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Abstract. Let X be a closed manifold of dimension 2 or higher or the Hilbert cube.
Following Uspenskij one can consider the action of Homeo(X) equipped with the compact-
open topology on Φ ⊂ 22X

, the space of maximal chains in 2X , equipped with the Vietoris
topology. We show that if one restricts the action to M ⊂ Φ, the space of maximal chains
of continua, then the action is minimal but not transitive. Thus one shows that the action
of Homeo(X) on UHomeo(X), the universal minimal space of Homeo(X), is not transitive
(improving a result of Uspenskij). Additionally for X as above with dim(X) ≥ 3 we
characterize all the minimal subspaces of V (M), the space of closed subsets of M , and
show that M is the only minimal subspace of Φ. For dim(X) ≥ 3, we also show that
(M,Homeo(X)) is strongly proximal.

1. Introduction. We consider here compact G-spaces with G a Polish
group and the action assumed to be continuous as a function of both vari-
ables. Such a G-space X is said to be minimal if X and ∅ are the only
G-invariant closed subsets of X. By Zorn’s lemma each G-space contains a
minimal G-subspace. These minimal objects are in some sense the most basic
ones in the category of G-spaces. For various topological groups G they have
been the object of vast study. Given a topological group G one is naturally
interested in describing all of them up to isomorphism. Such a description
is given by the following construction: one can show there exists a minimal
G-space UG unique up to isomorphism such that if X is a minimal G-space
then X is a factor of UG, i.e., there is a continuous G-equivariant mapping
from UG onto X. UG is called the universal minimal G-space (for existence
and uniqueness see [Usp00]). Calculating this minimal universal space ex-
plicitly is very hard. For some groups the space itself is complicated, e.g.
by a known theorem the universal minimal flow of a non-compact locally
compact group is non-metrizable (see [KPT05, Theorem A2.2]).
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For non-locally compact groups the universal minimal space may reduce
to one point. Such groups are called extremely amenable. Since every G-space
X contains a minimal G-space, these groups may be characterized by a fixed
point property, i.e. any G-space X has a G-fixed point. Using novel and orig-
inal techniques Pestov [Pes98] showed that the following groups have this
property: the group of order preserving automorphisms of the rational num-
bers, equipped with the topology in which a subbasis of the identity consists
of (all) stabilizers of a finite number of points, and the groups Homeo+(I)
and Homeo+(R) of orientation preserving homeomorphisms of the unit in-
terval and of the real line, respectively, equipped with the compact-open
topology. The universal minimal space may be metrizable without being a
single point, for example: the circle S1 is the universal minimal space of the
group Homeo+(S1) of its orientation preserving homeomorphisms, equipped
with the compact-open topology.

Motivated by the last result Pestov asked in the last section of [Pes98]
if the Hilbert cube Q = [−1, 1]N with the natural action of Homeo(Q),
equipped with the compact-open topology, is the universal minimal space
for Homeo(Q). In [Usp00] Uspenskij answered Pestov’s question in the neg-
ative by showing that for every topological group G, the action of G on
the universal minimal space UG is not 3-transitive, i.e., there exist triples
(a1, a2, a3) and (b1, b2, b3) of distinct points of UG such that no g ∈ G satis-
fies g(ai) = bi for i = 1, 2, 3. To prove this, Uspenskij introduced the space
of maximal chains of a given topological space. We now recall this notion.

Given a compact space K, let V (K) be the space of all non-empty closed
subsets of K, equipped with the Vietoris topology (see Definition 1.1 in
[IN99]). A subset C ⊂ V (K) is a chain in V (K) if for any E,F ∈ C either
E ⊂ F or F ⊂ E. A chain is maximal if it is maximal with respect to the in-
clusion relation. One verifies easily that a maximal chain in V (K) is a closed
subset of V (K), and that Φ, the space of all maximal chains in V (K), is a
closed subset of V (V (K)), i.e. Φ ⊂ V (V (K)) is a compact space. Note that
a G-action on K naturally induces a G-action on V (K) and Φ(K). This is
true in particular for K = UG. Therefore there is a continuous G-equivariant
mapping f : UG → Φ(UG). By cleverly investigating this mapping Uspenskij
achieved the aforementioned result.

Motivated by Uspenskij’s idea of looking at the maximal chain space of
the universal minimal space, Glasner and Weiss [GW03] studied the max-
imal chain space of the Cantor set K, and showed that it is the universal
minimal space for Homeo(K), equipped with the compact-open topology. It
is important to point out that whereas Uspenskij used the (abstract) exis-
tence of the space of maximal chains in V (UG), Glasner and Weiss’ method
is constructive. The first steps are constructing the maximal chain space of
the Cantor set and analyzing its properties.
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In a recent article Pestov asked (attributing the questions to Uspen-
skij) for an explicit description of the universal minimal space of the group
Homeo(X) (equipped with the compact-open topology), X being a closed
manifold of dimension 2 or higher or the Hilbert cube (see [Pes05, Section
5.2, Open Questions 28 & 29]). Here and elsewhere, the term closed man-
ifold refers to a compact manifold without boundary. Motivated by these
and similar questions (where X is allowed to be an even more general topo-
logical space) we apply the constructive method to a large class of groups
of homeomorphisms of topological spaces (equipped with the compact-open
topology). This class includes in particular the group of homeomorphisms of
any closed manifold of dimension 2 or higher or of the Hilbert cube.

It is important to note that the specific ideas Glasner and Weiss used in
[GW03] heavily depend on the fact that K is zero-dimensional. For higher
dimensions new ideas are needed. The scheme we would ideally like to use is
to start with the given space X, then characterize all minimal subspaces of
V (X), next characterize the minimal subspaces of V 2(X) = V (V (X)) and
so on. This scheme would include the analysis of the space of maximal chains
in V (X) and much more, but unfortunately it turns out to be difficult to
carry out.

We managed to obtain results for the “first three levels”. It is easy to
see that the only minimal subspaces of V (X) are {X} and {{x} |x ∈ X}.
Characterizing all minimal subspaces of V 2(X) already turns out to be hard.
However, one encounters a new and interesting phenomenon involving con-
tinua, i.e. non-empty compact and connected metric spaces. Indeed, Φ, the
space of maximal chains in V (X), is not minimal, but the subspace M ⊂ Φ
of maximal chains (consisting only) of continua of X is minimal. This space
can also be shown to coincide with the space of connected (with respect to
V (X)) maximal chains (see Lemma 2.3). Put formally:

Theorem 1.1. If X is a closed manifold of dimension 2 or higher , or the
Hilbert cube, then M , the space of maximal chains of continua, is minimal
under the action of Homeo(X) on Φ.

This theorem enables us to improve on Uspenskij’s result by proving:

Theorem 1.2. If X is a closed manifold of dimension 2 or higher , or
the Hilbert cube, and G = Homeo(X), then the action of G on the universal
minimal G-space UG is not transitive.

Interestingly, for a large class of spacesX the spaceM of maximal chains of
continua is the onlyminimalHomeo(X)-subspace ofΦ. In particular, we prove:

Theorem 1.3. If X is a closed manifold of dimension 2 or higher , or
the Hilbert cube, then M , the space of maximal chains of continua, is the
only minimal subspace of the Homeo(X)-space Φ.
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Analyzing all minimal subspaces of V 3(X) turned out to be difficult.
However, we managed to classify all minimal subspaces of V (M) ⊂ V 3(X):

Theorem 1.4. If X is a closed manifold of dimension 3 or higher , or
the Hilbert cube, then the action of Homeo(X) on V (M), the space of non-
empty closed subsets of the space of maximal chains of continua, has exactly
the following minimal subspaces:

(1) {M},
(2) {Mx}x∈X , where Mx = {c ∈M(X) |

⋂
{cα | cα ∈ c} = {x}},

(3) {{c} | c ∈M}.

M is said to be strongly proximal under G = Homeo(X) if for any Borel
probability measure µ on M , there exists a sequence (gn) ⊂ G such that
[gn]∗(µ) converges to the measure concentrated at a singleton. We prove:

Theorem 1.5. If X is a closed manifold of dimension 3 or higher , or
the Hilbert cube, then (M,Homeo(X)) is strongly proximal.

Acknowledgements. This paper is part of the author’s PhD thesis
under the supervision of Professor Benjamin Weiss. I would like to thank
him for his support and advice. I would also like to thank the two referees
for a careful reading of the paper and many useful suggestions.

2. Preliminaries. In this paper an effort is made to state theorems
and lemmas in their broadest generality. We use the symbol X to denote
the space we are working with. (X, d) is always assumed to be compact,
metric, connected and non-trivial (by which we mean it contains more than
one point, hence it contains infinitely many points). By an ε-net of a set
D ⊂ X we mean a finite collection A = {ai}Ki=1 ⊂ D such that for all p ∈ D,
dist(p,A) = mini=1,...,K d(p, ai) < ε.

