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Boundaries of right-angled hyperboli buildingsbyJan Dymara (Wroªaw) and Damian Osajda (Wroªaw and Paris)
Abstrat. We prove that the boundary of a right-angled hyperboli building is auniversal Menger spae. As a onsequene, the 3-dimensional universal Menger spae isthe boundary of some Gromov-hyperboli group.INTRODUCTIONHyperboli right-angled buildings were �rst explored by Mar Bourdon.The easiest non-trivial example an be glued from in�nitely many pen-tagons. We glue them along edges�a �nite number greater than 2 alongeah edge�so that a small neighbourhood of eah vertex is a one over afull bipartite graph. We want the obtained polyhedral omplex to be on-neted and simply onneted; this is easily arranged by passing to the uni-versal over of a onneted omponent. A natural metri on our omplexis a pieewise hyperboli metri, eah pentagon given the shape of a right-angled hyperboli pentagon. This and similar examples were onstruted andthoroughly investigated by Bourdon ([Bd1℄, [Bd2℄) and Bourdon and Pajot([BP1℄, [BP2℄).In partiular, Bourdon states that the Gromov boundary of any of theomplexes he onsiders is the Menger urve. There are two folklore proofsof this statement. The �rst follows the arguments of Benakli (f. [Bd1℄, [B℄).The seond uses the result of Kapovih and Kleiner ([KK℄): if the boundaryof a one-ended hyperboli group is 1-dimensional and has no loal ut pointsthen it is either the Menger urve or the Sierpi«ski arpet. This result appliesto uniform latties in the isometry groups of Bourdon's buildings. Sine (asone an hek) the boundary of a thik building ontains a non-planar subset,2000 Mathematis Subjet Classi�ation: 20E42, 54F35, 20F67.Key words and phrases: hyperboli building, Menger spae, Gromov boundary.Both authors were partially supported by KBN grants 2 P03A 017 25 and N201 01232/0718. The seond author was a Marie Curie Intra-European fellow, ontrat MEIF CT05011050. [123℄ © Instytut Matematyzny PAN, 2007



124 J. Dymara and D. Osajdait follows that in this ase the boundary is the Menger urve. No details ofeither of the arguments have been published.The purpose of this paper is to prove the following theorem.
Main Theorem. Let X be a loally �nite right-angled thik hyperbolibuilding of dimension n ≥ 2. Then the Gromov boundary of X is homeomor-phi to the universal (n− 1)-dimensional Menger spae µn−1.A disussion of buildings explaining the meaning of our assumptions isontained in Setion 1. Let us just mention that hyperboli means Loba-hevski��-hyperboli rather than Gromov-hyperboli. The existene of X asin the theorem is equivalent to the existene of a bounded �nite right-angledpolyhedron in H

n. Therefore, X exists only for n = 2, 3, 4 ([Vin℄). One thepolyhedron is given, X an be onstruted as the universal over of some�nite omplex (f. [D2℄, [GP℄ or Setion 4). The fundamental group of this�nite omplex is quasi-isometri to X; thus, one gets examples of Gromov-hyperboli groups with Gromov boundary µ3, µ2 and µ1. The latter twospaes have been known to be boundaries of Gromov-hyperboli groups (f.[BK℄), but µ3 is new.The proof of the main theorem is based on the following haraterisationof µn−1, due to Bestvina [Be℄. A metri spae Y is homeomorphi to µn−1if and only if it is ompat, (n − 1)-dimensional, (n − 2)-onneted, loally
(n − 2)-onneted, and has the (n − 1)-dimensional disjoint dis property(DDn−1P ). We hek that these onditions are satis�ed for the boundary ∂Xof an n-dimensional right-angled hyperboli building X. In Lemma 3.1 weprove that ∂X is ompat and (n − 1)-dimensional. Reall that Y is loally
(n−2)-onneted if for eah y ∈ Y and every open neighbourhood U of y thereexists an open set V with y ∈ V ⊆ U suh that everymapSk → V extends to amap Bk+1 → U (for k = 0, 1, . . . , n− 2). In Proposition 3.6 we hek that ∂Xis (n− 2)-onneted and loally (n− 2)-onneted. The (n− 1)-dimensionaldisjoint dis property says that for any two maps f, g : Dn−1 → Y and any
ε > 0 there exist maps f ′, g′ : Dn−1 → Y suh that f ′ is ε-lose to f , g′ is
ε-lose to g, and f ′(Dn−1)∩ g′(Dn−1) = ∅. A standard way to proveDDn−1Pis to onstrut, for any ε > 0, two maps φ, ψ : Y → Y , both ε-lose to theidentity map and with disjoint images. Suh maps for ∂X are onstruted inTheorem 4.11 and Corollary 4.13.In Setion 4, we investigate the struture of right-angled buildings, re-proving some results of Globus ([Gl℄) and Haglund and Paulin ([HP℄). Theadvantages of our approah are as follows: (i) our assumptions on the thik-ness of the buildings are weaker; (ii) we obtain a deeper understanding ofthe automorphism group, allowing us to prove DDn−1P .Finally, in the appendix we prove that an n-dimensional hyperboli (notneessarily right-angled) or Eulidean building is (n−2)-onneted at in�nity.



Boundaries of right-angled hyperboli buildings 125This is a speial ase of some results of [GP℄ and [DM℄. We brie�y ritiisethe arguments given in those papers (f. [DM′℄).A variant of the main theorem has been proved independently by A. Dra-nishnikov and T. Januszkiewiz. We have not seen the details of their work.We are grateful to Mike Davis, Frédéri Paulin, Tadeusz Januszkiewizand Jaek �wi¡tkowski for helpful onversations.
1. GENERALITIES ON BUILDINGSTwo standard referenes for buildings are [Br℄ and [Ron℄. Metris onbuildings are disussed in [D2℄, and hyperboli buildings in [GP℄.A Coxeter system is a pair (W,S), where W is a group, S is a generatingsubset of W , and W = 〈S | {(st)mst}s,t∈S〉. The numbers mst are positiveintegers or in�nity; mst = 1 exatly when s = t; mst = ∞ means that thereis no relation between s and t. We usually speak about a Coxeter group

W , in fat meaning some Coxeter system (W,S). A Coxeter group W isright-angled if mst ∈ {1, 2,∞} for all s, t ∈ S. A speial subgroup of W is asubgroup generated by some subset T of S: WT = 〈T 〉. It is well known that
(WT , T ) is a Coxeter system. A subset T ⊂ S is alled spherial if WT is�nite. For example, ∅ is spherial; {s} is always spherial; {s, t} is spherialunless mst = ∞. If W is right-angled, then T is spherial if and only if anytwo elements of T ommute. For w ∈ W we de�ne ℓ(w) to be the length ofa shortest word in the generators S representing w. We put

In(w) = {s ∈ S | ℓ(ws) < ℓ(w)}.It is well known that In(w) is always spherial.Several di�erent desriptions of buildings will be useful for us. We startwith a ombinatorial one. Let W be a Coxeter group. We equip W witha family (∼s)s∈S of equivalene relations, de�ned as follows: w ∼s v ⇔
w ∈ {v, vs}. Suppose that A and B are two sets, eah equipped with an S-indexed family of equivalene relations. A map from A to B is a morphismif it preserves eah of the equivalene relations; it is an isomorphism if it isa bijetive morphism and if its inverse is also a morphism. A W -building isa set (of hambers) equipped with a family of equivalene relations (∼s)s∈Sand with a family of subsets (alled apartments) isomorphi toW , suh that:(B1) any two hambers are ontained in some apartment;(B2) if two hambers x, y are both ontained in apartments A,A′, thenthere exists an isomorphism A→ A′ �xing x and y;(B3) if apartments A, A′ ontain a hamber x and both interset anequivalene lass R of one of the relations ∼s, then there exists anisomorphism A→ A′ �xing x and mapping R ∩A to R ∩A′.



126 J. Dymara and D. OsajdaFor the equivalene of this de�nition and a more standard one see [Ron,Thm 3.11℄. A building is alled thik if eah equivalene lass of eah relation
∼s has at least three elements. We will all a building loally �nite if eahequivalene lass of eah relation ∼s is �nite. For example, W is a loally�nite building, but it is not thik. Chambers x, y suh that x ∼s y arealled s-adjaent or simply adjaent. A gallery in a building X is a sequeneof hambers suh that any two onseutive elements are adjaent. A �nitegallery is minimal if there is no shorter gallery with the same extremities.For a subset T ⊆ S and x ∈ X we de�ne the residue Res(x, T ) as the setof all y ∈ X suh that there exists a gallery of the form x = x0 ∼s1 x1 ∼
· · · ∼sk

xk = y, where s1, . . . , sk ∈ T . For X = W the T -residue of x is theleft WT -oset ontaining x: Res(x, T ) = xWT . In general, it is well knownthat Res(x, T ) is a WT -building.The notion of folding map is very important for us. Let X be a W -building. Pik any hamber B ∈ X. By (B1), for any x ∈ X there exists anapartment A suh that B, x ∈ A. Let ιA : A→W be the unique isomorphismwhih sends B to 1. Then, by (B2), ιA(x) does not depend on A. The formula
πB(x) = ιA(x) de�nes the (B-based) folding map πB : X →W . This map isa morphism of buildings (one uses (B3) to hek that). We often abbreviate
πB to π. Here is a list of some well-known and useful properties of π.(F1) If x ∈ X and t ∈ In(π(x)), then there exists a unique xt ∈ X suhthat x ∼t x

t and π(xt) = π(x)t.(F2) The image under π of a minimal gallery in X starting at B isa minimal gallery in W . Conversely, if x ∈ X then any minimalgallery in W from B to π(x) is the image under π of a uniqueminimal gallery from B to x.For x ∈ X we may de�ne its length (meaning the distane from B) in termsof the folding: ℓ(x) = ℓ(π(x)).(F3) For any x ∈ X and T ⊆ S there exists a unique shortest hamber yin Res(x, T ). Moreover, if z ∈ Res(x, T ), then there exists a minimalgallery fromB to z via y. The restrition of π to Res(x, T ) omposedwith left multipliation by π(y)−1 oinides with the y-based foldingmap πy : Res(x, T ) →WT .Buildings also have geometri realisations. The most general onstrutionis due to Davis. Let D be a topologial spae with a family (Ds)s∈S ofsubspaes (D is a model for a hamber; Ds is a model for the intersetion oftwo s-adjaent hambers). For p ∈ D we put S(p) = {s ∈ S | p ∈ Ds}. Nowfor anyW -building X Davis de�nes XD = X×D/∼, where (x, p) ∼ (y, q) ⇔
p = q and x ∈ Res(y, S(p)). The best hoie for D is the Davis hamber K:it is de�ned as the geometri realisation of the poset of all spherial subsets



Boundaries of right-angled hyperboli buildings 127of S (inluding ∅); the subspae Ks is the subomplex spanned by subsetsontaining {s}. We will denote XK by |X|. For X = W one obtains the Davisomplex |W |. The geometri realisation |Y | of a subset Y of X is the subsetof |X| given by |Y | = {[(y, p)]∼ | y ∈ Y, p ∈ K}, where [(y, p)]∼ denotes the
∼-equivalene lass of (y, p). Apartments in |X| are geometri realisations ofapartments in X. The folding map indues a map |π| : |X| → |W |, whih isalso alled the folding map and is usually denoted by π. Here are some nieproperties of |X|:

• if X is loally �nite, then |X| is loally ompat;
• |X| is ontratible;
• |X| arries a pieewise-Eulidean CAT(0) metri (the Moussong met-ri, f. [M℄).Let P be a onvex polytope in the hyperboli spae H

n. Suppose thateah dihedral angle of P is of the form π/k, where the positive integer k mayvary from angle to angle. Then the re�etions in odimension-one faes of Pgenerate a Coxeter groupW ; Coxeter groups arising in this way will be alledhyperboli. The group W ats on H
n with fundamental domain P (this is atheorem of Poinaré). The baryentri subdivision of P is isomorphi to theDavis hamber K orresponding to the group W . Using this isomorphismone an de�ne a polyhedral struture and a pieewise hyperboli metrion |X| for any W -building X. Then eah apartment in |X| is isometri to

H
n, with hambers orresponding to W -translates of P in H

n. Moreover,the whole building |X| is CAT(−1) (f. [D2℄, [GP℄). A building X (oftenmeaning the geometri realisation |X|, equipped with the CAT(−1) metriand the polyhedral struture desribed above) orresponding to a hyperboliCoxeter group will be alled a hyperboli building. If all dihedral angles of Pare π/2, then P , W and X are alled right-angled.The Gromov boundary ∂X of a hyperboli building X (or, more generally,of a CAT(−1) spae, f. [BH℄) an be de�ned as the set of geodesi rays
γ : [0,∞) → X starting at some �xed point x0. The topology on ∂X isde�ned by the basis of open sets {Ur(x) | x ∈ X, r > 0}, where

Ur(x) = {γ ∈ ∂X | γ([0,∞)) ∩Br(x) 6= ∅}(Br(x) is the open ball in X of radius r entred at x). The topologial spaethus obtained is independent of the hoie of x0. We will always hoose x0in the interior of a hamber. For p, q ∈ X ∪∂X we denote by pq the geodesisegment from p to q (whih exists and is unique beause X is a CAT(−1)spae). We de�ne the topology on X∪∂X by the basis of open sets onsistingof open balls in X and sets
Vr(x) = {y ∈ X ∪ ∂X | x0y ∩Br(x) 6= ∅};



128 J. Dymara and D. Osajdarestrited to ∂X, this topology yields the topology desribed above. If X isloally ompat then X ∪ ∂X is a ompati�ation of X. The folding map
π : X → H

n extends to a map π : X ∪ ∂X → H
n ∪ ∂H

n, where ∂H
n is theGromov boundary of the hyperboli spae.

2. HALF-SPACESThe purpose of this setion is to prove some auxiliary fats about build-ings. In Subsetion 2.A we give a di�erent basis of open sets for the topologyon X ∪ ∂X; in 2.B we prove some properties of the elements of this new ba-sis; in 2.C we disuss onnetedness properties of some subsets of spherialbuildings.2.A. Standard neighbourhoods. In this subsetion we assume that
X is a hyperboli building. We keep the notation (W , P , π, x0, Br(x), Vr(x))as in the �nal two paragraphs of Setion 1. In partiular, π is the folding mapbased at a hamber B and sending B to P . We hoose x0 in the interior of B.We denote by pR the geodesi retration of X∪∂X onto BR(x0): pR(x) is theintersetion point of SR(x0) and x0x if d(x0, x) > R; otherwise pR(x) = x.We also use pR to denote the orresponding retration in H

n ∪ ∂H
n.Let H be a hyperplane in H

n = |W | ontaining a odimension-one faeof some W -translate wP of P . Suh hyperplane is alled a wall and di-vides H
n into two open onneted piees: H+ and H− (our onvention is

int(P ) ⊆ H−). We put ∂H+ = {y ∈ ∂H
n | py ∩ H+ 6= ∅}, for some

p ∈ int(P ) (the result does not depend on the hoie of p; one may hoose
p = π(x0)). Let H be the set of all onneted omponents of sets of theform π−1(H+ ∪ ∂H+), over all walls H. Sine all Br(x) and Vr(x) are path-wise onneted (any y ∈ Vr(x) an be onneted by a part of x0y to apoint in Br(x)), the spae X ∪ ∂X is loally pathwise onneted. Therefore,elements of H are open; they will be used as neighbourhoods of bound-ary points, and alled standard (open) neighbourhoods. By onvention, thewhole spae X ∪ ∂X is also a standard open neighbourhood. We laim that
H∪{Br(x) | x ∈ X, r > 0} is another basis of open sets for the topology on
X ∪ ∂X. This is implied by the following lemma.Lemma 2.1. Let x ∈ ∂X and U ⊂ X ∪ ∂X be its neighbourhood. Thenthere exists a wall H suh that one of the onneted omponents of the set
π−1(H+ ∪ ∂H+) ontains x and is ontained in U .Proof. By the de�nition of the topology on X ∪ ∂X, and beause x0 ∈
int(B), one an �nd a point x1 lying on the geodesi ray x0x and insidea hamber C, and a positive number r, suh that Br(x1) ⊆ int(C) and
Vr(x1) ⊆ U . Then Vr(x1) is an open neighbourhood of x ontained in U .



