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Borsuk’s quasi-equivalence is not transitive
by

Andrzej Kadlof (Warszawa), Nikola Koceié¢ Bilan (Split)
and Nikica Uglesi¢ (Split)

Abstract. Borsuk’s quasi-equivalence relation on the class of all compacta is consid-
ered. The open problem concerning transitivity of this relation is solved in the negative.
Namely, three continua X, Y and Z lying in R® are constructed such that X is quasi-
equivalent to Y and Y is quasi-equivalent to Z, while X is not quasi-equivalent to Z.

1. Introduction. In [2] K. Borsuk defined a certain relation on the class

cM of all (metrizable) compacta, called quasi-equivalence and denoted by 2.
Let us recall its definition (in the original terms of fundamental sequences;
see [1]).

Consider any two compacta X and Y lying in AR-spaces M and N re-
spectively, and a neighbourhood V of Y in N. Two fundamental sequences
S = X, Y, f' = {fi, X, Y}u,n are said to be V-homotopic (no-
tation: f ~ f’) if there exists a neighbourhood Up of X in M such that
frlUo =~ fk|U0 in V for almost all k. (If V' is open, then the condition re-
duces to fi|X ~ f;|X in V for almost all k.)

Let, in addition, U be a neighbourhood of X in M. Then X and Y are
said to be (U, V)-equivalent in M, N (notation: X o Y') if there exist

two fundamental sequences f = {fx, X,Y}mn, 9 = {9x, Y, X}nn such

that g f ~ ’LX v and fg =~ ZYN, where iy 5, (resp. ZYN) is the fundamental

identity sequence for X in M (resp. Y in N).
Further, Borsuk defined X and Y to be quasi-equivalent in M, N (no-
tation: X ~ Y in M,N) if X ~ Y for every neighbourhood U of X in
(U,v)

M and every neighbourhood V of Y in N. After proving that the choice of
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the ambient AR-spaces M and N is immaterial, he defined X and Y to be
quasi-equivalent (notation: X 2 Y)if X LY in some M, N.

Borsuk proved that quasi-equivalence is a shape invariant relation and
that it is strictly coarser than shape type, i.e.

(X 2Y) A (R(X) = (X)) A (Sh(Y) = Sh(Y")) = X' 2 Y7,
Sh(X)=Sh(Y) = X £ V;
(3X,Y) (X £Y) A (Sh(X) # Sh(Y)).

For instance, all infinite 0-dimensional compacta are quasi-equivalent ([2,
Theorem (6.3)]), while their shape types coincide with the topological types
([4, Theorem 20]). Further, in the case of compact ANR'’s, quasi-equivalence
reduces to shape type, and hence to homotopy type. One should also men-
tion that quasi-equivalence preserves some important shape invariants (Betti
numbers, movability; [2, Theorems (10.3), (11.1)]). However, it has remained
unknown whether quasi-equivalence is indeed an equivalence relation. Specif-
ically, Borsuk stated the following question ([2, Problem (7.13)]): “Is the
relation of quasi-equivalence transitive?”.

A few months ago, the third named author found by chance an old
unpublished manuscript of the first named author, containing a certain ex-
ample intended to show that quasi-equivalence is not transitive. Unfortu-
nately, an analysis by the second named author showed that the proof was
incorrect. However, there was a strong feeling that the example might be
appropriate. In this paper we provide a correct proof by using the same
example (only the notation is slightly changed).

Thus, Borsuk’s quasi-equivalence relation is not transitive because there
exist continua X, Y and Z, lying in the Euclidian space R3, such that X
is quasi-equivalent to Y and Y is quasi-equivalent to Z, while X is not
quasi-equivalent to Z.

2. Preliminaries. The preliminary step in our considerations is to char-
acterize 2 in terms of the Mardegi¢-Segal shape category (see 8]).