Let V (X) denote the space of non-empty closed subsets of X. We equip
V (X) with the Hausdorff metric:

dV (X)(A1, A2) = d(A1, A2)(2.1)
= inf{ε > 0 | A2 ⊂ B(A1, ε) and A1 ⊂ B(A2, ε)},

where A1, A2 are non-empty closed sets and B(A, ε) = Bε(A) = {x ∈ X |
∃a ∈ A, d(x, a) < ε}. The Hausdorff metric induces the Vietoris topology
on V (X) (see Theorem 3.1 of [IN99]). We define V n(X) for all n ∈ N using
the natural definition V n(X) = V (V n−1(X)). A warning is due here: along
the paper the notation d(·, ·) will be used to denote distances in various
metric spaces. The reader should keep in mind that d(·, ·) denotes mostly
the distance of the underlying space X or the Hausdorff distance in V (X),
V 2(X) or V 3(X), where the choice should be clear from the context.
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Let C(X) be the subspace of V (X) consisting of all subcontinua of X.
Here are two definitions that will play an important role in the paper:

Φ(X) = the collection of maximal chains in V (X),
M(X) = the collection of maximal chains in C(X).

If the underlying space X is clear from the context we write Φ,M re-
spectively. In Lemma 2.3 we show that M can be characterized as the
space of connected (with respect to V (X)) maximal chains. If c ∈ M(X)
and D ∈ c then we define the initial segment of c ending at D to be
c′ = {R ∈ c | R ⊂ D}. Notice that c′ ∈M(D). Let

r(c) =
⋂
{cα | cα ∈ c}

while the set of all chains rooted at {x} is denoted by Mx and Φx, respec-
tively:

Mx = {c ∈M | r(c) = {x}}, Φx = {c ∈ Φ | r(c) = {x}}.

Lemma 2.1. For c = {cα}α∈A ∈M and F ⊂ c one has ClX(
⋃
cα∈F cα)∈ c

and
⋂
cα∈F cα ∈ c.

Proof. This follows from the maximality of c as a subset of C(X).

Given c = {cα}α∈A ∈ M and D ∈ V (X) with r(c) ⊂ D we call the set
cD =

⋃
{cα| cα ⊆ D} the maximal element of c inside D.

Lemma 2.2. We have the following :

(1) cD ⊆ D.
(2) If N is an open set so that r(c) ⊂ N and ∂N 6= ∅ then cN ∩∂N 6= ∅.

Proof. (1) is a direct consequence of Lemma 2.1 and the fact that D is
closed.

(2) Let I =
⋂
{cα | cα ∩ ∂N 6= ∅}. By standard compactness arguments

I ∩ ∂N 6= ∅ and thus it is enough to show I ⊆ cN . Assume otherwise. Then
cN ( I. According to Theorem 15.2 of [IN99] there exists F ∈ c such that
cN ( F ( I. Since F ∩ N ⊃ r(c) 6= ∅ and F is connected, it follows that
F ⊂ N and thus F ⊆ cN , a contradiction.

Lemma 2.3. M = Φ ∩ C(V (X)).

Proof. Let c ∈ M . According to Lemma 14.4 of [IN99], c is an order
arc in C(X), i.e., there exists a homeomorphism i : [0, 1] → C(X) such
that i([0, 1]) = c and 0 ≤ t1 < t2 ≤ 1 implies i(t1) ( i(t2). In particular, c is
connected. HenceM ⊂ Φ∩C(V (X)). To prove the opposite inclusion assume
c ∈ Φ∩C(V (X)) and some D ∈ c is not connected, i.e. D = D1∪D2, D1, D2

disjoint closed sets. Every member of c is either contained in D1 or meets
D2. This implies c is not connected, contradicting the initial assumption.
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Lemma 2.1. {Mx}x∈X ∈ C(V (M)) and the function m : X → {Mx}x∈X
given by m(x) = Mx is a homeomorphism.

Proof. Recall that r : M → X is the continuous function given by r(c) =⋂
cα∈c cα. Notice that for x ∈ X,Mx = r−1({x}), which impliesMx ∈ V (M)

and the functionm−1 : Z → X, where Z = {Mx}x∈X ⊂ V (M), is continuous
and 1-to-1. Now, the set Z is closed in V (M) and therefore compact, and
thus m−1 is a homeomorphism. Hence m = r−1 is a homeomorphism, and
X being connected, so is Z.

3. Local transitivity, strong arcwise-inseparability and strong R-
inseparability. In this section we introduce important topological assump-
tions used throughout the article and discuss some examples. Our actions of
a group G on X will always be induced by G being a subgroup of Homeo(X),
equipped with the compact-open topology (which in this setting is the same
as the uniform convergence topology, see [Mun75, p. 286]). The action of G
on X induces a natural action on V n(X) for all n ∈ N. Given g ∈ G and
A ∈ V (X) (i.e. A ⊂ X is a closed set) one defines gA = {ga | a ∈ A}.
The action of G on V n for general n is defined inductively, based on the
equality V n(X) = V (V n−1(X)). We assume that the group (or the action)
is locally transitive in the sense that for any open set U ⊂ X and x ∈ U the
set {gx | g ∈ GU} is a neighborhood of x, where

GU = {g ∈ G | gx = x for x /∈ U}.

For a compact interval I ⊂ R we denote by Cs(I,X) the collection of
continuous simple (injective) paths p : I → X. We call such paths arcs.
As is usually done in the literature, the images of arcs are called arcs as
well. A space X is called strongly arcwise-inseparable (SAI) if for any non-
empty open and connected set U ⊂ X and any arc p ∈ Cs([a, b], U), the
set U \ p([a, b]) is connected and non-empty. A space X is called strongly
R-inseparable (SRI) if for any non-empty open and connected set U ⊂ X
and any arc p ∈ Cs([a, b], X), the set U \p([a, b]) is connected and non-empty.
Notice that (SRI) implies (SAI). Throughout the articleX is assumed to have
one of these two properties. Here are the basic facts the reader should keep in
mind. Closed manifolds of dimension 2 are strongly arcwise-inseparable (see
Theorem A.1). Closed manifolds of dimension 3 or higher and the Hilbert
cube are strongly R-inseparable (see Theorem A.3).

We now list some locally transitive groups (except the case of the Hilbert
cube, which is proven in Lemma A.2, the other examples are simple and
therefore the proofs are omitted):

Examples 3.1 (Locally transitive groups). Let X be the Hilbert cube or
a closed manifold of dimension 2 or higher. Then any group containing one
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of the following groups is locally transitive:
(1) G = Homeo0(X), the arcwise connected component of the identity in

Homeo(X).

For X an orientable manifold :
(2) G = Homeo+(X), the group of orientation preserving homeomor-

phisms.

For X a smooth manifold :
(3) G = Diffeo0(X), the arcwise connected component of the identity in

the group of diffeomorphisms of X.

4. The minimal subspaces of V (X). Let X be a Peano continuum
(i.e. a metric, compact, connected and locally connected space) with the
property that the removal of a point from any open and connected set does
not affect its connectedness.

We now characterize the minimal subspaces of V (X). Recall that the
action of G on X is called n-transitive if |X| ≥ n and for any two n-tuples of
distinct points (a1, . . . , an), (b1, . . . , bn) ∈ Xn, there exists g ∈ G such that
g(ai) = bi for i = 1, . . . , n.

Lemma 4.1 (Global transitivity). Suppose X is a continuum such that
for each connected open set U ⊂ X and each p ∈ X the set U \ {p} is
connected. If the action of G on X is locally transitive then for any open and
connected set U ⊂ X, the action of GU on U is n-transitive for all n ∈ N.

Proof. By induction. The case n = 1 follows from the assumption, as
given x ∈ U the set {gx | g ∈ GU} is open and closed in U , and hence is
equal to U . Let now n > 1. Let (a1, . . . , an) and (b1, . . . , bn) be two n-tuples of
distinct points of U . By assumption there exists an f ∈ GU so that f(ai) = bi
for i = 1, . . . , n − 1. Let V = U \ f({a1, . . . , an−1}). Then V is open and
connected. Apply the case n = 1 to find a g ∈ GV so that g(f(an)) = bn.
Define h = g ◦ f . Then h ∈ GU and h(ai) = bi for i = 1, . . . , n.

Theorem 4.2. Under the assumptions of the preceding lemma the only
minimal subspaces of V (X) are:

(1) {X},
(2) {{x} | x ∈ X}.
Proof. It is clear that the two given subspaces are minimal. To show they

are the only minimal subspaces it is enough to prove that any element of
V (X) has the property that the closure of its orbit intersects one of these
subspaces. So let A ∈ V (X). If |A| < ∞ then by Lemma 4.1 one can find
gn ∈ G, n ∈ N, and z ∈ X so that gn(A) → {z} as n → ∞, i.e. the closure
of the orbit of A intersects the second subspace. If |A| = ∞ we will show
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that the closure of the orbit of A intersects the first subspace. Let ε > 0 and
let {xi}li=1 ⊂ X be an ε-net of X. Find {yi}li=1 ⊂ A and g ∈ G such that
g(yi) = xi. Then d(g(A), X) < ε.

5. Approximation of M by ray-induced chains. From now on we
assume that X is a strongly arcwise-inseparable Peano continuum. In this
section we will show that chains in M can be approximated by so-called
ray-induced chains.

