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Waiting for long excursions and close visits

to neutral fixed points of null-recurrent ergodic maps

by

Roland Zweimüller (Wien)

Abstract. We determine, for certain ergodic infinite measure preserving transforma-
tions T , the asymptotic behaviour of the distribution of the waiting time for an excursion
(from some fixed reference set of finite measure) of length larger than l as l → ∞, gener-
alizing a renewal-theoretic result of Lamperti. This abstract distributional limit theorem
applies to certain weakly expanding interval maps, where it clarifies the distributional
behaviour of hitting times of shrinking neighbourhoods of neutral fixed points.

1. Introduction. The study of fine probabilistic properties of weakly
dependent stochastic processes obtained from ergodic dynamical systems
has become a very active field of research. Given a conservative (i.e. recur-
rent) ergodic measure preserving transformation (c.e.m.p.t.) T on a σ-finite
measure space (X,A, µ), and an initial distribution ν ≪ µ, i.e. a probabil-
ity measure according to which the initial state X0 ∈ X of the dynamical
system is chosen, iteration of T generates the consecutive states of the sys-
tem, which form a sequence (Xn)n≥0 = (Tn

X0)n≥0 of random elements of X,
defined on the probability space (X,A, ν).

One circle of questions which has recently attracted a lot of attention
concerns the behaviour of hitting times of subsets of X. For A ∈ A, µ(A) > 0,
we let ϕA(x) := inf{n ≥ 1 : Tnx ∈ A}, x ∈ X, which is finite mod µ. If
An ∈ A, n ≥ 1, are sets of positive measure with An ց ∅, we can think
of (An)n≥1 as a sequence of asymptotically rare events and study, for some
fixed ν, the distributions of the ϕAn

as n → ∞. It has been shown that
for a large variety of probability preserving (piecewise) smooth maps T
with uniform or well-controlled weak hyperbolicity, and natural An, these
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hitting-time distributions do converge to the expected limit, that is, to an
exponential distribution. (And in fact the hitting-time processes often tend
to a Poisson process.) Relevant references include [GS], [CC], [AG], [Hi] and
[KL], but this list is far from exhaustive.

Some prominent families of transformations, parametrized according to
the precise degree of weak hyberbolicity, exhibit a dramatic change of sto-
chastic behaviour when we pass from the domain of invariant probabilities
(the positively recurrent situation) to the regime of conservative infinite
invariant measures (the null-recurrent case) in parameter space. For a pro-
totypical example, consider maps T : [0, 1] → [0, 1] which are piecewise C2

with two full branches and uniformly expanding except for an indifferent
fixed point at x = 0, e.g.

(1.1) Tx :=

{
x + 2pxp+1 for x ∈ (0, 1/2),

2x − 1 for x ∈ (1/2, 1),

where p > 0 is the aforementioned parameter determining essential features
of the processes (Xn)n≥0 generated by T . These T always possess a unique
(up to a constant factor) conservative ergodic (even exact) invariant mea-
sure µ ≪ λ, where λ denotes Lebesgue measure. For p < 1 it is finite, thus
leading to an interesting family of weakly hyperbolic probability preserving
systems which has been the object of intense study (see, for example, [Yo],
[Sa], or [Go]). For p ≥ 1, however, the measure µ is infinite, and we en-
ter the null-recurrent world of infinite ergodic theory. Here, too, maps like
(1.1) constitute a basic class of well-studied examples (see e.g. [A0]–[A2],
[T1]–[T4], or [Z1], [Z2]). While various basic results from standard (finite)
ergodic theory cease to hold (most notably the pointwise ergodic theorem
with constant normalizations, cf. Section 2.4 of [A0]), some properties of
positively recurrent maps survive, in a weak sense, at the threshold parame-
ter p = 1 where the measure “has just become infinite”. For example, there
is a weak law of large numbers for p = 1, but not for any p > 1 (cf. [A1],
[ATZ], [T3] and [TZ]).

