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Products of open manifolds with R
by

Craig R. Guilbault (Milwaukee, WI)

Abstract. We present a characterization of those open n-manifolds (n > 5) whose
products with the real line are homeomorphic to interiors of compact (n + 1)-manifolds
with boundary.

1. Introduction. One often wishes to know whether a given open man-
ifold can be compactified by the addition of a manifold boundary. In other
words, for an open manifold M™, we ask if there exists a compact manifold
C" with int(C™) ~ M™. Since int(C™) — C™ is a homotopy equivalence,
and because every compact manifold has the homotopy type of a finite CW
complex (see [KS]), a necessary condition is that M™ have finite homotopy
type. This condition is not sufficient. One of the most striking illustrations
of that fact occurs in a famous contractible (thus, homotopy equivalent to a
point) 3-manifold constructed by J. H. C. Whitehead [Wh]. That example is
best known for not being homeomorphic to R? (or, equivalently, to int(B3)),
but a little additional thought reveals that it is not homeomorphic to the
interior of any compact 3-manifold.

Somewhat surprisingly, the product of the Whitehead manifold with a
line is homeomorphic to R%. In fact, it is now known that the product of
any contractible n-manifold with a line is homeomorphic to R**!. That
fact was obtained through the combined efforts of several researchers; see,
for example, [Gl], [Mc|, [St], [Lul], [Lu2] and [Fr]. In this note we prove the
following generalization of that result:

THEOREM 1.1. For an open manifold M™ (n > 5), M"™ x R is homeo-
morphic to the interior of a compact (n + 1)-manifold with boundary if and
only if M™ has the homotopy type of a finite complex.

I wish to acknowledge Igor Belegradek for motivating this work by asking
me the question:
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If M™ is an open manifold homotopy equivalent to an embedded com-
pact submanifold, say a torus, must M™ x R be homeomorphic to the
interior of a compact manifold?

Initially, I was surprised that the question was open. The fairly obvious
approach—application of the main result of Siebenmann’s thesis—works
nicely for M™ x R2. In fact, Siebenmann himself addressed that situation
in his thesis [Sil, Th. 6.12], where a key ingredient was the straightfor-
ward observation that, for any connected open manifold M", M™ x R? has
stable fundamental group at infinity. We too obtain our result by apply-
ing Siebenmann’s thesis; but unlike the “cross R? situation”, stability of
the fundamental group at infinity for M"™ x R is not so easy. In fact, there
exist open manifolds M™ for which M™ x R fails to have stable fundamen-
tal group at infinity. An example of that phenomenon will be provided in
Section 3. However, under the (already necessary) hypothesis of finite homo-
topy type—or even a weaker hypothesis of finite domination—we are able
to obtain m-stability in M™ x R. That is the main step in our proof. A key
ingredient is the adaptation of a recent technique from [GuTi].

2. Definitions and background. Throughout this paper, we work
in the PL category. Proofs can be modified in the usual ways to obtain
equivalent results in the smooth or topological categories.

2.1. Neighborhoods of infinity, ends, and finite dominations. A manifold
M™ is open if it is noncompact and has no boundary. A subset N of M" is
a neighborhood of infinity if M™ — N is compact. We say that M™ is one-
ended if each neighborhood of infinity contains a connected neighborhood
of infinity; in other words, M™ contains “arbitrarily small” connected neigh-
borhoods of infinity. More generally, M"™ is k-ended (k € N) if it contains
arbitrarily small neighborhoods of infinity consisting of exactly k compo-
nents, each of which has noncompact closure. If no such k exists, we say M"
has infinitely many ends.

A neighborhood of infinity is clean if it is a closed subset of M™ and
a codimension (0 submanifold with a boundary that is bicollared in M™.
By discarding compact components and drilling our neighborhoods arcs, we
can find, within any clean neighborhood of infinity IV, an improved clean
neighborhood of infinity N’ having the properties:

e N’ contains no compact components,
e cach component of N’ has connected boundary.

If M™ is k-ended, then there exist arbitrarily small improved neighborhoods
of infinity containing exactly k components. Such a neighborhood is called
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a 0-neighborhood of infinity. In this situation, we may choose a sequence
N1 DNy 2N32---

of 0-neighborhoods of infinity such that N; 1 C int(V;) for all ¢ and ();2; N
= (). A sequence of this sort will be referred to as neat. Then for each 1,
the components may be indexed as Nil, e ,Nf ; furthermore, these indices
may be chosen coherently so that for all i < i’ and all 1 < j < k we have
N7, C int(N;/). When all of the above has been accomplished, we will refer to
{N;}22, as a well-indexed neat sequence of 0-neighborhoods of infinity. For
a fixed j, we say that the nested sequence { N7}, of components represents
the jth end of M™.

A space has finite homotopy type if it is homotopy equivalent to a finite
CW complex. A space X is finitely dominated if there exists a finite complex
Landmapsu: X — Landd: L — X such that dou ~ idx. It is a standard
fact that a polyhedron (or complex) X is finitely dominated if and only if
there is a homotopy H : X x [0,1] — X such that Hy = idx and H;(X) is
compact. (We say H pulls X into a compact set.) For later use, we prove a
mild refinement of this latter characterization.

