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A classification of ordinals

up to Borel isomorphism

by

Su Gao, Steve Jackson and Vincent Kieftenbeld (Denton, TX)

Abstract. We consider the Borel structures on ordinals generated by their order
topologies and provide a complete classification of all ordinals up to Borel isomorphism
in ZFC. We also consider the same classification problem in the context of AD and give a
partial answer for ordinals ≤ ω2.

1. Introduction. Recall that the order topology on a linearly ordered
set X is generated by the subbase of open rays (x,→) = {y ∈ X : x < y}
and (←, y) = {x ∈ X : x < y} for x, y ∈ X. It is the most natural topology
on ordinals. When we speak of an ordinal as a topological space we always
assume that it has the order topology.

A complete classification of ordinals up to homeomorphism is known ([1];
an independent proof was given in [5]). Specifically, given an arbitrary ordi-
nal a complete homeomorphism invariant for its order topology can be com-
puted from its Cantor normal form. Benedikt Löwe proposed to study the
similar classification problem for ordinals up to Borel isomorphism. He asked
whether the Cantor normal form still provides a complete invariant. Since
for example all countable ordinals are Borel isomorphic, Borel isomorphism
is a genuinely more general notion of equivalence than homeomorphism.

In this paper we give a complete classification of all ordinals up to Borel
isomorphism. It turns out that the computation of the complete invariants is
not related to the Cantor normal form of the ordinals and is in fact somewhat
simpler. To state our main theorem precisely, we define a cardinal κ(α) for
any given ordinal α as follows. For an ordinal α, let κ(α) = 0 if |α| is
singular or countable, and otherwise let κ(α) be the largest cardinal such
that |α| · κ(α) ≤ α.
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Theorem 1.1. Let α and β be ordinals. Then α is Borel isomorphic to

β iff |α| = |β| and κ(α) = κ(β).

Note that the above main theorem will be proved in ZFC, in particular
with essential use of AC in the proof. This is in contrast with the classification
of ordinals up to homeomorphism, which can be done in ZF only (this is
easier to see from the presentation of [5]). Not much of our discussions on
the Borel structures of ordinals can survive in ZF. It thus seems to be very
interesting to consider the same classification problem in the context of AD

and to see how different the complete invariants would be. On this we have
the following partial result.

Theorem 1.2 (ZF + AD). All uncountable ordinals < ω2 are Borel iso-

morphic.

This paper is organized as follows. In Section 2 we review some prelimi-
naries on the Borel structures generated by the order topologies on ordinals.
In particular we give a characterization of Borelness for subsets of ordinals
which will be useful in further research. In Section 3 we give the proof of
Theorem 1.1. In Section 4 we work under determinacy and prove Theo-
rem 1.2.

We would like to thank Benedikt Löwe and Dan Mauldin for useful
discussions on the subject.

2. Preliminaries. Recall that the Borel structure of any topological
space is the σ-algebra generated by its open sets, i.e., the smallest σ-algebra
that contains all the open sets and is closed under complements and count-
able unions. Also all Borel sets appear in the Borel hierarchy, which is defined
by induction on α < ω1 as follows:

Σ0
1 = all open sets,

Π0
α = all complements of Σ0

α sets,

Σ0
α = all countable unions

⋃
n∈N

An,where An ∈ Π0
αn

for some αn < α,

∆0
α = Σ0

α ∩Π0
α.

The following proposition records the basic facts about these levels of the
Borel hierarchy which are true in any topological space.

Proposition 2.1. In any topological space the following hold. Σ0
α ⊆ Π0

β

for α < β, and similarly , Π0
α ⊆ Σ0

β. Σ0
α is closed under countable unions

and Π0
α under countable intersections. Σ0

α is closed under finite intersections

and Π0
α under finite unions for all α 6= 3. If 2 ≤ α ≤ β, then Σ0

α ⊆ Σ0
β and

Π0
α ⊆ Π0

β.
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Proof. All of the statements are immediate from the definitions except
perhaps the closure of Σ0

α under finite intersections for α 6= 3. To see this,
suppose A,B ∈ Σ0

α, say A =
⋃

nAn, B =
⋃

mBm, where An ∈ Π0
αn

,

Bm ∈ Π0
βm

and αn, βm < α. Then A ∩ B =
⋃

n,m(An ∩ Bm). If α ≥ 4,

then Aαn , Bβm
both lie in Π0

δ where δ = max{αn, βm, 3}. This is because

Π0
α ⊆ Π0

β for 2 ≤ α ≤ β and Π0
1 ⊆ Σ0

2 ⊆ Π0
3. Since Π0

δ is closed under

intersections, Aαn ∩ Bβm
∈ Π0

δ , and so A ∩ B ∈ Σ0
α. If α = 1, the result

is immediate from the definition of a topology, and if α = 2 the result
follows from the fact that both Aαn , Bβm

will be Π0
1, and thus so will be

Aαn ∩Bβm
.

If the underlying space is Polish (completely metrizable and separable)
or even just metrizable, then the Borel hierarchy has the usual additional
properties such as Σ0

α ⊆ Σ0
β for α < β (and similarly on the Π-side) and

Σ0
α, Π0

α are closed under finite unions and finite intersections. In particular,
every Σ0

α+1 set is a countable union
⋃

nAn where each An is Π0
α.

However, these additional facts are no longer true for ordinal spaces.
If the underlying space is an uncountable ordinal, then there are always
open sets which are not Fσ. Thus in general Σ0

1 6⊆ Σ0
2 and Π0

1 6⊆ Π0
2. The

following observation shows that Σ0
3 is not closed under finite intersections

if the underlying space is an ordinal ≥ ω2.