Definition 5.1. We call the members of Cs([0,∞), X) rays. By an R+-
chain we mean any element c of M such that c = (ct)t∈[0,∞] and there exists
a ray γ with ct = γ([0, t]) for all t <∞. When the last condition is satisfied,
we say that c is induced by γ. Observe that then c∞ = X (this follows from
the maximality of c) and thus γ is dense in X (in the sense that γ([0,∞))
is dense in X), again by maximality. We define

R = {c ∈M | c is an R+-chain} and Rx = R ∩Mx (x ∈ X).

Lemma 5.2. Let γ ∈ Cs([0, k], U), where U is an open connected set in X.
Then given ε > 0 and x1, . . . , xl ∈ U there exists an arc γ′ ∈ Cs([0, k+ l], U)
such that γ′(t) = γ(t) for t ≤ k − 1, d(γ′(t), γ(t)) < ε for t ∈ [k − 1, k] and
x1, . . . , xl ∈ Bε(γ′([k, k + l])).

Proof. An easy induction shows that it suffices to consider the case when
l = 1. If x1 ∈ γ([0, k]) we are done, so assume otherwise. Pick s ∈ (k − 1, k)
with diam γ([s, k]) < ε/2, and using the connectedness of the set U \γ([0, s])
pick an arc p in it from γ(k) to x1. The desired arc γ′ is obtained by first
traveling along γ until we hit p, and then along p. (Parametrization needs to
be adjusted so that γ′(t) = γ(t) for t ≤ s and γ(t) stays close to γ(s) = γ′(s)
for t ∈ [s, k]).

Theorem 5.3. R = M (for X a Peano continuum which is SAI ).

Proof. Let c ∈ M and ε > 0. By Lemma 14.4 of [IN99] there is an
embedding j of [0,∞] into C(X) such that c = j([0,∞]) and j(t1) ⊂ j(t2) for
t1 < t2. Subdivide [0,∞] into infinitely many intervals, each mapped under j
to a set of diameter < ε. By changing the units in the domain one can assume
that the intervals have diameter less than 1 and thus d(j(t), j(k)) < ε for all
reals t ≥ 0 and integers k such that k − 1 ≤ t ≤ k. Denote by Conε(j(k)) ⊂
Bε(j(k)) the connected component of Bε(j(k)) which contains j(k); it is
open in X by the local connectedness of X. Inductively we construct arcs
γk : [0, k]→ X such that:

(1) {γk(0)} = r(c), γk([k − 1, k]) ⊂ Conε(j(k)) and
j(k) ⊂ Bε/k(γk([k − 1, k])),
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(2) γk(t) = γk−1(t) for t ∈ [0, k − 2],
(3) d(γk(t), γk−1(t)) < ε for t ∈ [k − 2, k − 1].

To this end suppose first that k ≥ 2 and γk has already been constructed.
Let U = Conε(j(k)). Let x1, . . . , xl be an ε/k-net of j(k). Applying Lemma
5.2 with γ = γk and then changing the parameter set of γ′ from [0, k + l] to
[0, k + 1] we get the desired arc γk+1. This takes care of the inductive step;
the case k = 1 is handled similarly. (Conditions (2) and (3) are then void.)
Put γ(t) = limk→∞ γk(t) and at = γ([0, t]) for t ≥ 0. Since

⋃
k j(k) = X we

infer from (1) that the image of γ is dense in X. Moreover, ak = γk+1([0, k])
by (2), and thus from (1), (3) and the monotonicity of the sequence (j(n))
it follows that ak is contained in the 2ε-neighborhood of j(k) and contains
the set S = γk+1([k− 1, k]) such that j(k) ⊂ B2ε(S). Hence d(ak, j(k)) < 2ε
for all k. Now if t ≥ 0, say t ∈ [k, k + 1] for some integer k, then

at ⊂ ak+1 ⊂ B2ε(j(k + 1)) ⊂ B3ε(j(t)),
B3ε(at)) ⊃ B3ε(ak) ⊃ Bε(j(k)) ⊃ j(t).

Thus the ray-induced chain {at}t≥0 ∪ {X} is 3ε-close to c, completing the
proof.

Until now we have assumed that X is strongly arcwise-inseparable. Sup-
pose nowX is strongly R-inseparable. Under this assumption we first present
a lemma which is a generalization of Lemma 5.2, and then a definition which
is a generalization of Definition 5.1. Finally, we state Theorem 5.6 which
generalizes Theorem 5.3. The proof of Theorem 5.6 is omitted as it can be
supplied by a reader who has understood the proof of Theorem 5.3.

Lemma 5.4. Let γ1, . . . , γN ∈ Cs([0, k], Ui) be disjoint arcs, where
U1, . . . , UN are open connected sets in X. Then, given ε, δ > 0, there ex-
ist a > k and disjoint arcs γ′i ∈ Cs([0, a], Ui) such that γ′i(t) = γi(t) for
t ≤ k − δ, d(γ′i(t), γi(t)) < 2ε for t ∈ [k − δ, k] and each arc γ′i([0, a]) is
ε/2-dense in X.

Moreover , if for all i one has diamUi < ε and γi(k) ∈ Ui \ Fi for some
closed set Fi with Ui \ Fi connected , then the arcs γ′i can be constructed so
that γ′i(t) /∈ Fi for t ≥ k − δ.

Proof (sketch). By considering the arcs t 7→ γi(Ct) for C large enough,
and eventually switching back to the original parametrization, one can as-
sume that δ = 1. The first part is then proved as in Lemma 5.2, using the
(SRI) property of X to make the approximating arcs disjoint and taking for
x1, . . . , xl an ε/2-net in X.

The idea of the proof of the “moreover” part is first to use the above with ε
replaced by ε/2 and then, for each i, to subdivide the segment [k− δ, a] into
finitely many segments, so small that they are mapped by γ′i into X \ Fi
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or into Ui. Then, possibly combining adjacent segments which are mapped
to Ui, one can assume that their endpoints are mapped to Ui \ Fi. The
connectedness of Ui \ Fi now allows us to modify γ′i on such a segment so
that the altered γ′i takes values in Ui\Fi. Since diamUi < ε, the modifications
will stay ε-close to the unaltered γ′i’s, and hence 2ε-close to γi on [k−δ, k].

Definition 5.5. Let N ∈ N. Equip MN with the product topology. We
define the subspace RN

∗ ⊂MN as follows: (c1, . . . , cN ) ∈ RN
∗ iff:

(1) ci = {γi([0, t])}t∈R+ ∪ {X} ∈ R, i = 1, . . . , n,
(2) γi(R+) ∩ γj(R+) = ∅, 1 ≤ i < j ≤ n.

Theorem 5.6. RN
∗ = MN (for X a Peano continuum which is SRI ).

6. The minimality of M . Let X be a Peano continuum which is
strongly arcwise-inseparable. Our goal in this section is to show that M is
minimal under the action of G. We start with a definition:

Definition 6.1. T is a δ-tube for p ∈ Cs([0, 1], X) if for some 0 = t0 <
t1 < · · · < tl = 1 there exist open connected subsets U1, . . . , Ul (the “links”
of the tube) such that T =

⋃l
i=1 Ui and

(1) diamUi < δ and p([ti−1, ti]) ⊂ Ui for i = 1, . . . , l,
(2) ClX(Ui) ∩ ClX(Uj) 6= ∅ iff |i− j| ≤ 1.

Lemma 6.2. Let p ∈ Cs([0, 1], X) and δ > 0. Then p has a δ-tube con-
tained in a given neighborhood U of p([0, 1]).

Proof. Using simplicity of p we may choose 0 = t0 < · · · < tl = 1 such
that diam p([ti−1, ti]) < δ/2 for each i = 1, . . . , k. Then there is a % < δ/2
such that for Bi = B(p([ti−1, ti]), %) we have Bi ∩ Bj = ∅ for |i − j| > 1.
We define Ui to be the connected component of p([ti−1, ti]) in Bi. By local
connectedness, each Ui is open and so T =

⋃
i Ui is a δ-tube for p. Also, if δ

is small enough then T ⊂ U .

Introduce the notation:

dist(A,B) = inf
x∈A, y∈B

d(x, y) and dist(x,A) = dist({x}, A)

for A,B ⊂ X. Notice that in general dist(x,A) < d({x}, A) and dist(A,B) <
d(A,B).

Lemma 6.3. Let T =
⋃n
i=1 Ui be an ε-tube around an arc p : [0, a]→ X.

Then:

(1) For every continuum K ⊂ T such that p(0) ∈ K there exists a t ∈
[0, a] with d(K, p([0, t])) < ε.
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(2) If q : [0, b]→ T is an arc satisfying q(0) = p(0) and q(b) belongs to a
sufficiently small neighborhood of p(a), then for each s ∈ [0, a] there
exists a t ∈ [0, b] with d(p([0, s]), q([0, t])) < ε.

(3) If a chain c ∈ Mp(0) is such that p(a) belongs to a sufficiently small
neighborhood of C ⊂ T for some C ∈ c, then given s ∈ [0, a] there
exists a C ′ ∈ c such that d(p([0, s]), C ′) < 2ε.

Proof. (1) Let j = n if K ∩ Un 6= ∅ and j = min{i | K ∩ Ui = ∅}
otherwise. Then t = tj does the job.

(2) For the above mentioned sufficiently small neighborhood of p(a) we
take Un from the definition of a tube. Let first s = tj for some j ≥ 1.
Then, with t = inf{t′ ∈ [0, b] | q(t′) /∈ Uj−1}, it is easy to see that d(q([0, t]),
p([0, tj ])) < ε. The general case follows similarly.

