G = {f−1f(v) | v ∈ K(0)} together with all singletons from
the rest of M denote the decomposition induced by f over the vertices
of f(K). The key step involves showing that G strongly ε-shrinks while

fixing K. Identify the vertices {v1, . . . , vk} in K(0) and apply Proposition
12.5 to obtain pairwise disjoint 5-cells {B1, . . . , Bk} such that

f−1f(vi) ⊂ int(Bi) ⊂ Bi ⊂ f−1(V ∩N(f(vi); ε/2))

with Bi ∩K ⊂ N(vi; ε) a cone neighborhood of vi in K. Lemma 2.5 ensures
that G strongly ε-shrinks fixing K.

As a result, Proposition 12.4 promises a map µ : M →M satisfying

• µ|⌈K⌋ = id |⌈K⌋,
• µ is supported in f−1(V ),
• G = {µ−1(x) | x ∈M},
• ̺(fµ−1, f) < ε.

The required cell-like map is F = fµ−1, which obviously is 1-1 over F (K0)∪
(X − F (K)). The nondegeneracy set of F is locally equivalent to that of f ,
so dem(NF ) ≤ 2, since embedding dimension is locally determined.
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Proposition 12.9. Given the data from the conclusion of Proposition

12.8, the map F can be approximated , arbitrarily closely, by a cell-like map

F̂ : M → X satisfying

(1) F̂ is 1-1 on K,

(2) F̂ |⌈M − F−1(U)⌋ = F |⌈M − F−1(U)⌋,
(3) the nondegeneracy set N

F̂
has embedding dimension at most 2,

(4) F̂ (N
F̂
) ⊂ F̂ (K −K(1)).

We leave proof details to the reader. The argument is essentially the same
as that for the forthcoming Proposition 12.11, except that some of the cone
neighborhoods in K employed in the latter are simpler to describe (being
2-cells). Besides, for the decompositions arising in the Main Application, we
can avoid use of 12.9 but must use Proposition 12.11.

Definition 12.10. Given a closed subset K of M , a usc decomposition
G of M , with decomposition map π : M → M/G, and ε > 0, we say
that an amalgamation G∗ of G strongly ε-shrinks fixing K if, for every
neighborhood U of NG∗ , there exists a homeomorphism h : M → M such
that h is supported in U , h fixes K, ̺(πh, π) < ε and diam(h(g∗)) < ε for
each g∗ ∈ G∗.

Proposition 12.11. Suppose G is a usc decomposition of a compact

metric space S such that for each ε > 0, there exists an ε-amalgamation G∗

of G that strongly ε-shrinks fixing the compact set K. Then G is shrinkable

fixing K.

Proof. This follows by a straightforward adaptation of [11, Theorem
20.1].

Proposition 12.12. Suppose that K is a finite 2-complex LCC1 embed-

ded in M , G is a 0-dimensional cell-like decomposition of M , the decom-

position map π : M → M/G is 1-1 on K, NG ⊂ π−1(π(K − K(1))), and

dem(NG) ≤ 2. Then for every ε > 0 and every neighborhood U of NG, G
has an ε-amalgamation G∗ so that HG∗ forms a null sequence and , for each

g∗ ∈ HG∗ , dem(g∗) ≤ 2, g∗ ⊂ U , g∗ ∩K = g∗ ∩ (K −K(1)) is a cell-like set

and diam(g∗ ∩K) < ε.

Proof. Let C = K∩NG; it is a 0-dimensional, σ-compact set, each point
of which meets exactly one element of G. Express C as

⋃
k Ck, with each

Ck compact. Cover C1 by the interiors of finite number of pairwise dis-
joint 2-cells D1,1, . . . , D1,n(1) in U ∩ (K −K(1)), where each D1,i and each
π(D1,i) has diameter less than ε and ∂D1,i ∩ C = ∅. For k = 2, 3, . . . re-
cursively determine a family Dk,1, . . . , Dk,n(k) of pairwise disjoint 2-cells in

U ∩ (K −K(1)) which miss all the previously determined Dj,i, whose interi-

ors cover Ck −
⋃k−1

j=1

⋃n(j)
i=1 Dj,i, whose boundaries miss C, and which satisfy
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diam(Dk,i) < ε/2k and diam(π(Dk,i)) < ε/2k. Define G∗ as the decomposi-
tion of M whose nondegenerate elements are the various sets π−1π(Dk,i).