LEMMA 2.1. A polyhedron X is finitely dominated if and only if , for any

compactum C C X, there is a homotopy J : X x [0,1] — X such that
(i) Jo = idy,

(ii) J1(X) is compact,

(iil) Jlexp,1 = idexo,1-

Proof. We need only prove the forward implication, as the converse is
obvious. Begin with a homotopy H : X x [0, 1] — X satisfying the analogues
of conditions (i) and (ii). Choose a compact polyhedral neighborhood D of
C'in X. Then define J on the union of X x {0} and (CU(X —int(D))) x [0, 1]
as follows:

T ift=0,
J(x,t) =< x ifxeC,
H(z,t) ifxe X —intD.

Apply the homotopy extension theorem [Hu, §IV.2] to extend J to all of
X x [0, 1]. Condition (ii) follows from compactness of D. u

If a space is finitely dominated, one often wishes to know whether it has
finite homotopy type. This issue was resolved by Wall in [Wa] where, for
every finitely dominated X, there is defined an obstruction o(X) lying in
the reduced projective class group Ko(Z[m1(X)]). This obstruction vanishes
if and only if X has finite homotopy type.

A space having finite homotopy type may have infinitely many ends. One
example is the universal cover of a figure-eight. However, within the realm
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of open manifolds, this does not happen. Indeed, a straightforward duality
argument provides the following bound. (See, for example [Si2].) We provide
a slightly more geometric argument.

LEMMA 2.2. The number of ends of a finitely dominated open n-manifold
M™ is a finite integer bounded above by rank(H,_1(M™, Z2)) + 1.

Sketch of proof. If M™ is dominated by a finite complex L, then each
homology group of L surjects onto the corresponding homology group of
M™. Tt follows that rank(H,_i(M",Zs)) < oo. Next observe that, for an
improved neighborhood of infinity /V, the collection of boundary components
of N forms a nearly independent collection of elements of H,,_1(M",Zs).
(This is where we use the fact that M™ is an open manifold.) So if M"
contained improved neighborhoods of infinity with arbitrarily large numbers
of components, H,_1(M",Zs) would be infinitely generated. See [GuTi,
Prop. 3.1] for details. =

2.2. Fundamental group at infinity and Siebenmann’s thesis. For an in-
verse sequence

A A A
G0<—1G14G2é-~-

of groups and homomorphisms, a subsequence of {G;, A\;} is an inverse se-
quence of the form

Gio 2= Gy Gy, &
where, for each j, the homomorphism ¢; is the obvious composition A;, ;10
-+-0);; of homomorphisms from the original sequence. We say that {G, \;}
is stable if it contains a subsequence {Gj;,¢;} that induces a sequence of
isomorphisms

~

(*) im(¢1) «— im(¢2) «— im(dg) «— -

If a sequence (*) exists where the bonding maps are simply injections, we say

that {G;, A} is pro-injective; if one exists where the bonding maps are surjec-

tions, we say that {G;, \;} is pro-surjective or (more commonly) semistable.
For a one-ended open manifold M" and a neat sequence {N;}°; of

0-neighborhoods of infinity, choose basepoints p; € N;, and paths «; C N;

connecting p; to p;+1. Then construct an inverse sequence of groups:

(1) 11 (No, po) 5 11 (N1, p1) 22 1y (Na, pg) &% -

by letting \j+1 : 71 (Nit1, pit1) — m1(Ny, pi) be the homomorphism induced
by inclusion followed by the change of basepoint isomorphism determined
by «;. The obvious singular ray obtained by piecing together the «;’s is often
referred to as the base ray for this inverse sequence. This inverse sequence
(or more precisely the “pro-equivalence class” of this sequence) is referred to
as the fundamental group at infinity for M™ and is denoted by m1(e(M™)).
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REMARK 1. For the purposes of this paper, we only need to consider
the fundamental group at infinity for one-ended manifolds. (Even though
we often begin with a multi-ended manifold.) In multi-ended situations, one
may associate a different inverse sequence to each end. For example, if M"
is a k-ended open manifold and {N;}$°, is a well-indexed neat sequence of
0-neighborhoods of infinity, then for each j € {1,...,k} we can construct
an inverse sequence

. )\j . )\j . /\j
7T1(N8) <—1 7T1(Nf) <—2 Fl(Ng) <—3 ceey,
which is called the fundamental group at the jth end of M™. (Here we have
omitted reference to basepoints only to simplify notation.)

For a more thorough discussion of inverse sequences and the fundamental
group system at infinity, see [Gu].

As indicated in the introduction, Theorem 1.1 will be obtained as a
consequence of the main result of [Sil]. For easy reference, we state that
result and provide some necessary definitions.

THEOREM 2.3 (Siebenmann, 1965). A one-ended open n-manifold M™
(n > 6) is homeomorphic to the interior of a compact manifold with bound-

ary iff:

(1) M™ is inward tame at infinity,
(2) m is stable at infinity,
(3) 0oc(M™) € Ko(Z[m1(e(M™))]) is trivial.

In the above, inward tame at infinity (or simply “inward tame”) means
that for any neighborhood N of infinity, there exists a homotopy (sometimes
called a taming homotopy) H : N x[0,1] — V such that Hy = id and H; (V)
is compact. Equivalently, M™ is inward tame if all clean neighborhoods of
infinity are finitely dominated. If N D N’ are clean neighborhoods of infinity,
then any taming homotopy for N’ can be extended to a taming homotopy
for N. Thus, in order to prove inward tameness for M"™, it suffices to show
the existence of arbitrarily small finitely dominated clean neighborhoods
of infinity.