(3) Let B2δ(p(a)) be a sufficiently small neighborhood of p(a) as desired
in (2) for some 0 < δ < ε. By Theorem 5.3 there exists a chain c′ ∈ Mp(0)

induced by a ray γ : [0, 1]→ X with dense image and γ(0) = p(0), such that
d(c, c′) < δ; here we require that δ < dist(p([0, a]), X \ T ). Then for some
q > 0 one has γ([0, q]) ⊂ T and d(p(a), γ(q)) < 2δ. By (2), there exists a
t ∈ [0, q] such that d(p([0, s]), γ([0, t])) < ε. Thus it remains to choose C ′ so
that d(γ([0, q]), C ′) < ε.

Recall Mx = {c ∈M | r(c) = {x}}.

Lemma 6.4. Let x ∈ X, ε > 0 and c ∈ Mx. Set f = {γ([0, t])}t∈R+ ∪
{X} ∈ Rx. Let a ∈ R be such that d(X, γ([0, a])) < ε. Let U ⊂ X be an open
subset such that γ([0, a]) ⊂ U . Then there is g ∈ GU with d(g(c), f) < 3ε.

Proof. As γ|[0,a] ⊂ U is a simple curve, Lemma 6.2 tells us that γ|[0,a] has
an ε-tube T in U . Using Lemma 2.2 one can choose C ∈ c so that C 6= {x}
and C ⊂ T . Choose q ∈ C \ r(c). Using Lemma 4.1 choose g ∈ G so that
g(q) = γ(a), g(γ(0)) = γ(0) and g|T c = Id, which implies g|Uc = Id. In an
imprecise manner one can say that g “stretches” C along γ([0, a]). Therefore
it should not come as a surprise that we will now be able to show that
d(g(c), f) < 3ε. In fact, this inequality follows directly from parts (1) and
(3) of Lemma 6.3 if one takes into account that for s > a and D ∈ c with
C ⊂ D the sets γ([0, s]) and g(D) are 2ε-dense in X (the latter contains
g(C) which contains a set 3ε-close to γ([0, a])).

Theorem 6.5. Let G act locally transitively on a Peano continuum X
which is strongly arcwise-inseparable. Then the action of G on M(X ) is
minimal.

Proof. Let c, f ∈ M and ε > 0. Using transitivity of G (Lemma 4.1)
one can assume that {r} = r(c) = r(f). By Theorem 5.3 one can assume
f = {γ([0, t])}t∈R+ ∪ {X} ∈ R. Choose a > 0 so that d(γ([0, a]), X) < ε.
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Now invoke Lemma 6.4 with U = X to conclude there is a g ∈ G such that
d(g(c), f) < 3ε.

Corollary 6.6. Under the assumptions of Theorem 6.5, the action of G
on the universal minimal G-space UG is not 1-transitive.

Proof. It is enough to show that the minimal G-space M is not 1-
transitive. Let c ∈ R; it is induced by some ray γ. Let r ∈ X. Define
v = {B(r, t)}t∈R. Since no arc is SAI it is easy to show that one cannot
map balls B(r, t) (homeomorphically) onto arcs of the form γ([0, a]). This
implies there is no g ∈ G such that g(v) = c, so the action of G on M is not
1-transitive.

7. The uniqueness of M as a minimal subspace of Φ

Definition 7.1. Let x ∈ X, ε > 0, and N ∈ N. A sequence B of open
sets x ∈ B1 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ BN−1 ⊂ BN is an (N, ε) annuli telescope
around x if there exists an open set U with BN ⊂ U ⊂ B(x, ε) such that
U \Bi is connected for i = 1, . . . , N . Notice that if V is open and connected
with U ⊂ V then V \Bi is connected for i = 1, . . . , N . For convenience one
defines A1 = B1 and Ai = Bi \ Bi−1, i = 2, . . . , N . Then {Ai}Ni=1 is called
the accompanying telescope decomposition.

Moreover, we say that c ∈ Φx is B-compatible if there exist {Ci}Ni=1 ⊂ c
such that {x} = C1 ⊂ · · · ⊂ CN , Ci ⊂ Bi and Ci ∩Ai 6= ∅ for i = 1, . . . , N .

We say that X has the telescoping annuli property if for any x ∈ X and
ε > 0 there is a (1, ε) annuli telescope around x, which implies by a simple
argument that for any ε > 0 and N ∈ N there is an (N, ε) annuli telescope
around x.

Theorem 7.2. If X is a Peano continuum which is SAI and has the tele-
scoping annuli property , then the only minimal subspace of Φ(X) is M(X).

Proof. Let c ∈ Φ. Our goal will be to show that the closure of the orbit
of c intersects M . Let ε > 0. Let f = {γ([0, t])}t∈R+ ∪ {X} ∈ Rr(c). Let
a ∈ R with d(X, γ([0, a])) < ε. Let T =

⋃N
i=1 Ui be an ε-tube of γ([0, a])

with diamUi < ε and 0 = t0 < t1 < · · · < tl = a such that p([ti−1, ti]) ⊂ Ui.
Define Tk =

⋃k
i=1 Ui, k = 1, . . . , N . AsX has the telescoping annuli property

one can choose BN = {Bi}Ni=1 to be an annuli telescope around r(c) such
that r(c) ⊂ B1 ⊂ · · · ⊂ BN ⊂ V ⊂ U1, with V open and V \ Bi connected
for i = 1, . . . , N . Let {Ai}Ni=1 be its accompanying telescope decomposition.

By induction we will find gN ∈ G such that gN (c) is BN -compatible.
Define Bk = {Bi}ki=1 for k = 1, . . . , N . Notice that for g1 = Id, g1(c) is B1-
compatible. This is the base step of the induction. Assume we have found
gk ∈ G, k < N , such that gk(c) is Bk-compatible. We will now construct
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gk+1 ∈ G so that gk+1(c) is Bk+1-compatible. Let gk(C1) ⊂ gk(C2) ⊂ · · · ⊂
gk(Ck) ∈ gk(c) with gk(Ci) ⊂ Bi and gk(Ci)∩Ai 6= ∅ for i = 1, . . . , k. LetR =
[gk(c)]Bk+1

. If R∩Ak+1 6= ∅, let gk+1 = gk and Ck+1 = g−1
k+1(R). If R∩Ak+1

= ∅, define R+ =
⋂
{gk(cα) | gk(cα)∩Bc

k+1 6= ∅}. As dist(Bc
k+1, Bk) > 0, the

maximality of c implies that R+ = R ∪ {p} for some p ∈ Bc
k+1. By Lemma

4.1, as X \ Bk is connected one can find h ∈ G and y ∈ Ak+1 such that
h(p) = y and h|Bk = Id. Define gk+1 = h◦ gk. Notice that gk+1(Ci) = gk(Ci)
for i = 1, . . . , k. Moreover, gk+1◦g−1

k (R+) ⊂ Bk+1 and gk+1(R+)∩Ak+1 6= ∅.
This finishes the induction.

We now choose distinct yi ∈ gN (Ci) ∩ Ai and zi ∈ Ui, i = 1, . . . , N .
Set B0 = ∅. As Tk \ Bk−1 is open and connected, using property (SAI)
one can choose disjoint arcs pk ∈ Cs([0, 1], Tk \ Bk−1) with pi(0) = yi and
pi(1) = zi. Then one can find disjoint open connected subsets pi([0, 1]) ⊂
Wi ⊂ Tk \ Bk−1 , i = 1, . . . , N, and therefore by Lemma 4.1 we can find
qi ∈ G so that qi(yi) = zi and [qi]|W c

i
= Id. Let q = q1 ◦ · · · ◦ qN ◦ gN .

Notice that q(Ci) ⊂ Ti ⊂ B(γ([0, ti]), ε) ⊂ B(q(Ci), 2ε) for i = 1, . . . , N . We
claim this implies d(q(c), f) < 2ε. Indeed, for D ∈ c with Ci ⊂ D ⊂ Ci+1,
d(q(D), γ([0, ti])) < 2ε. For ti ≤ s ≤ ti+1 one has d(γ([0, s]), q(Ci)) < 2ε.
For s ≥ a one has d(γ([0, s]), X) < ε. Finally, for CN ⊂ D for D ∈ c one has
d(γ([0, a]), D) < 2ε.

8. The minimal subspaces of V (M). In this section we assume X
is a strongly R-inseparable Peano continuum. For Lemma 8.4, Corollary 8.5
and Theorem 8.6 we assume (X,G) has the boundary shrinking property
(to be defined in this section). Our goal is to find all minimal subspaces of
V (M). Three minimal subspaces are evident: Ss = {M}, Sf = {Mx}x∈X
and Sp = {{c} | c ∈ M}. The surprising conclusion of this section is that
these are the only minimal subspaces of V (M). For F ∈ V (M) let

GF = {g(F ) | g ∈ G}, r(F ) = {r(c) | c ∈ F}.