Another instance of a finite-measure result surviving the transition from
p < 1 to p = 1 has been explored in [CGS], [CG] and [CI]: Consider, for
T as in (1.1), the family of intervals Aε := [0, ε] containing the neutral
point x = 0, which shrink to zero as ε ց 0. While λ(Aε) → 0, these sets
can, for p ≥ 1, no longer be regarded as asymptotically rare events in the
sense of our dynamical system, since, on the contrary, µ(Aε) = ∞ and
µ(Ac

ε) < ∞ for all ε. (See [BZ] for really rare events.) Nevertheless, in the
p = 1 boundary case, the hitting-time distributions to these sets converge,
when suitably normalized, to an exponential law: According to Theorem 5 of
[CG] or Theorem 3.3 of [CI], we have, writing τε := ϕ[0,ε] and Y := (1/2, 1),
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(1.2)
1T

Y τε dµY
· τε

ν
⇒ E as ε ց 0,

for ν = λ or ν = µY . Here µY (M) := µ(Y ∩M)/µ(Y ) is the conditional mea-

sure on Y , the symbol
ν
⇒ indicates distributional convergence with respect

to the initial distribution ν, and E denotes an exponentially distributed
random variable, i.e. (1.2) means that for all t > 0, ν({(

T
Y τε dµY )−1 · τε

≤ t}) → 1 − e−t as ε ց 0. (And it is not hard to see that the normalizing
factor is of order ε log ε as ε ց 0.) The usual exponential limit law for the
hitting-time distributions thus persists at p = 1, illustrating once again the
amazing robustness of this phenomenon.

To the best of my knowledge, no information for the case p > 1 of
“seriously infinite” measures is available so far. The abstract distributional
limit theorem of the present paper enables us to clarify the asymptotic
behaviour of the hitting-time distributions of the sets [0, ε] in this case. We
will, in particular, show that for T as in (1.1), with p > 1,

(1.3) p(2ε)p · τε
ν
⇒ J1/p as ε ց 0,

for any probability measure ν ≪ λ. Here we let Jα, α ∈ [0, 1), denote
random variables taking values in [0,∞), with distributions characterized by
the following recursion formulae for their moments (where, by convention,
E[J 0

α ] := 1):

(1.4) E[J r
α ] = α

r−1∑

j=0

(
r

j

)
E[J j

α ]

r − j − α
for r ≥ 1.

In particular, J0 = 0, and generally E[Jα] = α/(1 − α) and Var[Jα] =
α/[(2 − α)(1 − α)2]. Regrettably, no explicit expression for the densities of
these distributions is available, but partial information, stated in terms of
Hα := Jα +1, can be found in [La]. From the same paper one can also infer
that the Laplace transforms are given by

(1.5) Ĵα(s) := E[e−sJα ] =
1

e−s + s
T1
0 y−αe−sy dy

, s > 0.

We will approach the above question about close visits by slightly shifting
our perspective. Instead of chasing small sets, we fix one good reference set
Y of finite measure, disjoint from the target sets A, in such a way that
hitting a small set A is equivalent to staying away from Y for a long time.
This transforms our original question about hitting times into one about
asymptotic distributions of waiting times for long excursions from Y . In
Sections 2 and 3 to follow, we formulate and prove an abstract distributional
limit theorem for such waiting times. In Section 4 we use this result to answer
the hitting-time question for interval maps.
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2. Long excursions from good reference sets. We recall some basic
concepts: A measurable function a : (L,∞) → (0,∞) is regularly varying of

index ̺ ∈ R at infinity, written a ∈ R̺, if a(ct)/a(t) → c̺ as t → ∞ for
any c > 0, and we shall interpret sequences (an)n≥0 as functions on R+ via
t 7→ a[t]. Slow variation means regular variation of index 0. Moreover, R̺(0)
is the family of functions r : (0, δ) → R+ regularly varying of index ̺ at zero
(same condition as above, but for t ց 0). For background information we
refer to Chapter 1 of [BGT]. Throughout we use the efficient convention that
for an, bn ≥ 0 and ϑ ∈ [0,∞), an ∼ ϑ · bn as n → ∞ means limn→∞ an/bn =
ϑ, even in case ϑ = 0. An analogous convention applies to f(s) ∼ ϑ · g(s)
as s ց 0. We will repeatedly use Karamata’s Tauberian theorem (KTT)
for Laplace transforms and the monotone density theorem, in the versions
provided by Proposition 3.2 and Lemma 3.1 of [TZ].