Boundaries of right-angled hyperboli buildings 129
Claim. There exists a wall F ⊂ H

n suh that
π(x) ∈ F+ ∪ ∂F+ ⊂ π(Vr(x1)).Proof. Notie that π(Vr(x1)) equals Vr(π(x1),H

n), hene is an openneighbourhood of π(x) in H
n ∪ ∂H

n. Indeed, this follows easily from thefollowing two observations: π(Br(x1)) = Br(π(x1),H
n); any geodesi seg-ment in X starting at x0 is mapped by π onto a geodesi segment in H

n.Choose R > 0 suh that every hyperplane in H
n ontained in H

n \
BR(π(x0),H

n) and interseting the geodesi ray π(x0)π(x) is ontained in
π(Vr(x1)). Only �nitely many walls interset BR(π(x0),H

n), while in�nitelymany walls interset π(x0)π(x); therefore, there exists a wall F interseting
π(x0)π(x) and ontained in H

n \BR(π(x0),H
n). By the hoie of R, this Fis ontained in π(Vr(x1)), and satis�es the onditions of the laim. ClaimLet now F be as in the laim. Let F̃+ be the onneted omponent of

π−1(F+ ∪ ∂F+) ontaining x. Let D be the length of a geodesi segment
π(x0)q whih is tangent to Sr(π(x1),H

n) at q. Then we have π(pD(F̃+)) ⊆

pD(F+ ∪ ∂F+) ⊂ Br(π(x1),H
n), hene pD(F̃+) ⊂ π−1(Br(π(x1),H

n)). Re-all that Br(x1) is ontained in the interior of one hamber. Therefore, Br(x1)is one of the onneted omponents of π−1(Br(π(x1),H
n)). However, F̃+ isonneted and its losure ontains x, hene pD(F̃+) is onneted and on-tains pD(x). Sine pD(x) = pD(x1), we have pD(F̃+) ⊂ Br(x1). This implies

F̃+ ⊂ Vr(x1) ⊂ U . Lemma2.1Lemma 2.2. Let H be a wall , and let x ∈ π−1(H+). Then the onnetedomponent of x in π−1(H+) is dense in the onneted omponent of x in
π−1(H+ ∪ ∂H+).Proof. Sine X ∪ ∂X is loally pathwise onneted, onneted ompo-nents of open sets in this spae are pathwise onneted. Let y be in theonneted omponent of x in π−1(H+ ∪ ∂H+), and let γ : [0, 1] → X ∪ ∂Xbe a path from x to y ontained in that omponent. We may hoose R solarge that pR ◦γ is a path starting at x and ontained in π−1(H+). Conate-nating this path with pR(y)y we obtain a path from x to y whih is ontainedin π−1(H+), exept perhaps for its endpoint y. It follows that y belongs tothe losure of the omponent of x in π−1(H+).2.B. Shortest elements. In this subsetionW is a right-angled Coxetergroup (we assume that W is hyperboli only in Propositions 2.12 and 2.13).Our goal is to prove that any half-spae in W has a unique shortest element(Prop. 2.5); we will also investigate the orresponding question for buildings(Prop. 2.11). A half-spae in W is a set of the form

H(w, s) = {h ∈W | d(h,ws) < d(h,w)},



130 J. Dymara and D. Osajdawhere w ∈ W , s ∈ S and d(w1, w2) = ℓ(w−1
1 w2). The name is motivated bythe fat that if W is hyperboli then the geometri realisation of H(w, s) isa losed half-spae in the usual sense in |W | = H

n.We begin with two priniples whih are very useful when dealing withdistanes in Coxeter groups.(±1) d(as, b) = d(a, b) ± 1 and d(a, bs) = d(a, b) ± 1, for every a, b ∈ Wand every s ∈ S.(R) Let t, t′ ∈ S be two distint ommuting generators of W , let R bea {t, t′}-residue in W , and let x ∈W . Then the four distanes from
x to hambers of R yield three onseutive integers, the middle oneattained twie, on two non-adjaent hambers of R.Property (R) follows from properties (±1) and (F3) (the latter is stated inSetion 1). Now we proeed to some preliminary lemmas. The proofs arequite standard, so we omit the details.Lemma 2.3. Suppose h ∈ H(w, s) \ {ws}, ht 6∈ H(w, s) for some t ∈ S.Then there exists t′ ∈ S suh that t′t = tt′ and d(ht′, ws) < d(h,ws). More-over :(a) ht′ ∈ H(w, s), ht′t 6∈ H(w, s);(b) H(ht, t) = H(htt′, t).Proof. Choose t′ suh that ht′ is loser to ws than h. Using (±1) one andedue that ht′ is then loser to w than h. Therefore, t, t′ ∈ In(w−1h), hene

tt′ = t′t. It remains to prove (a) and (b).We apply property (R) to the residue R = Res(h, {t, t′}). First, we take
x = w and x = ws. The eight distanes are easily determined up to a ommonadditive onstant; part (a) follows. Seond, take an arbitrary x ∈ W . Thenthere are four ases to onsider, depending on whih element of R is losestto x. In eah ase it is readily heked that x ∈ H(ht, t) if and only if
x ∈ H(htt′, t); this proves (b).Lemma 2.4. Suppose h ∈ H(w, s), ht 6∈ H(w, s) for some t ∈ S. Then
t = s and H(hs, s) = H(w, s).Proof. Take a ounterexample (to the laim t = s) whih is losest to w.Lemma 2.3 produes a ounterexample whih is even loser to w, a ontra-dition. The same argument proves the seond laim.Lemma 2.5. Suppose that h ∈ H(w, s) and hs 6∈ H(w, s). Then thereexists a minimal gallery ws,wst1, . . . , wst1 . . . tm = h suh that tis = sti.The onverse is also true.Proof. The �rst statement follows from Lemma 2.3. The onverse iseasily proved by indution on m: one should apply property (R) to R =
Res(wst1 . . . tm, {tm, s}) and x = w,ws.



Boundaries of right-angled hyperboli buildings 131Corollary 2.6.(a) The set {h∈W | h ∈ H(w, s), hs 6∈ H(w, s)} oinides with wsW{s}′ ,where {s}′ = {t ∈ S \ {s} | ts = st}.(b) Any half-spae is gallery onneted.Proof. Part (a) follows diretly from Lemma 2.5. To prove (b), onsider agallery from x ∈ H(w, s) to w. Let y be the �rst element of that gallery whihdoes not belong to H(w, s). Then, by Lemma 2.4 and part (a), ys ∈ wsW{s}′ ,so that it an be onneted to ws by a gallery in wsW{s}′ . Conatenatingthe part from x to ys of the �rst gallery with the seond gallery we obtaina gallery in H(w, s) onneting x to ws. Statement (b) follows.Proposition 2.7. Every half-spae (in any right-angled Coxeter group)has a unique shortest element.Proof. We assume that 1 does not belong to our half-spae H(w, s)�otherwise the statement is trivial. Let x ∈ H(w, s), and let y be the �rstelement in a minimal gallery from x to 1 whih does not belong to H(w, s).Then, by Lemma 2.4 and Corollary 2.6, ys ∈ wsW{s}′ . Any residue ontainsa unique shortest element; let g be the shortest element in wsW{s}′ . Thereexists a minimal gallery from ys via g to 1 (f. property (F3), Setion 1).Consequently, ℓ(x) ≥ ℓ(ys) ≥ ℓ(g); equalities hold only if x = y = g. Itfollows that g is the unique shortest element in H(w, s).The proof of Proposition 2.7 has the following orollary.Corollary 2.8. Any element of H(w, s) an be onneted with 1 by aminimal gallery passing through the shortest element of H(w, s).Proof. In the situation of the proof of Proposition 2.7, onatenate thepart from x to ys of the �rst gallery with the seond gallery. The result is aminimal gallery from x via g to 1.We now turn to buildings. Let X be a W -building, and let π : X → Wbe the B-based folding map. We also �x a half-spae H(w, s). We assumethat 1 6∈ H(w, s) (beause we are eventually interested in standard openneighbourhoods) and that ws is the shortest element of H(w, s) (we may doso beause of Lemma 2.4).Lemma 2.9. Suppose that x ∈ X, π(x) ∈ H(w, s). Then there exists aminimal gallery (x0 = x, x1, . . . , xℓ = B) suh that π(xk) = ws for k =
d(π(x), ws). If (x′0 = x0, x

′
1, . . . , x

′
ℓ) is another suh gallery , then x′k = xk.Proof. Let π(x) = g. If σ = (g, gs1, . . . , gs1 . . . sℓ) is a minimal galleryfrom g to 1 via ws = gs1 . . . sk, then σ̃ = (x, xs1 , (xs1)s2 , . . .) is the uniquegallery from x to B that folds onto σ (f. properties (F1) and (F2) of thefolding map). Moreover, σ̃ is minimal. This gives the �rst assertion.



132 J. Dymara and D. OsajdaNow let τ = (g = π(x′0), π(x′1), . . . , π(x′ℓ) = 1). By Tits' solution of theword problem in Coxeter groups, the gallery σ an be transformed into τ bya sequene of moves of the form
(∗)

η = (. . . , hi, hi+1 = ht, hi+2 = htu, . . .)

↓

ξ = (. . . , h′i = hi, h
′
i+1 = hu, h′i+2 = hut = htu = hi+2, . . .)where tu = ut. Moreover, this an be done with the kth hamber of thegallery equal to ws throughout the proess (just operate separately on thegallery segments from g to ws and from ws to 1). Let (σ = σ1, . . . , σm = τ)be a sequene of galleries orresponding to suh a transformation. Notiethat in the situation of the move (∗) the galleries η̃, ξ̃ oinide exept forthe (i+ 1)st hamber. This is beause both (yu)t and (yt)u are the shortestelement in Res(y, {t, u}) so that they oinide (here y denotes the ommon

ith element of η̃ and ξ̃). It follows that the kth hamber of eah σ̃i is thesame; therefore xk = x′k.We now de�ne ombinatorial and geometri ounterparts of standardopen neighbourhoods, in the setting of general right-angled buildings. Let
x ∈ X and π(x) ∈ H(w, s). We de�ne Y ⊆ X as follows: y ∈ Y if there existsa gallery (x = x0 ∼s1 x1 ∼s2 · · · ∼sm xm = y) suh that Res(π(xi), si) ⊆
H(w, s). We also de�ne

H(w, s)r = {[g, p] ∈ |W | | Res(g, S(p)) ⊆ H(w, s)},

Yr = π−1(H(w, s)r) ∩ |Y |

= {[y, p] ∈ |X| | y ∈ Y, Res(π(y), S(p)) ⊆ H(w, s)}.Notie that Y = {y ∈ X | int(|y|) ⊆ Yr}.Lemma 2.10. Yr is pathwise onneted and both losed and open in
π−1(H(w, s)r).Proof. 1) Yr is pathwise onneted: Reall that the Davis hamber Kis the geometri realisation of the poset of all spherial subsets of S. Thevertex of K orresponding to ∅ will be denoted bar(K), and the vertexorresponding to {s} by bar(Ks). The orresponding points in a hamber
|z| ⊆ |X| will be denoted bar(|z|), bar(|z|s). Any point in |z| an be onnetedto bar(|z|) by a line segment ontained in |z|.Let [y, p] ∈ Yr; the segment from [y, p] to bar(|y|) is ontained in Yr. Nowlet (x = x0 ∼s1 x1 ∼s2 · · · ∼sm xm = y) be a gallery as in the de�nition of Y .The pieewise linear path bar(|x0|) − bar(|x1|s1) − bar(|x1|) − · · · − bar(|y|)is ontained in Yr: the only problemati points are pi = bar(|xi|si

); however,
S(pi) = {si} and Res(π(xi), si) ⊆ H(w, s). Thus, any point in Yr an beonneted by a path to bar(|x|) so that Yr is pathwise onneted.



Boundaries of right-angled hyperboli buildings 1332) Yr is open: Let [y, p] ∈ Yr. Let V be the subset of the Davis hamber
K onsisting of points q suh that S(q) ⊆ S(p). Then ⋃

z∈Res(y,S(p)) z × V isan open subset of X×K, losed under the equivalene relation de�ning |X|.Therefore ⋃
z∈Res(y,S(p)){[z, v] | v ∈ V } is an open neighbourhood of [y, p].This neighbourhood is ontained in Yr.3) Yr is losed in π−1(H(w, s)r): Let [z, q] be in the losure of Yr in |X|.Let N be the open neighbourhood of [z, q] onstruted in 2); then N ∩ Yr

6= ∅. Let [y, p] ∈ Yr ∩ N . Sine [y, p] is in the losure of the interior of |y|,some interior points of |y| belong to N . This implies that y ∈ Res(z, S(q)),and [z, q] = [y, q]. We are done, unless Res(π(y), S(q)) is not ontained in
H(w, s); in that ase, though, [π(z), q] = [π(y), q] 6∈ H(w, s)r and [z, q] 6∈
π−1(H(w, s)r).Proposition 2.11. Y has a unique shortest hamber.Proof. Let σ be a minimal gallery from y ∈ Y to B via π−1(ws); wedenote by a(y) the element of σ that folds onto ws (this element is wellde�ned due to Lemma 2.9).Suppose now that y, y′ ∈ Y , y ∼t y

′ and Res(π(y), t) ⊆ H(w, s). Wewill prove that a(y) = a(y′). If y′ = yt, then there exists a gallery σ from
y to B via a(y) passing through y′ (see the onstrution of a gallery in theproof of Corollary 2.8: one an start onstruting σ by shortening y in anarbitrary manner, provided one does not leave H(w, s)), hene a(y) = a(y′)in this ase. The ase y = y′t is analogous. Now suppose that the shortestelement u of Res(y, t) is di�erent from both y and y′. Sine y ∈ Y and
Res(π(u), t) = Res(π(y), t) ⊆ H(w, s) we have u ∈ Y . Then u = yt = y′t,and a(y) = a(u) = a(y′) by the previous ase.It follows that if y ∈ Y and (x = x0, . . . , xl = y) is a gallery as inthe de�nition of Y , then a(y) = a(xl−1) = · · · = a(x). Consequently, any
y ∈ Y \ {a(x)} is stritly longer than a(y) = a(x). Thus a(x) is the uniqueshortest element of Y .We onlude with two propositions summarising the above disussion inthe hyperboli ase.Proposition 2.12. Suppose that W is a right-angled hyperboli Coxetergroup, assoiated to a polyhedron P ⊆ H

n, and let H be a wall. Then amongall w ∈W suh that int(wP ) ⊆ H+ there is a unique shortest one; let us allit w0. Suppose that H ontains the fae w0Ps of P ; then, for any x0 ∈ int(P ),the geodesi through x0 perpendiular to H intersets H in the interior ofthe fae w0Ps.Proof. Suppose that H ontains the fae wPs of the hamber wP . Wemay assume that ℓ(w) < ℓ(ws) (swapping w and ws if neessary). Then,under the usual identi�ation of |W | and H
n, the geometri realisation of
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H(w, s) orresponds to the losed half-spae H+. This follows easily fromthe fat that the distane between two elements ofW is equal to the numberof walls separating the orresponding hambers. Now the �rst assertion ofthe proposition follows from Proposition 2.7.For the seond assertion observe that the geodesi γ passing through x0and perpendiular to H intersets H at an interior point γ(t) of the fae
wPs = wsPs. Indeed, otherwise γ(t) ∈ H ′ for some wall H ′ ⊥ H; then,however, the image of γ is ontained in H ′, and annot ontain x0. Now if
ws 6= w0, then there exists a wall H ′ ⊥ H separating wsP from w0P (andhene from x0). Sine γ ⊥ H, γ does not interset H ′. On the other hand, γonnets points x0 and γ(t) lying on di�erent sides of H ′, a ontradition.Proposition 2.13. Suppose that W is a right-angled hyperboli Coxetergroup, assoiated to a polyhedron P ⊆ H

n, and let H be a wall. Let w0 bethe element of W de�ned in Proposition 2.12. Suppose further that X is a
W -building , and that U is a onneted omponent of π−1(H+ ∪∂H+). Then
π−1(w0P ) ∩ U onsists of one hamber.Proof. Choose w ∈W and s ∈ S suh that H is the wall separating wPfrom wsP . We use the notation introdued before Lemma 2.10; we hoose xsuh that int(|x|) ⊆ U . Note that H(w, s)r = H+. By Lemma 2.10, Yr is theonneted omponent of π−1(H+) that ontains int(|x|). Then Lemma 2.2implies that Yr is also equal to the intersetion of U and |X|. Reall that
Y = {y ∈ X | int(|y|) ⊆ Yr}. Therefore, the proposition follows from Propo-sition 2.11.2.C. Halves and quarters of spherial buildings. In this subsetion,
Y is a �nite right-angled W -building. Suh buildings are spherial, in thefollowing sense. Let ∆ be a simplex of dimension |S| − 1, and let ∆s bedistint odimension-one faes of ∆, for s ∈ S (the Davis hamber of Wwould be isomorphi to a one over the �rst baryentri subdivision of ∆).Then the apartments in Y∆ are triangulated spheres. One equipsW∆ = Sn−1with the standard CAT(1) metri, in suh a way that eah simplex of thetriangulation is isometri to a right-angled spherial simplex. Then one pullsthis metri bak by a folding map to a pieewise spherial metri on Y∆.Thus one obtains the standard CAT(1) metri on Y∆. In this subsetion weabbreviate Y∆ to Y .Buildings as above appear as small spheres around verties (or, moregenerally, as small normal spheres of ells) in right-angled hyperboli build-ings. When dealing with omplements of balls in a hyperboli building or ina standard open neighbourhood it is natural to onsider ertain subsets ofspherial buildings. In this subsetion we de�ne suh subsets and prove theirhigher onnetedness in the right-angled ase.