Proposition 2.2. There exists an open U ⊆ ω2 and a closed F ⊆ ω2

such that U ∩ F is not Σ0
3.

Proof. Let U = ω2 − {ω1 · α : α < ω2} and let F be the set of all limit
ordinals below ω2. Clearly, U is open and F is closed. Suppose U ∩F is Σ0

3,
say

U ∩ F =
⋃

n∈ω

An ∪
⋃

n∈ω

Bn,

where each An is Π0
1 and each Bn is Π0

2. Since U misses a club in ω2, U ∩F
is nonstationary, which in turn implies that each An is bounded in ω2. Now
the union

⋃
n∈N

An is also bounded in ω2; let β be an upper bound. Let α0

be the least ordinal such that ω1 · α0 ≥ β.
Now consider the copy of ω1 consisting of ordinals in the interval I =

(ω1 · α0, ω1 · α0 + ω1). Our assumption implies that the limit ordinals in I
can be written as

⋃
n(Bn∩ I). It follows that the limit ordinals in ω1 can be

written as
⋃

nCn where each Cn is Π0
2. Since the limit ordinals in ω1 form

a club, one of the Cn must be stationary. We claim that a stationary Π0
2

subset of ω1 must contain a tail, and this is a contradiction.
Suppose G =

⋂
n∈ω Gn is a stationary Π0

2 in ω1, with all Gn open. Each
Gn is also stationary, and therefore it contains a tail. Since cof(ω1) > ω, a
countable intersection of tails is still a tail. Hence, G contains a tail.
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The Borel structures on ordinals have been studied before, e.g., in [8]
and [6]. We summarize the known results as well as present the techniques
used in the study of this topic. For the convenience of the reader we include
some proofs of previously known results here.

Lemma 2.3 (Rao–Rao [8]). Every Borel subset of a limit ordinal either

contains or misses a club.

Proof. Every subset of a limit ordinal of cofinality ω either contains or
misses a club. In the case of uncountable cofinality, a countable intersection
of clubs is still a club. Hence, the collection of all sets which contain or miss
a club is a σ-algebra containing all closed sets and therefore contains all the
Borel sets.

In particular, a stationary and costationary subset of a limit ordinal is
not Borel. For ω1, a subset is Borel if and only if it either contains or misses
a club [8]. Another characterization of Borel subsets of ω1 was also given
in [8], and it was completely generalized by Mauldin in [6], as follows.

Theorem 2.4 (Mauldin [6]). Every Borel subset of an ordinal can be

expressed as a union of countably many sets, each of which is the intersection

of an open set and a closed set.

Mauldin’s theorem shows that the Borel hierarchy on any ordinal col-
lapses to a rather low level, and every Borel subset of an ordinal is in fact ∆0

4.
In view of Proposition 2.2 this estimate is optimal.

Below we give another characterization of Borelness of subsets of ordi-
nals. We state the result in a way that encompasses the results in [8] and
[6], and provide a self-contained proof. It should be noted, however, that the
main ideas and techniques used in the proof are the same as those presented
in [8] and [6].

We will use the following simple lemma repeatedly throughout the paper.

Lemma 2.5. Let X be an arbitrary topological space. Suppose X =⋃
i∈I Ui, where {Ui}i∈I is a family of pairwise disjoint open subsets. Let

ξ < ω1 and B ⊆ X. Then B is Σ0
ξ (or Π0

ξ) iff for every i ∈ I, B ∩ Ui is Σ0
ξ

(respectively Π0
ξ) in Ui.

Proof. A simple induction on ξ.

Theorem 2.6. Let α be an ordinal. Then the following are equivalent :

(1) B ⊆ α is Borel.

(2) B =
⋃

n∈N
(Un ∩ Fn), where each Un is open and each Fn is closed.

(3) For every limit ordinal β ≤ α, B contains or misses a club in β.

(4) For every limit ordinal β ≤ α and every club C in β, B contains or

misses a club of C.
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Proof. The implication (1)⇒(4) is immediate from Lemma 2.3. The im-
plications (2)⇒(1) and (4)⇒(3) are trivial. It suffices to show (3)⇒(2). We
use induction on α. For the base case and the successor case there is nothing
to do. We assume that α is a limit. By (3), B contains or misses a club in α.
For definiteness assume that B misses a club C in α. In this case let αi,
i < η = cof(α), enumerate the elements of C in increasing order. Without
loss of generality assume α0 = 0. Then let Ui = (αi, αi+1) for i < η. Thus
we get α−C =

⋃
i<η Ui. Note that (3) is still true for each interval Ui. Since

each Ui is a copy of an ordinal < α, the inductive hypothesis implies that
B ∩ Ui is a union of countably many sets, each of which is the intersection
of an open set with a closed set. Now the proof of Lemma 2.5 implies that

B = B ∩ (α− C) =
⋃

n∈N

(Un ∩ Fn)

for relatively open Un in α − C and relatively closed Fn in α − C. Let Cn

be the closure of Fn in α, U−1 = α − C and Vn = Un ∩ U−1. Then each Vn

is open in α, Cn is closed in α, Fn = Cn ∩ U−1 and

B =
⋃

n∈N

(Un ∩ Fn) =
⋃

n∈N

(Un ∩ Cn ∩ U−1) =
⋃

n∈N

(Vn ∩ Cn).

This finishes the proof of the case that B misses a club C in α. Suppose
alternatively that B contains a club C in α; then B−C continues to satisfy
(3) and the same argument shows that B−C is a union as in (2). It follows
that B is of the same form since B = (B − C) ∪ C.