Recall the inv-category HTop" (see [6]). The objects are all inverse se-
quences X = (X, [pir]), Y = (Y}, [gj;]), - - . of topological spaces with the
homotopy classes of mappings as bonding arrows, while the morphisms f :
X — Y are of the form f = (f,[f;]), where f:N—=Nand f; : Xy;) — Y},
j € N, are such that for every pair j < j’ there exists an i > f(j), f(§)
satisfying

fillpsil = [a55 ] Fi1 [Py iryal
The composition of f: X —Y and g = (¢, [gx]) : Y — Z is the morphism

h=gf=(f9,l9fom)): X = Z,
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while the identity morphism on X is 1x = (In,[lx,]). With the natural
equivalence relation f ~ f’, i.e. for every j there exists an i > f(j), f'(j)
such that

fillpsgyel = Ll s il

one obtains the corresponding quotient category HTopN/ , i.e. the pro-
category tow-HTop. The class of a morphism f is denoted by [f]. Recall
that every class [f] admits a special representative f’, which means that for
every pair j < 7/,

L1y n) = g lLf5)-

The quotient (sub)category HcANRY /~ is the full subcategory tow-HcANR
of tow-HTop (the terms Xj;, Yj, ...of its inverse sequences are compact
ANR’s). It represents the Mardesi¢-Segal shape category Sh of compact
metrizable spaces (see [6, Chap. I]). Namely,

Ob(Sh) = Ob(cM),  Sh(X,Y) ~ tow-HcANR(X,Y),

where X, Y are any compact ANR-sequences associated with X, Y respec-
tively, i.e. X = HX and Y = HY, where imX = X and limY =Y, and
H denotes the passage from an inverse sequence to the inverse sequence
consisting of the same terms and of the homotopy classes of the given bond-
ing mappings. For such a pair X,Y, the set tow-HcANR(X,Y") represents
Sh(X,Y).

It is a well-known fact ([5]; [1, Chap. IX]) that the Borsuk and Mardesi¢—
Segal shape theories for compacta are equivalent. The following definitions
and facts can be found in [8].

DEFINITION 1. Let f = (f,[f;]), f' = (f',[f{]) : X — Y be morphisms
of inverse sequences, and let s € N. Then f is said to be s-homotopic to
J', denoted by f ~, f’, provided for every j € [1, s]y there exists an i; >
f(3), f'(j) such that

[fj][pf j)i]-] = [f]/'][pf/ j)i]-]-
Observe that f ~ f’ if and only if f ~4 f’ for every s € N.
LEMMA 1.

(i) For every s € N, the relation ~5 is an equivalence relation on each
set HTop™(X,Y).

(ii) For every pair s < &, s f implies f ~, f'. Moreover, for
every s € N, the relation >~ is natural from the right in the category
HTop", i.e. for every h : W — X, f ~, f' implies fh ~5 f'h.
On the other hand, if g:Y — Z, then f ~s f' implies gf ~: gf’
whenever g[[1,t]n] C [1, s]x.
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DEFINITION 2. Let X and Y be compact ANR-sequences. Then X is

said to be quasi-equivalent to Y, denoted by X 2 Y, provided, for every
n € N, there exist morphisms f : X — Y and g : Y — X such that

9f ~n 1x and fg ~, ly.

LEMMA 2. The relation % is isomorphism (i.e. shape) invariant in tow-
HcANR.

Proof. Let X LY and let X = X' in tow-HcANR. By definition,
there exist sequences of maps f" : X — Y and g" : Y — X satisfying
g f" ~, 1x and f"g"™ ~, ly, n € N. Further, there exist morphisms
u: X — X’ and v : X’ — X such that vu ~ 1x and uv ~ 1x/. Notice
that

(Vm € N)(3sp, > m)  ul[l,m]n] C [1, sm]n-
For each m, let
v"=f"v: X' —-Y and u"=ug’:Y — X'
Now, according to Lemma 1,

g e, Ix = g Y g, v =
ug* " o g uv ~ 1y = "~ 1x
vu~lyxy = vug’ ~ g’ =

ffroug® ~ g~ 1y = v"u" ~,, 1y

—Sm

Thus, X’ £ Y. In the same way one proves that X LyandY =Y’ imply

x Ly Therefore, 2 is an isomorphism invariant relation in the category
tow-HcANR.