Boundaries of right-angled hyperboli buildings 135Let B ∈ Y be a hamber, and let π : Y → Sn−1 be the B-based foldingmap. We hoose π so as to have π(B) = {(xi) ∈ Sn−1 | x1, . . . , xn ≤ 0}. Then
π is a simpliial map for the following triangulation of Sn−1: any simplex
σ ⊆ Sn−1 is de�ned by a onjuntion of n onditions of the form xi ≤ 0,
xi = 0, xi ≥ 0, one for eah i. Let C be the (n− 1)-simplex in Sn−1 whih isantipodal to π(B), i.e., C = {(xi) ∈ Sn−1 | x1, . . . , xn ≥ 0}. We hoose any
v ∈ int(π(B)); in other words, v is a unit vetor in R

n+1 with all oordinatesnegative. We denote by E+ the hemisphere {x ∈ Sn−1 | 〈x, v〉 ≤ 0}, and weput Y + = π−1(E+).Lemma 2.14. π−1(C) is a deformation retrat of Y +.Proof. We �rst onstrut a deformation retration rt from E+ to C. Theidea is as follows. If e ∈ C then put rt(e) = e. If e 6∈ C∪π(B) then there existsa minimal simplex in our triangulation of Sn−1 ontaining e; this simplexis a join of some fae of π(B) and some fae of C. There exists a uniquegreat irle ontaining e and interseting those two faes; our retrationmoves e along that irle towards C. In other words, let e = e− + e+, where
(e−)i = min(ei, 0) and (e+)i = max(ei, 0). We put

rt(e) = te− +

√
t2 +

1 − t2

|e+|2
e+;notie that this expression is ontinuous in (t, e) ∈ [0, 1]× (Sn−1 \π(B)). Wehave

d

dt
〈v, rt(e)〉 = 〈e−, v〉 +

t√
t2 + 1−t2

|e+|2

(
1 −

1

|e+|2

)
〈e+, v〉.

This expression is non-negative for e ∈ Sn−1\π(B), therefore e ∈ E+ implies
rt(e) ∈ E+. For x ∈ Y + we de�ne Rt(x) as follows: hoose any simplex Σof Y , ontaining x; then Rt(x) ∈ Σ, π(Rt(x)) = rt(π(x)). Note that if e ∈ E+and e ∈ σ for some fae σ of Sn−1, then rt(e) ∈ σ; therefore the de�nitionof Rt(x) does not depend on the hoie of Σ.It is well known (a self-ontained proof is found in Setion 4.1) that a�nite right-angled building is a join. More spei�ally, let Yi = {x ∈ Y |
(∀j 6= i)(π(x)j = 0)}. Then Y is isomorphi as a simpliial omplex andhomeomorphi as a topologial spae to the join of the sets Yi, i = 1, . . . , n.Observe that π−1(C) is isomorphi to the join of the sets Yi \ B. It followsthat π−1(C) is (n−2)-onneted (being a join, it is a �nite building, and thushas the homotopy type of a bouquet of (n − 1)-spheres). Now Lemma 2.14implies the following.Lemma 2.15. Y + is (n− 2)-onneted.



136 J. Dymara and D. OsajdaNow put Y +
i = {x ∈ Y + | π(x)i ≥ 0}. It is lear that Y +

i is Rt-invariantso it retrats to π−1(C). In partiular, we get as before:Lemma 2.16. Y +
i is (n− 2)-onneted.
3. LOCAL CONNECTEDNESSIn this setion we prove higher onnetedness (loal and global) of theboundary of a hyperboli building. The general strategy is Morse-theoreti,à la [BB℄ and [BCM℄. Let us �x our notational onventions.

• W denotes a right-angled hyperboli Coxeter group ating on H
n withfundamental domain P .

• X is a loally �nite W -building (meaning the Davis realisation withthe CAT(−1) metri).
• B is some �xed hamber of X (to be alled the base hamber).
• π = πB : X → H

n is the B-based folding map suh that π(B) = P .
• x0 is some �xed generi point in the interior of B (the generiity on-ditions will be spei�ed later).
• SR(x, Y ) and BR(x, Y ) are the sphere and the open ball of radius R andentre x in a metri spae Y . If Y = X, then we use the abbreviations
SR(x) and BR(x). If, additionally, x = x0, then we write simply SRand BR.

• pR : X ∪ ∂X → X is the geodesi retration onto BR, i.e., pR(x) isthe intersetion point of xx0 and SR if d(x, x0) ≥ R, and pR(x) = xotherwise.Lemma 3.1. ∂X is an (n− 1)-dimensional ompatum.Proof. Consider an inverse system {(Sk, pk)}
∞
k=1 of spheres entred at x0with pk : Sk+1 → Sk being the geodesi projetions onto Sk. Then ∂X =

inv lim{(Sk, pk)}. As every Sk is an (n− 1)-dimensional ompatum, ∂X isan at most (n− 1)-dimensional ompatum. But sine it ontains Sn−1 (theboundary of an apartment isometri to H
n) it has dimension n− 1.Lemma 3.2. Let U be a standard neighbourhood of a point of ∂X and let

R > d(x0, U). Then U ∩ SR is a deformation retrat of U \BR.Proof. Roughly speaking, the retration is exeuted by the gradient �owof the restrition of the funtion d(x0, ·) to U \BR. The ase U = X is easy:the retration is (pt)t∈[R,+∞], where p+∞ = IdX .Let U be a onneted omponent of π−1(H+ ∪ ∂H+), for some wall
H ⊆ H

n. We identify H
n with the Poinaré dis D

n in suh a way that
π(x0) orresponds to 0. Then let Z(x) = −x be the vetor �eld on D

npointing towards 0. We de�ne a vetor �eld V on H+ \ BR(π(x0),H
n) asfollows. If x ∈ H+ ∪ ∂H+ ∪ ∂H then we put V (x) = Z(x). If x ∈ H then



Boundaries of right-angled hyperboli buildings 137
V (x) is proportional to the orthogonal projetion of Z(x) onto TxH; theproportionality onstant is hosen so that the radial omponent of V (x) isequal to Z(x). The vetor �eld V is not ontinuous; nevertheless, it de�nes aontinuous �ow ϕt

V . The trajetory ϕt
V (x) follows the geodesi xπ(x0) untilit hits H; then it moves inside H along a geodesi towards the projetionof π(x0) onto H. The trajetory stops when it hits SR(π(x0),H

n) (this mayhappen before it reahes H). Observe that if a trajetory intersets somewall H ′ 6= H, then it moves from (H ′)+ to (H ′)−. Therefore, the �ow ϕt
Vlifts to a �ow ψt

V on U \ BR. This lift de�nes a retration of U \ BR onto
U ∩ SR.Lemma 3.3. Let U be a standard neighbourhood of a point of ∂X. Then
U ∩ SR is (n− 2)-onneted for every R > 0.Proof. Let U be a omponent of π−1(H+ ∪ ∂H+) for some wall H. (Thease U = X ∪∂X is very similar.) It follows from Propositions 2.12 and 2.13that for t slightly greater than d(π(x0), H) the intersetion U∩St is ontainedin a single hamber. This intersetion is then a dis, hene is ontratible.Next we would like to understand how the topology of U ∩St hanges as
t grows. The piture is somewhat reminisent of Morse theory: the topologyhanges only at some ritial radii. Suppose that St(π(x0),H

n) intersets a(losed) fae σ ⊆ H ∪H+ of our polyhedral struture at some point p ∈ σ.We say that the intersetion is ritial if σ is perpendiular to π(x0)p at p;
t is then alled a ritial radius. We make a generi hoie of x0 to ensure thatritial intersetions our only at interior points of the orresponding faes(p ∈ int(σ)), and that to eah ritial t there orresponds a unique ritialintersetion. Notie that σ an be a vertex of our polyhedral struture. Let
d(π(x0), H) = t0 < t1 < t2 < · · · be the sequene of all ritial radii. It islear that for t, t′ ∈ (ti, ti+1) the spaes St∩U and St′ ∩U are homeomorphi(f. [BCM℄). We will show that for every i and every su�iently small positive
ε the spae Sti+ε ∩ U is (n − 2)-onneted provided Sti−ε ∩ U is (n − 2)-onneted.We will �rst deal with the simplest ase: the fae σ orresponding to tiis a vertex p ∈ H+. Let Res(p) be the union of all faes in H

n whih on-tain p. We hoose δ > 0 suh that the sphere D : = Sδ(p,H
n) is on-tained in int(Res(p)). Let Hp be the hyperplane passing through p and or-thogonal to π(x0)p. This hyperplane divides D into two hemispheres, D−(the one loser to π(x0)) and D+. There exists an ε ∈ (0, δ) suh that

D ∩ Hp = D ∩ Sti+ε(π(x0),H
n); if neessary, we derease δ so as to have

ε < min{ti+1 − ti, ti − ti−1}. The sphere D inherits a triangulation from thepolyhedral struture on H
n. We want Sti+ε(π(x0),H

n) and Sti−ε(π(x0),H
n)to interset this triangulation �in the same way�. More preisely, we requirethat there be a homeomorphism of D mapping eah simplex into itself and



138 J. Dymara and D. Osajdatransforming D∩Sti+ε(π(x0),H
n) into D∩Sti−ε(π(x0),H

n). This onditionan be ahieved by further dereasing δ (and onsequently ε).Next we pass to the building. By Lemma 3.2, U∩Sti±ε is homotopy equiv-alent to U \Bti±ε. Let π−1(p) = {p1, . . . , pk}, and let Dj = π−1(D)∩Bδ(pj),
D+

j = π−1(D+) ∩ Bδ(pj). We have D+
j = Dj \ Bti+ε. Put Kj = Bδ(pj),and let Y + be the losure of (U \ Bti+ε) \

⋃k
j=1Kj . Furthermore, let Y +

j =

Y +∪K1∪· · ·∪Kj for j = 0, 1, . . . , k. We will prove, by downward indutionon j, that Y +
j is (n−2)-onneted. The spae Y +

k is homotopy equivalent to
U \ Bti−ε (here we need the ondition that Sti±ε(π(x0),H

n) interset D �inthe same way�), hene it is (n− 2)-onneted; (n− 2)-onnetedness of Y +will imply the same property for the homotopy equivalent spae U \ Bti+ε.Observe that the sets Kj are pairwise disjoint, and that Y +
j is obtained from

Y +
j−1 by gluing Kj along D+

j . By Lemma 2.15, D+
j is (n−2)-onneted, while

Kj is learly ontratible. Therefore:1. Connetedness of Y +
j implies that of Y +

j−1.2. (n > 2) By van Kampen's theorem,
π1(Y

+
j ) = π1(Y

+
j−1) ∗π1(D

+
j ) π1(Kj).Sine π1(Kj) = π1(D

+
j ) = 0 this implies π1(Y

+
j−1) = π1(Y

+
j ) = 0.3. (n > 3) From the Mayer�Vietoris sequene

· · · → Hl(D
+
j ) → Hl(Kj) ⊕Hl(Y

+
j−1) → Hl(Y

+
j ) → Hl−1(D

+
j ) → · · ·we get Hl(Y

+
j−1) = Hl(Y

+
j ) for l ≤ n− 2.The onlusion now follows from the Hurewiz theorem.Now we disuss the general ase: ti is a ritial radius, σ the orrespondingfae, p the intersetion point of Sti(π(x0),H

n) and σ. We hoose δ so that
Sδ(p,H

n) ⊆ int(Res(p)), and we hoose ε so that Sδ(p,H
n)∩Hp = Sδ(p,H

n)∩
Sti+ε(π(x0),H

n). Let σ⊥p be the maximal hyperplane orthogonal to σ at p.We put D = σ⊥p ∩Sδ(p,H
n)∩H+ (interseting with H+ is only neessary if

p ∈ H) and D+ = D \ Bti+ε(π(x0),H
n). Again, by dereasing δ we ensurethat ε < min{ti+1 − ti, ti − ti−1} and that the spheres Sti±ε(π(x0),H

n)interset D �in the same way�. We also set K = Bδ(p,Hn) ∩ H+ and L =
σ ∩ Sδ(p,H

n).We pass to the building. Let π−1(p) = {p1, . . . , pk}. We have hosen δso small that π−1
(
Bδ(p,Hn)

) is the disjoint union of the Bδ(pj). We put
Dj = π−1(D) ∩ Bδ(pj), D+

j = π−1(D+) ∩ Bδ(pj), Kj = π−1(K) ∩ Bδ(pj),
Lj = π−1(L)∩Bδ(pj). Then we de�ne Y + and Y +

j exatly as before. Notiethat Kj is homeomorphi to a one over the join Lj ∗Dj , and is attahed to
Y +

j−1 along a subset of the base of that one homeomorphi to Lj ∗D
+
j . By



Boundaries of right-angled hyperboli buildings 139Lemma 2.15 (if p ∈ H+) or by Lemma 2.16 (if p ∈ H), D+
j is (n − d − 2)-onneted, where d = dim(σ). Then Lj ∗ D

+
j is (n − 2)-onneted by thesuspension theorem (Lj is a (d − 1)-dimensional sphere). Moreover, Kj isontratible. In the remaining part of the argument (1.�3.) we just replae

D+
j by (a homeomorphi opy of) Lj ∗D

+
j .Lemma 3.4. Let U be a standard neighbourhood of x ∈ ∂X in X ∪ ∂X.Then for every standard neighbourhood V of x whose losure is ontainedin U and every map f : {0, 1} → V ∩ ∂X there exists an extension g : I =

[0, 1] → U ∩ ∂X of f .Proof. We will onstrut the desired map g as the limit of a sequene
(gi)

∞
i=0 of maps gi : I → SNi

∩ U , for an inreasing sequene of integers Ni.Assume that we have de�ned a natural number Ni, a map gi : I →
SNi

∩ U , and additionally �nite families Vi and Ui of standard open neigh-bourhoods of points of ∂X, and a triangulation Ti of I of mesh at most 2−itogether with a map hi : |T
(0)

i | → U ∩ ∂X and a map si : T
(1)

i → Ui. (Notethat by T (j) we denote the set of j-simplies of a triangulation T , and |T (j)|denotes a geometri realization of the j-skeleton of T .) Assume that theysatisfy the following onditions:(i) hi|{0,1} = f ,(ii) gi||T (0)
i |