Proposition 12.13. Suppose that K is a finite 2-complex LCC1 embed-

ded in M , G is a 0-dimensional cell-like decomposition of M , the decomposi-

tion map π : M →M/G is 1-1 on K, NG ⊂ π−1(π(K)), and dem(NG) ≤ 2.
Then G is strongly shrinkable fixing K.

Proof. From Proposition 12.9 we may assume that (after an approxima-
tion to the given cell-like map) NG misses K(1).

Fix ε > 0 and a neighborhood U of NG. Apply Proposition 12.12 to
obtain an ε/3-amalgamation G∗ of G whose nondegenerate elements form
a null sequence such that diam(g∗ ∩ K) < ε/3, g∗ ⊂ U , and dem(g∗) ≤ 2
for each g∗ ∈ G∗. By Proposition 12.11 it suffices to show that G∗ strongly
ε-shrinks fixing K.

Let Λ = {g1, . . . , gk} include all elements of G∗ having diameter at least
ε/3. Specify a set {U1, . . . , Uk} of pairwise disjoint G∗-saturated open sets
such that diam(π(Uj)) < ε, gj ⊂ Uj ⊂ U , and any other g∗ ∈ G∗−Λ satisfies
diam(g∗) < ε/3. Use Proposition 12.5 to obtain a collection {B1, . . . , Bk}
of disjoint 5-cells such that gj ⊂ int(Bj) ⊂ Bj ⊂ Uj and Bj ∩K is a 2-cell
Dj ⊂ K with diam(Dj) < ε/3. Choose a point Oj ∈ int(Dj) − NG∗ . We
follow a shrinking procedure very similar to that found in [11, Proposition
22.1], except in this case the shrinking also fixes K.

The following lemma is needed:

Lemma 12.14. Consider Bn as a cone O ∗ ∂Bn. Suppose that Y is a

compact set in int(Bn) missing O and Z is a compact set in ∂Bn such that

dem(Z) ≤ dem(Y )−1. Then there is a homeomorphism ϕ : Bn → Bn fixing

O ∗Z so that if O ∗X is the union of all cone segments meeting ϕ(Y ), then

dem(O ∗X) ≤ dem(Y ) + 1.

Proof. Let dem(Y ) = k so that dem(Z) ≤ k−1. Choose a sequence {Ti}
of triangulations of ∂Bn with mesh going to zero so that the (n − k − 2)-
skeleton of Ti misses Z. Let Pi denote the geometric cone in Bn from O over
the (n− k − 2) skeleton of Ti. Then applying the hypothesis on embedding
dimension, we can adjust Y to miss

⋃
Pi by a homeomorphism ϕ which fixes

O ∗ Z. Let X be the projection of ϕ(Y ) from O to ∂Bn. Then

dimX ≤ (n− 1) − (n− k − 2) − 1 = k;

moreover, ϕ(Y ) ⊂ O ∗X and dem(O ∗X) ≤ k + 1 = dem(Y ) + 1.

Regard Bj as Oj ∗ ∂Bj and Z ′
j ⊂ Zj ⊂ ∂Bj with

gj ⊂ Oj ∗ Zj , dem(Zj) = 2, K ∩Bj = Dj = Oj ∗ Z
′
j .

Set Aj = Oj ∗Zj . Choose η > 0 so that η-diameter subsets of Oj ∗ ∂Bj have
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image diameter less than ε/3 in Bj , and assume η to be so small that the
η-neighborhood of O ∗ Z ′ corresponds to a set in Bj of diameter less than
ε near Dj. Decreasing η if necessary, choose an integer m > 0 such that
γ = (m + 1)η < 1 and gj corresponds to a subset of γAj . Set W0 = U .
Apply Lemma 12.7 in each Bj and extend over M −

⋃
j Bj via the identity

to obtain a homeomorphism Ψ1 : M →M satisfying

(1) Ψ1|⌈K ∪ (M −W0)⌋ = id |⌈K ∪ (M −W0)⌋,
(2) ̺(Ψ1, id) < ε/3,
(3) Ψ1(gj) ⊂ [(γ − ε/3)Aj ∪N(Oj ∗ Z

′
j ; ε/3)] ∩ (Oj ∗ Zj).