Given conditions (1) and (2) above, one may choose a 0-neighborhood
of infinity N with the “correct” fundamental group—as determined by (2).
Then oo (M™) is the Wall finiteness obstruction of N. With some additional
work, one sees that oo (M™) is trivial if and only if all clean neighborhoods
of infinity in M™ (or equivalently, arbitrarily small clean neighborhoods of
infinity) have finite homotopy type. For more details see [Sil] or [Gu].

REMARK 2. By giving a more general definition of oo, (M™), it is possible
to separate conditions (2) and (3); this has been done in [Gu]. However, in
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the current context, it seems better to keep Theorem 2.3 in its traditional
form.

2.3. Combinatorial group theory and the generalized Seifert—van Kampen
theorem. The last bit of background information we wish to comment on
is primarily combinatorial group theory. Given groups Gy, G; and G2 and
homomorphisms i1 : Gog — G1 and i3 : Gg — Go we call G the pushout of
(i1,12) if there exist homomorphisms j; and js completing the commutative
diagram

Go—2>~ Gy

() izl | ljg

Go -~
and satisfying the following “universal mapping property”:

If homomorphisms k1 : G1 — H and ko : Go — H allow for a similar
commutative diagram, then there exists a unique homomorphism ¢ :
G — H such that j1 o p = k1 and ja2 o ¢ = ko.

In this case, G is uniquely determined up to isomorphism.

In the special case where the above homomorphisms 7; and is are in-
jective, the pushout is called a free product with amalgamation of G1 and
G2 along Go and is denoted by G; *g, G2 With this terminology, we are
implicitly viewing Gy as a subgroup of both G; and G3. Then Gy xg, G2 is
the result of “gluing” G; to Gy along Go. More precisely, if (41 | R1) and
(A1 | Ry) are presentations for G; and G2 and B is a generating set for Gy,
then (A; U Az | Ry, Re, S) is a presentation for Gy xg, G2 where

S = {ir(y) ti2(y) | y € B}.
(The same procedure produces presentations for arbitrary pushouts.)

In topology, the most common application of “pushout diagrams” is
found in the Seifert-van Kampen theorem [Ma, Ch. 4], which may be stated
as follows: if a space X is expressed as a union X = UUV of path connected
open sets such that UNV is also path connected and x € UNV/, then 71 (X, x)
is the pushout of

m(UNV,2) 2> m(U,)
HQl
m(V,z)

where 61 and 6y are induced by inclusion. In most cases, #; and #; are not
injective, so m (X, x) is not necessarily a free product with amalgamation.
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The above group-theoretic constructions can be extended to generalized
graphs of groups and the more restrictive graphs of groups. For either of
these constructions, we begin with an oriented graph A. (Here a “graph” is
simply a 1-dimensional CW complex.) Then to each vertex v we associate a
“vertex group” G, and to each edge e we associate an “edge group” G.. In
addition, for each edge group G. we need “edge homomorphisms” ¢F and
v, mapping G, into the vertex group at the “positive” and “negative” end
of e, respectively. (If e is a loop in A, then ¢ and ¢_ can be different ho-
momorphisms into the same vertex group.) Let (G, A) represent this setup.
If each edge homomorphism is injective, call (G, A) a “graph of groups”;
otherwise it is just a “generalized graph of groups”.

Our next task is to assign, to an arbitrary generalized graph of groups
(G,A), a single group that generalizes the pushout construction for the
simple case. This could be done with a universal mapping property. Instead,
we describe a specific construction of the group. Let V' [resp., E] denote
the collection of vertices [resp., edges] of A. Choose a maximal tree 7" in A.
Then the fundamental group of (G,A) based at T is the group

TG AT) = (( 3, Gu) * Fi)/N

where %,y G, is the free product of all vertex groups, Fg is the free group
generated by the set E, and N is the smallest normal subgroup of (x,evGy)
* F'p generated by the set

{et o (x) e - (pf(x)) ' |e€c Eandz € G} U{e|ec T}

ExaMPLE 1. Diagram ({) determines a generalized graph of groups
where the graph is simply an oriented interval; moreover, the fundamental
group of that generalized graph of groups is precisely the pushout of that
diagram. When i1 and 49 are injective we have a genuine graph of groups
whose fundamental group is a free product with amalgamation.

A similar special case—this time, a graph of groups with just one vertex
and one edge—leads to another well-known construction in combinatorial
group theory: the HNN extension.

See [Co] for details on the above ideas.

In group theory, it is preferable to study free products with amalgama-
tion over arbitrary pushouts. Similarly, genuine graphs of groups are prefer-
able to generalized graphs of groups. However, as noted above, arbitrary
pushouts occur naturally in topology via the classical Seifert—van Kampen
theorem. Similarly, the following generalized Seifert—van Kampen theorem
frequently leads to a generalized graph of groups.