Another application of the same technique is the following.

Proposition 2.7. Every Borel subset of ω1 is ∆0
3.

Proof. It suffices to show that every Borel subset of ω1 is Σ0
3, and in

view of Theorem 2.4 it is enough to show that the intersection of an open
set U and a closed set F is Σ0

3. If U ∩F is bounded then it is countable and
easily seen to be Σ0

2. Assume U ∩F is unbounded. In particular both U and
F are unbounded. If ω1 − U is bounded, then the bounded part of U ∩ F
is relatively Σ0

2, the unbounded part is relatively closed, thus relatively Σ0
2,

hence by Lemma 2.5, U ∩ F is Σ0
2 in ω1.

If ω1 − U is unbounded, write U =
⋃
Iγ , where the Iγ are maximal

disjoint open intervals. Each Iγ is homeomorphic to a countable ordinal,
hence U ∩ F is Π0

2 in Iγ , thus in U . Hence, U ∩ F is the intersection of an
open and a Π0

2 set in ω1, hence Π0
2.

In view of the collapse of the Borel hierarchy our basic Lemma 2.5 can be
restated as the following convenient fact for subsets of ordinals. For obvious
reasons we will refer to it as the gluing lemma.
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Corollary 2.8 (The gluing lemma). Let α be an ordinal , let {Ui}i∈I

be a family of pairwise disjoint open sets in α, and let C be the closed set

α −
⋃

i∈I Ui. Then a subset B of α − C is Borel in α iff B ∩ Ui is Borel in

Ui for every i ∈ I.

We now turn to a review of Borel isomorphisms. Let X and Y be arbi-
trary topological spaces. A map f : X → Y is called Borel measurable (or
simply Borel) if for any open set U in Y , f−1(U) is a Borel subset of X.
Note that the preimage of a Borel set under a Borel map is Borel. f is called
a Borel isomorphism if it is a bijection such that both f and f−1 are Borel.
If there is a Borel isomorphism from X onto Y then we say that X and Y
are Borel isomorphic, and denote it by X ∼=B Y .

Recall again that if both X and Y are Polish spaces then X ∼=B Y iff
there is a Borel injection from X into Y and also a Borel injection from Y
into X. Here a Borel injection is merely an injective Borel map. The proof is
a repetition of that of the classical Cantor–Bernstein theorem. However, we
should remark that the reason it runs smoothly in this context is because of
the important theorem of Luzin–Suslin that a Borel injection from a Polish
space to another preserves Borelness of subsets.

In our context the following definition is needed. A Borel injection f : X
→ Y is called a Borel embedding if the image of a Borel set under f is Borel.
Now the proof of the classical Cantor–Bernstein theorem can be repeated to
show that if there exist Borel embeddings f : X → Y and g : Y → X, then
X and Y are Borel isomorphic. We also adopt the notation f : X →֒B Y to
indicate that f is a Borel embedding from X into Y , and write X →֒B Y , or
simplyX →֒ Y if there is no danger of confusion, if there exists f : X →֒B Y .

The following simple observations on Borel isomorphism and embed-
dability of ordinals will be useful. Let α < β be ordinals. Note that the
canonical injection (namely the identity map) from α into β is a Borel em-
bedding (in fact a homeomorphic one). It follows that for α < β we have
α ∼=B β iff β →֒ α. The following lemma is our main tool to show that β
Borel embeds into α < β.

Lemma 2.9. Let α < β be ordinals, let {Ui}i∈I and {Vj}j∈J be pairwise

disjoint open sets in α and β respectively , and let C and D be the closed

subsets α −
⋃

i∈I Ui and β −
⋃

j∈J Vj of α and β respectively. Suppose that

there exist k ∈ I, ψ : D →֒B Uk, and an injection π : J → I − {k} such that

for every j ∈ J there is an ψj : Vj →֒B Uπ(j). Then β Borel embeds into

α− C, thus into α, and β ∼=B α.

Proof. Let φ : β → α− C be the piecewise defined map from ψ and the
ψj ’s. Clearly, φ is injective. If B ⊆ β is Borel, then B ∩D is Borel in D and
B∩Vj is Borel for each j ∈ J . Hence, φ“B is Borel in each Uj . By the gluing
lemma, φ“B is Borel in α, and from this it follows that B is also Borel in
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α−C. Similarly, if B ⊆ α−C is Borel, then φ−1(B ∩Uk) is Borel in D and
for any l ∈ J − {k}, φ−1(B ∩ Ul) is Borel in Vπ−1(l), hence φ−1B is Borel in
β again by the gluing lemma.

Under the hypothesis of the above lemma a particularly easy way to
guarantee D →֒ Uk for some k is to make sure that ot(D) ≤ ot(Uk). Note
that the lemma is still meaningful even when α = β. Specifically, if α ≥ ω
and C ⊆ κ · α is closed with order type ≤ κ, then the lemma implies that
κ · α− C ∼=B κ · α. We record this observation for later use.

Corollary 2.10. If α ≥ ω and C ⊆ κ ·α is closed with order type ≤ κ,
then κ · α− C ∼=B κ · α.

3. The classification. In this section we classify all ordinals up to
Borel isomorphism. Since all countable ordinals are Borel isomorphic, and
α 6∼=B β whenever |α| 6= |β|, we can restrict ourselves to ordinals α and β so
that κ ≤ α < β < κ+ for some uncountable cardinal κ. As remarked before,
in order to show that α ∼=B β, it suffices to find a Borel embedding of β
into α.

