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Abstract. It is shown that in an elementary extension of a compact complex manifold
M , the K-analytic sets (where K is the algebraic closure of the underlying real closed field)
agree with the ccm-analytic sets if and only if M is essentially saturated. In particular,
this is the case for compact Kähler manifolds.

1. Introduction and preliminaries. Recall that Ran is the expansion
of the real field by all restricted analytic functions, that is, functions f :
R

n → R (n ranging over N) that are identically zero off [−1, 1]n and whose
restrictions to [−1, 1]n are analytic. That Ran is an o-minimal expansion
of the real field follows from Gabrielov’s theorem on the complement of a
subanalytic set (see [6]).

Let R = (R, . . . ) be a fixed o-minimal expansion of Ran andM a compact
complex manifold. We will view the underlying real-analytic manifold of
M as living definably in R and equipped with all the structure induced
from R. One way to do so would be to consider M as a definable space

in R in the sense of [7]. However, we proceed more concretely (though
less canonically) as follows: the Morrey–Grauert imbedding theorem ([8])
allows us to identify M with a real-analytic submanifold of R

m for some
m ≥ 0. Moreover, by compactness, M ⊆ R

m is globally subanalytic and
hence definable in Ran. We therefore can, and do, view M as equipped with
the full induced structure from R: a subset of Mn is definable if as a subset
of R

mn it is definable in R. For example, every real-analytic subset of Mn

is definable.
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Now consider the complex manifold structure on M . Every complex-
analytic subset of Mn is real-analytic and hence definable. The complex-
analytic structure on M is thus viewed as a reduct of its real-analytic struc-
ture. Formally, let us denote by Mccm this reduct where the underlying set is
M and where the language consists of a predicate for each complex-analytic
subset of each cartesian power of M . A definable subset of M (or its carte-
sian powers) will be called ccm-definable if it is definable in the reduct Mccm.
Recall that Th(Mccm) admits quantifier elimination and is of finite Morley
rank ([20]). A more detailed survey of the model theory of Th(Mccm) can
be found in [10].

Next, we pass to an elementary extension of the entire situation: let
R̂ = (R, . . . ) be a sufficiently saturated elementary extension of R, and

let M̂ ⊆ Rm be the interpretation of M in R̂. We obtain a corresponding
elementary extension of Mccm, denoted by M̂ccm, which is itself a reduct of

the induced structure on M̂ from R̂. So on the “nonstandard” manifold M̂
we have the definable sets, namely those that are definable in R̂, and the
ccm-definable sets, those that are definable in the reduct M̂ccm.

Notation 1.1. If N � N̂ is an elementary extension of first-order struc-
tures, and

F = {Fa = φ(c, a)N : a ∈ A = ψ(x)N}
is a definable family of sets in N , then we let

F̂ := {φ(c, a)N̂ : a ∈ ψ(x)N̂ }
be the corresponding definable family in N̂ . A definable set in N̂ is then
just a member of some F̂ where F is a definable family of definable sets in
N . The study of definable sets in N̂ thus amounts to the study of definable
families in N .

Among the definable sets in M̂ there are two natural candidates for the
“nonstandard complex-analytic” ones. The first of these comes from working
entirely in Th(Mccm):

Definition 1.2. A subset S ⊆ M̂n is ccm-analytic if there exists a
ccm-definable family F of complex-analytic subsets of Mn such that S ∈ F̂ .

By quantifier elimination for Th(Mccm), every ccm-definable set in M̂ is
a finite boolean combination of ccm-analytic sets.

The second notion of “complex-analyticity” in M̂ comes from the work
of Y. Peterzil and the second author on complex analysis over algebraically
closed fields in o-minimal structures. Let R be a real closed field and K its
algebraic closure. In [14–16] Y. Peterzil and the second author investigate
differentiability with respect to the field K for functions of several variables



K-analytic versus ccm-analytic sets 141

definable in o-minimal expansions of R. Their analysis leads to a notion of
K-analytic set. We will not give their definition here as we will be concerned
with only a special case. Suffice it to say that K-analyticity is definable in
parameters (see Corollary 4.13 of [14]), and that ifK = C and one is working
in an o-minimal expansion of Ran thenK-analytic is just complex-analytic. It
follows that if R is the underlying real closed field of an elementary extension
of an o-minimal expansion of Ran, then the notion of K-analytic subset of
M̂ introduced in [16] has the following more direct characterisation—which
will serve as a definition for us.