= pNi
◦ hi,(iii) (∀τ ∈ T

(1)
i )(∃B ∈ Vi)(B ⊂ si(τ), gi(∂τ) ⊂ B and gi(τ) ⊂ B),(iv) (∀B ∈ Vi) B ⊂ U .We will show how to �nd a natural Ni+1, a map gi+1 et. For everyD ∈ Vione an �nd �nite families UD

i+1 and V D
i+1 of standard open neighbourhoodsof points of ∂X suh that(a) D ∩ ∂X ⊂

⋃
V D

i+1 ,(b) (∀C ∈ UD
i+1)(∀A ∈ Ui) if D ⊂ A then C ⊂ A,() (∀A ∈ UD
i+1) A ⊂ U \BNi

,(d) (∀B ∈ V D
i+1)(∃A ∈ UD

i+1) B ⊂ A.De�ne �nite families Vi+1 and Ui+1 by Vi+1 =
⋃

D∈Vi
V D

i+1 and Ui+1 =⋃
D∈Vi

UD
i+1. Find a natural Ni+1 > Ni suh that for every D ∈ Vi we have

SNi+1 ∩D ⊂
⋃
V D

i+1. Given a 1-simplex τ of Ti, by (iii) we �nd Dτ ∈ Vi with
Dτ ⊂ si(τ), gi(∂τ) ⊂ Dτ and gi(τ) ⊂ Dτ . Every standard open neighbour-hood D has the following property: for any R > 0 and any y ∈ X ∪ ∂X, if
pR(y) ∈ D then y ∈ D. Observe that pNi

(pNi+1 ◦ hi(∂τ)) = gi(∂τ) ⊂ Dτ ;therefore pNi+1 ◦hi|∂τ maps ∂τ into SNi+1∩Dτ . By Lemma 3.3 we an extendthis map to gτ
i+1 : τ → SNi+1 ∩Dτ . De�ne gi+1 as the union of gτ

i+1 over all
τ ∈ T

(1)
i . By ontinuity of gi+1 one an hoose a subdivision Ti+1 of the



140 J. Dymara and D. Osajdatriangulation Ti of I with simplies of diameter at most 2−i−1, so �ne thatfor every 1-simplex σ of Ti+1 ontained in a 1-simplex τ of Ti there exists
B ∈ V Dτ

i+1 suh that gτ
i+1(σ) ⊂ B. Then, by (d), for any σ, τ and B as inthe previous sentene there exists an si+1(σ) ∈ UDτ

i+1 satisfying B ⊂ si+1(σ).Observe that, by (b), si+1(σ) ⊂ si(τ). Finally, we de�ne hi+1 as follows: for
v ∈ T

(0)
i we put hi+1(v) = hi(v); for v ∈ T

(0)
i+1 \ T

(0)
i we hoose any point

hi+1(v) ∈ ∂X suh that pNi+1(hi+1(v)) = gi+1(v).To start the onstrution of gi's one has to de�ne: N0, g0, V0 and U0, T0,
h0 and s0. Let N0 be a natural number suh that SN0 ∩ V ⊃ pN0 ◦ f(S0).By Lemma 3.3 one an �nd a map g0 : I → SN0 ∩ V extending the map
pN0 ◦ f : {0, 1} → SN0 . Then set V0 = {V }, U0 = {U}, T0 the triangulationof B1 onsisting of one 1-simplex, h0 = f and s0(v) = U for every v ∈ T

(0)
0 .Then it is obvious that onditions (i)�(iv) are satis�ed.We will now show some properties of the sequene (gi)

∞
i=1 of maps whihwill imply that its limit is a ontinuous map extending f .

Claim 0. gi(τ) ⊂ sL(τ) for τ ∈ T
(1)

L and i ≥ L.Proof. First we show that for i, j = 0, 1, 2, . . . and for any two simplies
σ ∈ T

(1)
i and ̺ ∈ T

(1)
i+j suh that ̺ ⊂ σ we have si+j(̺) ⊂ si(σ). We proeedby indution on j. For j = 0 the inlusion is obvious, and for j = 1 itfollows from the onstrution of si. Assume we have proved that si+j(̺) ⊂

si(σ). Let κ ∈ T
(1)

i+j+1 be a simplex ontained in a simplex ̺ ∈ T
(1)

i+j that isitself ontained in σ ∈ T
(1)

i . Then, by the indution assumptions, we have
si+j+1(κ) ⊂ si+j(̺) ⊂ si(σ). This �nishes the indution.Let A = {σ ∈ T

(1)
i | σ ⊂ τ}. Then τ =

⋃
σ∈A σ, and

gi(τ) = gi

( ⋃

σ∈A

σ
)

=
⋃

σ∈A

gi(σ) ⊂
⋃

σ∈A

si(σ) ⊂ sL(τ).

Here the last inlusion follows from what we proved above, and the �rst oneholds by (iii). Claim0

Claim 1. For every y ∈ I the limit limi→∞gi(y) exists.Proof. Take an arbitrary open (in X∪∂X) �nite over W of U ∩∂X. Forevery j ≥ i > 0 and every A ∈ Uj we have A ⊂ U \ BNi−1 . Therefore thereexists a natural L > 0 suh that for every i ≥ L every neighbourhood A ∈ Uiis ontained in some member of W . Take an arbitrary y ∈ I. Let τ ∈ TL bea maximal simplex ontaining y. Then, by Claim 0, gi(τ) ⊂ sL(τ) ⊂ W forevery i ≥ L and someW ∈ W . This implies the existene of the limit. Claim1
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Claim 2. limi→∞ gi(y) ∈ U ∩ ∂X.Proof. This follows from: gi(y) ∈

⋃
U1 for every i; A ⊂ U for every

A ∈ U1. Claim2

Claim 3. The formula g(x) = limi→∞gi(x) de�nes a ontinuous map
g : I → U ∩ ∂X.Proof. As in the proof of Claim 1, for every �nite open over W thereexists L > 0 suh that for every i ≥ L and any A ∈ Ui the star ⋃

St(A) of Ain Ui is ontained in some member of W . Take an arbitrary y ∈ I. Let τ ∈ TLbe a maximal simplex ontaining y. As in Claim 1, we have gi(σ) ⊂ sL(σ) forevery i ≥ L and every 1-simplex σ of TL whih has non-empty intersetionwith τ ; hene, gi(
⋃

St(τ)) ⊂
⋃
{sL(σ) | σ ∈ St(τ)} ⊂

⋃
St(sL(τ)) ⊂ W forsome W ∈ W . In other words, for every open over W as above and anygiven y ∈ I there exists a natural L, W ∈ W , and an open neighbourhood

E ⊂ I of y suh that for every i ≥ L we have gi(E) ⊂ W . This implies thatthe limit of gi's is ontinuous. Claim3

Claim 4. The map g : I → U ∩ ∂X extends f .Proof. This follows from the fat that gi|{0,1} = pNi
◦ hi|{0,1} = pNi

◦ fand limi→∞pNi
◦ f(y) = f(y) for every y ∈ {0, 1}. Claim4 Lemma3.4Lemma 3.5. Let U be a standard neighbourhood of x ∈ ∂X in X ∪ ∂X.Then for every standard neighbourhood V of x whose losure is ontainedin U , every k ∈ {0, 1, . . . , n−2} and every map f : Sk → V ∩∂X there existsan extension g : Bk+1 → U ∩ ∂X of f .Proof. We will proeed by indution on k.1. The ase of k = 0 was proved in Lemma 3.4 above.2. Indution step. Assume we have proved the lemma for k = 0, 1, . . . ,

M − 1. Let V and f : SM → V ∪ ∂X be given. Again, we will onstrutthe desired g : BM+1 → U ∩ ∂X as the limit of a sequene (gi)
∞
i=0 of maps

gi : B
M+1 → SNi

∩ U , where Ni is an inreasing sequene of integers.Assume that we have de�ned a natural number Ni, a map gi : B
M+1 →

SNi
∩U , �nite families V 1

i and U1
i of standard open neighbourhoods of pointsof ∂X, and a triangulation Ti of BM+1 of mesh at most 2−i together with amap hi : |T

(M)
i | → U ∩ ∂X and a map si : T

(M+1)
i → U1

i . Assume that theysatisfy the following onditions:(i) hi|SM = f ,(ii) gi||T (M)
i |

= pNi
◦ hi,(iii) (∀τ ∈ T

(M+1)
i )(∃B ∈ V 1

i )(B ⊂ si(τ), gi(∂τ) ⊂ B and gi(τ) ⊂ B),(iv) (∀B ∈ V 1
i ) B ⊂ U .



142 J. Dymara and D. OsajdaWe will show how to �nd a natural Ni+1, a map gi+1 et. For every
D ∈ V 1

i and every p = 1, . . . ,M + 1 one an �nd �nite families UD,p
i+1 and

V D,p
i+1 of standard open neighbourhoods of points of ∂X suh that:(a) D ∩ ∂X ⊂

⋃
V D,p

i+1 ,(b) (∀C ∈ UD,p
i+1 )(∀A ∈ U1

i ) if D ⊂ A then C ⊂ A,() (∀A ∈ UD,1
i+1 ) A ⊂ U \BNi

,(d) (∀B ∈ V D,p
i+1 )(∃A ∈ UD,p

i+1 ) B ⊂ A,(e) (∀p ≥ 2)(∀A ∈ UD,p
i+1 )(∃C ∈ V D,p−1

i+1 )
⋃

St(A,UD,p
i+1 ) ⊂ C.De�ne �nite families V p

r+1 and Up
r+1 by V p

r+1 =
⋃

D∈V 1
r
V D,p

r+1 and Up
r+1 =

⋃
D∈V 1

r
UD,p

r+1. Find a natural N ′
i+1 > Ni suh that for every D ∈ V 1

i wehave SN ′

i+1
∩D ⊂

⋃
V D,M+1

i+1 . Given an (M + 1)-simplex τ of Ti, by (iii) we�nd Dτ ∈ V 1
i with Dτ ⊂ si(τ), gi(∂τ) ⊂ Dτ and gi(τ) ⊂ Dτ . Observe thatthen hi(∂τ) ⊂ Dτ ∩ ∂X and that, by (b), B ⊂ si(τ) for every B ∈ V Dτ ,p

i+1 ,
p = 1, . . . ,M+1. Using Lemma 3.3 one an �nd a map g′τi+1 : τ → SN ′

i+1
∩Dτextending pN ′

i+1
◦hi|∂τ : ∂τ → SN ′

i+1
∩Dτ . By ontinuity of (every) g′τi+1, onean hoose a subdivision Ti+1 of the triangulation Ti of BM+1 with simpliesof diameter at most 2−i−1, so �ne that for every 1-simplex σ of Ti+1 ontainedin suitable τ there exists B ∈ V Dτ ,M+1

i+1 suh that g′τi+1(∂σ) ⊂ B . For everyvertex v of Ti+1 not belonging to |T
(M)

i | one an hoose a point ṽ ∈ ∂X suhthat pN ′

i+1
(ṽ) = g′i+1(v), where g′i+1 is the union of the maps g′τi+1 over allmaximal simplies τ of Ti. For a vertex v ∈ |T

(M)
i | we put ṽ = hi(v). Again,by indution assumptions, for any two verties v, w of Ti+1 joined by an edge

〈v, w〉 ontained in τ and not in |T
(M)

i |, and for the orresponding points
ṽ, w̃ ∈ ∂X, one an �nd A ∈ UDτ ,M+1

i+1 and a map q : 〈v, w〉 → A ∩ ∂X suhthat q(v) = ṽ and q(w) = w̃.Assume we have proved that for any l-simplex σ of Ti+1 ontained in
τ and not in |T

(M)
i | there exist A0, A1, . . . , Al ∈ UDτ ,M+3−l

i+1 and maps
q0, q1, . . . , ql : ∂σ → (A0 ∪ A1 ∪ · · · ∪ Al) ∩ ∂X sending (l − 1)-faes of σinto distint Ai's and oherent on their intersetions (we have just hekedthis for l = 2). Sine ∂σ ⊂

⋃
St(κ) for every (l − 1)-simplex κ of ∂σ,we have ⋃l

i=0Ai ⊂
⋃

St(A0). Thus there exists B ∈ V Dτ ,M+2−l
i+1 suh that

(
⋃l

i=0 qi)(∂σ) ⊂ B. Hene, if l ≤ M , by indution assumptions there exists
A ∈ UDτ ,M+2−l

i+1 and a map q : σ → A∩∂X extending ⋃l
i=0 qi. If l = M+1, weonlude that for every (M+1)-simplex σ of Ti+1 ontained in τ there exists

B ∈ V Dτ ,1
i+1 and a map q : ∂σ → B ∩ ∂X suh that q(v) = ṽ for every vertex

v of σ and q oinides with hi on ∂τ ∩ ∂σ. By (d), there exists A ∈ UDτ ,1
i+1
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(M+1)

i+1 → U1
i+1 setting si+1(σ) = A. Observethat sine Dτ ⊂ si(τ), by (b) we have A ⊂ si(τ). In other words, for every

(M + 1)-simplex τ of Ti and an (M + 1)-simplex σ ⊂ τ of Ti+1 we have
si+1(σ) ⊂ si(τ).Beause maps of the form q by de�nition oinide on intersetions of theirdomains, their union is a well-de�ned ontinuous map hτ

i+1 : |T
(M)

i+1 | ∩ τ →
∂X. Note that hτ

i+1|∂τ = hi|∂τ , and that for every (M + 1)-simplex σ ⊂ τ of
Ti+1 there exists B ∈ V Dτ ,1

i+1 satisfying hτ
i+1(∂σ) ⊂ B∩∂X and B ⊂ si+1(σ).Beause maps of the form hτ

i+1 for di�erent hoies of τ oinide onintersetions of their domains, we an de�ne hi+1 : |T
(M)

i+1 | → U ∩ ∂X asthe union of all those maps. One an �nd a natural Ni+1 > N ′
i+1 suhthat for every τ and every (M + 1)-simplex σ of Ti+1 ontained in τ thereexists B ∈ V Dτ ,1

i+1 with pNi+1 ◦ hi+1(∂σ) ⊂ B ∩ SNi+1 and B ⊂ si+1(σ). ByLemma 3.3, for every suh σ and B there exists a map gσ
i+1 : σ → SNi+1 ∩Bextending pNi+1 ◦ hi+1|∂σ : ∂σ → SNi+1 ∩ B. The union of suh maps overall maximal simplies de�nes a map gτ

i+1 : τ → SNi+1 ∩ Cτ , whih extends
pNi+1 ◦ hi+1 : ∂τ → SNi+1 ∩ U . We de�ne gi+1 : BM+1 → SNi+1 ∩ U asthe union of the maps gτ

i+1 over all maximal simplies τ of Ti. Observe thatby onstrution hi+1, gi+1, Ti+1, V
1
i+1, U

1
i+1 satisfy indution assumptions (i)�(iv) so that one an proeed with the following steps of the onstrution.To start the onstrution of gi's one has to de�ne: N0, g0, V 1

0 and U1
0 , T0,

h0 and s0. Let N0 be a natural number suh that SN0 ∩ V ⊃ pN0 ◦ f(SM ).By Lemma 3.3 one an �nd a map g0 : BM → SN0 ∩ V extending the map
pN0 ◦ f : SM → SN0 . Then set V 1

0 = {V }, U1
0 = {U}, T0 the triangulation of

BM+1 onsisting of one (M + 1)-simplex, h0 = f and s0(σ) = U for every
σ ∈ T

(M)
0 . It is obvious that onditions (i)�(iv) are satis�ed.The rest of the proof mimis the proof of Lemma 3.4 with neessaryhanges (replae T

(1)
k by T

(M+1)
k , I by BM+1, {0, 1} by SM , and Uk by U1

k ,for all k). We limit ourselves to listing the analogues of the laims of thepreeding proof.
Claim 0. gi(τ) ⊂ sL(τ) for τ ∈ T

(M+1)
L and i ≥ L.