In order to facilitate the statement of various theorems we call F ∈ V (M)
space-like, fiber-like or point-like if respectively ClV (M)(GF ) ∩ Ss 6= ∅,
ClV (M)(GF ) ∩ Sf 6= ∅ or ClV (M)(GF ) ∩ Sp 6= ∅. We start with an easy
lemma:

Lemma 8.1. If |r(F )| =∞ then F is space-like.

Proof. Let F ⊂ V (M) be such that |r(F )| =∞. Let ε > 0. Let {f i}Ni=1 ⊂
M be an ε-net ofM . Using Lemma 2.1, asX is non-trivial and connected, one
can assume that r(f1), . . . , r(fN ) are distinct. Choose ci ∈ F , i = 1, . . . , N ,
such that r(ci) = {ri}, i = 1, . . . , N, are distinct. Using the N -transitivity
of G (Lemma 4.1) one can assume that r(f i) = {ri}.
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We will now find g ∈ G so that d(g(ci), f i) < 3ε for i = 1, . . . , N .
By Lemma 5.6 one can assume (f1, . . . , fN ) ∈ RN

∗ , in particular f i =
{γi([0, t])}t∈R+ ∪ {X} ∈ R, i = 1, . . . , N, γi ∈ Cs(R+, X). Let a ∈ R+

with d(γi([0, a]), X) < ε, i = 1, . . . , N . Find disjoint open sets U1, . . . , UN
such that γi([0, a]) ⊂ U i. Lemma 6.4 yields gj ∈ GUj , j = 1, . . . , N , such
that d(gj(cj), f j) < 3ε. Define g = g1 ◦ · · · ◦ gN . Then d(g(cj), f j) < 3ε, j =
1, . . . , N . Hence dV (M)(G(F ),M) < 4ε.

Definition 8.2. Let ε > 0. A non-empty connected open set A is said
to ε-encircle a connected closed subset B ⊂ X if A ∩ B = ∅ and A ∪ B is
open and connected with diam(B ∪A) < ε. Notice that the fact that A∪B
is open implies ∂B ⊂ ∂A and thus indeed “A encircles B”.

Definition 8.3. Let ε > 0 and x ∈ X. An open connected subset A ⊂ X
has the (G, ε, x)-boundary shrinking property if:
• The boundary ∂A is connected and has at least two points.
• For any closed W ( ∂A, δ > 0 and y ∈ A with y 6= x, there exists
h ∈ GB(A,δ) such that h(x) = x and h(W ) ⊂ B(y, δ).
• There exists an open connected set E which ε-encircles A.

We say that the G-space X has the boundary shrinking property (BSP) if
for any x ∈ X and ε > 0 there exists an open connected set A with x ∈ A
which has the (G, ε, x)-boundary shrinking property.

Lemma 8.4. Let the Peano continuum X be SRI and let (X,G) have the
boundary shrinking property. Suppose x ∈ X and F ∈ V (Mx). Then F is
either point-like or fiber-like.

Proof. Let ε > 0 and e ∈ M . We say F is (ε, e)-point-like if there exists
g ∈ G such that d(g(F ), {e}) < ε, and ε-fiber-like if there exists g ∈ G such
that d(g(F ),Mx) < ε for some x ∈ X. We will prove that for a given ε > 0,
F is either 3ε-fiber-like or (2ε, e(ε))-point-like for some e(ε) ∈M . This will of
course imply the statement of the lemma. Let ε > 0. Using property (BSP) of
(X,G) choose B with the (G, ε, x)-boundary shrinking property. Let V be an
open connected set ε-encircling B. Choose Z with the (G, ε/2, x)-boundary
shrinking property. Let A be an open connected set ε/2-encircling Z. We
arrange so that ClX(Z ∪ A) ⊂ B, which implies there is δ1 > 0 such that
B(Z, δ1) ⊂ B. Let f = {fκ}κ∈K ∈ F . Recall fZ =

⋃
{fα | fα ⊂ Z}. Define

S(f) = fZ∩∂Z. By Lemma 2.2, S(f) 6= ∅. DefineH = {f ∈ F | S(f) 6= ∂Z}.
We first assume H 6= ∅. Let f1, . . . , fN ∈ F . Define

I(f1, . . . , fN ) = {f ∈ H | ∃i ∈ {1, . . . , N} S(fi) ∩ S(f) 6= ∅},(8.1)
Ic(f1, . . . , fN ) = H \ I(f1, . . . , fN ).(8.2)

We are now going to choose a sequence of distinct elements {fi}Ni=1 ⊂ F
where N ∈ N ∪ {∞}. Start by choosing an arbitrary f1 ∈ H. If Ic(f1) = ∅
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stop. If not choose f2 ∈ Ic(f1). Clearly f2 6= f1. If Ic(f1, f2) = ∅ stop. If
not choose f3 ∈ Ic(f1, f2). Continue in this manner. The inductive process
results in one of the following two possibilities: (1) N ∈ N, (2) N =∞.

In case (1) we claim that F is (2ε, e(ε))-point-like for some e(ε) ∈ M .
Let W =

⋃N
i=1 S(fi) be a closed set. Notice that as ∂Z is connected and

S(fi) ∩ S(fj) = ∅ for 1 ≤ i < j ≤ N , we have W ( ∂Z. As B ∪ V
is open and connected, one can find ζ ∈ Cs([0, 1], B ∪ V ) with ζ(0) = x
and ζ(1) ∈ V (in particular ζ(1) /∈ B). Invoke Lemma 5.4 (with k = 1,
F1 = B and U1 = B ∪ V ) to find ζ ∈ Cs(R+, X) and a, δ > 0 such that
e(ε) = c = {ζ([0, t])}t∈R ∪ {X} ∈ Rx, ζ([0, 1 − δ]) ⊂ B ∪ V , ζ(t) /∈ B for
1− δ ≤ t ≤ a and d(ζ([0, a]), X) < ε. Let T =

⋃R
k=1 Uk be an ε-tube of ζ |[0,a]

with U1 = B (this can be easily arranged by redefining ζ inside B ∪ V ).
Using the boundary shrinking property one can find h ∈ GB, y ∈ Z and
δ0 > 0 such that h(W ) ⊂ B(y, δ0) and h(x) = x. The δ0 can be chosen small
enough so that Lemma 4.1 implies there is g1 ∈ GT with g1(x) = x and
g1(B(y, δ0)) is inside a sufficiently small neighborhood of ζ(a) (in the sense
of Lemma 6.3). Let g = g1 ◦ h.

We will now show that d(g(F ), c) < 2ε. It is enough to prove that for all
f ∈ F one has d(g(f), c) < 2ε. Let f ∈ F . If f ∈ H then S(f) ∩W 6= ∅.
If f /∈ H, then clearly the same conclusion holds. Notice that h(f) ∈ Mx,
dist(h(fZ), y) < δ0 and h(fZ) ⊂ B. Finally, ζ(0) ∈ g(fZ) ⊂ T is sufficiently
close to ζ(a) and therefore parts (1) & (3) of Lemma 6.3 imply the desired
conclusion.

We now turn to the case N = ∞. We claim that in this case F is 3ε-
fiber-like. Let {ci}Li=1 ⊂Mx be an ε-net of Mx. Choose fi ∈ F, i = 1, . . . , L,
so that S(fi) ∩ S(fj) = ∅ for i 6= j. The idea now will be to approximate
the cis by R+-chains si and then act on the fis with an element g ∈ G
such that g(fi) will approximate si. We will make an essential use of the
fact that the fis intersect ∂Z in disjoint locations in order to construct the
above-mentioned g ∈ G.

Choose yi ∈ S(fi) and µ > 0 so that µ < min{d(S(fi), [fj ]Z) | 1 ≤ i <
j ≤ L}. As X is locally connected one can choose open connected subsets
Ci with yi ∈ Ci ⊂ B(yi, µ) ∩ (A ∪ Z), i = 1, . . . , L, where we use the fact
that A∪Z is open. As Ci are open and connected, one can find simple paths
γi ∈ Cs([0, 1], Ci), i = 1, . . . , L, such that γi(0) = yi and γi(1) ∈ A. Now
invoke Lemma 5.4 (with k = 1, F1 = · · · = FL = Z and U1 = · · · = UL =
Z ∪ A) to find a > 0 and (s1, . . . , sL) ∈ RL

∗ with r(si) = {yi}, i = 1, . . . , L,
represented as si = {ξi([0, t])}t∈R+ ∪ {X}, i = 1, . . . , L, so that there exists
δ > 0 with ξi([1− δ, a])∩Z = ∅, [ξi]|[0,1−δ] = [γi]|[0,1−δ], d(X, ξi([0, a])) < ε/2
for i = 1, . . . , L and

(8.3) d(ci, si) < ε, i = 1, . . . , L.
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While defining the ξi one can construct disjoint ε-tubes Ti =
⋃qi
k=1 U

k
i , i =

1, . . . , L, with U1
i = Z, U2

i = Ci and ζi([0, a]) ⊂ Ti. Notice that Qi =⋃qi
k=2 U

k
i is an ε-tube (for ζ|[1−δ,a]) so one can choose gi ∈ GQi with g(yi) =

ξi(a). Let f ′i be the initial segment of fi ending at [fi]Z . By Lemma 6.3,

(8.4) d(gi(f ′i), si) < 2ε, i = 1, . . . , L.