In order to compare Borsuk’s quasi-equivalence on compacta to the new
relation < on Ob(tow-HcANR), we shall prove the following lemma:

LEMMA 3. Let X and Y be compacta in the Hilbert cube Q, and let
X = (Xi,pir) and Y = (Y}, q;j;) be any associated inclusion compact ANR-
sequences respectively. Let g = {gr, X, Y} and ¢’ = {g},, X, Y} be fundamen-
tal sequences (in Q) and let f = (f,[f;]) and f' = (f, [£i]) be morphisms
of HLANRN(X,Y), where X = HX and Y = HY . If g = {gs,X,Y} and
f=(f.1f;]) as well as g’ ={g,, X,Y} and f = (f",[f]) are related, then

J
(i) for every n € N there exists a neighbourhood V' of Y in Q such that
g ~ ¢ implies f ~, f';
959
(ii) for every meighbourhood V of Y in Q there exists an n € N such
that f ~, f' implies g ~ ¢'.
954
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Proof. In this case “to be related” means (see [5] or [1, IX.4])
fi=953)| X506y Xpy = Yi JEN,
9i1X5G) = 955) | Xpy Yy, 0= (),
and, similarly,
i =950\ XrG): Xpoy = Yss JEN,
9l X5y = gyl Xy in Yy i > f().
Moreover, we may assume that the index functions f and f’ are increasing.
Now, for (i), if an n € N is given, choose V =Y,,. Then choose a Uy O X
in @ coming from ¢g ~ ¢, and an ip € N such that X;, C Uy. Let i, =
959
max{ f(n), f'(n),i0}. By choosing i; = 4, for every j € [1,n]y, the relation
~, f’ is established. Further, for (ii), if a V 2 Y in Q is given, choose

the minimal n € N such that Y, C V. Let ip € N be the maximum of all i;
coming from f =, f’. Then g ~ ¢’ is realized via Uy = X;,. m
979

THEOREM 1. Let X and Y be compacta and let X and Y be compact
ANR-sequences associated with X and Y respectively. Then

X<y « xlvy.

Consequently, X and Y are quasi-equivalent, X 2 Y, if and only if, for
every n € N, there exist morphisms f* : X — Y and g" :' Y — X such
that g"f" ~, 1x and f*g"™ ~, ly.

Proof. Recall that every compact metrizable space is, up to homeo-
morphism, the intersection of a decreasing sequence of compact ANR-neigh-
bourhoods in the Hilbert cube. Further, recall (see [5] or [1, IX.4]) that
every fundamental sequence g = {gi,X,Y} admits a related morphism
f: X — Y and vice versa. According to Lemma 3, since Borsuk’s quasi-
equivalence is shape invariant, X Ly implies that there exist countable
families (™)) and (™)), (n,n') € NxN, of morphisms f"") : X —Y
and g") Y — X such that

g(n,n’)f(n,n’) ~. 1x and f(nm/)g(n,n’) ~, ly.
Clearly, by Lemma 1, both homotopies hold up to min{n,n’}. Thus, by
Definition 2 and Lemma 2, the necessity part follows. Conversely, let X < Y.
i.e. let there exist morphisms f" : X — Y and ¢g": Y — X, n € N, such
that
g"f"~,1x and f"g" ~, ly.
Given an ordered pair (n,n’) € N x N, put
FOr) = fm and g™") = g™ where m = max{n,n’'}.

Then X Y according to Lemmata 3 and 1.
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REMARK 1. We may assume, without loss of generality, that all the mor-

phisms realizing the relations X LY are special with (strictly) increasing
index functions. We may also assume that n’ > n implies f* > f™, and sim-
ilarly for all other index functions. Further, the conditions g" f" ~,, 1x etc.
may be relaxed to g" f" ~_ 1x etc., where (s,) is an unbounded sequence
in NU {0}.

To end this section we give a useful sufficient condition for a pair of
compacta to be quasi-equivalent; it was formulated and proved earlier in
the above mentioned manuscript.

LEMMA 4. Let X, Y be a pair of compacta satisfying the following con-
dition: For every € > 0 there exist mappings f: X — Y and g: Y — X
such that

(Ve € X) dx(g9f(x),x) <e and (VyeY)dy(fg(y),y) <e.

Then X and Y are quasi-equivalent.