Strong distributional convergence Rn
L(µ)
=⇒ R of a sequence (Rn)n≥1 of

real-valued measurable functions on the σ-finite space (X,A, µ) means dis-

tributional convergence Rn
ν
⇒ R with respect to all probability measures

ν ≪ µ. Similarly, Rn
µ
→ R means convergence in measure, Rn

ν
→ R, for all

normalized ν ≪ µ.

Let T be a c.e.m.p.t. on (X,A, µ). Its transfer operator T̂ : L1(µ) →
L1(µ) describes the evolution of probability densities under T , that is,

T̂ u := d(ν ◦T−1)/dµ, where ν has density u with respect to µ. Equivalently,T
X(g◦T ) ·u dµ =

T
X g · T̂ u dµ for all u ∈ L1(µ) and g ∈ L∞(µ). The operator

T̂ naturally extends to {u : X → [0,∞) measurable A}.

For Y ∈ A with µ(Y ) > 0 the first entrance time or hitting time of Y
is ϕY (x) := min{n ≥ 1 : Tnx ∈ Y }, x ∈ X, and we define TY x := TϕY (x)x,
x ∈ X. The restricted measure µ|Y ∩A is invariant under the first return

map, that is, TY restricted to Y . In other words, 1Y =
∑

k≥1 T̂ k1Y ∩{ϕ=k}

a.e. If µ(Y ) < ∞, then the first return time, i.e. ϕY restricted to Y , can
be regarded as a random variable on the probability space (Y, Y ∩ A, µY ).
Assuming that Y is a suitable reference set (to be explained below), the
asymptotic behaviour of its return distribution, i.e. that of the (first) return

probabilities fk(Y ) := µY (Y ∩ {ϕY = k}), is an important characteristic
governing the probabilistic properties of the system. For distributional limit
theorems regular variation of the tail probabilities

qn(Y ) :=
∑

k>n

fk(Y ) = µY (Y ∩ {ϕY > n}),

or the wandering rate of Y given by

wN (Y ) := µ(Y )

N−1∑

n=0

qn(Y ) = µ(Y N ),
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where Y N :=
⋃N−1

n=0 T−nY , N ≥ 1, is essential. Note that Y N =
⋃N−1

n=0 Yn

(disjoint), where (as in [TZ], [Z4]) we let

(2.1) Y0 := Y, Yn := Y c ∩ {ϕY = n}, n ≥ 1.

The following theorem is the abstract core of the present paper. It will
be established via the renewal-theoretic approach developed in [T3], [TZ],
and [Z4]. Condition (2.3), which formalizes what a good reference set is in
this context, is a slightly stronger version of the basic condition used in [Z4].
Via (2.4) we also impose a variant of the sweeping condition used there (in
the Darling–Kac theorem).

For Y ∈ A and l ≥ 1, we let Jl(Y )(x), x ∈ X, denote the time at which
the first excursion from Y of length larger than or equal to l starts,

(2.2) Jl(Y )(x) := inf{n ≥ 0 : Tnx ∈ Y c ∩ {ϕY ≥ l}}.