Definition 1.3. Let R be the underlying real closed field of R̂ and K its
algebraic closure. A subset S ⊆ M̂n is K-analytic if there exists a definable
family F of complex-analytic subsets of Mn such that S ∈ F̂ .

In particular, every ccm-analytic set is K-analytic. Our purpose in this
note is to characterise the class of compact complex manifolds M for which
the converse holds.

Example 1.4. Consider the case when M is a projective algebraic vari-
ety V (or rather the set of C-rational points of V ). Then M̂ can be identified
with the K-rational points of V . Moreover, by quantifier elimination and
Chow’s theorem, every ccm-definable family of complex-analytic subsets of
Mn is a Zariski-constructible family of algebraic subsets of Mn. It follows
that the ccm-analytic subsets of M̂n in this case are exactly the algebraic
subsets over K. Now, in [14] Y. Peterzil and the second author prove a non-

standard version of Chow’s theorem so that the K-analytic subsets of M̂n

are also just the algebraic subsets over K. Hence, for M a projective variety,
K-analyticity and ccm-analyticity coincide in M̂ .

Example 1.5 (see Section 3.3 of [16]). Fix real numbers a and b lying
strictly between 0 and 1, and consider the Hopf surface M obtained as
the quotient of C

2 \ {(0, 0)} by the action of the group of automorphisms
generated by (z, w) 7→ (az, bw). It is explained in [18] that there are no

infinite ccm-definable families of automorphisms of M . Hence M̂ has no
ccm-analytic automorphisms (i.e., no automorphims whose graph is a ccm-

analytic subset of M̂2) other than the interpretations of the complex-analytic
automorphisms of M itself. On the other hand, as pointed out in [16], it is
not hard to construct infinite definable (in R) families of complex-analytic

automorphisms of M . This gives rise to K-analytic subsets of M̂2 that are
not ccm-analytic.

The characterisation we obtain will be in terms of the following notion
introduced by the first author in [11]: a compact complex manifold M is
essentially saturated if there exists a countable collection of complex-analytic
subsets of M and its cartesian powers, L0, such that every ccm-definable
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set is definable (with parameters) in the language where there is a predicate
for each complex-analytic set in L0. The terminology comes from the fact
(Proposition 2.3 of [11]) that if M is essentially saturated and L0 is as
above, then the structure (M,L0) is saturated, and definabilities in (M,L0)
and Mccm agree.

Our main observation is the following result which we prove in Section 3.

Theorem 1.6. The following are equivalent :

(a) M is essentially saturated.

(b) The K-analytic and ccm-analytic subsets of M̂n, for all n > 0, co-

incide.

Since compact Kähler manifolds are essentially saturated (see Section 4
of [11]), we obtain:

Corollary 1.7. If M is a compact Kähler manifold then every K-

analytic subset of M̂n is ccm-analytic for all n > 0.

We would like to thank Kobi Peterzil and Patrick Speissegger with whom
we had several discussions that led to the observations contained in this
paper.

2. The Barlet space, essential saturation, and volume. In [11]
essential saturation is given a geometric characterisation in terms of certain
universal families of analytic subspaces. In this section we will recall Barlet’s
space of compact cycles of a complex manifold, recast essential saturation
as a condition on the Barlet spaces, and discuss a theorem of Lieberman’s
which will be used in the proof of Theorem 1.6. A more detailed exposition
of this material can be found in Section 3 of [12].

ForM any complex manifold, a k-cycle ofM is a finite linear combination
Z =

∑
i niZi where the Zi’s are distinct k-dimensional irreducible compact

complex-analytic subsets of M , and each ni is a positive integer called the
multiplicity of Zi in Z. By |Z| we mean the underlying set or support of
Z, namely

⋃
i Zi. We denote the set of all k-cycles of M by Bk(M), and

the set of all cycles of M by B(M) :=
⋃

k Bk(M). In [1] Barlet endowed
Bk(M) with a natural structure of a complex-analytic space whereby if for
s ∈ Bk(M) we let Zs denote the cycle respresented by s, then the set {(s, x) :
s ∈ Bk(M), x ∈ |Zs|} is a complex-analytic subset of Bk(M)×M . Equipped
with this complex structure, B(M) is called the Barlet space of M . When
M is a projective variety the Barlet space coincides with the Chow scheme.
In [3] it is shown that

B∗(M) := {s ∈ B(M) : Zs is irreducible with multiplicity 1}
is a Zariski open subset of B(M): its complement in B(M) is a proper
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complex-analytic subset. An irreducible component of B(M) is prime if it
has nonempty intersection with B∗(M).