Claim 1. For every y ∈ BM+1 the limit limi→∞ gi(y) exists.
Claim 2. limi→∞ gi(y) ∈ U ∩ ∂X.
Claim 3. The formula g(x) = limi→∞gi(x) de�nes a ontinuous map

g : BM+1 → U ∩ ∂X.
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Claim 4. The map g : BM+1 → U ∩ ∂X extends f .This ompletes the proof of Lemma 3.5.Proposition 3.6. ∂X is (n−2)-onneted and loally (n−2)-onneted.Proof. For the loal statement let x ∈ ∂X and let W ∋ x be its open(in X ∪ ∂X) neighbourhood. By Lemma 2.1 one an �nd standard neigh-bourhoods U and V of x ontained in W and suh that V ⊂ U . Then byLemma 3.5 for every k ∈ {0, 1, . . . , n − 2} every map f : Sk = ∂Bk+1 → Vhas an extension g : Bk+1 → U ⊂ W . For the global ase apply Lemma 3.5setting V = U = X ∪ ∂X.

4. RIGHT-ANGLED BUILDINGSThroughout this setion (W,S) is a �nitely generated right-angled Cox-eter system, not neessarily hyperboli. In Subsetion 4.A we assume it tobe �nite, i.e. W ≃ (Z/2)n, S = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.4.A. Finite right-angled buildings. We will analyse the strutureof �nite W -buildings, as well as maps between suh buildings. This willbe needed later for the onstrutions of in�nite right-angled buildings andof maps between them. A typial step of those onstrutions onsists ofextending a map de�ned on a subset of a �nite residue to the whole residue.We will treat a building ombinatorially, as a set (of hambers) equippedwith a family (∼s)s∈S of equivalene relations (the adjaeny relations). Thestandard example of a �nite W -building is a produt building : the set ofhambers Y is a produt ∏
s∈S Ys, where eah Ys is a �nite set of ardinalityat least 2 (at least 3 if one wants a thik building). Two hambers (ys), (y

′
s)are t-adjaent if ys = y′s for all s 6= t. Apartments are of the form A =∏

s∈S As, where eah As is a two-element subset of Ys.It is easy to see that any (Z/2)2-building X is a produt building (wewill frequently apply this fat to residues in larger buildings). Indeed, let
S = {s, t} and let Ys = X/∼s, Yt = X/∼t. Sine any two hambers x, x′ ∈ Xare ontained in some apartment, [x]∼s and [x′]∼t always have a ommonhamber. Therefore, the map X ∋ x 7→ ([x]∼s, [x]∼t) ∈ Ys × Yt is onto. Asno two hambers an be simultaneously s- and t-adjaent, this map is alsoinjetive.By a morphism between two W -buildings (or subsets of suh buildings)we mean a map of the sets of hambers preserving the relations. A subset Eof a W -building X is alled star-like (with respet to a hamber B ∈ X) iffor every x ∈ E every minimal gallery from B to x is ontained in E. Notiethat E = ∅ is star-like.



Boundaries of right-angled hyperboli buildings 145Lemma 4.1. Let X be any �nite W -building , and let Y be a produt W -building desribed above. Let E ⊆ X be star-like with respet to a hamber B,and let ψ : E → Y be a morphism. Then ψ extends to a morphism φ : X → Y .Moreover :(i) If two suh extensions oinide on eah lass [B]∼s , then they areequal.(ii) If φ is injetive on eah lass [B]∼s , then φ is a monomorphism.(iii) If φ maps eah lass [B]∼s onto [φ(B)]∼s , then φ is an epimorphism.Proof. Let π : X → W be the B-based folding map. Put Xk =
π−1({w ∈ W | ℓ(w) ≤ k}); in partiular, X0 = {B}. Let C = ψ(B) if
B ∈ E, or let C be an arbitrary hamber of Y if E = ∅. Put φ(B) = C.De�ne φ on [B]∼s \ (E ∪ {B}) to be an arbitrary map to [C]∼s ; de�ne φ on
[B]∼s ∩ E to oinide with the restrition of ψ; do this for eah s. Thus wehave de�ned φ on ⋃

s∈S [B]∼s = X1 so that it oinides with ψ on X1 ∩ E.Indutively on k we will extend φ to Xk, and hek that the extension o-inides with ψ on Xk ∩ E. Suppose this has been done for Xk−1, for some
k − 1 ≥ 1. Let x ∈ X, π(x) = w, ℓ(w) = k. For t ∈ In(w) we denote by xtthe hamber in the t-residue of x whih is losest to B. Sine x ∼t x

t, φ(x)has to be t-adjaent to φ(xt) for every t ∈ In(w).Let φ(xt) = (yt
s)s∈S . Let t, t′ ∈ In(w) be distint, and let s ∈ S, s 6= t, t′.We laim that yt

s = yt′

s . Indeed, let xt,t′ be the hamber in the {t, t′}-residueof x whih is losest to B. Sine W is right-angled, we have xt,t′ = (xt)t′ =
(xt′)t; onsequently, xt,t′ ∼t x

t′ , xt,t′ ∼t′ x
t. Therefore yt

s = φ(xt,t′)s = yt′

s .Denote by ys the ommon value of yt
s, t 6= s. Clearly, y = (ys)s∈S is the uniquehamber in Y whih is t-adjaent to φ(xt) for eah t ∈ In(w). Therefore, wehave to put φ(x) = y. Notie that if x ∈ E, then xt ∈ E for all t ∈ In(w).Therefore ψ(x) is t-adjaent to ψ(xt) = φ(xt) for all t ∈ In(w), hene ψ(x) =

y = φ(x). We apply the above proedure to every x ∈ Xk \ Xk−1, and getthe required extension.Now, (i) follows from the onstrution: after de�ning φ on X1 we madeno hoies.(ii) Let πC : Y → W be the C-based folding map. This map is given by
πC(y) = Π{s∈S|Cs 6=ys}s. We �rst show that φ is π-πC-equivariant. Again, thisis done by indution on k. We have πC(φ(B)) = πC(C) = 1 = π(B). Then
φ([B]∼s \ {B}) ⊆ [C]∼s \ {C}, π([B]∼s \ {B}) = {s} = πC([C]∼s \ {C}),whih heks π-equivariane on X1. Let now x ∈ X, y = φ(x), w = π(x),
ℓ(w) = k ≥ 2. For t ∈ In(w) we have π(xt) = wt, and, by the indutiveassumption, πC(φ(xt)) = wt. It follows that {s ∈ S | yt

s 6= Cs} = In(w)\{t}.Hene {s ∈ S | ys 6= Cs} = In(w) and πC(φ(x)) = w.Consequently, if φ(x) = φ(z), then π(x) = π(z). Let x, z be suh a pairwith the shortest possible w = π(x), and let t ∈ In(w). Then φ(xt) = φ(zt),



146 J. Dymara and D. Osajdasine both are the hamber in the t-residue of φ(x) = φ(z) whih is losestto C. Sine our ounterexample to injetivity has shortest w, we dedue
xt = zt for all t ∈ In(w). Notie that ℓ(w) ≥ 2 (π-equivariane and inje-tivity on all [B]∼s imply that φ is injetive on X1). Let t, t′ be two distintelements of In(w). Then x ∼t x

t = zt ∼t z and x ∼t′ x
t′ = zt′ ∼t′ z, sothat x is both t- and t′-adjaent to z. This is possible in a building only if

x = z.(iii) By indution on k we will prove that for any (x, u) ∈ Xk × S themap φ : [x]∼u → [φ(x)]∼u is surjetive. The statement is true for k = 0 byassumption. Let x ∈ Xk, π(x) = w, ℓ(w) = k, and let u ∈ S. We anassume that ℓ(wu) = k + 1�otherwise xu ∈ Xk−1, [x]∼u = [xu]∼u and thestatement for (x, u) is true by the indutive assumption applied to (xu, u).Pik a t ∈ In(w). Let y = (ys) ∈ [φ(x)]∼u. We then have φ(x)s = ys for
s 6= u, and φ(xt)s = ys for s 6= u, t. Let zs = ys for s 6= t, zt = φ(xt)t. Then
z = (zs) ∼t φ(xt), hene (by the indutive assumption for (xt, u)) thereexists x′ ∈ [xt]∼u suh that φ(x′) = z. Observe that in the {u, t}-residueof xt there is a unique element x′′ whih is u-adjaent to x and t-adjaentto x′, while y is the unique hamber in Y whih is u-adjaent to φ(x) and
t-adjaent to z. Hene, φ(x′′) = y, where x′′ ∈ [x]∼u .It follows that the image of φ is losed under all adjaeny relations,hene it is equal to Y .
Corollaries1. One an take E =

⋃
s∈S [B]∼s, hoose an arbitrary hamber ψ(B) ∈ Yand for eah x ∈ [B]∼s pik an arbitrary ψ(x) ∈ [ψ(B)]∼s ; every suh

ψ extends to a unique morphism.2. Let E =
⋃

s∈S [B]∼s , let Ys = [B]∼s . Put ψ(B) = (B)s∈S . For x ∼s Bput ψ(x)t = B for t 6= s, ψ(x)s = x. Then the extension φ : X → Yis an isomorphism. Thus, any �nite W -building is isomorphi to aprodut building. Therefore, Lemma 4.1 holds with Y replaed by any�nite W -building.3. A orollary of the proof: every monomorphism of �nite W -buildings
φ : X → Y is π-equivariant (where π : X →W is a folding map basedat an arbitrary hamber x ∈ X, and π : Y →W the φ(x)-based foldingmap).4.B. Maps of in�nite right-angled buildings

Definition. A standard W -building is a set X (of hambers) equippedwith: (a) a family (∼s)s∈S of equivalene relations with �nite equivalenelasses; (b) a morphism π : X → W , alled the folding map, suh that thefollowing are satis�ed:



Boundaries of right-angled hyperboli buildings 147(i) (∀x ∈ X)(∀s ∈ S)(∃x′ ∈ X)(x ∼s x
′ ∧ x 6= x′).(ii) π−1(1) has one element (denoted B and alled the base hamber).(iii) Let x ∈ X, T = In(π(x)), w = π(x). Then Res(x, T ) is a �nite right-angled building and the map Res(x, T ) ∋ x′ 7→ (wwT )−1π(x′) ∈WTis a folding map of that building (where wT is the longest elementin WT ).It is pretty lear that any loally �nite W -building with any folding mapis a standard W -building. In partiular, ondition (iii) follows from property(F3) stated in Setion 1. More spei�ally, Res(x, T ) is mapped by π onto theoset wWT of WT ; w = π(x) is the longest element of wWT , therefore wwTis the shortest element of wWT . Let y be the shortest hamber in Res(x, T )(as in (F3)); then π(y) = wwT . The y-based folding map of Res(x, T ) is theomposition of (restrited) π and the left multipliation in W that movesthe oset wWT to WT and the element π(y) to 1. This left multipliation isthe left multipliation by π(y)−1 = (wwT )−1.

Remarks1. Later we will prove that a standard building is in fat a building.2. The residue Res(x, T ) in ondition (iii) intersets π−1(wwT ) in onehamber, to be alled the shortest hamber of Res(x, T ). The foldingmap in ondition (iii) is based at that hamber.3. Conditions (i) and (iii) together imply that for every x ∈ X and everyspherial T ⊆ S the residue Res(x, T ) is a �nite WT -building, and therestrition of π omposed with left multipliation by the inverse of theshortest element of π(Res(x, T )) is a folding map of that building.4. It follows from the previous remark that if t ∈ In(π(x)) then theintersetion π−1(π(x)t) ∩ [x]∼t onsists of a unique element (to bedenoted xt).
Definition. A loal W -building is a set Y (of hambers) equipped witha family (∼s)s∈S of equivalene relations, suh that:(a) for every y ∈ Y and every spherial T ⊆ S, Res(y, T ) is a �nite

WT -building;(b) Y is gallery onneted, i.e., for every y, y′ ∈ Y there exists a galleryfrom y to y′: a sequene y0 = y, y1, . . . , yk, yk+1 = y′ suh that yi ∼si

yi+1 for some si ∈ S, where i = 0, 1, . . . , k.
Remark. A standard W -building is a loal W -building. Condition (a)follows from the third remark above. To hek ondition (b), we show thatthere exists a gallery from an arbitrary hamber x to B. Let π(x) = w.It follows from the fourth remark above that a minimal gallery in W from

w to 1 an be lifted to a gallery in X from x to some hamber in π−1(1);however, π−1(1) = {B}.



148 J. Dymara and D. OsajdaThe following theorem is rather weak. The proof will give us an idea ofwhat should really be done.Theorem 4.2. Let X be a standard W -building , and let Y be a loal
W -building. Then there exists a morphism φ : X → Y .Proof. Choose a well-ordering < on X suh that eah initial segment
X<x is star-like (with respet to B). We de�ne φ indutively. To start, wepik any y ∈ Y and delare φ(B) = y. Suppose φ : X<x → Y has alreadybeen de�ned. Let T = In(π(x)). Sine X<x is star-like, so is X<x∩Res(x, T )(in Res(x, T ), with respet to the shortest element x0 of that residue). Sine
φ is a morphism, it mapsX<x∩Res(x0, T ) into Res(φ(x0), T ); this restritionan, by Lemma 4.1, be extended to η : Res(x0, T ) → Res(φ(x0), T ) (sine Yis a loal building, Res(φ(x0), T ) is a �nite WT -building; therefore, Lemma4.1 an indeed be applied). We put φ(x) = η(x). Sine all hambers in X<xwhih are adjaent to x belong to Res(x0, T ) (where φ oinides with η), theextended φ : X<x ∪ {x} → Y is a morphism.Notie that, in the onstrution of φ desribed in the proof, if In(π(x))has at least two elements, then φ(x) is uniquely determined by φ|X<x

. Infat, if u, t ∈ In(π(x)), then φ(x) is uniquely determined by φ(xt) and φ(xu):it is the unique hamber u-adjaent to φ(xt) and t-adjaent to φ(xu) (as inthe proof of Lemma 4.1). If, on the other hand, In(π(x)) = {s}, then φ(x)an be freely hosen in [φ(x0)]∼s. These observations are basi for the nexttheorem.Let X be a standard W -building, and let Y be a loal W -building. Wesay that a morphism φ : X → Y is a loal monomorphism (resp. loal epi-morphism, overing map) if for every x ∈ X and every spherial T ⊆ S theresidue Res(x, T ) is injetively (resp. surjetively, bijetively) mapped by φto Res(φ(x), T ).
Definition. The root set of a standard W -building X is

R(X) = {(x, s) ∈ X × S | In(π(x)s) = {s}}.Theorem 4.3. Let X be a standard W -building , let Y be a loal W -building , and let φ : X → Y be a morphism. Let R = R(X) be the root setof X.(i) The map φ is uniquely determined by φ(B) and the restritions of φto [x]∼s, over all (x, s) ∈ R.(ii) If all the above restritions are injetive, then φ is a loal monomor-phism.(iii) If , for eah (x, s) ∈ R, φ maps [x]∼s onto [φ(x)]∼s, then φ is a loalepimorphism and a surjetion.