Define g = g1 ◦ · · · ◦ gL. As gi ∈ GQi we have [gi]|[fj ]Z = Id for 1 ≤ i <

j ≤ L. From this and (8.3) and (8.4) we conclude that d(ci, g(fi)) < 3ε for
i = 1, . . . , L. In particular d(g(F ),Mx) < 3ε. Finally, if H = ∅ we choose
{∗} = W ( ∂Z and repeat the same construction used in the case H 6= ∅
and N = 1.

Corollary 8.5. Under the assumptions of Lemma 8.4, if F ∈ V (Mx)
and |F | <∞, then F is point-like.

Theorem 8.6. Let the Peano continuum X be SRI and let (X,G) have
the boundary shrinking property. Then the only minimal subspaces of V (M)
are:

(1) {M},
(2) {Mx}x∈X ,
(3) {{c} | c ∈M}.

Proof. TheG-invariance of all three subspaces is clear. The fact that {M}
and {{c} | c ∈ M} are closed is trivial. The fact that {Mx}x∈X is closed is
proven in Lemma 2.1. The minimality of {M} is trivial. The minimality of
{Mx}x∈X is a consequence of Lemma 2.1 and the transitivity of the action
of G on X (Lemma 4.1). The minimality of {{c} | c ∈M} is a consequence
of Theorem 6.5. To show that the given subspaces are the only minimal
subspaces it is enough to show that any F ∈ V (M) is either space-like,
fiber-like or point-like. Let F ∈ V (M). If |r(F )| = ∞, then by Lemma 8.1,
F is space-like. If |r(F )| ∈ N one can assume that |r(F )| = 1. By Lemma
8.4, F is either point-like or fiber-like.

9. The strong proximality of M . The goal of this section is to prove
thatM is proximal under the assumption of the previous section and strongly
proximal under additional assumptions. Let us start with the definition of
these two terms. M is said to be proximal under G if for any c, f ∈ M one
can find gn ∈ G such that limn→∞ d(gn(c), gn(f)) = 0; and M is strongly
proximal under G if for any Borel probability measure µ on M , there exists
a sequence (gn) ⊂ G such that [gn]∗(µ) converges to a measure concentrated
at a singleton.

Theorem 9.1. Let the Peano continuum X be SRI and let (X,G) have
the boundary shrinking property. Then (M,G) is proximal.
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Proof. This can be proven using only the assumptions of Section 6, but
here we will use instead the method of Lemma 8.4. Let c, f ∈ M . One can
assume that c, f ∈ Mx for some x ∈ X. Define F = {c, f} ∈ V (M). As
|F | = 2, by Corollary 8.5, F is point-like, i.e., there exist gn ∈ G so that
diam gn(F ) → 0 as n → ∞, which is equivalent to the proximality of the
pair (c, f).

Theorem 9.2. Let the Peano continuum X be SRI and let (X,G) have
the boundary shrinking property. If (X,G) is strongly proximal then (M,G)
is strongly proximal.

Proof. Let µ be a Borel probability measure on M . Let r∗(µ) be the
projection of µ under the map r : M → X. Using the strong proximality of
(X,G) one can assume that r∗(µ)({x}) = 1 for some x ∈ X. Let ε > 0. We
will prove that one can find g ∈ G and c ∈ M such that g∗(µ)(B(c, 2ε)) >
1− ε. By standard compactness arguments this will show (M,G) is strongly
proximal.

Using property (BSP) of (X,G) choose Z with the (G, ε/2, x)-boundary
shrinking property such that x ∈ Z ⊂ B(x, ε/2). Let f ∈Mx. Define S(f) =
fZ ∩∂Z. Let W ( ∂Z be a closed subset. Repeating an argument appearing
in Lemma 8.4, we can find c ∈ Rx and hW ∈ G such that f ∈Mx with S(f)∩
W 6= ∅ implies d(hW (f), c) < 2ε. Define EW = {f ∈Mx | S(f) ∩W 6= ∅}
and FW = {f ∈ Mx | d(hW (f), c) < 2ε}. Notice that FW is open in Mx

and EW ⊂ FW . Another useful property is that if W0,W1 ( ∂Z are closed
subsets such that ∂Z \ W0 and ∂Z \ W1 are disjoint then Mx \ FW0 and
Mx \ FW1 are also disjoint. Indeed, if f ∈ Mx \ FWi then S(f) ⊂ ∂Z \Wi.
This implies S(f)∩Wi 6= ∅, i.e. f ∈ EWi

⊂ FWi
, which implies f /∈Mx \FWi

(here we use the convention 0 = 1, 1 = 0). Let n ∈ N with 1/n ≤ ε. As ∂Z is
connected and has at least two points one can choose n non-empty pairwise
disjoint open subsets O1, . . . , On ⊂ ∂Z. Define Wi = ∂Z \ Oi, i = 1, . . . , n.
Then the closed sets Mx \ FWi , i = 1, . . . , n, are pairwise disjoint. Hence
there exist 1 ≤ j ≤ n so that µ(Mx \FWj ) ≤ 1/n < ε. Thus µ(FWj ) > 1− ε,
i.e. [hWj ]∗(µ)(B(c, 2ε)) > 1− ε.

We call (X,G) base-wise shrinkable if X has a basis {Uα}α∈A (called a
shrinkable basis) such that for any pair of open subsets V ⊂ V ⊂ Uα,W ⊂ Uα
there is g ∈ GUα with g(V ) ⊂ W . It turns out that for such spaces one can
prove strong proximality.

Lemma 9.3. Suppose X is a Peano continuum such that for each con-
nected open set U ⊂ X and each p ∈ X the set U \{p} is connected. If (X,G)
is base-wise shrinkable then (X,G) is strongly proximal.

Proof. Let M(X) be the space of Borel probability measures of X. Let
ε > 0. We will show there exists an open set Uε with diamUε < ε and gε ∈ G
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such that µ(gε(Uε)) > 1 − ε. Cover X by elements from a shrinkable basis
{Uk}N−1

k=1 so that diamUk < ε for k = 1, . . . , N − 1. Assume without loss of
generality that there exists a non-empty open subset UN ⊂ U1 \

⋃N−1
k=2 Uk.

Define U rk = {y ∈ Uk | dist(y, U ck) > 1/r}, r ∈ N, 1 ≤ k ≤ N . Notice
that Uk =

⋃∞
r=1 U

r
k . If there is g ∈ G such that µ(g(U1)) > 1 − ε, we

are done. Assume otherwise. Let s = supg∈G µ(g(UN )). As UN ⊂ U1, we
have s ≤ 1 − ε. Using the fact that U1 is part of a shrinkable basis one
can assume that s − (1− s)/2N < µ(UN ) ≤ s. As µ(U1) ≤ 1 − ε, there is
2 ≤ k ≤ N−1 such that µ(Uk) > (1− s)/2N , in particular there is l ∈ N with
µ(U lk) > (1− s)/2N . Choose q ∈ N so that s− (1− s)/2N < µ(U qN ) ≤ s. As
X is arcwise connected there is p ∈ Cs([0, 1], X \ U qN ) such that p(0) ∈ Uk
and p(1) ∈ UN . Let T be a δ-tube for p for some δ > 0 so that T ⊂ X \U qN .
Using Lemma 4.1 find h ∈ GT such that h(p(0)) = p(1). Find an open subset
p(0) ∈ Z ⊂ Uk such that h(Z) ⊂ UN . As (X,G) is base-wise shrinkable one
can find e ∈ GUk (in particular e|UN = Id) with e(U lk) ⊂ Z. Define g =
(h◦e)−1. It is easy to see that µ(g(UN )) > s− (1− s)/2N+(1− s)/2N = s,
contrary to the definition of s. We conclude that supg∈G µ(g(U1)) > 1− ε.

From Theorems 9.2 and 9.3 we have:

Theorem 9.4. Let the Peano continuum X be SRI and let (X,G) have the
boundary shrinking property. If (X,G) is base-wise shrinkable then (M,G)
is strongly proximal.

10. On the structure of V (M(S2)). Let X = S2, the two-dimensional
sphere. It is strongly arcwise-inseparable but not strongly R-inseparable. One
may ask if Theorem 8.6 still holds in this setting. The following theorem
answers this question negatively.

Theorem 10.1. Let X = S2. There exists F ⊆ V (M) which is neither
point-like, nor space-like, nor fiber-like.

Proof. To simplify notation assume X = S2 = {(x, y, z) | x2 +y2 +z2 = 1}
⊂ R3. Let p = (0, 0,−1) and n = (0, 0, 1) be the “south” and “north” poles
of X. Let Tp be the tangent space of X at p. Let x̂ ∈ Tp be the unit tangent
vector in the direction of the x-axis. We are going to define a family of curves
q(x,θ)→n, where x ∈ X and θ = θ(x) ∈ [0, 2π] represents an angle.

We start by defining for θ ∈ [0, 2π] the curve q(p,θ)→n : [0, 1] → X
as the unique geodesic of X with q(p,θ)→n(0) = p, q(p,θ)→n(1) = n and
∠(x̂, q̇(p,θ)→n(0)) = θ. Fix t ∈ (0, 1] and θ ∈ [0, 2π]. Let x = q(p,θ)→n(t) and
denote by q(x,θ)→n : [0, 1]→ X the unique geodesic of X with q(x,θ)→n(0) =
x, q(x,θ)→n(1) = n and q(x,θ)→n([0, 1]) ⊂ q(p,θ)→n([0, 1]). Given c = {cα}α∈A
∈M and l ∈ C([0, h], X) with {l(h)} = r(c) define the “concatenated maxi-
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mal chain”:
s(l, c) = {l([0, t]}t∈[0,h] ∪ {l([0, h]) ∪ cα}α∈A.