THEOREM 2.4 (Generalized Seifert—van Kampen). Suppose a path con-
nected space X may be expressed as a union of path connected open subsets
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{Ua}aca so that no point of X lies in more than two of the U, ’s. Let A be
the graph having vertex set A, and one edge between U, and U, for each
path component Voo of Us N Uy (a0 # o' € A). Place an arbitrarily cho-
sen orientation on each edge; then choose a basepoint from each Uy, [resp.,
each Voo g] and associate to the corresponding vertex [resp., edge] the fun-
damental group of Uy [resp., Vaorg). For each Vogrg, choose paths in U, and
Uy respectively, connecting the basepoint of Voag to the basepoints of U,
and Uy . Let the two edge homomorphisms for Vaag be those induced by in-
clusion followed by change of basepoints along these paths. If (G, A) denotes
this graph of groups, then w1 (X, x) is isomorphic to m (G, A;T) where T is
an arbitrarily chosen mazximal tree in A.

Proof. See Chapter 2 of [Ge|. =

3. Proof of Theorem 1.1. In order to prove Theorem 1.1 we need only
show that, if an open manifold M™ has finite homotopy type, then M™ x R
is a one-ended open manifold satisfying all three conditions of Theorem 2.3.
Proposition 3.1 begins that process; part (a) asserts that M™ xR is one-ended
and open, while part (b) ensures that condition (1) holds. Strictly speaking,
the “end obstruction” oo (M"™ x R) found in Theorem 2.3 cannot be defined
until it is known that condition (2) holds. Even so, it is possible to address
condition (3) before condition (2) by proving that all clean neighborhoods of
infinity in M™ x R have finite homotopy type. This will be done (under the
assumption that M™ has finite homotopy type) in part (c¢). Therefore, in the
context of Theorem 1.1, once condition (2) is verified, condition (3) follows
immediately. To simplify the discussion, we refer to a manifold in which all
clean neighborhoods of infinity have finite homotopy type as super-inward
tame at infinity.

3.1. Conditions (1) and (3) of Theorem 2.3. Before stating Proposition
3.1, we introduce some terminology and notation to be used throughout the
rest of this paper. Given a connected open manifold M™, a clean neighbor-
hood of infinity N C M™, and m > 0, the associated neighborhood of infinity
in M™ x R is the set

W(N,m)= (N xR)U(M" x ((—oo,—m| U [m, 0)))

It is easy to see that W(N,m) is indeed a neighborhood of infinity, that
W(N,m) is always connected, and that W(N,m) is a 0-neighborhood of
infinity in M"™ x R whenever N is a 0-neighborhood of infinity in M™.

In addition, let

)

m) = (N xR)U (M" x [m, c0)),
W~ (N,m)

(N xR)U (M" x (—o0, —m]).
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Then W (N, m) deformation retracts onto M™ x {m} and W~ (N, m) defor-
mation retracts onto M™ x {—m}, so both are homotopy equivalent to M™.
Moreover, W (N, m) "W~ (N,m) =N xR ~ N.

PRrOPOSITION 3.1. Let M™ be a connected open n-manifold. Then:

(a) M™ xR is a one-ended open (n + 1)-manifold.

(b) M™ x R is inward tame at infinity iff M"™ is finitely dominated.

(¢) M™ xR is super-inward tame at infinity iff M™ has finite homotopy

type.

Proof. Asnoted above, all neighborhoods of infinity of the type W (N, m)
are connected; moreover, they can be made arbitrarily small by choosing N
to be small and m large. Therefore, M™ x R is one-ended.

The forward implications of assertions (b) and (c) are immediate. In
particular, since M"™ x R itself is a clean neighborhood of infinity in M" x R,
both implications can be deduced from the homotopy equivalence M™ ~
M™ x R. Thus, we turn our attention to the two converses.

Given W(N,m), let C = M™ — int(N) (a compact codimension 0 sub-
manifold of M™). Then let C’ denote a second “copy” of C disjoint from M™,
and K be the adjunction space

Ky =M"U,C'
obtained by attaching C’ to M™ along its boundary via the “identity map”
0 :0C" — oC.
It is easy to see that Ky is homotopy equivalent to W (N, m); indeed,
W(N,m) deformation retracts onto the subset
(M™ x {m}) U (0C x [-m,m]) U (C x {—m}),

which is homeomorphic to K. Thus, to show that M™ x R is inward tame
at oo [resp., M™ x R is super-inward tame at oo, it suffices to show that
Ky is finitely dominated [resp., has Ky finite homotopy type].

CLAIM 1. If M™ is finitely dominated, then Ky is finitely dominated.

By Lemma 2.1, we may choose a homotopy J : M"™ x [0,1] — M™ such
that J|(armx{oy)u(cx[o,1)) is the identity, and Ji(M™) is compact. Extend .J
to a homotopy J* : K X [0,1] — Ky by letting J* be the identity over C".
Then Jgj is the identity, and J; (K ) has compact closure; so K is finitely
dominated.

CLAIM 2. If M™ has finite homotopy type, then Ky has finite homotopy
type.

Let f: M™ — L be a homotopy equivalence, where L is a finite complex.
Then Ky = M™ U, C' is homotopy equivalent to the adjunction space

L Ufop C’
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where f o ¢ maps 9C’ into L. This latter adjunction space is homotopy
equivalent to a finite complex. In fact, if we begin with a triangulation of
M™ so that C and 0C' are subcomplexes and choose f to be a cellular map,
then f o is also cellular and L Ugo, C” is a finite complex. =

3.2. Main step: stability of w1 at infinity. The following will show that
M™ x R satisfies condition (2) of Theorem 2.3, and thus complete our proof
of Theorem 1.1.