We split the proof of the classification Theorem 1.1 into three parts. First,
we show that all β ≥ κ · cof(κ) are Borel isomorphic to κ · cof(κ). Second,
we show that for singular κ, κ · cof(κ) is Borel isomorphic to κ. Finally, we
identify the Borel isomorphism types between κ and κ2 for regular κ.

For the first part, we need the following lemma.

Lemma 3.1. If ω ≤ α ≤ κ, then κ · α2 ∼=B κ · α.

Proof. We first show κ · α2 →֒ κ · α · 2. Let C = {κ · ξ : ξ < α2}. Then
C is a club in κ · α2 and κ · α2 − C consists of |α2| = |α| many maximal
disjoint open intervals each of which is a copy of the ordinal κ. We refer to
these maximal open intervals as κ-blocks.

For κ · α · 2 we let D = {κ · α+ κ · ξ : ξ < α}. Then κ · α · 2−D consists
of a copy of κ ·α and |α| many κ-blocks. Now since ot(C) ≤ κ ·α, C can be
Borel embedded into the copy of κ · α. Since there are the same number of
κ-blocks in the remaining parts of the two ordinals, they can be paired off.
Lemma 2.9 gives the desired Borel embedding.

Second, we show (κ · α) · 2 →֒ κ · α. Let C1 = {κ · ξ : ξ < α} and let
C2 = {κ · α + κ · ξ : ξ < α}. Since ot(C1) = ot(C2) = α ≤ κ, we can embed
C1 into the first κ-block of κ · α, and C2 into the second κ-block of κ · α.
Now we are in a position to apply Lemma 2.9 again, since there are again
the same number |α · 2| = |α| of κ-blocks in the remaining part of the two
ordinals.

Theorem 3.2. If κ · cof(κ) ≤ α < κ+, then α ∼=B κ · cof(κ).
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Proof. We prove by induction that α can be partitioned into countably
many Borel subsets A0, A1, . . . such that each An embeds into κ · cof(κ).
This gives a Borel embedding of α into κ · cof(κ) · ω, which embeds into
κ · cof(κ)2 and hence in κ · cof(κ) by the preceding lemma.

The statement is certainly true for α = κ · cof(κ). The successor case is
also easy. We assume α is a limit ordinal. Let C = {xβ : β < cof(α)} be a club
in α, with x0 = 0. Since cof(α) ≤ κ (because α < κ+), C can be embedded
into κ and thus in κ · cof(κ). For each β < cof(α) let Iβ = (xβ, xβ+1). The
Iβ’s are pairwise disjoint open subsets of α such that α−C =

⋃
β<cof(α) Iβ.

Also for each β < cof(α), Iβ is a copy of an ordinal < α. Thus by the
inductive hypothesis, or because the order type of Iβ is < κ · cof(κ), for
every β < cof(α) there is a pairwise disjoint family {A′

β,n : n ∈ N} such that

Iβ =
⋃

n<ω A
′
β,n, every A′

β,n is Borel in Iβ, and there is a Borel embedding

ϕβ,n : A′
β,n →֒B κ · cof(κ).

Define A′
n :=

⋃
β<cof(α)A

′
β,n. Since each A′

n ∩ Iβ = A′
β,n is Borel in Iβ,

it follows that A′
n is Borel in α by the gluing lemma. Also for every n < ω,

A′
n =

⋃
β<cof(α)A

′
β,n is Borel embeddable in κ · cof(κ) · cof(κ), and thus A′

n

embeds into κ · cof(κ) by the preceding lemma. Then A0 = C, An+1 = A′
n

is the required decomposition of α.

Thus between any cardinal κ and its successor κ+ there are no new
isomorphism types after κ · cof(κ). For singular κ, there is in fact only one
isomorphism type after all.

Theorem 3.3. If κ is singular and κ ≤ α < κ+, then α ∼=B κ.

Proof. In view of Theorem 3.2 it suffices to prove that κ·cof(κ) ∼=B κ. Fix
a club-in-κ sequence 〈λζ : ζ < cof(κ)〉 of cardinals such that cof(κ) < λζ < κ.
Let

C = {κ · ξ : ξ < cof(κ)} ∪
⋃

ξ<cof(κ)

{κ · ξ + λζ : ζ < cof(κ)}.

This is a club in κ · cof(κ) of order type cof(κ)2. Again κ · cof(κ) − C can
be written as a union of |cof(κ)2| = cof(κ) many maximal disjoint open
intervals, or blocks, each of which is a copy of some λζ . Moreover, for each
ζ < cof(κ) there are exactly cof(κ) many λζ-blocks.

On the other hand, D = {λζ : ζ < cof(κ)} is a club in κ of order type
cof(κ), and κ−D is the union of cof(κ) many blocks each of which is a copy
of some λζ . However, for each ζ < cof(κ) there is exactly one λζ-block in
κ−D, which we denote by Bζ .

We now define a Borel embedding from κ · cof(κ) into κ in view of
Lemma 2.9. First note that C embeds into B0 since λ0 ≥ cof(κ)+ > cof(κ)2.
Then for each ζ < cof(κ) we let all cof(κ) many λζ-blocks in κ·cof(κ) embed
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into the λζ+1-block Bλζ+1
of κ. This is possible since λζ+1 > |λζ · cof(κ)|

= λζ .

Finally, we consider ordinals between κ and κ2 when κ is a regular
uncountable cardinal. Any such ordinal can be written as κ · α + β with
0 < α ≤ κ and 0 ≤ β < κ.

Lemma 3.4. If 0 < α ≤ κ and 0 ≤ β < κ, then κ · α+ β ∼=B κ · α.