The characterisation of essential saturation referred to above can be
expressed in terms of the Barlet space as follows.

Fact 2.1 (Moosa [11]). Suppose M is a compact complex manifold. Then

M is essentially saturated if and only if every prime component of B(Mn)
is compact , for all n > 0.

Actually, in Theorem 3.3 of [11] this is done with the universal family
of analytic subspaces—the Douady space—rather than cycles. However, the
same arguments work for Barlet spaces as well (1). Or alternatively, since
there is a holomorphic map from the Douady space to the Barlet space whose
image contains B∗(M) (see Chapitre V of [1]), compactness of the compo-
nents of the Douady space implies compactness of the prime components of
the Barlet space.

The main technique for determining whether a prime component of the
Barlet space is compact comes from a theorem of Lieberman’s which involves
some hermitian geometry. Recall that if M is a complex manifold then there
is a one-to-one correspondence between hermitian metrics and positive real
(1, 1)-forms on M , given by h 7→ ω := − Im(h). Moreover, Re(h) is a rieman-
nian metric on M . Wirtinger’s theorem allows us to compute the volume of
a compact complex submanifold of M with respect to this riemannian met-
ric (denoted by volh) by integrating the appropriate exterior power of the
associated (1, 1)-form over the submanifold: if Z ⊆M is a compact complex
submanifold of complex dimension k, then the volume of Z is given by

(2.1) volh(Z) =
1

k!

\
Z

ωk

where ωk is the kth exterior power of ω (see Section 3.1 of [19]).

If Z is a possibly singular complex-analytic subset (irreducible, com-
pact, of dimension k), then equation (2.1) can serve as the definition of
volume; it agrees with the volume of the regular locus of Z. More generally,
if Z =

∑
i niZi is a k-cycle of M , then the volume of Z with respect to h is

volh(Z) :=
∑

i ni volh(Zi).

Note that taking volumes of cycles induces a function volh : B(M) → R

given by volh(s) := volh(Zs).

Fact 2.2 (Lieberman [9]). Suppose M is a compact complex manifold

equipped with a hermitian metric h, and X is any subset of B(M). Then X
is relatively compact in B(M) if and only if volh is bounded on X.

(1) Indeed it is easier as one can replace the use of Hironaka’s flattening theorem by
the much simpler geometric flattening theorem of [2].
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One application of this fact is to show that compact Kähler manifolds are
essentially saturated (see Section 3 of [12]). We will use Lieberman’s theorem
together with the following consequence of a result of van den Dries’ to prove
Theorem 1.6.

Proposition 2.3. Suppose M is a compact complex manifold (viewed as

a definable space in an o-minimal expansion R of Ran) and h is a hermitian

metric on M . If F is a definable family of complex-analytic subsets of M
then {volh(F ) : F ∈ F} is bounded.

Proof. In the e-print [13] there is an argument for how this follows from
the fact (Proposition 4.1 of [5]) that Hausdorff measure in definable families
is bounded. For the sake of completeness we include it here.

Let F = {Fa : a ∈ A}. Since the complex dimension is twice the real
dimension and the latter is definable in parameters by o-minimality, we
may assume that there is a k ≥ 0 such that dimC(Fa) = k for all a ∈ A. By
compactness of M it suffices to show that for each p ∈ M there is an open
neighbourhood V of p such that volh(Fa ∩ V ) is bounded as a varies in A.