Boundaries of right-angled hyperboli buildings 149(iv) If , for eah (x, s) ∈ R, φ maps [x]∼s bijetively onto [φ(x)]∼s, then
φ is a overing map.Proof. (i) Let φ1, φ2 : X → Y oinide on B and on eah [x]∼s , (x, s) ∈ R.Suppose that x ∈ X is a hamber with shortest w = π(x) suh that φ1(x)

6= φ2(x). If In(w) = ∅, then w = 1 and x = B, a ontradition. If In(w)
= {s}, then (xs, s) ∈ R, x ∈ [xs]∼s , a ontradition again. If T = In(w) hasat least two elements, then, by Lemma 4.1(i) applied to Res(x, T ), φ1(x) and
φ2(x) are uniquely determined by φ1|Xk

= φ2|Xk
(where k = ℓ(w) − 1), sothat they oinide.(ii) Suppose not. Let x0 ∈ X be an element of X with the shortestpossible w = π(x0), suh that for some spherial T the restrition of φ to

Res(x0, T ) is not injetive. By Lemma 4.1(ii), there exists t ∈ T and ham-bers x, x′ ∼t x0 suh that φ(x) = φ(x′). If In(wt) 6= {t}, then Res(x, In(wt))is a residue on whih φ is injetive, and whose shortest hamber is shorterthan x0, a ontradition. In the ase In(wt) = {t} we have (x0, t) ∈ R and
x, x′ ∈ [x0]∼t , so that φ(x) 6= φ(x′), a ontradition.(iii) Suppose that φ is not a loal epimorphism. Let Res(x0, T ) be aounterexample with shortest w = π(x0). Then, by Lemma 4.1(iii), there isa t ∈ T suh that φ : [x0]∼t → [φ(x0)]∼t is not onto. As in the proof of (ii)we see that In(wt) = {t}. Therefore (x0, t) ∈ R, a ontradition.Sine the image of a loal epimorphism is losed under the adjaenyrelations, and sine Y is gallery onneted, we have φ(X) = Y .Finally, (iv) follows from (ii) and (iii).4.C. Constrution. In this subsetion we present a onstrution of ageneral standard W -building. Let W = {w1 = 1, w2, . . .} be a numbering ofelements of W suh that eah Wk = {w1, . . . , wk} is a star-like subset of W(with respet to 1). The proess of building X is indutive. At the kth stepwe onstrut the part Xk of X whih is going to be the preimage ofWk underthe folding map. To get Xk from Xk−1 we need to attah the hambers thatfold to wk. Suh a hamber x is ontained in a �nite residue Res(x, In(wk))whih is isomorphi to a produt building and whose large part is ontainedin Xk−1. Thus, Xk is obtained from Xk−1 by gluing to it produt buildingsthat will beome Res(x, In(wk)) for x ∈ π−1(wk).We now proeed to the details. We would like to onstrut, by indutionon k, sets Xk with equivalene relations (∼k

s)s∈S , together with morphisms
πk : Xk →Wk, suh that:(i) Xk−1 ⊆ Xk.(ii) Restriting ∼k

s fromXk×Xk toXk−1×Xk−1 yields ∼k−1
s . (Therefore,we simply use ∼s.)(iii) πk|Xk−1

= πk−1. (Again, we often denote πk simply by π.)



150 J. Dymara and D. Osajda(iv) π−1
k (Wk−1) = Xk−1.(v) Let x ∈ Xk, T = In(π(x)), w = π(x). Then Resk(x, T ) is a �niteright-angled building and the map Resk(x, T ) ∋ x′ 7→ (wwT )−1π(x′)

∈ WT is a folding map of that building. Here Resk stands for theresidue in Xk.Finally, we will obtain a standard W -building X =
⋃

k Xk with the foldingmap π =
⋃

k πk. In fat, at the kth step we will onstrut not onlyXk and πk,but also the following additional data:(a) an integer qx,s ≥ 1 for eah (x, s) ∈ Xk × S;(b) for eah u ∈ W suh that uwU ∈ Wk (where U = In(u)) andeah y ∈ π−1(uwU ): a (uwU )−1πk-πy,U -equivariant monomorphism
φy,U : Resk(y, U) → Yy,U . Here Yy,U is a produt WU -building withthe s-fator Yy,s of ardinality qy,s + 1, and πy,U : Yy,U → WU is the
φy,U (y)-based folding map. We will usually brie�y say that φy,U is
π-equivariant.The numbers qx,s are subjet to extra onditions:(vi) If qz,s and qz′,s are de�ned and z ∈ Resk(z

′, T ) for a spherial T ⊆ Sontaining s, then qz,s = qz′,s.(vii) If y ∈ Xk and {π(y), π(y)s} ⊆ Wk, then Resk(y, s) has qy,s + 1elements.In the �rst step, X1 = {B}, and we hoose the numbers qB,s and themaps φB,T : {B} → YB,T arbitrarily.Suppose that we have already onstruted everything promised for k−1.Let w = wk, let T = In(w). The setXk is obtained fromXk−1 by gluing Yx,T ,for all x ∈ π−1(wwT ), via the maps φx,T . Throughout the proof, x will be ageneri notation for an element of π−1(wwT ).
Lemma. Let x1, x2 ∈ π−1(wwT ), x1 6= x2. Then

Resk−1(x1, T ) ∩ Resk−1(x2, T ) = ∅.Proof. Suppose not; then x2 ∈ Resk−1(x1, T ). The map φx1,T being π-equivariant, we have φx1,T (x2) = φx1,T (x1). However, φx1,T is injetive; hene
x1 = x2, ontradition. LemmaNow, (i) follows from the fat that the gluing maps are injetive.(ii) We have
Claim. If y, z ∈ Resk−1(x, T ) and φx,T (y) ∼t φx,T (z), then y ∼t z.Proof. We an assume that t ∈ T , for otherwise y = z. Let φ = φx,T ,

Y = Yx,T . There are two ases.(a) {π(y), π(y)t} ⊆ Wk−1. In that ase, due to (vii), Resk−1(y, t) has
qy,t + 1 elements; ResY (φ(y), t) has qx,t + 1 elements. However, (vi)



Boundaries of right-angled hyperboli buildings 151implies that qx,t = qy,t (y ∈ Resk−1(x, T )); therefore φ restrits to abijetion between these residues. Sine φ is an injetion, this impliesthat z ∈ Resk−1(y, t).(b) π(y)t = w. Then ResY (φ(y), t) onsists of φ(y) and hambers whihmap to wT under πx,T . Hene either φ(z) = φ(y) (and, φ being in-jetive, we get z = y) or πx,T (φ(z)) = wT . In the latter ase π-equi-variane of φ implies π(z) = w, whih ontradits z ∈ Xk−1. ClaimBy the Claim, the following de�nition makes sense: y ∼k
s z if either

y, z ∈ Xk−1 and y ∼k−1
s z, or y, z ∈ Yx,T for some x and y ∼s z in Yx,T .Finally, we need to hek that ∼k

s is an equivalene relation, the only non-trivial ondition being transitivity: (a ∼s b ∧ b ∼s c) ⇒ a ∼s c. The ases
a, b, c ∈ Xk−1 and a, b, c ∈ Yx,T are lear. Thus, we an assume that at leastone of a, b, c is in Yx,T \Xk−1 (for some x). Then we an assume that s ∈ T(otherwise a = b = c). If b ∈ Yx,T \Xk−1, then a, c ∈ Yx,T and a ∼s c follows.If not, we an assume a ∈ Yx,T \ Xk−1, b ∈ Yx,T ∩ Xk−1 = Resk−1(x, T ).Now if c ∈ Xk−1, then c ∼s b implies c ∈ Resk−1(x, T ) ⊆ Yx,T , and a ∼s cfollows. If c 6∈ Xk−1, then c ∈ Yx′,T (for some x′ ∈ π−1(w)). It follows that
b ∈ Yx′,T ∩ Yx,T , hene, in view of the Lemma, x = x′ and a, b, c ∈ Yx,T .(iii) We de�ne πk as follows: if y ∈ Xk−1, then πk(y) = πk−1(y); if
y ∈ Yx,T we put πk(y) = wwTπx,T (y). This de�nition is orret beause ofthe π-equivariane of φx,T . Condition (iii) is lear.(iv) Suppose that y ∈ Y = Yx,T , but y is not in the image of φ = φx,T .We laim that π(y) = w, or equivalently, that πx,T (y) = wT . Suppose not;let y be a ounterexample with shortest u = πx,T (y). Notie that u 6= 1,beause π−1

x,T (1) = {φ(x)}. Let t ∈ In(u), and let yt = φ(z). As in (ii), wehave qx,t = qz,t. Moreover, π(z) = wwTut and π(z)t = wwTu belong to
Wk−1, so that Resk−1(z, t) has ardinality qz,t + 1, the same as ResY (yt, t).Therefore φ maps Resk−1(z, t) bijetively onto ResY (yt, t), and y is in theimage of φ, a ontradition.(v) The new residues to be heked are Resk(y, T ), for y ∈ Yx,T , π(y) = w.But in this ase Resk(y, T ) = Yx,T , and (wwT )−1π = πx,T .(vi) Let y ∈ Yx,T \ Xk−1, s ∈ S. If s ∈ T , we put qy,s = qys,s. If
s 6∈ T , but there exists t ∈ T suh that {t, s} is spherial, then we put
qy,s = qyt,s. This does not lead to ontraditions: if t′ ∈ T and {s, t′} isspherial, then {s, t, t′} is also spherial, and yt′ ∈ Resk−1(y

t, {s, t, t′}), sothat qyt′ ,s = qyt,s by (vi) . Finally, if s 6∈ T and no t ∈ T ommutes with s,then we hoose qy,s arbitrarily. Observe that this last ase ours exatlywhen In(ws) = {s}.Now suppose that z, z′ ∈ Xk, z ∈ Resk(z
′, U) where U is spherial and

s ∈ U . We will show that qz,s = qz′,s. Let z = z1, z2, . . . , zm = z′ be a gallery



152 J. Dymara and D. Osajdain Xk, zi ∼ui
zi+1, ui ∈ U . Suppose that some two onseutive hambers

zi, zi+1 do not belong to Xk−1. Then they are both in Yx,T for some x, and
ui ∈ T . We insert zui

i between zi and zi+1. Repeating the proess we ensurethat if zi 6∈ Xk−1, then zi−1, zi+1 ∈ Xk−1 (exept i = 0,m). Then we replaeeah triple zi−1, zi, zi+1 with zi 6∈ Xk−1 by zi−1, z
ui

i−1 = z
ui−1

i+1 , zi+1. We obtaina U -gallery from z to z′ whose all but external hambers lie in Xk−1. Weonlude that qz,s = qz1,s = qzm−1,s = qz′,s.(vii) The new residues to be heked are Resk(y, s) for y suh that π(y) =
w or π(y) = ws (where s ∈ T and y ∈ Yx,T for some x). In either ase,
Resk(y, s) = ResY (y, s) has qx,s + 1 elements. However, y ∈ Resk(x, T ) sothat, by (vi), qx,s = qy,s.Finally, we need to onstrut or extend some of the maps φy,U .Some ases are easy. If u = w, then U = T and y ∈ π−1(wwT ). Then
Resk(y, T ) = Yy,T and we put φy,T = IdYy,T

. If uwU = w, then we hoose
φy,U : {y} → Yy,U arbitrarily. If w 6∈ uWU , then we do not hange φy,T .Thus, we an assume that w∈uWU , but w 6=uwU . Then w=uwUu1 . . . ukfor some pairwise di�erent u1, . . . , uk ∈ U . We have ui ∈ In(w) = T , so that
w ∈ uwUWU∩T , or equivalently, uwU ∈ wWU∩T . Sine uwU is the shortestelement in uWU = wWU , it is also the shortest element in wWU∩T .
Claim. There is an x ∈ π−1(wwT ) suh that y ∈ Yx,T .Proof. Sine uwU ∈ wWU∩T ⊆ wWT = wwTWT , there is a T ′ ⊆ Tsuh that uwU = wwTwT ′ . Moreover, T ′ ⊆ In(uwU ), therefore wwT ∈

uwUWT ′ ⊆ uwUWIn(uwU ) = π(y)WIn(π(y)). By (v), there is an x ∈ π−1(wwT )
∩Resk−1(y, T

′) (the folding map, when restrited to a residue, is onto a suit-able oset of the orresponding speial subgroup of the Coxeter group). Then
y ∈ Resk(x, T

′) ⊆ Resk(x, T ) = Yx,T . ClaimLet Yy,U∩T = ResYx,T
(y, U ∩ T ). Sine Resk−1(y, U)∩ Yy,U∩T = Yy,U∩T \

π−1(w), it is a star-like set in the building Yy,U∩T (with respet to y), there-fore φy,U extends to a monomorphism ψ : Yy,U∩T → Yy,U . Gluing φy,U with
ψ we get an extended map φy,U : Resk−1(y, U) ∪ Yy,U∩T → Yy,U . We laimthat this map is injetive: indeed, ψ is π-equivariant as a monomorphismof buildings, and hene the extended map is π-equivariant. Furthermore, if
z ∈ Resk−1(y, U) and z′ ∈ Yy,U∩T \ Resk−1(y, U), then π(z) 6= w = π(z′),therefore φy,U (z) 6= φy,U (z′). Now it is enough to observe that φy,U is inje-tive on Resk−1(y, U) and that ψ is injetive.Finally, we laim that Resk−1(y, U) ∪ Yy,U∩T = Resk(y, U). Sine π is amorphism, we know that Resk(y, U) ⊆ π−1(uwUWU ∩Wk). Any U -galleryin Xk starting at y and ending at z 6∈ π−1(w) an be modi�ed, using thetehnique from the proof of (vi), to a U -gallery not ontaining hambersfrom π−1(w). This means that Resk(y, U) ∩Xk−1 = Resk−1(y, U). Suppose



Boundaries of right-angled hyperboli buildings 153now that z ∈ π−1(w) ∩ Resk(y, U). Then Resk(z, U ∩ T ) ⊆ Resk(y, U),
Resk(z, U ∩ T ) \ π−1(w) ⊆ Resk−1(y, U). In partiular, Resk(z, U ∩ T ) hasa unique shortest element, lying in π−1(uwU ) ∩ Resk−1(y, U). But the lat-ter set equals {y}, beause φy,U : Resk−1(y, U) → Yy,U is a π-equivariantmonomorphism. Therefore y ∈ Resk(z, U ∩ T ), z ∈ Yy,U∩T .
Remark. Notie that we were free to hoose qx,s exatly for (x, s) in theroot set of X.4.D. Uniqueness and lattiesTheorem 4.4. For every loal W -building Y and any hamber y ∈ Ythere exists a standard W -building X and a overing map φ : X → Y with

φ(B) = y.Proof. We perform the onstrution of X as in Subsetion 4.C, togetherwith the onstrution of φ as in the proof of Theorem 4.2. We put X1 = {B}and φ(B) = y. Whenever we onstrut a hamber x suh that a hoie of
qx,s is needed for some s, we hoose qx,s = |[φ(x)]∼s| − 1. The pair (x, s)will belong to the root set of X. Later, when π−1(π(x)s) is onstruted, weare free to hoose φ : [x]∼s → [φ(x)]∼s (extending x 7→ φ(x)); we hoose abijetion. By Theorem 4.3(iv) we obtain a overing map.To talk about universal overs it is onvenient to swith to the topologialategory (and bak). The geometri realisation |X| of a loal W -building Xis the geometri realisation of the poset of �nite type residues in X (i.e.
T -residues for all spherial T ). One an label eah vertex in |X| with thetype of the orresponding residue. Let us give another desription of |X|.Let L be the �nite simpliial omplex with vertex set L(0) = S, a set ofgenerators spanning a simplex in L if and only if they pairwise ommute.We denote by L′ the �rst baryentri subdivision of L, and by CL′ the oneover L′. Then |X| is X × CL′/∼, where (x, p) ∼ (x′, p′) ⇔ p = p′ and
x′ ∈ Res(x, S(p)); here S(p) = {s ∈ L(0) | ∃σ ∈ L′, s ∈ σ, p ∈ |σ|}. If
p : |̃X| → |X| is any overing of X, then |̃X| is in fat a geometri realisationof a loal W -building X̃: X̃ is the preimage under p of the set of ∅-labelledverties of |X|; x̃ ∼s x̃

′ ⇔ there exists a vertex v ∈ |̃X|, joined by edges to
x̃ and to x̃′, and suh that p(v) is of type {s}. Notie that for any spherial
U ⊆ S, and any residue R in X of type U , the set |X≤R| is ontratible (asa one with apex R), hene its preimage under p is a disjoint union of itshomeomorphi opies. Therefore, X̃ is indeed a loal W -building. We saythat X̃ is the universal over of X if |̃X| is the universal over of |X|. It islear that morphisms of loal W -buildings indue simpliial label-preservingmaps, and overing maps of loal W -buildings indue simpliial overingmaps.