Now if the images under Ψ1 of all g∗ ∈ G∗ −Λ that meet
⋃

j(γ − ε/3)Aj

would have diameter less than ε/3, we could choose a neighborhood W1 ⊂
W0 of

⋃
j(γ − η)Aj such that if g∗ ∈ G∗ − Λ and Ψ1(g

∗) ∩W1 6= ∅, then

diam(Ψ1(g
∗)) < η, and we could apply Lemma 12.7 again to obtain a second

homeomorphism Ψ2 : M → M so Ψ2Ψ1 shrinks
⋃

j γAj to (γ − 2ε/3)Aj.
However, that is too much to expect, in general, and to address that obstacle
we use the following:

Lemma 12.15. Suppose K is a finite 2-complex LCC1 embedded in M ,
ε > 0, and G∗ is a cell-like usc decomposition of M for which HG∗ forms a

null sequence of compacta, where dem(g∗) ≤ 2 and g∗∩K = g∗∩ (K−K(1))
is a cell-like set of diameter less than ε for each g∗ ∈ G∗, A is a compact

3-dimensional polyhedron in M , and gt ∈ G∗ satisfies diam(gt ∩K) < ε/3.
Then there exist a neighborhood W of gt and a homeomorphism ψ : M →M
such that

• ψ|⌈K ∪ (M −W )⌋ = id |⌈K ∪ (M −W )⌋,
• diam(ψ(g∗)) < ε/3 for all g∗ ∈ G∗ with ψ(g∗) ∩W ∩A 6= ∅.

Lemma 12.15 is proved in much the same fashion as [11, Lemma 22.3],
with additional stipulations about not moving points of K. (Unlike in [11],
there is no need here for an inductive argument, because embedding di-
mension considerations make the result quite obvious when dem(A) < 3.)
Details are left to the reader.

Returning to the proof of Proposition 12.13, we consider the finite collec-
tion of elements g∗ ∈ G∗ −Λ whose images under Ψ1 have diameter at least
ε/3 (and, hence, diameter at most ε). Apply Lemma 12.15, with Ψ1(G

∗) and
positive number ε/3, in very small neighborhoods (i.e., in ε-diameter neigh-
borhoods) of such Ψ1(g

∗) to obtain a resulting homeomorphism ψ1 : M →M
such that

(4) ψ1|⌈K ∪ (M −W0)⌋ = id |⌈K ∪ (M −W0)⌋,
(5) ψ1|⌈Ψ1(g

∗)⌋ = id |⌈Ψ1(g
∗)⌋ for all g∗ ∈ Λ,

(6) diam(ψ1Ψ1(g
∗))<ε/3 for all g∗ ∈ G∗−Λ with ψ1Ψ1(g

∗)∩
⋃

j Aj 6= ∅.
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Now choose a neighborhood W1 ⊂ W0 of
⋃

j(γ − ε/3)Aj such that if

g∗ ∈ G∗ − Λ and ψ1Ψ1(g
∗) ∩W1 6= ∅, then diam(ψ1Ψ1(g

∗)) < ε/3. Again
apply Lemma 12.7 to obtain a second homeomorphism Ψ2 : M →M so that

(7) Ψ2|⌈K ∪ (M −W1)⌋ = id |⌈K ∪ (M −W1)⌋,
(8) ̺(Ψ2, id) < ε/3,
(9) Ψ2((γ−ε/3)Aj) ⊂ (γ−2ε/3)Aj ∪ [N(Oj ∗Z

′
j; ε/3)∩Aj], j = 1, 2, . . . .