Proof. Without loss of generality, we may assume that X and Y lie in
the Hilbert cube Q). Let U, V be any pair of neighbourhoods of X, Y in @
respectively. There exist compact ANR’s U’, V' such that X C U’ C IntU
and Y CV' CIntV.Leti: X — U’ and j : Y — V' be the inclusion
mappings. It is well known that there exists an € > 0 such that each pair of
e-near mappings of a metrizable space into U’ (or into V’) is homotopic. By
assumption, there exist mappings f : X — Y and g : Y — X such that gf
and 1y as well as fg and 1y are e-near. Consequently, gfi,7 : X — U’ as well
as fgj,7:Y — V' are e-near. Therefore, gfi ~ i and fgj ~ j. This means
9f ~1x inU' CIntU and fg~ 1y in V' CIntV. Let f = {f, X,Y} and
g = {9k, Y, X} be fundamental sequences generated by f and g respectively.
Now, apply the following fact (mentioned in the introduction):

Let A and B be compacta lying in ), let W be an open neighbourhood
of Bin Q and let h = {hy, A, B}, b’ = {h/, A, B} be fundamental sequences.
Then b ~ I/ if and only if hy|A ~ h}|A in W for almost all k € N.

Consequently, gf ~ ix and fg ~ iy, where iy and i, are the iden-
- U -= Vv
tity fundamental sequences for X in Q and Y in @) respectively. Therefore,
q
X~Y. =

3. The example. Let X be an infinite countable one-point union of
pointed tori converging to the limit torus. Further, let Y be an infinite
countable one-point union of pointed tori converging to the base point. Fi-
nally, let Z be the one-point union of X and a pointed circle. An explicit
construction is given below.
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For every k € N, let A = S,i U E,i C R3, where S,i and Z,i are the
following circles:

2k + 3\ 2 2k + 3\ 2
5%={@n%®‘<£—2k12) +n2=(2k12)},

2k + 3\ 2 6k +1\2
5 = {(f,n,m‘ <£—ﬁ) 1P = (Skis) }

Further, let

Soo ={(&n,0) [ (€= 1)*+0* =1} CR?,

Zoo ={(&:m,0) | (€= 1)* +7* = 9/16} CR®.
Notice that A, N A = St NS} = {(0,0,0)} whenever k # k' € NU {o0},
lim(S}) = SL and lim(X}) = XL . For every k € NU {oo}, let T, C R3
be a torus, symmetric with the respect to the (&, n)-plane R?, such that
T N (R? x {0}) = Aj. One can easily achieve that T, N T = {(0,0,0)}
whenever k # k' € NU {oo}, and lim(7}) = Two. Let

X= J T
keNU{oo}

Similarly, for every k € N, let A} = S} U X/ C R3, where

st ={ (€m0 | (- 23,%_3>2+n2 - (%)2}
st ={(eno | (e 2371_3>2+772 - (#)2}

Notice that A} N A}, = S N S;% = {(0,0,0)} whenever k # k' € N, and
lim(Sy}) = lim(X) = {(0,0,0)}. For every k € N, let T C R? be a torus,
symmetric with respect to the (£, n)-plane R?, such that T, N(R?x{0}) = A},
T, N1}, ={(0,0,0)} whenever k # k’, and lim(7}) = {(0,0,0)}. Let

Y=JT.

keN
Finally, let

Z=XUS' where S'={(&n,0)|(E+1)?*+7*=1}.
Clearly, the subspaces X, Y and Z of R? are compact and path connected.
THEOREM 2. Borsuk’s quasi-equivalence relation is not transitive.

Proof. Consider the continua X, Y and Z defined above. It suffices to

prove that X Ly andy £ 7 , and that X is not quasi-equivalent to Z. Fix
e > 0. Then there exists an n. € N such that 9/(8(n. + 1)) < e. Given any
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n’ > max{8,n.}, set X,y = J,<,s Tk € X, which is a closed subspace. Let
rn : X — X, be defined by
x, r € X,y,
rnl(m) { Qn’(m)v reX \ Xt

where 0,/ @ Ups,y Tx — Ty is the radial mapping (“blowing up”) from
the circle passing through the middle of the bounded component of R3\ Ti.
Clearly, for every k € {n’+1,n'+2,...}U{o0}, op| Ty : Ty — T, is a homeo-
morphism, ¢,/[Sx] = Sy, o/ [Xk] = X and 0,/(0,0,0) = (0,0,0). Observe
that r, is a retraction. Further, the distance between r,(z) and x reaches
its maximum for some z = (£,7,¢) € {(1/4,0,0),(7/4,0,0),(2,0,0)} C Ao.