Proof. This is immediate when β is finite, so assume β is infinite. In this
case κ ·α+β = κ ·α+1+β is the disjoint union of the open sets [0, κ ·α+1)
and (κ ·α, κ ·α+β). In other words, κ ·α+β is homeomorphic to the direct
sum (κ · α + 1) ⊕ β. Replacing β with the Borel isomorphic β + 1, we are
allowed to transpose the disjoint open parts:

(κ · α+ 1)⊕ β ∼=B (κ · α+ 1)⊕ (β + 1) ∼= (β + 1)⊕ (κ · α+ 1).

Finally, (β + 1)⊕ (κ · α+ 1) ∼= β + 1 + κ · α+ 1 = κ · α+ 1 ∼=B κ · α.

We can therefore restrict our attention to ordinals of the form κ·α for 0 <
α ≤ κ. It follows immediately from Lemma 2.9 that κ ·α ∼=B κ · β whenever
|α| = |β|. To motivate the converse, suppose towards a contradiction that θ
is a Borel isomorphism between ω1 ·2 and ω1. The larger ordinal ω1 ·2 consists
of two copies B1, B2 of ω1 (and a limit point), while the smaller ordinal ω1

has only one block. Each of the copies is Borel in ω1 · 2 and therefore so are
their images θ“B1 and θ“B2. By Lemma 2.3, both images either contain or
omit a club. Since θ“B1 and θ“B2 are disjoint, and any two clubs meet, one
of the images, say θ“B1, must omit a club C. This closed set splits ω1 into
open blocks. One can construct a stationary and costationary S ⊆ B1 such
that θ“S contains at most one point in each block. Hence, θ“S is Borel in
ω1 by the gluing lemma, but S is not Borel in B1 and hence not in ω1 · 2,
a contradiction. The argument in the proof of the following theorem is a
generalization of this idea.

Theorem 3.5. Let κ be a regular uncountable cardinal and let α < β
≤ κ. If |α| 6= |β|, then κ · α 6∼=B κ · β.

Proof. We may assume without loss of generality that |α| < |β|. Let C0 =
{κ · ξ : ξ < α} and D0 = {κ · ξ : ξ < β}. By Corollary 2.10, κ ·α ∼=B κ ·α−C0

and κ ·β ∼=B κ ·β−D0. Thus it suffices to show that κ ·α−C0 6∼=B κ ·β−D0.

Toward a contradiction we assume that θ : κ · β −D0 → κ · α − C0 is a
Borel isomorphism. As before κ ·α−C0 consists of |α| many κ-blocks, which
we denote in increasing order by Aζ for ζ < α. Similarly κ · β −D0 consists
of |β| many κ-blocks, which we denote in increasing order by Bξ for ξ < β.

Claim 1. There is a ξ < β such that for every ζ < α, Aζ ∩ θ“Bξ is

nonstationary in Aζ .
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Proof. Note that the κ-blocks Aζ , Bξ are open. For every ξ < β, θ“Bξ is
Borel in κ ·α, thus for every ζ < α, Aζ∩θ“Bξ is Borel in κ ·α and thus in Aζ .
But Aζ is a copy of the regular κ, hence Aζ ∩ θ“Bξ must either contain or
miss a club in Aζ by Lemma 2.3. Since two clubs necessarily meet, for every
ζ < α there can be at most one ξ < β such that Aζ ∩ θ“Bξ contains a club
in Aζ . Because |α| < |β|, there must be a ξ < β such that for every ζ < α,
Aζ ∩ θ“Bξ is nonstationary in Aζ .

Fix ξ satisfying Claim 1.

Claim 2. There is a stationary S ⊆ Bξ such that θ“S ⊆ Aζ for some

ζ < α.

Proof. For each ζ < α let Bξ,ζ = Bξ ∩ θ
−1(Aζ). Then Bξ =

⋃
ζ<αBξ,ζ .

Since Bξ is a copy of κ and α < κ, it follows from the regularity of κ that
Bξ is not the union of |α| many nonstationary sets. Hence, there must be
a ζ < α such that Bξ,ζ is stationary. This stationary set S = Bξ,ζ has the
required property.

We now have a stationary set S ⊆ Bξ such that θ“S is entirely con-
tained in Aζ . Since θ“Bξ is nonstationary on every κ-block of κ · α, θ“S is
nonstationary in Aζ . Note that both Bξ and Aζ are copies of the regular
cardinal κ.

Let C be a club in Aζ such that θ“S∩C = ∅. Then Aζ−C can be written
as the disjoint union of maximal open intervals, say Aζ − C =

⋃
i∈κ Ui =⋃

i∈κ(γi, γi+1). Note that θ“S ⊆
⋃

i∈κ Ui.

Claim 3. There is an S1 ⊆ S which is stationary and costationary in

Bξ such that θ“S1 ∩ Ui is Borel in Ui for every i ∈ κ.

Proof. For any x ∈ S, denote by block(x) ∈ κ the index of the block
that θ(x) is in, that is, θ(x) ∈ Ublock(x). We will construct a club D such
that for x, y ∈ D∩S with x 6= y, block(x) 6= block(y). Then S0 := D∩S is a
stationary set such that |θ“S0∩Ui| ≤ 1. This trivially implies that θ“S0∩Ui

is Borel in Ui for every i ∈ κ. Furthermore, let S1 ⊆ S0 be any stationary
and costationary subset. Then θ“S1 ∩ Ui is Borel in Ui for every i ∈ κ.