At this point consider the finite collection of elements g∗ ∈ G∗−Λ whose
images under Ψ2ψ1Ψ1 have diameter between ε/3 and ε. Apply Lemma 12.15,
with Ψ2ψ1Ψ1(G

∗) and positive number ε/3, in very small neighborhoods of
such Ψ2ψ1Ψ1(g

∗) to obtain a resulting homeomorphism ψ2 : M → M such
that

(10) ψ2|⌈K ∪ (M −W1)⌋ = id |⌈K ∪ (M −W1)⌋,
(11) ψ2|⌈Ψ2ψ1Ψ1(g

∗)⌋ = id |⌈Ψ2ψ1Ψ1(g
∗)⌋ for all g∗ ∈ Λ,

(12) diam(ψ2Ψ2ψ1Ψ1(g
∗)) < ε/3 for all g∗ ∈ G∗−Λ with ψ2Ψ2ψ1Ψ1(g

∗)∩
W1 ∩

⋃
j Aj 6= ∅.

Repeat this procedure, producing successive homeomorphisms Ψ1, ψ1,
Ψ2, ψ2, . . . , ψm−1, Ψm. The composition F = Ψmψm−1Ψm−1 · · ·ψ2Ψ2ψ1Ψ1 has
the desired effect. Not only does it shrink each gj ∈ Λ ⊂ G∗ to small size
while keeping K fixed, it does the shrinking with control: if

Ψsψs−1Ψs−1 · · ·ψ1Ψ1(g
∗), where g∗ ∈ G∗ − Λ,

becomes dangerously large (that is, of diameter between ε/3 and ε), either
ψs rectifies that problem or ψs pushes that image off

⋃
j Aj and allows

later compressions of these gj ∈ Λ across Aj to sweep past without further
affecting any moderately large images. In other words, the large elements
of G∗ are shrunk to small size, without allowing any of the originally small
elements to become too big.

Proof of Theorem 12.1. This argument is quite similar to that of [11,
Theorem 23.2], with minor notational changes. It is so fundamental that we
present some of the details.

Filter π(K) into Fσ-sets ∅ = Q−1 ⊂ Q0 ⊂ Q1 ⊂ Q2 = π(K) so that
dim(Qi) ≤ i and dim(Qi − Qi−1) = 0 [11, Lemma 23.1]. We shall apply
previous results from this section to successively approximate π by cell-
like maps that are 1-1 over Q0, Q1, Q2, respectively. The Claim is that for
i = 0, 1, 2 and ε > 0 there exists a cell-like map Fi : M → M/G such
that ̺(Fi, π) < (i+ 1)ε, Fi is 1-1 over Qi ∪ (M − π(K)), Fi|⌈K ∪ (M −U)⌋
= π|⌈K ∪ (M − U)⌋, and the nondegeneracy set of Fi has embedding di-
mension at most 2. Once the claim is established, the final F2 will be a
homeomorphism that approximates π and agrees with π on K ∪ (M − U),
as required.
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To begin, express Q0 as the countable union of compact 0-dimensional
sets Zj . Choose open subsets V1, V2, . . . of M/G with Vi+1 ⊂ Vi, π

−1(V1) ⊂
U and π(K) ⊃

⋂
j Vj ⊃ Q0. We shall produce cell-like maps fj : M →

M/G, j ∈ {0, 1, 2, . . .}, with f0 = π, satisfying the following conditions:

(1) ̺(fj+1, fj) < ε/2j+1;

(2) fj is 1-1 over (M/G− π(K)) ∪
⋃j

k=1 Zk;

(3) there exists a PL triangulation Tj of M of mesh less than 2−j whose

2-skeleton T (2) misses the nondegeneracy set of fj ;

(4) fj+k|⌈T
(2)
j ∪ f−1

j (Zj) ∪ (M − f−1
j (Vj))⌋ = fj |⌈T

(2)
j ∪ f−1

j (Zj) ∪

(M − f−1
j (Vj))⌋ for j, k ∈ {1, 2, . . .};

(5) for x ∈M − (T
(2)
j ∪ f−1

j (Zj)) and j, k ∈ {0, 1, 2, . . .},

̺(fj+k+1(x), fj+k(x)) ≤ 4−k̺(fj+k(x), fj(T
(2)
j ) ∪ Zj).