Since

Lo0) =" 700)=—1 (200)—1
QTL 47 ) - 8(7’[/—1—1)’ QTL 4’ ) - 8(7’[/—’-1)’ QTL b - n/?
X

and n/ > 8, the maximal distance is 9/(8(n’ 4+ 1)). Thus, for every x €
9 9

< <e€
(n"+1) = 8(nL+1)

?

d(r(2),2) < 3

whenever n’ > max{8,n’}.
Similarly, there exists an n € N such that 7) € B((0,0,0),¢) for every
k > n”, where B((0,0,0),¢) is the e-ball at the origin in R3. Given any

£
n” > n’ set Yor = Upenr Iy € Y, which is a closed subspace. Let s, :

Y — Y,» be defined by

Y, Yy e Yn”7
Sp!t (y) =
(0,0,0), yey \ Y.
It is obvious that s,,~ is a retraction and that

d(sp(y),y) < e holds for every y € Y.

,n.,n’} and observe that the subspaces X,
and Y,, are homeomorphic. Let h : X,, — Y,, be a homeomorphism, and let
r: X — X, and s: Y — Y, be defined as above, i.e. r = r, and s = s,,. Put

f=jhr:X =Y and g=ihls: Y — X,

Consider now an n > max{8, n., n”

where ¢ : X, — X and j : Y, — Y are the inclusion mappings. Let z € X.
If x € X,,, then r(z) = = and hr(z) = h(z) € Yy, and thus jhr(z) = h(x)
and sjhr(z) = sh(x) = h(z). Therefore,

gf(x) = ih tsjhr(z) = ih 'h(z) = z = r(z).

If r € X\ X, then r(x) = p(z) and hr(xz) = ho(x) € Y,, and thus jhr(z) =
ho(z) and sjhr(z) = sho(x) = ho(z). Therefore,

gf(z) = ih'sjhr(z) = ik ho(z) = io(z) = o(z) = r(x).
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Consequently,
d(gf(z),z) =d(r(x),x) <e for every z € X.
In a similar way one can verify that

d(fg9(y),y) =d(s(y),y) <e foreveryyeY.

According to Lemma 4, X is quasi-equivalent to Y.
Let us now prove that Y is quasi-equivalent to Z. Fix ¢ > 0. Choose an
n > max{8,n.,n’}, where n_ and n! are as in the first part of the proof.
Observe that Y, U S, | C Y is a closed subspace. Define s’ : Y — Y, US/L |
by putting
Y Y€ Yn,

s'(y) =< o'(v), €T},
(000) yEY\YnJrl,

where ¢ : T}, | — SiL., is a retraction of the torus onto the circle. It is clear
that s’ is a retraction satisfying

d(s'(y),y) <e foreveryyeV.
Further, X,,US' C Z = XUS! is a closed subspace. Define ' : Z — X,,US?!

by putting
r(z), z€X,
TI(Z) :{ ( ) )
z, z €S,
where r : X — X, is the retraction defined in the first part of the proof.
Consequently, 7’ is a retraction satisfying

d(r'(z),z) <e forevery z € Z.

Observe that Yy, S}, and Y, U S}, are homeomorphic to X,, S' and
X, U S! respectively, and that Y, N Sl+1 ={(0,0,0)} = X,, N S'. Let

K:Y,USh — X,us?

be a homeomorphism (also on each summand, and keeping (0,0, 0) fixed),
and let
i Y,uS ., =Y and i:X,US"—Z

be the inclusion mappings. Put
ff=iWs:Y—-Z and ¢ =Y :.:Z-Y.
Let y € Y. If y € Yy, then §'(y) = y and 1's'(y) = h/(y) € X, and thus
i'W's'(y) = h'(y) and v'i'h's'(y) = A (y) = h'(y). Therefore,
g'f'( )= JW TR (y) = ST (y) = 5 (y) =y = 8 (y).
Ifye v.1, then s'(y) = o'(y ) € S!., and Ws'(y) = ko' (y) € S*, and thus
i'hs' (y ) = h'od(y) € St and r'i'h's' (y) = W o' (y). Therefore,