154 J. Dymara and D. OsajdaTheorem 4.5. A standard W -building is a building.Proof. We begin withLemma 4.6. The geometri realisation of a standard W -building is on-tratible.Proof. The argument follows Serre's proof for buildings [Se℄. Let W =
{w1 = 1, w2, . . .} be a numbering of elements of W suh that eah set Wk =
{w1, . . . , wk} is star-like. Let Xk = π−1(Wk). The strategy is to show that
|Xk| deformation retrats onto |Xk−1|. To do this, it is enough to hek thateah hamber |x| in |Xk \Xk−1| deformation retrats onto |x| ∩ |Xk−1|. Let
T = In(wk); then the pair (|x|, |x| ∩ |Xk−1|) is isomorphi to (K,KT ), where
KT =

⋃
t∈T Kt. Sine K is a one over KS , it is ontratible. It is heked in[D1℄ thatKT is ontratible for all spherial T . It follows thatK deformationretrats onto KT . Lemma4.6Let now X be a standard W -building.Lemma 4.7. Suppose that σ : W → X is a loal monomorphism suhthat σ(1) = B. Then σ is a setion of π (i.e., π ◦ σ = IdW ).Proof. We argue by ontradition. Let w ∈ W be the shortest elementsuh that π(σ(w)) 6= w. Notie that w 6= 1, beause π(σ(1)) = π(B) = 1;onsequently, In(w) 6= ∅. Let s ∈ In(w); then π(σ(ws)) = ws. The map

(ws)−1π : Res(σ(ws), s) → W{s} is a folding map (f. Remark 3 after thede�nition of a standard building), so that π(σ(ws)) = ws while for any
x ∈ Res(σ(ws), s)\{σ(ws)}we have π(x) = w. Sine w ∈ Res(ws, s), we have
σ(w) ∈ Res(σ(ws), s); but σ is injetive on Res(ws, s) so that σ(w) 6= σ(ws).Therefore π(σ(w)) = w, a ontradition. Lemma4.7We de�ne an apartment in X as the image of any monomorphism σ :
W → X. Notie that if B ∈ σ(W ), then we an modify σ by preomposingit with left multipliation by σ−1(B), so as to have σ(1) = B. Therefore,every apartment ontaining B is the image of a setion of π.Let us make two observations that will be used for heking (B2) and (B3).First, observe that if σ, σ′ are setions of π, and σ(W ), σ′(W ) are twoapartments ontaining B and a hamber x, then σ′ ◦ π : σ(W ) → σ′(W ) isan isomorphism �xing B and x. Next, if σ, σ′ are setions of π, and σ(W ),
σ′(W ) are apartments ontaining B and interseting an s-residue R, then
σ′ ◦ π : σ(W ) → σ′(W ) is an isomorphism �xing B and mapping R ∩ σ(W )to R ∩ σ′(W ). Indeed, π(R) = π(R ∩ σ(W )) = π(R ∩ σ′(W )) = {w,ws} forsome w ∈W ; onsequently, R∩σ(W ) = {σ(w), σ(ws)}, and (σ′◦π)(σ(w)) =
σ′(w) ∈ R ∩ σ′(W ), (σ′ ◦ π)(σ(ws)) = σ′(ws) ∈ R ∩ σ′(W ).Reall that xt denotes the shortest element in Res(x, t) (we use thisnotation only if t ∈ In(π(x))). De�ne indutively xt1...titi+1 = (xt1...ti)ti+1 .



Boundaries of right-angled hyperboli buildings 155Notie that if st = ts then xst = xts, sine both hambers are equal to theshortest element in Res(x, {s, t}). We will also use the fat that if σ(w) = xfor a setion σ of π, then σ(wt) = xt (assuming t ∈ In(w)).Lemma 4.8. For any x ∈ X there exists a morphism σ : W → X whihis a setion of π and satis�es σ(π(x)) = x.Proof. Indution on the length k of π(x). For k = 0 we have x = B, andwe just have to show the existene of a setion of π. A morphism σ : W → Xsuh that σ(1) = B an be onstruted as in Theorem 4.2. Moreover, sine
[x]∼s has at least two elements for eah x ∈ X, s ∈ S, there exists σ whihis injetive on [x]∼s for eah (x, s) ∈ R(W ), hene (by Theorem 4.3(ii)) is aloal monomorphism. Then, by Lemma 4.7, σ is a setion.Now let k > 0. Then we an �nd w of length k−1 suh that π(x) = ws forsome s ∈ T = In(ws), and a setion ξ : W → X of π suh that ξ(w) = xs. Let
us be the shortest element in H(w, s), and let ws,wst1, . . . , wst1 . . . tk = usbe a minimal gallery with ti ∈ {s}′ (f. Lemma 2.5). We hoose a well-ordering on W with star-like initial segments suh that all elements of
H(w, s) are larger than all other elements. If {g, gt} ∩ H(w, s) = ∅ and
(g, t) ∈ R(W ) then we put σ(gt) = ξ(gt) (so that σ and ξ oinide on
W \ H(w, s)). Then we put σ(us) = xt1...tk , and afterwards we only areabout making injetive hoies, so as to keep σ a loal monomorphism (andhene, as in the ase k = 0, a setion of π).We laim that σ(ws) = x. To hek this we prove by desending in-dution on i that σ(wst1 . . . ti) = xt1...ti . Indeed, observe that σ(wt1 . . . ti)
= ξ(wt1 . . . ti) = xst1...ti = xt1...tis, while by the indutive assumption
σ(wst1 . . . ti+1) = xt1...ti+1 . Sine xt1...ti is the unique hamber whih is re-spetively s- and ti+1-adjaent to the above two hambers, it has to be equalto σ(wst1 . . . ti). Lemma4.8For x ∈ X we an �nd a standard W -building X ′ and a overing map
φ : X ′ → X with φ(B′) = x (Theorem 4.4; reall that a standard W -buildingis a loalW -building). The orresponding overing map of topologial spaes
|φ| : |X ′| → |X| is a homeomorphism, beause, by Lemma 4.6, its base spae
|X| is ontratible, hene simply onneted. It follows that φ itself is anisomorphism. We will now prove that X satis�es the onditions (B1�3). Let
y ∈ X, and let φ−1(y) = y′. By Lemma 4.8 there exists an apartment
A in X ′ ontaining B′ and y′. The φ-image of A is an apartment in Xontaining x and y, whih proves (B1). If two apartments σ(W ), σ′(W )ontain x and y, then (φ−1 ◦σ)(W ) and (φ−1 ◦σ′)(W ) ontain B′ and y′ andthus are isomorphi by an isomorphism η �xing B′ and y′. Then φ ◦ η ◦ φ−1is an isomorphism between σ(W ), σ′(W ) �xing x and y, whih proves (B2).The proof of (B3) is analogous to the proof of (B2). Theorem4.5



156 J. Dymara and D. OsajdaTheorem 4.9. For any olletion (qs)s∈S of positive integers there existsa unique W -building with s-residues of ardinality qs + 1.Proof. The onstrution of the previous subsetion with qx,s = qs for all
x yields a standardW -building X whose residues have required ardinalities.By Theorem 4.5, X is a building. If Y is another building as in the theorem,then as in the proof of Theorem 4.2 one an onstrut a morphism φ : X → Y .Moreover, sine the residue ardinalities agree, we an hoose φ so that it isbijetive on eah [x]∼s for (x, s) ∈ R(X). By Theorem 4.3(iv), φ is a overingmap, and hene, by ontratibility of |Y |, an isomorphism.One might all the building from Theorem 4.9 a regular W -building,with notation X(W,q) (where q = (qs)s∈S). We will now present anotheronstrution of X(W,q). First, we de�ne an auxiliary loal building Y . Theset of hambers of Y is a produt ∏

s∈S Ys, where eah Ys is a �nite set ofardinality qs + 1 greater than 1. Two hambers (ys), (y
′
s) are t-adjaent if

ys = y′s for all s 6= t. If T is spherial then ResY ((ys), T ) is isomorphi tothe produt building ∏
t∈T Yt (via dropping oordinates indexed by S \ T ).Therefore Y is a loalW -building with the required residue ardinalities, and

Ỹ = X(W,q). It follows that |X(W,q)| arries a free and oompat ationof Γ = π1(|Y |). If W is a hyperboli group, then |X(W,q)| is CAT(−1) andis quasi-isometri to Γ ; therefore, Γ is Gromov-hyperboli (in fat, any groupating oompatly and properly disontinuously on |X(W,q)| is Gromov-hyperboli).Proposition 4.10. The building |X(W,q)| arries a free and oompatation of some group Γ . If W is hyperboli, then Γ is Gromov-hyperboli.Both the proposition and the method of proof (the identi�ation of
X(W,q) with the universal over of Y ) are well known (f. [D2℄, [GP℄).4.E. Small maps with disjoint images. A (standard or loal) W -building is thik if eah adjaeny lass has at least three elements.Theorem 4.11. Let X be a thik standard W -building , and let N ⊆ Xbe a �nite set. Then there exists a �nite set M with N ⊆ M ⊆ X andtwo π-equivariant maps φ, ψ : X → X suh that φ|M = ψ|M = IdM and
φ(X \M) ∩ ψ(X \M) = ∅.Proof. PutM = π−1(conv(π(N)∪{1})). We laim that conv(π(N)∪{1}),heneM , is �nite. Indeed, letm be the number of walls inW separating someelement of π(N) from 1. Let ℓ(w) = p > m, and let w0 = 1, w1, . . . , wp = wbe a minimal gallery. Then one of the p walls between wi and wi+1 does notseparate any element of π(N) from 1, while it separates w from 1; hene, itseparates w from π(N) ∪ {1}, and w 6∈ conv(N ∪ {1}).



Boundaries of right-angled hyperboli buildings 157Now let R = R(X) be the root set of X. For eah (x, s) ∈ R hoose twodistint elements a(x,s), b(x,s) ∈ Res(x, s) \ {x}. Let A = {ar | r ∈ R}, B =
{br | r ∈ R}. We now onstrut φ : X → X as in the proof of Theorem 4.2.Let x ∈ X be suh that In(π(x)) = {s} (i.e., we have a hoie for φ(x)). Let
x0 be the shortest element of Res(x, s); then (x0, s) ∈ R. If x ∈ M we put
φ(x) = x (this is allowed, for by indution φ(x0) = x0). If x 6∈ M , we put
φ(x) = a(φ(x0),s). Similarly we de�ne ψ using b's instead of a's.Suppose now that y ∈ φ(X)∩ψ(X), y 6∈M , and w = π(y) is the shortestpossible. Let y = φ(x) = ψ(z). We have φ(xt) = ψ(zt) for all t ∈ In(w), hene
xt = zt ∈ M for all suh t. Now y 6∈ M is possible only if In(w) has oneelement, say t. But then (xt, t) ∈ R, (zt, t) ∈ R, φ(x) ∈ A, ψ(z) ∈ B, aontradition.Let

|M | = {[x, p] | x ∈M, p ∈ CL′}, |φ|([x, p]) = [φ(x), p].Corollary 4.12. Let φ, ψ be as in Theorem 4.11. Then
|φ|(|X| \ |M |) ∩ |ψ|(|X| \ |M |) = ∅.Proof. Suppose not; let [x, p] = |φ|([x1, p]) = |ψ|([x2, p]). Reall that

S(p) = {s ∈ S | ∃σ ∈ L′, s ∈ σ, p ∈ |σ|}. Let y be the shortest elementof Res(x, S(p)), and let y1 be the shortest element of Res(x1, S(p)); then
[x, p] = [y, p] and [x1, p] = [y1, p]. Sine Res(x, S(p)) is the unique residue Rof type S(p) in X suh that |X≤R| ontains [x, p] (for two di�erent residues Rof the same type the sets |X≤R| are disjoint), we have |φ|(|X≤Res(x1,S(p))|) ⊆
|X≤Res(x,S(p))|, and hene φ(Res(x1, S(p))) ⊆ Res(x, S(p)). Now π-equivar-iane of φ implies that φ(y1) = y. Similarly, ψ(y2) = y. It follows that y ∈Mand [x, p] = [y, p] ∈ |M |.If X is a right-angled hyperboli building with a folding map π, then any
π-equivariant map θ : X → X �xes the base hamber B = π−1(1). Therefore
|θ| : |X| → |X| �xes all points in B. Reall that we de�ned ∂|X| as thespae of geodesi rays starting at some base point x0 ∈ B. Thus, the map
|θ| indues a ontinuous map ∂|θ| : ∂|X| → ∂|X|.Corollary 4.13. Let X be a right-angled hyperboli building , and let
φ, ψ be as in Theorem 4.11. Then

∂|φ|(∂|X|) ∩ ∂|ψ|(∂|X|) = ∅.Proof. Suppose not; let ∂|X| ∋ z = ∂|φ|(z1) = ∂|ψ|(z2). For y ∈ ∂|X|let γy : [0,∞) → |X| be the geodesi from the base point to y. We have γz =
|φ| ◦ γz1 = |ψ| ◦ γz2 . Let t ∈ [0,∞) be so large that γz1(t), γz2(t) 6∈ |M |; then
γz(t) = |φ|(γz1(t)) = |ψ|(γz2(t)), ontraditing Corollary 4.12.



158 J. Dymara and D. OsajdaAPPENDIXIn this appendix we prove an analogue of Lemma 2.15 for arbitrary �-nite spherial buildings (Theorem A.2). As a orollary, we dedue that an
n-dimensional loally �nite hyperboli or Eulidean building (not neessarilyright-angled) is (n − 2)-onneted at in�nity. Note that in [GP℄ even moreis laimed, but their proof does not onvine us. First, it is not true that
V ∩S(x, si + ε) (here we refer to the proof of Proposition 4.1 in [GP℄ and weuse the notation used there) is of the same homotopy type as the pointedonneted sum of S(x, si−ε) with a bouquet of spheres�one for eah ham-ber opposite to c in Lk(y). This an be seen by onsidering a 2-dimensionalright-angled building. Seond, to laim that V ∩S(x, si+ε) has the homotopytype of a bouquet of spheres, one needs to show that S+ is (n−2)-onneted(in the notation of [GP℄). This is, in our opinion, a non-trivial fat�see The-orem A.2 below. A similar problem appears in [DM℄. Again, as onsiderationof a 2-dimensional right-angled building shows, Lemma 5.5 in [DM℄ is false(f. [DM′℄). We do not know how to orret this approah.Kai-Uwe Bux informs us that variants of Theorem A.2 and CorollaryA.10 have been independently established by B. Shulz in his thesis (f.[Sh℄).Let X be a �nite spherial building of dimension n ≥ 1, equipped withthe standard CAT(1) metri (eah apartment is a sphere of diameter π).Let B ∈ X be a hamber, and let π : X → Sn be the B-based folding map.We equip Sn with the standard round metri suh that the restrition of
π to any apartment A ontaining B isometrially identi�es A and Sn. Thetriangulation of A transported by π is a triangulation of Sn; π : X → Sn isthen a simpliial map. Images of hambers under π will be alled hambers.
Lemma A.1. Let S1, . . . , Sk ⊆ Sn be a �nite olletion of great spheres

(of arbitrary dimensions). The set of points x satisfying:
• for every i, the funtion Si ∋ y 7→ d(x, y) ∈ R has a unique minimum;
• for every i 6= j, d(x, Si) 6= d(x, Sj);is open and dense in Sn.For every simplex σ in our triangulation of Sn there exists a unique small-est great sphere S ⊆ Sn ontaining σ. Apply Lemma A.1 to the olletionof all spheres thus obtained; pik a point x ∈ Sn in the dense open set givenby the lemma and inside int(π(B)). Let E0 = x⊥ ∩ Sn be the equator of Snfor whih x is a pole; let E− be the losed hemisphere with boundary E0ontaining x, and let E+ be the other losed hemisphere with boundary E0.Also, let

X0 = π−1(E0), X− = π−1(E−), X+ = π−1(E+).