ProproSITION 3.2. If a connected open manifold M™ is finitely domi-
nated, then M™ x R has stable fundamental group at infinity.

Let M™ be a k-ended open n-manifold and P and @ be 0-neighborhoods
of infinity with @ C int(P). Index the components P! ..., P* of P and
Ql ..,Qk of Q so that Q7 C PJ for j = 1,...,k. For each j, let A7 =
Qi —

If M ™ is finitely dominated, choose P sufficiently small that there is a
homotopy H : M™ x [0,1] — M" pulling M™ into M™ — P. In addition (by
Lemma 2.1) arrange that H is fixed over some nonempty open set U. To
simplify notation, we focus on a single end; in particular, let j € {1,...,k}
be fixed. Choose basepoints p, € U, p € 0P and ¢ € 0Q7; then choose a
proper embedding r : [0, 00) — M™ such that r(0) = ps, (1) = p, r(2) = ¢,
and so that the image ray R = r([0,00)) intersects each of 9P’ and 9Q’
transversely once and only once at the points p and ¢, respectively. Let
a = RN AJ denote the corresponding arc in A7 between p and q.

Let t : B"! x [~1,00) — M™ be a homeomorphism onto a regular
neighborhood 7' of R so that 75|{0}X ) = T, and so that T'N AJ is a relative

regular neighborhood of o in A7 1ntersect1ng OPJ and 9@ in (n — 1)-disks
D and D', with D = t(B" ' x {1}) and D' = t(B" ! x {2}). Then choose an
(n —1)-ball By C int(B"!), centered at 0; and let Ty = t(By x [~1,00)) be
the corresponding smaller regular neighborhood of R, with corresponding
subdisks Dy and D}, contained in int(D) and int(D’), respectively. We now
utilize the “homotopy refinement procedure” developed on pages 267-268
of [GuTi] to replace H with a new homotopy K : M™ x [0,1] — M™ which,
in addition to pulling M™ into M™ — P, has the properties:

(i) K is “canonical” over Ty,
(ii) tracks of points lying outside Ty do not pass through the interior
of To.

The first of these properties arranges that all tracks of points in R pro-
ceed monotonically in R to p.; and that K|p; «[0,1] takes Dj x [0,1/2] hom-
eomorphically onto t(By x [0,2]), with D} x [1/2,1] being flattened onto
t(Boy x {0}). We may also arrange that K(Df x {1/4}) = Dy. See [GuTi] for
details.
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PROPOSITION 3.3. Assume the above setup, with M™ finitely dominated,
j e {Al, -+, k} fized, and all previous notation unchanged. Then every loop T
in PJ based at p is homotopic (rel p) in M™ to a loop of the form ax7'xa™!,

where 7' is a loop in Q7 based at q.

Proof. Every loop in P/ based at p is homotopic (rel p) to a product
T % - - - ¥ T, where, for each v, either 7, lies entirely in A7 or 7, is (already) a
loop of the form a* 7/ xa~! where 7/ is a loop in Q7 based at ¢. So, without
loss of generality, we assume that 7 lies entirely in A7.

Consider the map L = K|gix[0,1] : 0@’ x[0,1] — M™. Choose triangula-
tions Ay and As of the domain and range, respectively. Without changing its
definition on (0Q7 x {0})U(D§x [0,1/2]), adjust L (up to a small homotopy)
to a nondegenerate simplicial map. Then adjust 7 (rel p) to an embedded
circle in general position with respect to Ao, lying entirely in int(Aj ), except
at its basepoint p, which lies in dA7. Then L~!(7) is a closed 1-manifold ly-
ing in Q7 x (0,1). Let o be the component of L~!(7) containing the point
(g¢,1/4). Since L takes a neighborhood of (gq,1/4) homeomorphically onto
a neighborhood of p, and since no other points of o are taken near p (use
property (ii) above), we see that L takes o onto 7 in a degree 1 fashion. Now
the natural deformation retraction of 9Q x [0,1] onto 9Q) x {0} pushes o
into 0Q x {0}, while sliding (g, 1/4) along the arc {q} x [0,1/4]. Composing
this push with L provides a homotopy of 7 to a loop 7 in 0@, whereby
the basepoint p is slid along « to ¢. This provides the desired (basepoint

preserving) homotopy from 7 to a * 7' * a1, m

COROLLARY 3.4. Assume the full setup for Proposition 3.3 and let
FPj = lm(ﬂ-l(PJ7p) - Trl(Mnap))? FQ] = lm(ﬂ-l(QJ7Q) - ﬂ-l(Mn7Q))'

Then the change of basepoint isomorphism & : wi(M", q) — w1 (M"™,p) takes
FQ]’ isomorphically onto I'p;.

Proof. Since aU@J C P7 | it is clear that & takes I'g; into I'p;. Injectivity
is immediate, and Proposition 3.3 ensures surjectivity. m

We now turn our attention back to the manifold M™ x R. In order to
understand the fundamental group system at infinity, it will suffice to under-
stand “special” neighborhoods of infinity of the sort W (N, m) (along with
corresponding bonding maps). To simplify the exposition, we first consider
the special case where M™ itself is one-ended. Afterwards we upgrade the
proof so that it includes the general case.