g/f/( )_] h/ 1 /h/ /( )—j/h/_lhlgl(y) :jlgl(y) — Ql(y) — Sl(y)'
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If y € Y\ Y41, then s( ) = (0,0,0) and A's’(y) = (0,0,0), and thus
i'h's'(y) = (0,0,0) and r'i'h's'(y) = (0,0,0). Therefore,
g'f'(y) ='W (y) = 'h1(0,0,0) = j(0,0,0) = (0,0,0) = 5'(y).
Consequently,
d(g'f'(y),y) = d(s'(y),y) <e foreveryy €Y.

In a similar way one can verify that
d(f'd'(z),2) =d(r'(2),2) <e for every z € Z.
By Lemma 4, Y is quasi-equivalent to Z.

It remains to prove that X is not quasi-equivalent to Z. For every i € N
and every j € N, let (TY,¢;) be a copy of a pointed torus (T, x). For every
1 €N, let

) .
(Xi,ah) = (T ta) V- V (T} ).
We may assume that (X[, |, 2},,) = (X}, 2}) V (T/{] , ti+1), i € N. Let
Diji+1 :Xi-i—l_)Xz{v iEN,
be defined by requiring that the restrictions

/ / / 1 1 ; /
pii+1|X; 0 X; — X and pi7i+1|Tzlj-_1 7?11 — T C X

be the identities. Notice that p; ;41 : (X[, 7j,) — (X, 2}) is a base point
preserving map.

Consider the pointed (compact ANR) inverse sequence (X, x)
(X, 27), pig+1) and its limit p = (p;) @ (X', %) = lim(X, %) — (X, %).
Further, for every j € N, let

(Z5,25) = (XG, 2%) V (25, 25),

J’]

where (Z;,z;) is a copy of a pointed circle (S', x). Let
45,541 * (Z;'-i-l?z;-i-l) (Z;7 ]) .7 € N

be p; j+1 on X/ 41 and the identity on the copy of S'. Consider the pointed

(compact ANR) inverse sequence (Z,x) = ((Z},2}),qj,+1) and its limit
q, = () : (Z',%) =lim(Z, ) — (Z,%).

Cramm. (X', %) is homeomorphic to (X, (0,0,0)), and (Z',*) is homeo-
morphic to (Z,(0,0,0)).

By construction,
Z=XUS' (Z,(0,0,0)~(X,(0,0,0))V (S', %), (Z/,%) = (X,*) V (S, *).

Further, all the mappings preserve base points. Thus, it suffices to prove
that X' ~ X. Let p’ = (p;) : X — X be defined by

pi=hiri: X > X/, i€N,
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where h; is determined by the obvious homeomorphisms on the correspond-
ing tori. Then p’ distinguishes points and every p!, is surjective. By applying
Theorem 6 of [6, 1.5.2], we infer that p’ : X — X is the limit. Therefore, X
and X’ are homeomorphic. B

Set

HX = (X, [piis1]) =X and HZ=(Z},[g;;+1]) = Z.

According to Theorem 1, it remains to prove that X is not quasi-equivalent
to Z. Suppose, on the contrary, that X Lz Then, by Definition 2 and
Remark 1, for every n € N, there exist special morphisms f* : X — Z
and g" : Z — X such that ¢g"f" ~, 1x and f"g" ~, 1z. Let n = 1, and
write f1 = f = (f,[f;]) and g' = g = (g, [g:]). Since all X! and Z; are
ANR-continua, one may assume that all the mappings f; and g; preserve
the base points. Since gf ~1 1x, the diagram

Xi Xpgy ==X}
) k A> A
/
270 e Z;

commutes up to homotopy. Let us apply the fundamental group functor m;
to the left triangle of (x) (the choice of base points is irrelevant):

1
(1) m(Thyq) - *m(T]H)

914

7r1(Tgl(1)) %ok m(Tj((ll))) * m1(Sh)

Recall that the fundamental group of a finite wedge is the corresponding
free product (by van Kampen’s theorem, [3, Theorem 3.1, p. 122]), and that
the fundamental groups of a circle and of a torus are Z and Z x Z = Z?
respectively. Observe that fg(l)#]m(T}g(l)) is a monomorphism of Z? into

Z2%---x 72+ 7, for every i = 1,..., fg(1). Thus,
s (fg(l)#‘m(T}g(l)))(ZQ) <7 s %7225

From the Kurosh subgroup theorem ([7, Theorem 1.10, p. 178]) it follows
that if H < G =G *--- % Gp, then H = Fx H{" % --- x HJ*, where every
H; is a subgroup of some G, every o; € G and F' is a free group.