Theorem 1 (Waiting for long excursions from sets with compact first
returns). Let T be a c.e.m.p.t. on the σ-finite measure space (X,A, µ), and

assume that Y ∈ A, 0 < µ(Y ) < ∞, is such that the family of probability

densities

(2.3) H
′′
Y :=

{
T̂ k1Y ∩{ϕ=k}

µ(Y )fk(Y )
: k ≥ 1, fk(Y ) > 0

}
is precompact in L∞(µ),

and

(2.4) there are ι, l0 ≥ 1 for which inf
l≥l0

inf
Y

ι−1∑

j=0

T̂ j

(
T̂ l1Yl

µ(Y )ql(Y )

)
> 0.

If

(2.5) (wN (Y )) ∈ R1−α for some α ∈ [0, 1),

then

(2.6)
1

l
Jl(Y )

L(µ)
=⇒ Jα.

Remark 1. The first time at which the orbit (Tnx)n≥0 actually observes
a long excursion is Hl(Y )(x) := inf{n ≥ l − 1 : T jx ∈ Y c for j ∈ {n− l + 1,

. . . , n}} = Jl(Y )(x)+l−1. The conclusion (2.6) is equivalent to Hl(Y )/l
L(µ)
=⇒

Hα := Jα + 1, which in [La] has been established for processes with an iid

sequence of excursion lengths, that is, in the special case in which the ϕ◦T j
Y ,

j ≥ 0, are independent random variables on (Y, Y ∩ A, µY ).

Remark 2. As in [TZ] and [Z4], regular variation of (wN (Y )) is a prop-
erty of the system (X,A, µ, T ) rather than of a particular set: By Propo-
sition 3.2 and Remark 3.6 of [TZ], (2.3) implies that Y has minimal wan-

dering rate, meaning that limN→∞wN (Z)/wN (Y ) ≥ 1 for all Z ∈ A with
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0 < µ(Z) < ∞. Such a minimal rate (if it exists) is an important asymptotic
characteristic of the system, the wandering rate of T , denoted (wN (T )).

Remark 3. For the main application worked out here, Theorem 2 below,
a much simpler version of (2.4) suffices, namely

(2.7) inf
k≥1, fk(Y )>0

inf
Y

(
T̂ k1Y ∩{ϕ=k}

µ(Y )fk(Y )

)
> 0.

However, we prove Theorem 1 under the more general condition (2.4), since
this paves the way for applications to more complicated situations (cf. Re-
mark 4).

3. Proof of Theorem 1. The argument to follow shows, in particular,
that there are variables Jα with moments given by (1.4). To begin with,
we check that the distributions of the Jα, α ∈ [0, 1), are in fact uniquely
determined by these moments. According to a classical result of T. Carleman
(cf. [Ca] or [Ke]), it suffices to show that the series

∑
r≥1 E[J r

α ]−1/2r diverges.
We show that

(3.1) E[J r
α ] ≤

(
r

1 − α

)r

for r ≥ 0.

If r = 0, this is trivial. For the inductive step, fix some r ≥ 1 and assume
that (3.1) has been shown to hold up to r − 1. Then use (1.4) to see that
indeed

E[J r
α ] ≤

α

1 − α

r−1∑

j=0

(
r

j

)(
j

1 − α

)j

≤
α

(1 − α)r

r−1∑

j=0

(
r

j

)
(r − 1)j ≤

α

(1 − α)r
((r − 1) + 1)r,

proving (3.1) and hence the required divergence statement.

We now use a variant of the renewal-theoretic approach to distributional
limit theorems for infinite measure preserving transformations, developed in
[T3], [TZ], and [Z4], to show that all moments converge. Our starting point is
the following dissection identity for Jl := Jl(Y ), l ≥ 1, on the distinguished
reference set Y :

(3.2) Jl =

{
k + Jl ◦ T k on Y ∩ {ϕ = k}, 1 ≤ k ≤ l,

1 on Y ∩ {ϕ > l}.