To construct this clubD, we define a function g : Bξ → Bξ and then letD
be the set of closure points of g, that is, D = {α ∈ Bξ : ∀β < α (g(β) < α)}.
Let x ∈ Bξ be arbitrary. Let B = {block(z) : z ∈ S ∧ z ≤ x}. Since κ is
regular, B is bounded in κ. Let g(x) = sup{x′ ∈ Bξ ∩ S : block(x′) ∈ B}.
Since κ is regular and θ is one-to-one, g(x) ∈ Bξ. To see this works, suppose
x, y ∈ S0 = D ∩ S with x < y. Since y ∈ D, g(x) < y. Thus, block(y) /∈
{block(z) : z ≤ x ∧ z ∈ S}, a set which includes block(x).

Since θ“S1∩Ui is Borel in Ui for every i < κ, θ“S1 is Borel in
⋃

i<κ Ui by
the gluing lemma, and hence θ“S1 is Borel in Aζ and also in κ ·α. But S1 is
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not Borel in Bξ by Lemma 2.3 and thus not Borel in κ · β. This contradicts
the assumption that θ is a Borel embedding.

This completes the proof of Theorem 1.1: if κ is singular or countable,
all ordinals between κ and κ+ are Borel isomorphic by Theorems 3.2 and
3.3, and if κ is regular and uncountable, the Borel isomorphism types are
precisely κ · λ for cardinals 1 ≤ λ ≤ κ by Theorems 3.2 and 3.5.

4. The situation assuming determinacy. In this section we con-
sider the Borel isomorphism question assuming now ZF + AD. The results
of §3 were proved assuming AC, and no longer hold in this context. We first
consider the question of which sets of ordinals are Borel. Under AD, the
club filter on ω1 is a measure, that is, there are no stationary, costationary
subsets of ω1 (which would be non-Borel sets). This suggests the possibil-
ity of the following theorem. This theorem can be proved either using the
“simple set” type analysis occurring in the analysis of measures on ω1, or by
an indiscernibility argument. We give the proof following the indiscernibil-
ity argument. We will use the basic theory of the Silver indiscernibles. The
reader can consult §30 of [4] or §8H of [7] for a presentation of this theory.
The measure analysis can be found in [2] or [3] (we make a few comments at
the end about how the following proof can be modified along those lines).

Theorem 4.1 (ZF+AD). Every subset of ω1 is Borel , and can be written

in the form
⋃

n(Fn ∩ Un) where Fn is closed and Un is open.

Proof. Let A ⊆ ω1. The only AD fact we use is that A ∈ L[x] for some
real x. Let C ⊆ ω1 be the canonical set of Silver indiscernibles for L[x], so
C is club in ω1. Let C ′ denote the set of limit points of C, so C ′ is also a
club set of indiscernibles for L[x].

There are finitely many indiscernibles α0 < · · · < αa < ω1, and finitely
many ω1, . . . , ωb and a term u such that A = uL[x](α0, . . . , αa, ω1, . . . , ωb).
For notational simplicity we suppress the ω1, . . . , ωb as well as the super-
script L[x], and just write A = u(~α).

By the type of an ordinal α < ω1 we mean the specification of:

(1) finitely many β1, . . . , βc ≤ αa in C ′,
(2) an L[x] term t = tL[x](x1, . . . , xc, y1, . . . , yn) for some n ∈ ω.

There are clearly only countably many types; let us enumerate them as
T1, T2, . . . . For a type T as above, we say an ordinal α < ω1 has type T
provided α = tL[x](~β, γ1, . . . , γn) for some indiscernibles γ1 < · · · < γn < ω1

in C with γ1 > max(~α). Every countable ordinal is represented by some
type, since C is a generating set of indiscernible for L[x].

For a type T as above, we say T is normal if the following statements
are in x#:
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(a) t(~β, γ1, . . . , γn) ≥ γn.

(b) t(~β, γ1, . . . , γi, . . . , γn) 6= t(~β, γ1, . . . , γ
′
i, . . . , γn) for γ1 < · · · < γi <

γ′i < γi+1 < · · · < γn.

Every countable ordinal is represented by a normal type. This follows
from two observations. First, if t(~β, γ1, . . . , γn) < γn is in x# then there is

a term u = u(~x, y1, . . . , yn−1) such that t(~β, γ1, . . . , γn) = u(~β, γ1, . . . , γn−1)
for all indiscernibles γ1 < · · · < γn (we again suppress the dependence on

ω1, . . . , ωl). Secondly, if t(~β, γ1, . . . , γi, . . . , γn) = t(~β, γ1, . . . , γ
′
i, . . . , γn) is

in x#, then for some term t′ = t′(~x, y1, . . . , yi−1, yi+1, . . . , yn) we have

t(~β, γ1, . . . , γn) = t′(~β, γ1, . . . , γi−1, γi+1, . . . , γn).

Thus, we may eliminate variables until (b) is satisfied. From (b), note that

we must actually have t(~β, γ1, . . . , γn) > γn unless n = 1 and t(~β, γ1) = γ1.
We henceforth assume that all the Tn are normal.

To show A is Borel, it suffices to show that A ∩Xn is Borel, where Xn

is the set of countable ordinals of type Tn. We also show that A ∩Xn is of
the form

⋃
n(Fn ∩ Un) as required. Henceforth, fix a type T corresponding

to a term t = t(~x, y1, . . . , yn), and we show A ∩ X is Borel (X being the
set of ordinals of type T ). By indiscernibility, we either have X ⊆ A or
X ⊆ ω1 − A. So, either A ∩ X = X or A ∩ X = ∅. It suffices therefore to
show that X is Borel, and in fact X =

⋃
n(Fn ∩Un) for Fn closed, Un open.

For the rest of the argument we suppress writing the fixed ordinals ~α
and ~β, and consider only X − (max(~α) + 1) (any countable set is clearly of
the required form).