PROPOSITION 3.5. Suppose M™ is a one-ended open n-manifold and
P and Q are 0-neighborhoods of infinity in M™ with @ C int(P). Choose
p € OP, ¢ € 0Q and « a path in P — @Q connecting p to q. For 0 < m <
m’ < oo, let W(P,m) 2W(Q,m') be corresponding neighborhoods of infinity
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in M™ xR and X : m(W(Q,m’),(q,0)) — m (W (P,m),(p,0)) the homo-
morphism induced by inclusion followed by a change of basepoints along
a x 0. Then:

(1) m(W(P,m),(p,0)) = m(M",p)*r, m1(M",p), where
I'p = im(m (P, p) — m(M", p)),

(2) m(W(Q,m'),(q,0)) = w1 (M",q) *r, m1(M",q), where
I'g =im(m(Q, q) — m(M",q)),

(3) the homomorphism X is surjective,

(4) if there exists a homotopy pulling M™ into M™ — P, then X\ is an
isomorphism.

Proof. Using our earlier notation, the Seifert—van Kampen theorem es-
tablishes 71 (W (P, m), (p,0)) as the pushout of the diagram

7TI(P X Rv (p7 0)) —>7T1(WJF(P7 m)? (pv 0))

|

7T1(W_ (Pv m)v (p’ 0))

where both homomorphisms are induced by inclusion. The homotopy equiv-
alences

(P xR, (p,0)) ~ (P,p),
(WH(P,m), (p,0)) = (M",p) =~ (W~ (P,m), (p,0))
allow us to replace the above with a simpler diagram

i

Wl(Pap) 4*>771(Mn7p)
77-1(]\4715]9)

This diagram does not define a free product with amalgamation since i,
need not be injective, however, the pushout is identical to that of

I'p T (M", p)

#) |
w1 (M", p)

(both homomorphisms are inclusions), which determines the free product
with amalgamation promised in (1).

Of course, assertion (2) is identical to (1). Then, from (#) and the anal-
ogous diagram for m (W (Q,m’),(¢,0)), we see that A\ is induced by the
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isomorphism 71 (M™, q) * 71 (M™,q) — m (M"™,p) x 71 (M"™, p) by quotient-
ing out (in the domain and range) by relations induced by I'g and I'p,
respectively—according to the definition of free product with amalgama-
tion. Thus, A is necessarily surjective. Moreover, if there is a homotopy
pulling M™ into P, Corollary 3.4 ensures that A is an isomorphism. =

COROLLARY 3.6. Let M™ be a connected, one-ended open n-manifold.
Then M™ x R is a one-ended open (n + 1)-manifold with semistable fun-
damental group at infinity. If M™ s finitely dominated, then M™ x R has
stable fundamental group at infinity which is pro-isomorphic to the system

T (M) s p m (M™) &5y (M™) sp my(M™) &5y (M™) s (M) &2 -
where I' is the image (translated by an appropriate change of basepoint iso-
morphism) of the fundamental group of any sufficiently small 0-neighborhood
of infinity in i (M™).

Proof. This corollary is almost immediate. One simply chooses a neat
sequence {N;}>°, of 0-neighborhoods of infinity in M", then applies the
previous proposition (repeatedly) to the sequence {W(N;,i)}5°,. If M™ is
finitely dominated, N1 should be chosen sufficiently small that M™ can be
pulled into M" — Ni. =

In the introduction, we noted that, without the hypothesis of finite dom-
ination on M™, the fundamental group at infinity in M"™ x R need not be
stable. This is now easy to exhibit.

EXAMPLE 2 (An M™ xR with nonstable 7y at infinity). Let Ty = B"~! x §1
C S" 1t x 81 where B"~! C " ! is a tamely embedded (n — 1)-ball. Then
let T C int(T}) be another (thinner) copy of B"~! x S! that winds around
twice in the S? direction. Inside 75 choose a third (even thinner) copy of
B"! x S! that winds through T3 twice in the S direction—and thus, four
times through 77 in the original S! direction. Continue this infinitely to get
a nested sequence 77 O Tp D --- so that Th, C S™ 1 x St is the dyadic
solenoid. Then M™ = (8" ! x S') — T, is a one-ended open n-manifold
and each N; = T; — Ty, is a 0-neighborhood of infinity. Provided n > 3, it is
easy to see that N; — T; induces a mi-isomorphism. Therefore, the inverse

sequence

A A A
7T1(N0,p0) S 7Tl(]\hapl) s 7r1(N2,p2) S

is isomorphic to the sequence

X2

7 X2

2 2
/Ry Py SRR
A more descriptive form of the above inverse sequence is

7 «— 27 «— A7 «— 87 « - - -.



210 C. R. Guilbault

It follows that, for the corresponding sequence {W(N;,)}5°; of neighbor-
hoods of infinity in M™ x R, we obtain a representation of the fundamental
group at infinity for M™ x R isomorphic to the sequence

Z*ZZHZ*QZzHZ*z;ZzHZ*SZzH~-'

)

where each bonding map is induced by the identity Z xZ — Z x Z. Thus,
each bond is surjective but not injective. It is easy to see that such a system
cannot be stable.