This results in

Lemma 1 (Splitting moments at the first return). Let T be a c.e.m.p.t.

on the σ-finite measure space (X,A, µ), let Y ∈ A with ϕ := ϕY , and
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Jl := Jl(Y ). Then, for r ≥ 1,\
Y

T̂ l1Yl
· Jr

l dµ =

r−1∑

j=0

(
r

j

) \
Y

( l∑

k=1

kr−j T̂ k1Y ∩{ϕ=k}

)
· Jj

l dµ

+ µ(Y ∩ {ϕ > l}).

Proof. According to (3.2),\
Y

Jr
l dµ =

l∑

k=1

\
Y ∩{ϕ=k}

(k + Jl)
r ◦ T k dµ +

\
Y ∩{ϕ>l}

1 dµ

=

l∑

k=1

\
Y

T̂ k1Y ∩{ϕ=k} · (k + Jl)
r dµ + µ(Y ∩ {ϕ > l})

=

r∑

j=0

(
r

j

) l∑

k=1

kr−j
\
Y

T̂ k1Y ∩{ϕ=k} · J
j
l dµ + µ(Y ∩ {ϕ > l}).

Separating the j = r term on the right-hand side and using

1Y =
∑

k≥1

T̂ k1Y ∩{ϕ=k},

we obtain\
Y

(∑

k>l

T̂ k1Y ∩{ϕ=k}

)
· Jr

l dµ =
r−1∑

j=0

(
r

j

) \
Y

( l∑

k=1

kr−jT̂ k1Y ∩{ϕ=k}

)
· Jj

l dµ

+ µ(Y ∩ {ϕ > l}),

which, due to T̂ l1Yl
=

∑
k>l T̂

k1Y ∩{ϕ=k}, l ≥ 0, (cf. (2.3) of [TZ]) is what
we claimed.

We can now put the machinery of [TZ] and [Z4] to work.

Proof of Theorem 1. (i) Let Jl := Jl(Y ), l ≥ 1, and ϕ := ϕY . We first
observe that the sequence (Jl/l)l≥1 is asymptotically T -invariant in measure,
in the sense that

(3.3)
Jl ◦ T − Jl

l

µ
→ 0 as l → ∞.

This follows from

(3.4) {|Jl ◦ T − Jl| > 1} = Y c ∩ {ϕ = l} for l ≥ 2,

since ν({ϕ = l}) → 0 as l → ∞ for every probability measure ν ≪ µ,
because ϕ is finite a.e. Due to (3.3), strong distributional convergence (2.6)
is automatic once we prove that

(3.5)
1

l
Jl

µY
=⇒ Jα
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(cf. Proposition 4.1 of [TZ], or [Z3]). Having confirmed that the distributions
of the Jα are determined by their moments, we may verify (3.5) by showing
that for all r ≥ 0,

(�r)
\
Y

(
Jl

l

)r

dµY → E[J r
α ] as l → ∞.

The r = 0 case is trivial: by our conventions,
T
Y (Jl/l)0 dµY = 1 for all

l ≥ 1.

(ii) By KTT (cf. Proposition 4.2 of [TZ]), (wN (Y ))N≥1 ∈ R1−α means
that there is some ℓ ∈ R0 such that

QY (s) :=
∑

l≥0

ql(Y )e−ls =

(
1

s

)1−α

ℓ

(
1

s

)
for s > 0.

Since α < 1, we can also apply the monotone density theorem to see that
the non-increasing sequence (ql(Y ))l≥0 satisfies

(3.6) ql(Y ) ∼
1 − α

Γ (2 − α)
· l−αℓ(l) as l → ∞.

Using the differentiation lemma for regularly varying functions (specifically,
part (b) of Lemma 4.1 of [TZ]), we can also conclude that

Q
(r)
Y (s) ∼ r!

(
α − 1

r

)(
1

s

)r+1−α

ℓ

(
1

s

)
as s ց 0 for all r ≥ 0.

Letting FY (s) :=
∑

k≥1 fk(Y )e−ks, which satisfies 1−FY (s)=(1−e−s)QY (s),
s > 0, we furthermore obtain

−F
(m)
Y (s) = (−1)m+1

∑

k≥1

kmfk(Y )e−ks

∼ m!