Before describing their construction, we describe their purpose. Condi-
tion (1) ensures that {fj} is a Cauchy sequence of maps converging to a
map F0 close to π, where F0 is necessarily cell-like, by [11, Theorem 17.4].
Condition (2) requires fj to be 1-1 over Zj , condition (4) maintains the
same action over Zj by subsequent maps, and condition (5) provides critical
controls ensuring the same feature holds in the limiting map F0, by prevent-
ing points of M − f−1

j (Zj) from being sent to Zj by F0. Consequently, F0

will be 1-1 over Q0. Similarly, fj is 1-1 over M/G − f−1
j (Vj), subsequent

maps fj+k agree with fj over M − f 1

j (Vj) by (4), and thus F0 is 1-1 over

M/G −
⋂
Vj ⊂ M/G − π(K). Very important among all these properties,

condition (3) identifies a fine-meshed triangulation whose 2-skeleton T
(2)
j

misses the nondegeneracy set of fj , condition (4) maintains the same action

relative to T
(2)
j by subsequent maps, and condition (5) prevents any other

points of M from being sent to F0(T
(2)
j ) = fj(T

(2)
j ) under F0. As a result,

the nondegeneracy set of F0 will be contained in M −
⋃

j T
(2)
j , causing it

to have embedding dimension at most 2. Consequently, construction of the
{fj} will establish the claim for the i = 0 case.

To perform the construction of the first new map, f1, observe that the
decomposition G(1) induced over Z1 by f0, namely,

G(1) = {f−1
0 (z) | z ∈ Z1} plus all singletons from M − f−1

0 (Z1),

is a 0-dimensional, cell-like decomposition of M satisfying the hypothesis
of Proposition 12.13. Applying Propositions 12.13 and 12.4 we obtain a
map µ1 : M → M such that µ1 realizes G(1) (in other words, that G(1) =

{µ−1
1 (x) | x ∈M}), µ1 moves no point of T

(2)
1 or outside U1, and µ1 is limited

by the inverse image under f0 = h of an open cover consisting of sets of di-
ameter less than ε/2. Define f1 = f0µ

−1
1 . Obviously f1 is a well-defined map;
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most notably, it is 1-1 not only over Z1 but also over all points x ∈M/G for
which f−1

0 (x) is a singleton. Its definition ensures that any nontrivial point
preimage under f1 is homeomorphic to the preimage of the same point under
f0, so f1 is cell-like. One can produce the required p.l. triangulations T1 ofM
to ensure that f1 satisfies conditions (1) through (3). Construction of subse-
quent maps f2, f3, . . . proceeds in similar fashion, controlled to ensure satis-
faction of conditions (1) through (5). See [11, pp. 173–174] for further details.

Now, on to the large-scale iteration. Assume Fi : M → M/G (i = 0, 1)
is a cell-like map satisfying the statements of the Claim. The new goal is
to produce another cell-like map Fi+1 : M → M/G, ε-close to Fi and 1-1
over (M/G− π(K)) ∪Qi+1. Toward that end, express Qi+1 as a countable
union of compact sets Z1, Z2, . . . . Determine open subsets V1 ⊃ V2 ⊃ · · ·
such that π(K) ⊃

⋂
j Vj ⊃ Qi+1 and π−1(V1) ⊂ U . Exactly as in the i = 0

case, we find cell-like maps fj : M → M/G, j ∈ {0, 1, 2, . . .}, with f0 = Fi,
satisfying conditions (1) through (5) as before, except for condition (2) which
is upgraded to:

(2′) fj is 1-1 over (M/G− π(K)) ∪Qi ∪
⋃j

k=1 Zk.

The key for starting and for iterating is that the decomposition induced by
f0 = Fi over Z1 is 0-dimensional, since its nondegeneracy set is a subset of
Z1−Q

i ⊂ Qi+1−Qi. This exposes the principal benefit of the filtration. Use
Propositions 12.13 and 12.4, as before, to approximate f0 by a new cell-like
map f1 which is 1-1 over (M/G− π(K)) ∪Qi ∪ Z1. Continue the iteration,
obtaining maps f2, f3, . . . converging to the desired Fi+1, and completing
the verification of the iterative step. This finishes the proof of the Claim

and of Theorem 12.1.