REMARK 3. It is interesting to see that “crossing with R” takes exam-
ples with nonstable but pro-injective fundamental groups at infinity and
produces examples with nonstable but pro-surjective (semistable) funda-
mental groups at infinity.

We are now prepared to address the general situation where M™ is k-
ended (1 < k < o0). For k > 1, calculation of 71 (W (N, m)) is complicated
by the fact that W+ (N,m) N W~ (N,m) = N x R is not connected. In
this situation, w1 (W (N, m)) is most effectively described using a (general-
ized or actual) graph of groups. In particular, let @) denote the oriented
graph consisting of two vertices v+ and v~ and k oriented edges e!,...,e"
each running from v~ to v+. If N!,..., N* are the components of N with
basepoints p', ..., p" respectively, we associate the following groups and ho-
momorphisms to 6y:

b G(U+) = Wl(W+(N7m)a (pla 0))7 G(U_) = Wl(W_(Nam)v (pla 0))

o G(e2) =m (NI xR, (p?,0)) for each j € {1,...,k}.

e Foreach j € {1,...,k} the homomorphism Lp;r 1 G(e/) — G(vT) is the
composition

m(N7 xR, (p7,0)) 25 m (WH(N,m), (#/,0))

J
o m(WE(Nm), (0, 0)),
where (37 is an appropriately chosen path in W+ (N, m) from (p’,0) to
(p',0).
e The homomorphisms ¢ : G(e’) — G(v™) are defined similarly to the
above, but with § chosen to lie in W™ (N, m).

Since <p;F and o need not be injective, the above setup is just a generalized
graph of groups. Let it be denoted by (G(N), O)

Note that the edge e!, by itself, is a maximal tree in ©j. By the gener-
alized Seifert-van Kampen theorem, 71 (N, p') = 71 (G(N), O; el).

We may obtain a similar—but simpler—graph of groups as follows.
Again we start with the graph ©j. Motivated by the homotopy equiva-
lences WH(N,m) ~ M™ ~ W~(N,m), define both G'(v") and G'(v") to
be 71 (M™,p'). Then, in order to obtain injective edge homomorphisms, for
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each j € {1,...,k}, let
G'(eh) = Ty, = im(m (N7, p?) == my (M", ) 255 (M7, p1)),

and let all edge homomorphisms be inclusions. Here (7 is a path in M™
“parallel” to the path (3’ used above. This new graph of groups will be
denoted (G'(N),Oy). It is easy to see a canonical isomorphism between
7T1<Q(N), Qk; 61) and Wl(g/(N), @k; 61).

We are now ready to state a more general version of Proposition 3.5,
suitable for multi-ended M™.

PRrROPOSITION 3.7. Suppose M"™ is a k-ended open n-manifold and P
and Q are 0-neighborhoods of infinity in M"™ with components P', ..., P*
and Q',...,QF such that Q7 C int(P’) for each j. Choose basepoints
P’ € OP7 and ¢’ € 0Q7, paths of in P — QI connectingp’ to ¢’ and paths 37
in M™ connecting ¢/ to ¢* for each j € {1,...,k}. For0 <m < m/ < oo, let
W(P,m) 2 W(Q,m’) be corresponding neighborhoods of infinity in M™ X R,
and X : T (W(Q,m),(¢*,0)) — m(W(P,m),(p',0)) the homomorphism
induced by inclusion followed by a change of basepoints along o' x 0. Then:

(1) m(W(P,m),(p",0)) = m1(G'(P),On:e'), where (G'(P),O) is the
graph of groups depicted below with

Tps = im(my (P, p) == m (M", ) 2, m(M",p'))
and v = od % 37 % (o)7L,
(2) ﬂl(W(va/)7(ql)O)) = ﬂl(g,(Q)a@k;el) (thh (gl(Q)a@k) analo-
gous to the figure below), where

I = im(m (@, ¢/) == m(M",¢) 2 m(M",q")),
(3) the homomorphism X is surjective,
(4) if there exists a homotopy pulling M™ into P, then X is an isomor-

phism.
Iy

T (M™,ph)
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Proof. As noted in the comments preceding this proposition, (1) and
(2) are essentially just applications of the generalized Seifert—van Kampen
theorem. Assertion (3) is valid for nearly the same reason as assertion (3)
of Proposition 3.5; in this case, A : m1(G'(Q), O; el) — w1 (G'(P), O; el) is
induced by the natural isomorphism

T (M™, q) « 7 (M",q) x Fg — m (M",p) x m(M",p) x Fg,

where F is the free group on generators E = {e!, ..., ek}, by taking appro-
priate quotients in the domain and the range (as prescribed by the definition
of the fundamental group of a graph of groups). If there exists a homotopy
pulling M™ into P, Corollary 3.3 makes it clear that this homomorphism is
an isomorphism. =

COROLLARY 3.8. Let M™ be a connected, k-ended open n-manifold.
Then M™ x R is a one-ended open (n + 1)-manifold with semistable fun-
damental group at infinity. If M™ 1is finitely dominated, then M™ x R has
stable fundamental group at infinity which is pro-isomorphic to the system

.d d d
m(G, Ok e') —— m (G, Opse!) = mi(G, Op;et) — -+,

where (G',O4) is the graph of groups pictured below. Here each I is the

image—translated by an appropriate change of basepoint isomorphism—of

the fundamental group of the jth component of any sufficiently small 0-

neighborhood of infinity in m (M™), and the edge homomorphisms are all
inclusions.