(
α

m

)(
1

s

)m−α

ℓ

(
1

s

)
as s ց 0 for all m ≥ 1.

Hence, appealing to KTT once again, we get

(3.7)
l∑

k=1

kmfk(Y ) ∼
α(1 − α)

(m − α) Γ (2 − α)
· lm−αℓ(l)

as l → ∞ for all m ≥ 1.

(iii) Next we establish, by induction on r, that for all r ≥ 0,

(♦r)
\
Y

Jr
l dµ = O(lr) as l → ∞.

For r = 0 this is trivial. For the inductive step we assume that (♦j) holds
for 0 ≤ j < r, where r ≥ 1 is fixed. Consider the terms on the right-hand
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side of the formula in Lemma 1: For each j we have

(3.8)
\
Y

( l∑

k=1

kr−jT̂ k1Y ∩{ϕ=k}

)
· Jj

l dµ

= µ(Y )
( l∑

k=1

kr−jfk(Y )
)
·
\
Y

Jj
l · ur−j,l dµ,

where, for l ≥ l0 := min{k ≥ 1 : fk(Y ) > 0},

(3.9) um,l :=

∑l
k=1 km T̂ k1Y ∩{ϕ=k}

µ(Y )
∑l

k=1 kmfk(Y )
∈ co(H′′

Y ),

the closed convex hull of H′′
Y in L∞(µ), which is compact and, in particular,

bounded. Combining this with (3.6), (3.7) and (♦j), we see for the complete
right-hand side of the formula in Lemma 1 that

(3.10)
r−1∑

j=0

(
r

j

) \
Y

( l∑

k=1

kr−jT̂ k1Y ∩{ϕ=k}

)
· Jj

l dµ

+ µ(Y ∩ {ϕ > l}) = O(lr−αℓ(l))

as l → ∞. On the other hand,

Jl ◦ T j = Jl − j ≤ Jl on Y ∩ T−jY for l ≥ j,

and hence \
Y

T̂ l+j1Yl
· Jr

l dµ =
\

Y ∩T−jY

T̂ l1Yl
· (Jr

l ◦ T j) dµ(3.11)

≤
\
Y

T̂ l1Yl
· Jr

l dµ for l ≥ j.

Letting vl := (µ(Y )ql(Y ))−1T̂ l1Yl
∈ co(H′′

Y ), we get (using (2.4), (3.6),
and (3.11))\

Y

Jr
l dµ = O

(\
Y

Jr
l ·

ι−1∑

j=0

T̂ jvl dµ
)

= O
(\

Y

Jr
l · vl dµ

)
= O

(T
Y T̂ l1Yl

· Jr
l dµ

l−αℓ(l)

)
as l → ∞.

Using Lemma 1 we can combine this with (3.10) to obtain (♦r).

(iv) We need some information on the behaviour of the Jl outside Y .
Generally,

(3.12) Jl ≤ n + Jl ◦ Tn on X for n ≥ 0, l ≥ 1.
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Recalling the notation Y M =
⋃M−1

n=0 Yn, we claim that for every r ≥ 0 and
M ≥ 1,

(3.13)

{
1Y M ·

(
Jl

l

)r

: l ≥ 1

}
is uniformly integrable.

In case M = 1 this is immediate from (♦r+1), r ≥ 0. Now fix M and r, and

let Rl := (Jl/l)r. For l ≥ M > n we see, using T̂n1Yn
≤ 1 and (3.12) plus

its consequence (note that (y + 1)r ≤ 2r(1 + yr) for y ≥ 0)

Yn ∩ {Rl > K} ⊆ Yn ∩ T−n{(Jl/l + 1)r > K}

⊆ Yn ∩ T−n{Rl > 2−rK − 1} for K > 0,

that \
Yn∩{Rl>K}

Rl dµ ≤
\

Yn∩{Rl>K}

(n + Jl ◦ Tn)r

lr
dµ

≤
\

Y ∩{Rl>2−rK−1}

(M + Jl)
r

lr
dµ

≤ 2r
\

Y ∩{Rl>2−rK−1}

(1 + Rl) dµ.