Recall also that Z2 is not decomposable into a free product (see [7, Propo-
sition 15.14, p. 107]). Since Z? is not a free group, the Kurosh subgroup the-
orem implies that 72 = (fg(l)#|7rl(T}g(1)))(Z2) =~ H' H; < 7T1(ng(1)) =~ 72,

for some j € {1,...,9(1)}, and o; € m(Tgl(l)) * ook m(Tj((ll))) * mp(S1) &
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Z2 % -x 7% x 7. Let aEm(T}g(l)), i€{l,..., fg(1)}. Then
foypla) =cbo™", o E€ZPx- xZ*x7, b€ ™ (Tyy),

for some j € {1,...,9(1)}. Since fg(l)#]m(T}g(l)) is a monomorphism, its
image in Z2 % --- * Z2 % Z must be isomorphic to (Tj(1 ) = Z? for some

9
jed{L,... ,g(l)}'. Consequently, if a1 ---a,, € Wl(T}g(l)) koK wl(TJ{;]((ll))),

where aj, € Wl(T;];(l)), then
1

faplar--am) = o1bioy -+ ombmoy,

for some o, € Z?> % --- % Z? %« Z and b € Wl(Tg(kl)), k=1,....,m, ji €

{1,...,9(1)}.

Further, the right rectangle of (x) yields the commutative diagram

Wl(T}g(l)) Kok 7T1(T]{gg((11))) WI(T}(]')) O | (T]{((jj)))

lfgu)# lfj#

7T1(Tgl(1)) Kook 7T1(T5((11))) * (ST =— 7T1(le) REEE 7r1(T]j) * m1(Sh)

which means fy1)4Prg1)7()# = Q9(1)j#[i#- Since p;ir and gj; are defined in
a special way (by the identity mappings on the corresponding copies), one
readily sees that, for every j > ¢(1), the restriction fj#\m(T}(j)) is also a
monomorphism. Therefore, by following the same arguments, one can find
that f;jz acts via a formula analogous to that for f1)4.
Consider now the relation fg ~; 1z inducing the retraction

roZp =THv St — 8t [Tl = {x},

i.e. the following diagram:

! /
Xy =—=—X}pgr1)

g
lfl & lfgf(l)

Sl<——2 Zar)

(Caution: The right triangle might not homotopy commute, though the rect-
angle and the left triangle must homotopy commute!) Applying 71 to the
left triangle and to the rectangle yields the commutative diagrams
(T} * = m(Tf))
Jig
Tgf(l)#

m(81) (1) s+ m(8Y) < m(Tyy) * o xm(Tgg)) « m(S")
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m(T}yy) * e m(T]G) < m(Tfy) = -+ (TG

fiz lfgf(l)#

m1(S1) #

m (T}) * m1(S)

7T1(Tglf(1)) Kok wl(T!]gf((ll))) * m1(S1)

Now, the composition

Taf1495 (1) ¢ 22«72«72 — 7
is the trivial homomorphism because ry fi4 is trivial. Namely, the restric-
tions of the bonding homomorphisms are the identities on the corresponding
copies, f1uPr(1)fef()# = Qgr)#for)# 9f(1) > g(1) and we have already
proved how f,¢1)» acts. Thus, for every a € 7T1(T}(1)), ie{l,...,f(1)},
we have f14(a) = obo~! for some b € m1(T}), o € mi(T}) * m1(S*). There-
fore, 74 fig(a) = ry(obo™t) = ry(o)ry(c™1), and hence 74 f14 must be
trivial. On the other hand, by the definitions of the relevant mappings, the
composition

T4 1 f(1)% VAR Y /Y Y/

preserves the free factor 71 (S') & Z, so it is not trivial. Therefore, the two
displayed compositions cannot be equal. =
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