If t(γ1, . . . , γn) = γn, then n = 1 and X = C, which is closed. So we may
henceforth assume t(γ1, . . . , γn) > γn.

Consider first the simple case n = 1. By indiscernibility, t(γ1) < γ2 for
all indiscernibles γ1 < γ2. So, there is exactly one element of X between any
indiscernible γ ∈ C and the next indiscernible. Since X ∩ C = ∅, it follows
that X is closed in ω1 − C. Thus, X is the intersection of a closed set (the
closure of X) and an open set (ω1 − C).

Consider now the general case n > 1. By indiscernibility and wellfound-
edness, t(~γ) is increasing in each argument. From (b), t(~γ) is actually strictly
increasing in each argument. We need the following rather standard claim.

Claim 4. There is permutation π = (i1, . . . , in) of {1, . . . , n} with i1 = n
such that for all indiscernibles γ1 < · · · < γn, δ1 < · · · < δn, we have

t(~γ) < t(~δ) iff

(γi1 , . . . , γin) <lex (δi1 , . . . , δin).

For t and π as in the claim, we say the term t has type π. We adopt the
practice of writing the arguments to t in any order, which causes no confusion
as we actually only evaluate t(γ1, . . . , γn) for γ1 < · · · < γn. For example, we
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may write t(γi1 , . . . , γin). Also, we say the sequence (γi1 , . . . , γin) is of type
π if it is order-isomorphic to π = (i1, . . . , in).

We use the following technical result.

Claim 5. Let t = t(y1, . . . , yn) be an L[x] term of type π = (i1, . . . , in).
Then one of the following holds:

(1) For every γ1 < · · · < γn in C with γin ∈ C
′ we have

t(~γ) = sup{t(γi1 , . . . , γin−1
, γ′) : γ′ < γin ∧ γ

′ ∈ C}.

(2) For every γ1 < · · · < γn in C with γin ∈ C
′ we have

t(~γ) > sup{t(γi1 , . . . , γin−1
, γ′) : γ′ < γin ∧ γ

′ ∈ C}.

Proof. First note that for all γ1 < · · · < γn in C with γin ∈ C
′,

sup{t(γi1 , . . . , γin−1
, γ′) : γ′ < γin ∧ γ

′ ∈ C}

= sup{t(γi1 , . . . , γin−1
, γ′) : γ′ < γin

∧ t(γi1 , . . . , γin−1
, γ′) < t(γi1 , . . . , γin−1

, γin)}.

The set in the first supremum is contained in the set of the second supre-
mum, so the first supremum is less than or equal to the second. For the other
direction note that if γ′ < γin , then γ′ = w(~δ) for some term w and indis-

cernibles ~δ below γin . So, if t(γi1 , . . . , γ
′) = t(γi1 , . . . , w(~δ)) < t(γi1 , . . . , γin),

then by indiscernibility for large enough η < γin in C we have t(γi1 , . . . , γ
′) ≤

t(γi1 , . . . , γin−1
, η). Thus, the two suprema above are equal. It follows that

there is an L[x] term v such that for all ~γ in C with γin ∈ C ′ we have
v(~γ) = sup{t(γi1 , . . . , γin−1

, γ′) : γ′ < γin ∧ γ
′ ∈ C}. The claim then follows

by indiscernibility.

If the first alternative in Claim 5 holds, then we say t is of continuous

type, and otherwise of discontinuous type.
We also require the following result.

Claim 6. Let t(y1, . . . , yn) be a term of type π = (i1, . . . , in). Suppose

j < n and γ1 < · · · < γn are in C with γij ∈ C
′. Then

t(j)(γi1 , . . . , γij ) := sup{t(γi1 , . . . , γij−1
, δij , . . . , δin) : δij < γij ,

δij , . . . , δin ∈ C, and (γi1 , . . . , δin) is of type π}

is not in the range of t↾C (that is, is not in X).

Proof. Note that as in Claim 5, the function t(j) defined above is given
by an L[x] term v(γi1 , . . . , γij ). Suppose that

t(j)(γi1 , . . . , γij ) = v(γi1 , . . . , γij ) = t(δi1 , . . . , δin),

where all the ordinals are in C. By indiscernibility, we may move the ordinals
so that all of them lie in C ′, and this equation is still satisfied. Since j < n,
there is some δik which is not equal to any of the γi1 , . . . , γij . Since all
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the ordinals are in C ′, we can move δik to a new value δ′ik ∈ C keeping
the same relative ordering of the ordinals. By indiscernibility the equation
still holds, which contradicts the fact that t is strictly increasing in each
argument.

We now show that X is the intersection of a closed and an open set
in ω1. If we are in case (1) of Claim 5, then X −X =

⋃
j<nAj where Aj is

the set of ordinals of the form t(j)(γi1 , . . . , γij ), where all of the ordinals are

in C, and γij ∈ C
′. To see this, suppose η ∈ X−X. Then η is the increasing

limit of a sequence ηn = t(γn
i1
, . . . , γn

in
). Let j be least such that {γn

ij
}m∈ω is

not eventually constant. For k < j, let γik be the eventual value of the γn
ik

,
and let γij = supn γ

n
ij

. Thus, γij ∈ C
′. Since t is of type π it follows from

the definition of t(j) that η = t(j)(γi1 , . . . , γij ). If j = n, then from case (1)
we have t(n)(γi1 , . . . , γin) = supγ′<γin

t(γi1 , . . . , γin) = t(γi1 , . . . , γin) ∈ X,

a contradiction. So, X −X ⊆
⋃

j<nAj . The reverse inclusion follows from

Claim 6. Thus, X = X−F , where F =
⋃

j<nAj . Finally, note that
⋃

j<nAj

is closed by a similar argument. If we are in case (2) of Claim 5, the argument
is similar, except we have X −X =

⋃
j≤nAj .