For fixed n, the last integral tends to 0 as K → ∞, uniformly in l, since
{1Y Rl : l ≥ 1} is uniformly integrable. Taking the union over n ∈ {0, . . . ,
M − 1}, we obtain (3.13).

Similarly, it is not hard to check that for every r ≥ 1, and any bounded
probability density u supported on Y M for some M = M(u), we have

(3.14)

∥∥∥∥

((
Jl

l

)r

◦ T −

(
Jl

l

)r)
· u

∥∥∥∥
1

→ 0 as l → ∞.

(Note that, by (3.4), Y M ⊆ {|Jl ◦ T − Jl| ≤ 1} for l > M ; then use the
mean-value theorem.)

(v) We are now ready for the inductive step in the proof of (�r). The
crude information given by (♦r), i.e. boundedness of all moment sequences
(
T
Y (Jl/l)r dµ)l≥1, r ≥ 0, enables us to refine the previous argument. We

claim that for all r > j ≥ 0,

(3.15)
\
Y

Jj
l · ur−j,l dµ ∼

\
Y

Jj
l dµY as l → ∞,

and that for all r ≥ 0,\
Y

Jr
l · vl dµ ∼

\
Y

Jr
l dµY as l → ∞.

To see this, we can appeal to parts (a) and (c) of Proposition 3.2 of [Z4],
with Rl := (Jl/l)j and Rl := (Jl/l)r, respectively: Although condition (3.10)
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there is not satisfied in the present situation, we may replace it by (3.13)
above, since the role of condition (3.10) in Proposition 3.2 of [Z4] was exactly
to ensure this property (see equation (3.16) there). This proves (3.15).

Now fix r ≥ 1 and assume (�j) for 0 ≤ j < r. Recalling the repre-
sentation (3.8) and using (3.6), (3.7), and (3.15), we find for the complete
right-hand side of the formula in Lemma 1 that

(3.16)
r−1∑

j=0

(
r

j

) \
Y

( l∑

k=1

kr−jT̂ k1Y ∩{ϕ=k}

)
· Jj

l dµ + µ(Y ∩ {ϕ > l})

∼
µ(Y )(1 − α)

Γ (2 − α)
·

(
α

r−1∑

j=0

(
r

j

)
E[J j

α ]

r − j − α

)
· lr−αℓ(l) as l → ∞.

Likewise, the left-hand side of that formula is now seen to satisfy\
Y

T̂ l1Yl
· Jr

l dµ = µ(Y )ql(Y )
\
Y

Jr
l · vl dµ ∼ µ(Y )ql(Y )

\
Y

Jr
l dµ(3.17)

∼
µ(Y )(1 − α)

Γ (2 − α)
· lr−αℓ(l)

\
Y

(
Jl

l

)r

dµ as l → ∞.

Combining (3.16) and (3.17) yields (�r).

4. Close visits to indifferent fixed points. We turn to our limit
theorem for the distributions of waiting times for close visits to indifferent
fixed points of infinite measure preserving interval maps. To avoid undue
technicalities we focus on prototypical maps T on X := [0, 1] with two full
branches and one indifferent fixed point at x = 0. Henceforth we assume
that

(a) for some c ∈ (0, 1) the restrictions of T to Z0 := (0, c) and Z1 := (c, 1)
are increasing C2-diffeomorphisms onto (0, 1) with inverses v0 and v1,
and T |Zi

extends to a C2-map on cl(Zi);
(b) the map T is expanding except for an indifferent fixed point at x = 0,

i.e. for any ε > 0, |T ′| ≥ ̺(ε) > 1 on [ε, 1], while T (0) = 0 and
limxց0 T ′x = 1; moreover, this fixed point is a regular source, i.e. T ′

is increasing on (0, δ0) for some δ0 > 0.