Consider a chart α : V → D at p such that D is a definable bounded
open ball in C

m (where m = dimC(M)) and α(p) = 0. Then Re(h)|V induces
via α a riemannian metric g on D. For each d ∈ D, let rd be the maximum of
gd(v, v) for all v in the closed unit sphere in the tangent space TdD of D at d.
By the continuity of the map d 7→ rd, for a smaller open ball D′ compactly
contained in D, there is an r > 0 such that rd ≤ r for all d ∈ D′. Shrinking
the chart if necessary we may assume D′ = D. Replacing α with α/

√
r, we

can now assume that for all d ∈ D and all v ∈ TdD, gd(v, v) ≤ ‖v‖2
d where

‖ ‖ denotes the standard norm. In other words, the length of tangent vectors
with respect to the riemannian metric induced on D from h|V is not greater
than the length with respect to the standard metric. It follows that the
volume of α(Fa ∩ V ) with respect to the standard riemannian metric on D
is not less than volh(Fa∩V ), for any a ∈ A. But the volume of α(Fa∩V ) with
respect to the standard riemannian metric is equal to the 2k-dimensional
Hausdorff measure of α(Fa∩V ). Since {Fa∩V : a ∈ A} is a definable family,
the 2k-dimensional Hausdorff measure of α(Fa ∩ V ) is bounded as a varies
in A by Proposition 4.1 of [5]. Hence, volh(Fa ∩ V ) is bounded as a varies
in A, as desired.

3. Proof of Theorem 1.6. We begin with a characterisation of ccm-
analytic subsets that is more along the lines of [17, 10]. Let A be the many-
sorted structure where there is a sort for each compact complex-analytic
space (not necessarily smooth) and the language consists of a predicate for
each complex-analytic subset of each cartesian product of sorts. Then Th(A)
admits quantifier elimination and is of finite Morley rank (sort by sort). If
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M is a compact complex manifold then M is a sort of A and Mccm is just
the structure induced on M by A. The whole many-sorted structure A is
interpretable in R. Hence there is a corresponding elementary extension Â
of A interpretable in R̂.

Lemma 3.1. A subset S ⊆ M̂n is ccm-analytic if and only if there exist :

• an irreducible compact complex-analytic space B,
• a complex-analytic subset Z ⊆ B ×Mn,
• a generic point e of B in Â,

such that S is the fibre of Z above e in Â.

Proof. This is discussed in detail in Section 6 of [10], but we give some
explanations here. First of all, suppose S is the generic fibre of Z → B where
B and Z ⊆ B ×Mn are as in the lemma. Note that F := {Zb : b ∈ B} is a
family of complex-analytic subsets of Mn definable in A. By definability of
types, F is actually definable with parameters from M itself. Hence F is a
ccm-definable family of complex-analytic subsets of Mn. Since S ∈ F̂ , S is
ccm-analytic.

For the converse, suppose S ∈ F̂ for some ccm-definable family of
complex-analyitc subsets of Mn. Then there are ccm-definable sets E ⊆M l

and F ⊆ E × Mn whose fibres over E are complex-analytic, and such
that S = Fe for some e ∈ E(M̂ccm). Let a ∈ S be a generic point of S
over e (so a is not contained in any proper e-definable ccm-analytic subset
of S). Let B := locus(e) be the smallest complex-analytic subset of M l with

e ∈ B(M̂). Let Z := locus(e, a) ⊆ B ×Mn. Then it is not hard to see that
S = Ze.

Proof of Theorem 1.6. Let us recall the set-up of the theorem:

• M is a compact complex manifold viewed as a definable set in a fixed
o-minimal expansion R of Ran.

• R̂ is a sufficiently saturated elementary extension of R with underlying
real closed field R whose algebraic closure is K.

• M̂ is the corresponding elementary extension of M viewed as a defin-
able set in R̂.

We first show (a) implies (b): if M is essentially saturated then every

K-analytic subset of M̂n is ccm-analytic, for all n > 0. So assume that M is
essentially saturated and let S ⊆ M̂n be K-analytic. Let F = {Fa : a ∈ A}
be a definable family of complex-analytic subsets of Mn such that S ∈ F̂ .

First of all, by the definable trivialisation theorem in o-minimal struc-
tures (see Chapter 9 of [7]) the connected components of reg(Fa), and hence
the irreducible components of Fa, are uniformly definable. By taking unions
it therefore suffices to consider the case when each Fa is irreducible.
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Hence, for each a ∈ A there is a unique b ∈ B∗(Mn) such that Fa = Zb.
Let X ⊆ B∗(Mn) be the set of such b’s. Now fix a hermitian metric h
on Mn. By Proposition 2.3, {volh(Fa) : a ∈ A} is bounded, and hence volh
is bounded on X. It follows that X is relatively compact in B(Mn) (this is
Fact 2.2). So X is contained in the union of finitely many prime components

of B(Mn), say B :=
⋃l

i=1Bi. By essential saturation, each Bi is compact
(this is Fact 2.1). Hence G := {Zb : b ∈ B∩B∗(Mn)} is a ccm-definable family
of complex-analytic subsets of Mn (see Lemma 3.1). Since X ⊆ B∩B∗(Mn),

every member of F is in G. It follows that every member of F̂ is in Ĝ. In
particular S ∈ Ĝ, and so S is ccm-analytic as desired.