Corollary 12.16. Let K be a 2-complex LCC1 embedded in M . Sup-

pose h : M →M is a cell-like map that is 1-1 on K, Gh is the induced decom-

position, h(Nh) ⊂ h(K), and dem(Nh) ≤ 2. Then for each neighborhood V
of h(K) and each ε > 0 there exists a homeomorphism Φ : M →M such that

(1) Φ|⌈K⌋ = h|⌈K⌋,
(2) Φ = h outside h−1(V ),
(3) ̺(Φ, h) < ε.

13. Proof of the main theorem. We are now ready to prove the
main theorem. In particular, we prove a restatement of Theorem 6.1 in the
language of decompositions.

Theorem 13.1 (Main Theorem). Let G be a cell-like usc decomposition

of a compact , p.l. 5-manifold M for which dim(M/G) < ∞ and the asso-

ciated decomposition map π : M → M/G has the disjoint disks property.
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Then π can be approximated by a cell-like map Ψ : M → M/G such that

dem(NΨ ) ≤ 2.

Proof. By Theorem 7.3, π : M → M/G can be approximated by an
LCC1 refined map. Without loss of generality, suppose that π is LCC1 refined
over A. Fix ε > 0 and set λ0 = π. Let {Ki} be a sequence of pairwise disjoint,
LCC1 embedded, finite 2-complexes that are the 2-skeleta of triangulations
of M whose mesh tends to zero. By Corollary 11.4 there is a cell-like map
h1 : M → M , the end of a pseudo-isotopy moving K1 off NG, so that
̺(λ0h1, λ0) < ε/2, h1 is 1-1 on K1, h1(Nh1

) ⊂ h1(K1), and dem(Nh1
) ≤ 2.

Corollary 12.16 then provides a homeomorphism Φ1 : M → M such that
Φ1|⌈K1⌋ = h1|⌈K1⌋ and ̺(λ0Φ1, λ0) < ε/2. Now λ1 = λ0Φ1 is 1-1 over
λ1(K1), since Φ1(K1) = h1(K1) misses NG. To continue one must observe
that λ1 : M →M/G is LCC1 refined over A. The rest of the proof proceeds
like that of [11, Theorem 24.3]. In the next step, for instance, we apply
Corollary 11.4 again to locate a cell-like map h2 : M → M , the end of a
pseudo-isotopy supported in M −K1 and moving K2 off the nondegeneracy
set Nλ1

of λ1, so that ̺(λ1h2, λ1) < ε/4, h2 is 1-1 on K2, h2(Nh2
) ⊂ h2(K2),

and dem(Nh2
) ≤ 2. Corollary 12.16 then yields a homeomorphism Φ2 : M →

M supported in M − K1 such that Φ2|⌈K2⌋ = h2|⌈K2⌋ and ̺(λ1Φ2, λ1) <
ε/4. Here λ2 = λ1Ψ2 is 1-1 over λ2(K2), since Φ2(K2) = h2(K2) misses
Nλ1

. In this fashion we build cell-like maps λi : M → M/G, i ∈ {1, 2, . . .},
where λi is 1-1 over λi(Ki), and where this collection of maps forms a Cauchy
sequence converging to a cell-like map Ψ : M →M/G with ̺(Ψ, π = λ0) < ε.
Besides maintaining controls to ensure {λi} is a Cauchy sequence, motion is
carefully regulated to ensure that λi+k|⌈Ki⌋ = λi|⌈Ki⌋ and λi+k is 1-1 over
λi+k(Ki). With even more careful control the same feature is preserved in
the limit, i.e., Ψ is 1-1 over Ψ(Ki) and hence 1-1 over Ψ(

⋃
∞

i=1Ki). It follows
that dem(NΨ ) ≤ 2.

The cell-like approximation in dimension 5 now follows as a corollary, as
explained in Sections 4 and 5.

Theorem 13.2 (Cell-like approximation theorem in dimension 5). Sup-

pose G is a cell-like decomposition of an 5-manifold M . Then G is shrinkable

if and only if M/G is finite-dimensional and has the disjoint disks property.
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