Notice that s(l, c) ∈Ml(0). Let c = {B(n, ε}ε≥0 ∈M . Define
F = {s(q(q(p,θ)→n(t),θ)→n, c)}(t,θ)∈[0,1]×[0,2π].

It is easy to see that F ∈ V (M). Indeed, given a converging sequence
{s(q(xi,θi)→n, c)}∞i=1 ⊆ F there are x∗ ∈ X and θ∗ ∈ [0, 2π) so that by
passing to a subsequence xi → x∗ and θi → θ∗ mod 2π as i→∞. Clearly
s(q(xi,θi)→n, c) → s(q(x∗,θ∗)→n, c) as i→∞ for the original sequence. Notice
that r(F ) = X, so F is neither point-like nor fiber-like.

We will now show F is not space-like. Let e : [0, 2π] → X be the “equa-
torial” great circle e(t) = (cos(π + t), sin(π + t), 0). Let w : [0, 2π] →
X be the “Greenwich” great circle w(t) = (0, sin(−t), cos(−t)). Let m1 ∈
M(−1,0,0), m2 ∈M(0,0,1) be arbitrary elements. Define c1 = s(e,m1) ∈Me(0)

and c2 = s(w,m2) ∈Mw(0).
We will show that for any A ∈ ClV (M)(GF ) one has {c1, c2} /∈ A. In

particular M /∈ ClV (M)(GF ). Our proof is based on the following observa-
tion: if E,D ∈ C(X), then by the Jordan separation theorem there exists
ε0 > 0 such that D ⊂ B(w([0, π]), ε0) and E ⊂ B(e([0, π]), ε0) imply that
E∩D 6= ∅ and in fact E∩D ⊂ I where I = B(w([0, π]), ε0)∩B(e([0, π]), ε0).
We choose 0 < ε < min{ε0, 1

2d(e(0), w(0))}.
Assume for contradiction that there exist g ∈ G and f1, f2 ∈ F such

that d(g(fi), ci) < ε for i = 1, 2. In particular there exist Yi ∈ fi for
i = 1, 2 such that d(g(Y1), e([0, π])) < ε and d(g(Y2), w([0, π])) < ε. We
also have d(r(g(Y1)), e(0)) < ε and d(r(g(Y2)), w(0)) < ε, which implies
that r(g(Y1)) 6= r(g(Y2)). As g(Y1) and g(Y2) intersect, i.e. ∅ 6= g(Y1) ∩
g(Y2) ∈ I, we conclude that Y1 = q(x1,θ1)→n([0, 1)) ∪ B(n, ε1) and Y1 =
q(x2,θ2)→n([0, 1)) ∪ B(n, ε2) for x1 6= x2 and without loss of generality ε1 ≥
ε2 ≥ 0. Notice that B(e([0, π]), ε0) \ I has two components. Let J1 be
the component with r(g(Y1)) ⊂ J1. Similarly, let J2 be the component of
B(w([0, π]), ε0) \ I with r(g(Y2)) ⊂ J2. We conclude that

g(f1) = s({g ◦ q(x1,θ1)→n([0, t])}t∈[0,1], g(c)),

g(f2) = s({g ◦ q(x2,θ2)→n([0, t])}t∈[0,1], g(c)),

where q(xi,θi)→n([0, 1]) ⊂ Ji ∪ I, i = 1, 2. In other words, until g(f1) and
g(f2) “meet” they are confined to J1 ∪ I and J2 ∪ I respectively. After they
“meet” they develop identically (which corresponds to the g(c) part of the
concatenation). This is a clear contradiction to d(g(fi), ci) < ε for i = 1, 2
for ε small enough.

11. Manifolds and the Hilbert cube. In this section we present
classes of examples to which one can apply the results of the article.
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Theorem 11.1. Let X be a two-dimensional closed topological mani-
fold and G a locally transitive group acting on X. Then (M(X), G) is the
unique minimal subspace of (Φ(X), G). Moreover , the universal minimal
space (UG, G) is not transitive.

Proof. AsX is a closed topological manifold,X is a Peano continuum. By
assumption G acts transitively on X. By Lemma A.1, X is strongly arcwise-
inseparable. These facts enable us to conclude by Theorem 6.5 and Corollary
6.6 that (M(X), G) is minimal and (UG, G) is not transitive. Moreover, as
X is a closed topological manifold, it is easy to see X has the telescoping
annuli property. This implies by Theorem 7.2 that (M(X), G) is the only
minimal subspace of (Φ(X), G).

Theorem 11.2. Let X be a closed topological manifold of dimension n≥ 3
and G a subgroup of the homeomorphism group of X. If G ⊃ Homeo0(X) or
X has a smooth structure such that G ⊃ Diffeo0(X), then (M(X), G) is min-
imal and strongly proximal and the unique minimal subspace of (Φ(X), G).
The only minimal subspaces of (V (M(X)), G) are {M(X)}, {M(X)x}x∈X
and {{c} | c∈M(X)}. The universal minimal space (UG, G) is not transitive.

Proof. Notice that by the discussion of locally transitive group actions
at the end of Section 3, G ⊃ Homeo0(X) or G ⊃ Diffeo0(X) imply that G
acts locally transitively on X. Using Theorem 11.1 we conclude (UG, G) is
not transitive and (M(X), G) is the unique minimal subspace of (Φ(X), G).
By Lemma A.3, X is strongly R-inseparable. By Lemma A.5, (X,G) has the
boundary shrinking property. The last two facts enable us to conclude that
the only minimal subspaces of (V (M(X)), G) are {M(X)}, {M(X)x}x∈X
and {{c} | c ∈ M(X)}. Finally, it is easy to verify that (X,G) is base-wise
shrinkable, which implies (M(X), G) is strongly proximal

Recall that the Hilbert cube is defined to be Q = [−1, 1]N, equipped with
the metric d((xn)∞n=1, (yn)∞n=1) = max{|xn − yn|/n | n = 1, 2, . . .}.

Theorem 11.3. Let G = Homeo(Q). The G-space (M(Q), G) is minimal
and strongly proximal and the unique minimal subspace of (Φ(Q), G). The
only minimal subspaces of (V (M(Q)), G) are {M(Q)}, {M(Q)x}x∈X and
{{c} | c ∈M(Q)}. The universal minimal space (UG, G) is not 1-transitive.

Proof. The Hilbert cube Q is metric, compact, connected and locally con-
nected. G acts locally transitively by Lemma A.2. By Lemma A.4, Q has the
telescoping annuli property. By Lemma A.3, Q is strongly R-inseparable. Us-
ing Theorem 6.5, Theorem 7.2 and Corollary 6.6 we conclude that (M(Q), G)
is the unique minimal subspace of (Φ(Q), G) and (UG, G) is not transitive.

We now proceed to prove that the onlyminimal subspaces of (V (M(Q)),G)
are {M(Q)}, {M(Q)x}x∈X and {{c} | c ∈ M(Q)}. The natural approach
would be to use Theorem 8.6. However, in order to use it one has to show
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that (Q,G) has the boundary shrinking property. Unfortunately, we have
not been able to do that (see Question 12.2). A careful reading shows that
the boundary shrinking property is used in the proof of Theorem 8.6 only
via the use of Lemma 8.4. We give in Lemma A.7 a separate proof for (Q,G)
and thus achieve the above mentioned result. By Lemma A.8, (M(Q), G) is
strongly proximal.

12. Open questions. We are ultimately interested in finding all mini-
mal subspaces of V n(X) for n ∈ N; unfortunately, this turned out to be too
difficult and we leave it as a question to the reader:

Question 12.1. Can one characterize all minimal subspaces of V n(X),
n ≥ 2?

A natural way to prove the results of Section 8 for (Q,Homeo(Q)) is
to show that (Q,Homeo(Q)) has the (BSP) property. Unfortunately, we are
unable to settle the following question:

Question 12.2. Does (Q,Homeo(Q)) have the boundary shrinking prop-
erty?

In the Introduction we mentioned Open Questions 28 & 29 of [Pes05]
which ask for an explicit description of the universal minimal space of the
group of homeomorphisms Homeo(X), X being a closed manifold of dimen-
sion 2 or higher or the Hilbert cube. In view of our results we reformulate
these questions as follows:

Question 12.3. Is the universal minimal space for the group Homeo(X),
X being a closed manifold of dimension 3 or higher or the Hilbert cube, equal
to the space M(X)?

Appendix. The appendix contains various topological results used in
Sections 3 and 11. The first three are reformulations of facts which are well
known, sometimes in greater generality. For the reader’s convenience we pro-
vide, however, detailed arguments or bibliographical hints.

Lemma A.1. If X is a two-dimensional closed topological manifold then
X is strongly arcwise-inseparable.