The family of maps T satisfying (a)–(b) will be denoted by T . It is well
known (cf. [T1]) that any map T ∈ T is conservative and exact (hence
also ergodic) with respect to Lebesgue measure λ, and preserves a σ-finite
infinite measure µ ≪ λ (unique up to a multiplicative constant) with a
positive density h which is continuous on (0, 1]. Let rT (x) := x − v0(x),
x ∈ [0, 1]. We are going to prove
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Theorem 2 (Asymptotic hitting-time distribution for neighbourhoods
of the neutral point). Assume that T ∈ T satisfies rT ∈ R1+p(0) for some

p ∈ (1,∞], and let α := 1/p ∈ [0, 1). Then the hitting times of the sets [0, ε],
ε ∈ (0, 1],

τε(x) := inf{n ≥ 1 : Tnx ∈ [0, ε]},

converge in distribution,

(4.1)
1

IT (ε)
· τε

L(µ)
=⇒ Jα as ε ց 0,

where IT ∈ R−1/α(0) is given by

IT (ε) :=

1\
ε

dx

rT (x)
, ε ∈ (0, 1].

Example 1 (The standard examples of indifferent fixed points). In the
frequently studied situation with Tx = x + ax1+p + o(x1+p) as x ց 0, one
finds that IT (ε) ∼ [apεp]−1 as ε ց 0, explaining (1.3) above.

We show how the abstract Theorem 1 implies the assertion of Theorem 2.

Proof of Theorem 2. (i) The obvious natural reference set for T is Y :=
(c, 1]. The well-known fact that the induced map TY is uniformly expanding
with full branches and satisfies the (folklore) Adler condition sup |T ′′/(T ′)2|
< ∞ means, in particular, very good distortion control in that the deriva-
tives w = v′ of its inverse branches v of arbitrary order have uniformly
bounded regularity R(w) := supY (|w′|/w). Moreover, the invariant measure
µY of TY has a density of finite regularity. As a consequence, the family
H′′

Y of probability densities is uniformly bounded away from zero, and also
equicontinuous, hence precompact in L∞(µ) by the Arzelà–Ascoli theorem.

Lemma 4 of [T2] shows that rT ∈ R1+p(0) implies (wN (Y )) ∈ R1−α. (In
fact, these statements are equivalent if p < ∞.) Therefore, the assumptions
of Theorem 1 are satisfied, and we conclude that

(4.2)
1

l
Jl(Y )

L(µ)
=⇒ Jα as l → ∞.

(ii) Starting from c0 := 1 define cl := vl
0(c0), l ≥ 0 (so that c1 = c), and

observe that
(cl+1, cl] = Y c ∩ {ϕY = l} for l ≥ 1.

Define L : (0, c] → N by requiring that cL(ε)+1 < ε ≤ cL(ε). Due to the
obvious inclusions between the sets involved we then see that

JL(ε)(Y ) ≤ τε ≤ JL(ε)+1(Y ) for ε ∈ (0, c].

Hence (4.2) implies

1

L(ε)
· τε

L(µ)
=⇒ Jα as ε ց 0.
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To finally obtain (4.1), note first that (by the monotone density theorem
and Lemma 4 of [T2]) (cl) ∈ R−α. Together with Lemma 2 of [T1] this
shows that IT is the asymptotic inverse to (cl)l≥0 (unique up to asymptotic
equivalence), and hence that L(ε) ∼ IT (ε) as ε ց 0.

Remark 4. The interval maps above have the special property (2.7).
Due to the more flexible assumption (2.4) given in Theorem 1, the same
argument applies to the significantly more general family of those (not nec-
essarily markovian) AFN-maps T (as studied in [Z1], [Z2]) which have the
same asymptotic behaviour at all of their indifferent fixed points. (Condition
(2.4) follows as in Theorem 8.1 of [TZ].)
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