For the converse assume that M is not essentially saturated. By Fact 2.1,
for some n > 0, there exists a noncompact prime component B0 of B(Mn).
Let B1 := reg(B0)∩B∗(Mn). Then B1 is a nonempty Zariski open subset of
B0 and is a complex-analytic manifold. Using the Morrey–Grauert imbed-
ding theorem we may assume that B1 ⊆ Rl for some l ≥ 0, and that as a
real-analytic manifold it is a submanifold of R

l. Since G0 := {(s, x) : s ∈ B0,
x ∈ |Zs|} is a complex-analytic subset of B0 ×Mn, G1 := {(s, x) : s ∈ B1,
x ∈ |Zs|} is real-analytic as a subset of R

l × R
mn. Now fix an arbitrary

a ∈ B1, choose an open ball V ⊆ R
l of radius one centred at a, and set

D := V ∩B1. Then G1∩(D×R
mn) is a real-analytic subset of R

l×R
mn which

is relatively compact (being contained in D ×Mn). Hence G1 ∩ (D × R
mn)

is definable in Ran. It follows that F := {Zd : d ∈ D} is definable in R.
The point here is that this definable family of complex-analytic subsets of
Mn has as its parameter space a nonempty open subset of the noncompact
prime component B0. We will show that this forces some member of F̂ to
be non-ccm-analytic. (Note that F itself fails to be ccm-definable because
D is not ccm-definable.)

Claim 3.2. If S∈F̂ is ccm-analytic then there exists a compact complex-

analytic subset C ⊆ B(Mn) such that S ∈ Ĝ where G := {Zc : c ∈ C ∩
B∗(Mn)}.

Proof of Claim. By Lemma 3.1, there exists an irreducible compact
complex-analytic set A and a complex-analytic subset F ⊆ A×Mn such that
S is a generic fibre of F over A in Â. Note that since S ∈ F̂ , every nonempty
Zariski open subset of A contains an element a such that Fa ∈ F . As the
members of F are irreducible, it follows that over a nonempty Zariski open
subset of A the fibres of F are irreducible. In particular, there is a unique
irrreducible component of F that projects onto A and which contains the
general fibres of F , and hence we may replace F by this irreducible com-
ponent. Note also that after possibly shrinking the Zariski open set, these
general fibres are of constant dimension. It follows by the universal property
of the Barlet space (together with the geometric flattening theorem of [2])
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that there exists a meromorphic map g : A → B(Mn) and a nonempty
Zariski open subset U ⊆ A such that for all a ∈ U , g(a) ∈ B∗(Mn) and
Fa = Zg(a) (see for example Proposition 2.20 of [4]). Let C be the closure
of the image of U under g—which will be an irreducible compact complex-
analytic subset of B(Mn) since A is compact and g is meromorphic—and let

G := {Zc : c ∈ C ∩B∗(Mn)}. Since S is a generic fibre of F over A, S ∈ Ĝ.

Suppose for a contradiction that every member of F̂ is ccm-analytic.
By saturation and the claim, F must be covered by finitely many families
of the form given by the claim. Taking unions this means that there exists
a compact complex-analytic subset C ⊆ B(Mn) such that every member
of F is contained in G := {Zc : c ∈ C ∩ B∗(Mn)}. But this means that
D ⊆ C ∩ B0. By construction, D is a nonempty open subset of B0 while
C∩B0 is a complex-analytic subset of the irreducible complex-analytic space
B0. Hence B0 = C ∩ B0, and so B0 is an irreducible component of C. But
this contradicts the fact that C is compact while B0 is not. There must
therefore exist some member of F̂ that is not ccm-analytic. We have shown
that not every K-analytic set is ccm-analytic, as desired.

This completes the proof of Theorem 1.6.
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