As we mentioned above, the above proof can be given using the measure
analysis on ω1. Say that a set A ⊆ ω1 is very simple if there is a club C ⊆ ω1,
an n ∈ ω, and an h : Cn → ω1 with A = h“(Cn) where h satisfies:

(1) h↾Cn is strictly increasing in each argument.
(2) There is a permutation π = (i1, . . . , in) of {1, . . . , in} with i1 = n

such that for all α1 < · · · < αn in C and all β1 < · · · < βn in C,
h(~α) < h(~β) iff (αi1 , . . . , αin) <lex (βi1 , . . . , βin).

(3) The conclusion of Claim 5 holds, using the club set C instead of the
set of indiscernibles and h in place of t.

(4) The conclusion of Claim 6 holds, again using the current club set C
and h.

The analysis of measures on ω1 (cf. [2] or [3]) shows that for any measure
ν on ω1, there is an n ∈ ω and an h : ωn

1 → ω1 such that for any A ⊆ ω1,
ν(A) = 1 iff there is a club C ⊆ ω1 such that h“(Cn) ⊆ A. However, for
any function h : ωn

1 → ω1, straightforward partition arguments show that
there is an n′ ≤ n such that h only depends on a subset of its arguments
of size n′, and that as a function of n′ arguments it satisfies the above four
properties on a club set. Thus, for every measure ν on ω1, there is a very
simple set A such that ν(A) = 1. Given this, the usual argument (due to
Kunen) using the fact that every countably additive ideal on a λ < Θ can be
extended to a measure (i.e., every set in the ideal has measure zero) shows
that every subset of ω1 is a countable union of very simple sets. The proof
of Theorem 4.1 now shows that every very simple set is an intersection of a
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closed and an open set (the four properties above were all that was used in
this argument).

Theorem 4.1 can be pushed a little higher, which we do in the next
theorem. We can again either prove this result using the measure analysis
or using indiscernibles; we again give the proof using indiscernibles. The
proof is a slight extension of the proof of Theorem 4.1.

Theorem 4.2 (ZF + AD). For every λ < ω2, every subset of λ is Borel

and can be written as
⋃

n(Fn ∩ Un) where Fn is closed and Un is open.

Proof. Fix λ < ω2 and A ⊆ λ. Let ≺ be a wellordering of ω1 of length λ.
Fix a real x such that ≺ lies in L[x]. We may write ≺ = u(α1, . . . , αa,
ω1, . . . , ωb) for some α1 < · · · < αa in C (the set of indiscernibles for L[x])
and some L[x] term u. Let A′ = {γ < ω1 : |γ|≺ ∈ A}. Increasing the set ~α
and the value of b if necessary, we may assume that A′ is definable from ~α
and ω1, . . . , ωb. Thus, A = w(~α, ω1, . . . , ωb) for some term w.

We have the notions of type and normal type for ordinals below ω1 from
the proof of Theorem 4.1. We extend these to ordinals ω1 < α < λ as follows:
we say α has type T if γ < ω1 has type T , where γ is the unique ordinal
such that |γ|≺ = α. Every α between ω1 and λ has type T for some normal
type T . Also, if ω1 < α1 < α2 < λ both have type T , then α1 ∈ A iff α2 ∈ A
by indiscernibility. [Say α1 = |γ1|≺, where γ1 = t(~β, ~ε), α2 = |γ2|≺, where

γ2 = t(~β, ~̺), where ~β < max(~α) and t corresponds to the type T . Then

α1 ∈ A iff the rank of t(~β, ~ε) in u(~α, ω1, . . . , ωb) is in w(~α, ω1, . . . , ωb) iff the

rank of t(~β, ~̺) in u(~α, ω1, . . . , ωb) is in w(~α, ω1, . . . , ωb) iff α2 ∈ A.]

It suffices therefore to fix a normal type T (and corresponding term t

and ordinals ~β < max(~α)) and show that X is the intersection of a closed
and an open set, where X is the set of α between ω1 and ω2 of type T . For
the rest of the argument we again suppress writing the fixed ordinals ~α, ~β
and the ω1, . . . , ωb. Corresponding to the term t we define the term t′ by

t′(γ1, . . . , γn) = |t(γ1, . . . , γn)|≺.

So, t′ defines a function from Cn to λ. Since the map γ 7→ |γ|≺ is one-to-one,
and since T is normal (so t is increasing in each argument), an easy argument
shows that t′ is also increasing in each argument. An analog of Claim 4 holds,
namely, there is a permutation π = (i1, . . . , in) of (1, . . . , n) such that for

all α1 < · · · < αn ∈ C and β1 < · · · < βn ∈ C, we have t′(~α) < t′(~β)
iff (αi1 , . . . , αin) <lex (βi1 , . . . , βin) (the difference is that now we do not
necessarily have i1 = n). The proofs of Claims 5 and 6 carry over to t′ as
well. We then define the Aj and F exactly as in the proof of Theorem 4.1,
and the same proof gives X = X − F .

As an immediate corollary we have the following.
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Corollary 4.3 (ZF + AD). For any ordinals α, β < ω2, α and β are

Borel isomorphic iff |α| = |β|.

Theorem 4.2 does not hold for any α ≥ ω2 (assuming again AD). This
is because there are stationary costationary subsets of ω2, for example, the
set of ordinals of cofinality ω.
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