I

A o (M)

(g,7 @k)

Proof. Choose a well-indexed neat sequence {N;}2°, of 0-neighborhoods
of infinity in M™. Then apply the above proposition repeatedly to the se-
quence {W(N;,4)}32, of associated neighborhoods of infinity in M™ x R. If
M™ is finitely dominated, N1 should be chosen sufficiently small that M™
can be pulled into M™ — N;. u

4. Closing comments. As indicated in the “easy part” of Theorem 1.1,
if M™ is a finitely dominated open manifold that is not homotopy equivalent
to a finite complex, then M™ x R is not compactifiable by the addition of a
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manifold boundary. By comparing Propositions 3.1 and 3.2 with Theorem
2.3, it must be the case that oo (M™ x R) is nontrivial. Since M™ does
not have finite homotopy type, its Wall obstruction o(M"™) is a nontrivial
element of Ko(Z[xi(M™)]). As one might expect, there is a relationship
between o (M™ x R) and o(M™).

By Proposition 3.7 and Corollary 3.8, 0o (M"™ x R) may be viewed as the
Wall finiteness obstruction of W(M™, N'), where N is any sufficiently small
0-neighborhood of infinity in M™; this obstruction (W (M™, N)) lies in
Ko(Z[x1(W(N,m))]). The retraction of W(N,m) onto M™ x {m} obtained
by projection shows that 71 (M™) is a retraction of (W (N, m)); so, by
functoriality, Ko(Z[r1(M™)]) is a retraction of Ko(Z[r (W (N,m))]). As a
consequence, the inclusion induced homomorphism i, : Ko(Z[m (M™)]) —
Ko(Z[m (W(N,m))]) is injective. By applying the sum theorem for Wall’s
finiteness obstruction [Sil, Ch. VI] to the homotopy equivalence W (N, m) ~
Ky = M™ U, C" utilized in the proof of Proposition 3.1, it is easy to see
that o(W(M™, N)) is precisely i.(o(M™)).

As a consequence of all of the above, we have a recipe for creating open
manifolds that are reasonably nice at infinity (inward tame with stable fun-
damental group), but are not compactifiable via the addition of a manifold
boundary. Specifically: build a finite-dimensional complex K that is finitely
dominated but o(K) # 0; properly embed K in R™ and let M™ be the
interior of a proper regular neighborhood of K; then M™ x R satisfies con-
ditions (1) and (2) of Theorem 2.3, but oo (M"™ x R) is nontrivial and equal
to ix(o(K)).

References

[Co] D. E. Cohen, Combinatorial Group Theory: A Topological Approach, London
Math. Soc. Student Texts 14, Cambridge Univ. Press, Cambridge, 1989.

[Fr] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential
Geom. 17 (1982), 357-453.

[Ge] R. Geoghegan, Topological Methods in Group Theory, in preparation.

[G]] J. Glimm, Two Cartesian products which are Euclidean spaces, Bull. Soc. Math.

France 88 (1960), 131-135.

[Guy] C. R. Guilbault, Manifolds with non-stable fundamental groups at infinity, Geom.
Topol. 4 (2000), 537-579.

[GuTi] C. R. Guilbault and F. C. Tinsley, Manifolds with non-stable fundamental groups
at infinity, I, ibid. 7 (2003), 255-286.

[Hu] S. T. Hu, Theory of Retracts, Wayne State Univ. Press, Detroit, MI, 1965.

[KS] R. C. Kirby and L. C. Siebenmann, Foundational Essays on Topological Mani-
folds, Smoothings, and Triangulations, Ann. of Math. Stud. 88, Princeton Univ.
Press, Princeton, NJ, 1977.

[Lul] E. Luft, On contractible open topological manifolds, Invent. Math. 4 (1967), 192—
201.



214

[Lu2]
[Ma]
[M]
[Si1]

[Si2]
[St]

[Wa]

[Wh]

C. R. Guilbault

E. Luft, On contractible open 3-manifolds, Aequationes Math. 34 (1987), 231—
239.

W. S. Massey, Algebraic Topology: An Introduction, Grad. Texts in Math. 56,
Springer, New York, 1977.

D. R. McMillan, Jr., Cartesian products of contractible open manifolds, Bull.
Amer. Math. Soc. 67 (1961), 510-514.

L. C. Siebenmann, The obstruction to finding a boundary for an open manifold
of dimension greater than five, Ph.D. thesis, Princeton Univ., 1965.

—, On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), 201-227.

J. Stallings, The piecewise-linear structure of Fuclidean space, Proc. Cambridge
Philos. Soc. 58 (1962), 481-488.

C. T. C. Wall, Finiteness conditions for CW-complezes, Ann. of Math. 81 (1965),
56-69.

J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J.
Math. Oxford Ser. 6 (1935), 268—279.

Department of Mathematical Sciences
University of Wisconsin-Milwaukee
Milwaukee, WI 53201, U.S.A.

E-mail: craigg@uwm.edu

Received 22 December 2005;
in revised form 20 March 2007