Boundaries of right-angled hyperboli buildings 159For a subset U or point p of X we put
U = π(U), p = π(p).We will often pik U or p �rst, and speify U or p later (if at all). For example,

x is the unique point in π−1(x). To avoid a notational lash, losures will bedenoted by cl.
Theorem A.2. Let X be a �nite spherial building of dimension n ≥ 1.Then X+ is (n− 1)-onneted.Proof. If a set G ⊆ X is isomorphially mapped by π onto H ⊆ Sn, wesay that G folds onto H. The following lemma will often be used:
Lemma A.3.(a) For every hamber C ∈ X there exists an apartment A ontaining Csuh that A folds onto Sn.(b) Let C1, C2 be two hambers in X suh that π(C2) = −π(C1). Thenthere exists a unique apartment A ontaining C1 and C2. This Afolds onto Sn.Proof. (a) An apartment ontaining C and B is good. (b) C1, C2 areopposite in X�otherwise C1, C2 would not be opposite in Sn. Consequently,

conv(C1 ∪ C2) is the desired apartment.
Remark. One an replae the hamber C in part (a) by a point; sim-ilarly, one an replae hambers C1, C2 in part (b) by points p, q suh that

q = −p and p is in the interior of some hamber. (Choose hamber/pair ofopposite hambers ontaining the point/points, and apply the lemma.)
Lemma A.4. Let n ≥ 1. Then X+ is path-onneted.Proof. Let p, q ∈ X+. Choose apartments Ap, Aq that fold onto Sn andontain p, q, respetively. Pik a point p′ ∈ X0 ∩Ap whih lies in the interiorof some hamber Cp (this is possible due to generiity of x). Let q′ ∈ X0∩Aqbe suh that q′ = −p′; let Cq be the hamber whih ontains q′. Then p anbe onneted to p′ by a path in X+ ∩ Ap, and q an be onneted to q′ bya path in X+ ∩ Aq. Furthermore, π(Cq) = −π(Cp) so that, by Lemma A.3,there exists an apartment A ∋ Cp, Cq whih folds onto Sn. Now p′ and q′an be onneted by a path in X+ ∩A. Thus, p and q an be onneted bya path in X+.
Proposition A.5. Let n = 2. Then π1(X

+) = 0.Proof. By a general position argument, any loop in X+ an be homo-toped to a loop in X+\π−1(−x). The latter set deformation retrats onto X0(the deformation retration moves a point along the unique shortest geodesitowards x, until it hits X0). Consequently, any loop inX+ an be homotopedto a loop in X0. Now X0 has a natural graph struture, inherited from the



160 J. Dymara and D. Osajdasimpliial struture ofX. Therefore, a loop inX0 is homotopi to a simpliialloop σ = (e1, . . . , ek = e0) (eah ei is an oriented edge and the endpoint of eiis the origin of ei+1). A pair (ei, ei+1) will be alled a baktraking pair (b.p.)if ei = e−i+1 (we use f− to denote f with reversed orientation). Now hoose anedge e in E0. A b.p. (ei, ei+1) is alled aeptable if ei = ±e± (one of the fourpossibilities). If (ei, ei+1) is a b.p., we hoose an apartment A that ontains
ei and folds onto Sn. Then A∩X0 is a loop (ei, f2, f3, . . . , f2s). There exists asmallest j ≥ 2 suh that f j = ±e±; we deform the loop σ = (. . . , ei, ei+1, . . .)to σ′ = (. . . , ei, f2, . . . , fj , f

−
j , . . . , f

−
2 , ei+1, . . .). The new loop has the samebaktraking pairs as σ, with the exeption of (ei, ei+1), instead of whih anaeptable b.p. (fj , f

−
j ) appears. Notie that the b.p. (fj , f

−
j ) is separated,in the sense that neither (fj−1, fj) nor (f−j , f

−
j−1) is a b.p. (if j = 2, nei-ther (ei, f2) nor (f−2 , ei+1) is a b.p.). Repeating the proess, we deform σto a loop with aeptable separated baktraking pairs only. We keep thenotation σ = (e1, . . . , ek = e0) for this new loop.Now suppose that ei = ±e±, but neither (ei, ei+1) nor (ei−1, ei) is a b.p.Then ei+s = −ei so that, by Lemma A.3 and the subsequent remark, thereexists an apartment A ∋ ei, ei+s. We laim that ei+1, . . . , ei+s−1 ∈ A.

Lemma A.6. Let τ = (d1, . . . , ds+1) be a path in X0 suh that d1 =
−ds+1, and let A be the apartment in X ontaining d1 and ds+1. Then τ isontained in A.Proof. The path τ ′ = (d2, . . . , ds) from the endpoint y of d1 to the ori-gin z of ds+1 has geometri length d(y, z). Sine d(y, z) ≤ d(y, z), τ ′ is ashortest geodesi. Now y, z ∈ A, and A is onvex, therefore τ is ontainedin A. Lemma A.6In A∩X+, the path (ei+1, ei+2, . . . , ei+s−1) is homotopi (with endpoints�xed) to a path (e−i , fi+1, . . . , fi+s−1, e

−
i+s), where f i+j = −e−i+s−j . The e�etof this hange on σ is

(. . . , ei, ei+1, . . . , ei+s−1, ei+s, . . .)

→ (. . . , ei, e
−
i , fi+2, . . . , fi+s−1, e

−
i+s, ei+s, . . .).It may happen that (ei+s, ei+s+1) is a b.p.; if this is the ase, we furthermodify the loop:

(. . . , fi+s−1, e
−
i+s, ei+s, ei+s+1, . . .) → (. . . , fi+s−1, ei+s+1, . . .).Travelling along the loop and repeating the proess if neessary, we �nallyarrive at a loop σ = σ1 . . . σ2l, where eah σi is a path of length s + 1 withno b.p., and (last edge of σi, �rst edge of σi+1) is an aeptable separatedb.p. (for i = 0, 1, . . . , 2l − 1, where σ0 = σ2l).Suppose now that τ is a path of length s+1 ontaining no b.p. Let A bethe apartment ontaining the extreme edges of τ . Then τ is homotopi (with



Boundaries of right-angled hyperboli buildings 161endpoints �xed) in A ∩X+ to a path τ̂ ⊆ A ∩X0 of length s − 1. Now wemodify σ by homotopy inside X+, hanging σj and σ2l−j+1 to σ̂j , σ̂2l−j+1(resp.), for all positive even j ≤ l. We obtain a loop σ = ηξ with exatly twobaktraking pairs, where η, ξ are paths of equal length, say u, and none ofthem ontains a b.p. A loop of this form will be alled a u-moon.
Lemma A.7. An (s+ 1)-moon is ontratible in X+.Proof. An (s + 1)-moon ηξ is homotopi (in X+) to ηξ̂; the latter isontained, by Lemma A.6, in the apartment A spanned by the extremeedges of η. The apartment A folds onto Sn, therefore ηξ̂ is null-homotopiin A ∩X+. LemmaA.7

Lemma A.8. If u > s+1, then a u-moon is homotopi to a onatenationof an (s+ 1)-moon and a (u− 1)-moon.Proof. Let η = (η1, . . . , ηu) and ξ = (ξ1, . . . , ξu). Let A be the apartmentspanned by η1 and ξu−s, and let τ be the path of length s − 1 in A ∩ X0from the endpoint of η1 to the endpoint of ξu−s. Then ηξ is homotopito the onatenation of the (s + 1)-moon τξ−u−sξu−sξu−s+1 . . . ξuη1 and the
(u− 1)-moon η2η3 . . . ηuξ1ξ2 . . . ξu−sτ

−. LemmaA.8Repeated appliation of Lemmas A.8 and A.7 �nishes the proof of Propo-sition A.5. PropositionA.5Thus, the assertion of Theorem A.2 is true for n = 1, 2. We will proeedwith the proof of the general ase by indution on n. Suppose that n > 2, andthat the assertion of Theorem A.2 is true for all �nite buildings of dimensionless than n. Let X be a �nite building of dimension n.Let σ1, . . . , σl be all the simplies of our triangulation of Sn that havethe following property: there exists a minimal unit-speed geodesi γi issuedfrom x whih orthogonally intersets the interior of σi at pi = γi(ti). By thehoie of x, γi is unique, all the ti are distint and none of them equals π/2.We an assume that t1 < · · · < tl. Let
X+

r = {y ∈ X | d(π(y), x) ≥ r}.Our strategy is to show, by indution on i, that X+
r is (n − 1)-onnetedfor ti < r < ti+1, r ≤ π/2. To this end, we need to prove that X+

ε is
(n− 1)-onneted for small positive ε, and then we need to understand how
X+

r hanges when r swithes from the interval (ti−1, ti) to (ti, ti+1).If ε is su�iently lose to 0, then X+
ε is homotopy equivalent to X \ {x},whih homotopially is a bouquet of n-spheres with one sphere puntured,and so is (n− 1)-onneted.Now we will losely follow the proof of Lemma 3.3. Put t = ti, σ = σi,

γ = γi, p = pi. We hoose a small δ > 0 suh that the sphere Sδ(p) isontained in int(Resσ), where Resσ =
⋃
{τ | σ ⊆ τ}. Then there exists



162 J. Dymara and D. Osajdaan ε > 0 suh that St+ε(x) ∩ σ ⊆ Sδ(p). The intersetion St+ε(x) ∩ σ is asphere of dimension d = dimσ− 1 ontained in the interior of σ. Dereasing
δ we ensure that ε < min{ti+1 − t, t− ti−1} and t+ ε < π/2. Let D denote
Sδ(p) ∩ σ

⊥
p (where η⊥p denotes the largest great sphere in Sn orthogonal to

η at p). The intersetion D ∩ γ⊥p divides D into two losed hemispheres:
D

− (the one loser to x) and D
+. Observe that D+

= D \ Bt+ε(x). Thesphere D inherits a triangulation from Sn. We want the spheres St±ε(x) tointerset this triangulation �in the same way�. This ondition an be ahievedby further dereasing δ (and onsequently ε).Now we pass to X. Let
π−1(σ) = {σ1, . . . , σk}, {ps} = σs ∩ π

−1(p),

Ks = {y ∈ X | d(y, ps) ≤ δ}, K =
∐

s

Ks, Y + = cl(X+
t+ε \K),

Ds = π−1(D) ∩Ks, D+
s = Ds ∩X

+
t+ε, Sd

s = σs ∩ Sδ(ps).The �rst two de�nitions override our previous onvention. Observe that:X+
t+εis homotopy equivalent to Y +; X+

t−ε is homotopy equivalent to Y + ∪K; Ksis homeomorphi to a one over the join Sd
s ∗Ds, and is attahed to Y + alonga subset homeomorphi to Sd

s ∗D+
s .Eah Ds is a spherial building of dimension n− d− 2. By the indutiveassumption D+

s is (n−d−3)-onneted, whih implies that Sd
s ∗D

+
s is (n−2)-onneted. Moreover, Ks is ontratible. Van Kampen's theorem, Mayer�Vietoris sequene and the indutive assumption that the union Y + ∪ K is

(n−1)-onneted imply (n−2)-onnetedness of Y +. It remains to prove that
Hn−1(Y

+) = 0 (here we depart from the proof of Lemma 3.3). It follows fromthe Mayer�Vietoris sequene that Hn−1(Y
+) is generated by the images of

Hn−1(S
d
s ∗D

+
s ) (s = 1, . . . , k). We will show that any (n−1)-yle in Sd

s ∗D
+
sis null-homologous in Y +.Let us subdivide the usual triangulation of Sn to a minimal ellulationin whih St+ε(x) \ Bδ(p) and Sδ(p) are subomplexes. Pull this ellulationbak to X via π. An (n− 1)-yle z in Sd

s ∗D+
s is a join of the fundamentallass of Sd

s and an (n − d − 2)-yle z̃ in D+
s . The yle z̃ an be regardedas a yle in Ds vanishing outside D+

s . Now every (n − d − 2)-yle in Dsan be expressed as a ombination of fundamental lasses of apartments.More spei�ally, let c0 be the hamber in Ds whih is losest to x, and let
c1, . . . , cm be all the hambers in Ds opposite to c0. Let ai be the apartmentin Ds ontaining c0 and ci; then z̃ =

∑m
i=1 αi[ai] for some integers αi. Let

Ci be the hamber of X ontaining ci. Let C−1 be a hamber in X suh that
C−1 = −C1 (note that C1 = · · · = Cm), and let Ai be the apartment in Xontaining C−1 and Ci. Let Z =

∑m
i=0 αi[Ai] ∈ Zn(X). Split Z into Z1 +Z2,



Boundaries of right-angled hyperboli buildings 163where Z1 ∈ Cn(Ks), Z2 ∈ Cn(cl(X \Ks)). Clearly, Z1 is the one over z sothat ∂Z1 = z. Therefore, ∂(−Z2) = z.We laim that Z2 ∈ Cn(Y +). First, notie that if u 6= s then for all
i we have Ku ∩ Ai = ∅: sine Ai folds onto Sn, it an interset only oneomponent of K, and it does interset Ks. Next, let C be a hamber of Xontained in Ai but not ontained in Y +∪K. Choose a point y ∈ int(C) suhthat y 6∈ X+

t ∪K (in partiular, y 6= −p). The unique minimal geodesi γfrom ps to y is ontained in (Ai∩ (X \X+
t ))∪{ps}, beause both extremitiesbelong to this onvex set. In partiular, γ intersets Sδ(ps) outside X+

t , heneoutside Y +. It follows that γ leaves ps through the interior of a hamber C ′ onwhih Z is zero. The hamber C ′ is the losest to C (in the gallery distane)among all hambers in the residue of σ.Now all apartments Aj ontain σ; therefore, if an apartment Aj ontains
C, it also ontains C ′. Conversely, we laim that if C ′ ∈ Aj , then C ∈ Aj . Tosee this extend the geodesi γ to γ : [0, π] → Ai (so that γ(π) is opposite to
γ(0) = ps in Ai). Now slightly rotate γ inside Ai, so as to obtain a geodesi
η whih still passes through the interiors of C ′ and C (η(a) ∈ int(C ′), η(b) ∈
int(C), a < b), but η(0) ∈ int(Ci), η(π) ∈ int(C−1). Then η|[a,π] is a minimalgeodesi. Suppose that C ′ ∈ Aj . Then η(a), η(π) ∈ Aj so that η(b) ∈ Aj ,hene C ∈ Aj .Thus, we have veri�ed that {j | C ∈ Aj} = {j | C ′ ∈ Aj}. The oe�ientof C in Z is equal to ∑

j|C∈Aj
αj =

∑
j|C′∈Aj

αj ; the latter is the oe�ientof C ′ in Z, i.e. zero. TheoremA.2A non-ompat spae X is k-onneted at in�nity if for every ompat
K ⊆ X there exists a ompat set L with K ⊆ L ⊆ X suh that any map
Si → X \ L extends to a map Bi+1 → X \K (for i = 0, 1, . . . , k).
Corollary A.9. An n-dimensional loally �nite hyperboli or Euli-dean building is (n− 2)-onneted at in�nity.Proof. It is enough to hek that the omplements of balls Br are (n−2)-onneted, for r > 0 arbitrarily large. By the geodesi retration suh a om-plement is homotopially equivalent to Sr. Then the proof of Lemma 3.3, for

U = X ∪ ∂X, goes through, with Theorem A.2 used instead of Lemma 2.15.Lemma 2.16 is never needed for this hoie of U .Finally, let us remark that in Theorem A.2 the assumptions on x an berelaxed.
Corollary A.10. The onlusion of Theorem A.2 is true for all x inthe losed hamber π(B).Proof. For any x ∈ π(B) and any positive ε one an �nd a generi ε-approximation of x: a point xε in int(π(B)), belonging to the dense open set
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V +

ε := {y ∈ X | d(π(y), xε) ≥ π/2 − ε}ontains X+ and is ontained in the ε-neighbourhood of X+. Sine X+ hasa (spherial) �nite polyhedral struture, it is an ANR; hene, for ε smallenough, V +
ε retrats onto X+. By the proof of Theorem A.2, V +

ε is (n− 1)-onneted. Therefore, its retrat X+ is also (n− 1)-onneted.
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