Proof. Let U ⊂ X be open and connected and J ⊂ U be an arc. The
connectedness of U \ J is known in greater generality when J is a cell-like
compact subset of X, that is, one which can be contracted to a point in each
of its neighborhoods. See Corollary 4B on p. 121 of [Dav86].

Lemma A.2. Homeo(Q) is locally transitive and n-transitive for all n∈N.

Proof. In [BP75, p. 145] in the proof of Proposition 8.1 Bessaga and
Pełczyński show that Homeo(Q) is strongly locally homogeneous, i.e. for each
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x ∈ Q there exists a basis {Vi} of open neighborhoods such that Homeo(Q)Vi
acts transitively on Vi for each i. Thus Homeo(Q) is locally transitive and,
by Theorem 4.1, also n-transitive.

Lemma A.3. If X is a closed topological manifold of dimension n ≥ 3
or the Hilbert cube, then X is strongly R-inseparable.

Proof. Let J be an arc in X and U ⊂ X be a connected open set. To
establish that U \ J is connected we consider three cases:

1) X is an n-manifold and U is homeomorphic to Rn, where n ≥ 3. Then
U \ S is connected for any closed set S ⊂ X of dimension not greater than
n− 2; see Theorem 1.8.13 in [Eng78]. In particular, this applies to S = J .

2)X =Q. By the definition of the product topology of Q there exist n≥ 3
and a chart V ⊂

∏n
k=1(−1, 1)k, V ∼= Rn, such that V ×

∏
k>n[−1, 1]k ⊂ U .

Given x, y ∈ U there exists by the lemma above an f ∈ Homeo(Q)U such
that f(x) and f(y) belong to V ×{0}. By 1) above, the set V ×{0}\ f(J) is
connected and hence there is an arc K in it connecting f(x) to f(y). Clearly,
f−1(K) is an arc in U \ J connecting x to y. Since x, y are arbitrary points
of U \ J , this set is connected.

3) The case where X is an n-manifold but U is not homeomorphic to
Rn follows from 1) in precisely the same manner, using the 2-transitivity of
Homeo(X)U .

Lemma A.4. Q has the telescoping annuli property.

Proof. To show that there is a (1, ε) annuli telescope around a given
point x ∈ Q we first note that by Lemma A.2 we can assume that x =
(0, 0, . . .). As in the proof above, there exists a set of diameter smaller than ε
which contains 0 and is of the form V ×

∏
k>n[−1, 1]k for some open V ⊂∏n

k=1(−1, 1). Let {B,U} be a (1, δ) annuli telescope in V around (0, . . . , 0)
for some δ > 0 and the Euclidean metric of V . Define B′ = B×

∏
k>n[−1, 1]k

and U ′ = U×
∏
k>n[−1, 1]k. It is clear one can choose δ so small that {B′, U ′}

is an (1, ε) annuli telescope around x = 0.

Lemma A.5. Let X be a closed topological manifold of dimension n ≥ 2
and G a subgroup of Homeo(X). If G ⊇ Homeo0(X) or X is a smooth man-
ifold and G⊇Diffeo0(X) then (X,G) has the boundary shrinking property.

Proof. Let x ∈ X and ε > 0. Since X is a manifold one can find a chart
C ∼= Rn so that x ∈ C ⊂ B(x, ε/2). Let A and E be open balls (in the
Euclidean metric of C) with center x such that A ⊂ E ⊂ C. It is easy to
see that A has the (G, ε, x)-boundary shrinking property, with E \ A being
a set ε-encircling A.

Lemma A.6. For n ≥ 3, let x ∈ Int(In) and F ∈ V (Mx). If F is not
point-like then it is fiber-like.
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Proof. This is a simple generalization of the techniques used in this ar-
ticle. One uses strongly the fact that x ∈ Int(In). The idea is that all con-
structions in the first nine sections can be done inside Int(In) and therefore
the statement follows from the same statement for Sn (proven in Lemma 8.4
applied to X = Sn).

For n ∈ N it will be convenient to denote the product
∏n
i=1[−1, 1]i by In,∏∞

i=n[−1, 1]i by I∞n and the standard projection of Q onto In by πn. Given
a homeomorphism g of In we write g̃ for the homeomorphism of Q which
composed with πn is equal to g and composed with the projection onto I∞n+1

equals this projection. In the following lemmas it is convenient to use the
metrics

d((xm)nm=1, (ym)nm=1) = max{|xm − ym|/m | m = 1, . . . , n} on In

and

d((xm)∞m=1, (ym)∞m=1) = max{|xm − ym|/m | m = 1, 2, . . .} on Q.

Lemma A.7. Let x = (0, 0, . . .) ∈ Q. Let F ∈ V (Qx). Then F is either
point-like or fiber-like.

Proof. According to Lemma A.6 for each n ∈ N, πn(F ) ∈ V (Mπn(x)(In))
is either point-like or fiber-like. Then either (1) there exists a sequence n1 <
n2 < · · · of integers such that πni(F ) is fiber-like, or (2) there exists a
sequence n1 < n2 < · · · of integers such that πni(F ) is point-like.

In case (1), we claim F is fiber-like. Let ε > 0, and let {ci}Li=1 ⊂Mx(Q) be
an ε-net of Mx(Q). Choose i ∈ N such that 1/ni < ε. Find g ∈ Homeo(Ini)
with d(g(πni(F )),Mπni (x)

(Ini)) < ε. In particular there exists {fk}Lk=1 ⊂ F

such that d(g(πni(fk)), πni(ck)) < ε for k = 1, . . . , L. As 1/ni < ε, one
concludes that d(g̃(fk), ck) < ε. This implies d(g̃(F ),Mx(Q)) < 2ε.

In case (2), we claim F is point-like. As in the previous case, fix i ∈ N
such that 1/ni < ε. Find g ∈ Homeo(Ini) and c = {cα}α∈A ∈ Mπni (x)

(Ini)
such that d(g(πni(F )), {c}) < ε. Let p ∈ Mx(Q) with {cα × I∞ni+1}α∈A ⊂ p
(this corresponds to finding {eβ}β∈B ∈Mx(πni(x)×I∞ni+1) and defining P =
{eβ}β∈B∪{cα×I∞ni+1}α∈A). As 1/ni < ε, one concludes that d(g̃(F ), {p})<ε.
Indeed, fix f ∈ F . Let R ∈ f ∈ F . Find C ∈ c such that d(πni(R), C) < ε,
which implies d(R,C×I∞ni+1) < ε. Let P ∈ p. If P = C×I∞ni+1 for some C ∈ c
then one can find R ∈ f with d(R,C × I∞ni+1) < ε. If this is not the case we
must have P ⊆ r(c) × I∞ni+1. As d(r(c), r(πni(f))) = d(r(c), πni(r(f))) < ε,
we conclude that d(P, r(f)) < ε.

To show that (M(Q),Homeo(Q)) is strongly proximal, we first prove the
following lemma:

Lemma A.8. (Q,Homeo(Q)) is strongly proximal.
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Proof. Clearly it is enough to show that (Homeo(In), In) is strongly prox-
imal for each n ∈ N. Fix n ∈ N. Notice that ∂In and Homeo(In) have a prop-
erty which is very similar to (albeit weaker than) the boundary shrinking
property. Indeed, for any closed W ( ∂In and any y ∈ ∂In and δ > 0 there
is h ∈ Homeo(In) such that h(W ) ⊂ B(y, δ). Let us call this the weak bound-
ary shrinking property. Let µ ∈ M(In), ε > 0 and N ∈ N with 1/N < ε.
Set b = µ(∂In). By choosing N disjoint open subsets of ∂In, considering
their complements and using the weak boundary shrinking property we find
h1 ∈ Homeo(In) and y ∈ ∂In such that µ(h1(B(y, ε)) ∩ ∂In) > (1 − ε)b.
Let Pk = [−1 + 1/k, 1 − 1/k]n, k ∈ N. Notice that In =

⋃∞
k=1 Pk. As

h1(Int(In)) = Int(In), there is q ∈ N such that µ(h1(Pq)) > (1 − ε)(1 − b).
Again relying on the structure of Homeo(In) we can find h2 ∈ Homeo(In)
with [h2]|∂In = Id and h2(h1(Pq)) ⊂ B(y, ε). Let h = h2 ◦ h1. We conclude
that

µ(h(B(y, ε))) > (1− ε)b+ (1− ε)(1− b) = (1− ε).
We cannot use Theorem 9.2 directly as we have not shown that

(Q,Homeo(Q)) has the (BSP) property. Instead we prove directly:
Theorem A.9. (M(Q),Homeo(Q)) is strongly proximal.

Proof. Let µ ∈ M(M(Q)). Let r∗(µ) be the projection of µ under the
map r : M → Q. Using the strong proximality of (Q,Homeo(Q)) one can
assume that r∗(µ)({x}) = 1 for x = (0, 0, . . .). Let N ∈ N with 1/N < ε.
Using the ideas in the proof of Lemma A.6 and Theorem 9.2, one can find
gN ∈ Homeo(IN ) and cN ∈ M(IN ) such that [gN ◦ πN ]∗(µ)(B(cN , 4ε)) >
1− ε. Using the ideas in the proof of Lemma A.7 one finds c ∈ M(Q) such
that g̃∗(µ)(B(c, 5ε)) > 1− ε.
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