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Rainbow Ramsey theorems for colorings
establishing negative partition relations

by

András Hajnal (Budapest)

Abstract. Given a function f , a subset of its domain is a rainbow subset for f if f is
one-to-one on it. We start with an old Erdős problem: Assume f is a coloring of the pairs
of ω1 with three colors such that every subset A of ω1 of size ω1 contains a pair of each
color. Does there exist a rainbow triangle? We investigate rainbow problems and results
of this style for colorings of pairs establishing negative “square bracket” relations.

1. Introduction and history. Anti-Ramsey theorems appeared prob-
ably for the first time in the 1973 paper [9] of Richard Rado, claiming the
existence of subsets with elements of different colors of the domain of a given
coloring. Later in the game, the more expressive name of rainbow subset was
coined. In this paper we will mostly consider 2-partitions, i.e. colorings f
of unordered pairs of a set. A subset of pairs will be called a rainbow sub-
set (for f) if f is one-to-one on it. Our starting point will be a problem of
Paul Erdős, stated long before any of these names were coined:

Assume f : [ω1]2 → 3 is a 2-partition of ω1 with three colors such that
each subset A ⊆ ω1 of size ω1 contains a pair of each color. Does there exist
a rainbow triangle for f?

This is Problem 68 of [3] written in 1967. We restate it in the jargon of
partition relations developed in [5]:

Problem 1.1. Assume f : [ω1]2 → 3 establishes ω1 6→ [ω1]23. Does there
exist a rainbow triangle for f?

We knew that the answer is affirmative under some stronger condi-
tions e.g.
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Fact 1.2. Assume f : [ω1]2 → 3 establishes ω1 6→ [(ω, ω1)]23 (i.e. for
A ∈ [ω1]ω and B ∈ [ω1]ω1 , f takes all three values on [A,B]1,1). Then there
exists a rainbow triangle for f .

However, in those early days, we could only construct an f satisfying the
condition of 1.2 using CH.

Definition 1.3. For a coloring d : [k]2 → ω1, k ≤ ω we write d ⇒ f if
there is a one-to-one map Φ : k → ω1 such that

d({n,m}) = f({Φ(n), Φ(m)}) for n,m ∈ k.

We could generalize 1.2 to

Fact 1.4. Assume f : [ω1]2 → ω1 establishes ω1 6→ [(ω, ω1)]2ω1
. Then

d⇒ f for an arbitrary d : [ω]2 → ω1.

As already mentioned, we were not able to verify in ZFC that this does
not hold vacuously and it bothered us that we could not lift it e.g. replac-
ing ω, ω1 by ω1, ω2 respectively. The next steps were taken in a paper of
Shelah [10] written in 1975. He proved

Theorem 1.5 (Shelah [10]).

1. CH implies that 1.1 fails for some f with ω colors.
2. � implies that 1.1 fails for an f with ω1 colors.

Shelah also showed in [10] that a possible “lifting”of Fact 1.4 is consis-
tently false say adding one Cohen real to a model of GCH. In more detail,
he constructed a graph of size ω1 from the Cohen real which does not embed
isomorphically into any graph of the ground model. Then any graph of the
ground model establishing the partition relation ω2 6→ [(ω2, ω1)] 2

ω1
satisfies

the same relation in the new model, and we have a graph of size ω1 that
does not embed into it.

Knowing all this, in our 1978 paper [2] we stated implicitly a generaliza-
tion of 1.4.

Theorem 1.6 ([2]). Assume that f establishes ω1 6→ [(ω1;ω1)] 2
ω. Then

d⇒ f for an arbitrary d : [ω]2 → ω.

The symbol with the semi-colon “;” means that all ω1 by ω1 “half-graphs”
are totally multicolored, i.e. for all A,B ⊆ ω1 with |A| = |B| = ω1 and n < ω
there are α ∈ A and β ∈ B with α < β such that f({α, β}) = n. I want to
mention that [2] seems to be the first paper in print where this important
concept was used. I think it was invented (discovered) by Fred Galvin. The
following was proved 37 years later by Justin Moore:

Theorem 1.7 (Moore [7]). (ZFC ) There is an f establishing

ω1 6→ [(ω1;ω1)] 2
ω1
.
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This is a byproduct of Moore’s result [7] showing the existence of L-
spaces in ZFC. All the above justifies revisiting the old Problem 1.1.

2. 6⇒ relations. First we remark that we still do not know if the conclu-
sions of either clauses of Theorem 1.5 can be proved under weaker conditions.
Next we want to show that a Theorem 1.7 type generalization cannot hold
if we only assume that each [A]2 with |A| = ω1 is totally multicolored.

Theorem 2.1. There exist a rainbow d : [4]2 → 6 and an f : [ω1]2 → 6
establishing ω1 6→ [ω1]26 such that

d 6⇒ f.

Proof. First we define e : [4]2 →W and g : [ω1]2 →W where

W = {(+,+), (+,−), (−,+), (−,−)}.
Let

e({0, 1}) = (+,−), e({1, 2}) = (−,+), e({2, 3}) = (+,−),
e({0, 3}) = (−,+), e({0, 2}) = (+,+), e({1, 3}) = (−,−).

Let <R and <A be real and Aronszajn type orderings of ω1. For α <
β < ω1 let g(α, β) = (u, v) with u, v ∈ {+,−}, where u = + iff α <A β, and
v = + iff α <R β.

It is a well known property of these orderings that for all B ∈ [ω1]ω1

there are C,D,E, F ∈ [B]ω1 such that C <A D, C <R D, E <A F and
F <R E. This implies that each B ∈ [ω1]ω1 contains a complete ω1 by ω1

half-graph for g in each of the colors in W .
It is an easy exercise to see that e 6⇒ g. Let now h be as in Moore’s

Theorem 1.7. Then k = (g, h) establishes ω1 6→ [ω1]2ω1
. Using k and e it is a

matter of easy calculation to get f and d as required in the theorem.

Next we are going to investigate the cases when f establishes

ω1 6→ [(ω1, ω1)] 2
γ ,

i.e. all ω1 by ω1 subgraphs are totally multicolored for some γ.

Fact 2.2. Assume f establishes ω1 6→ [(ω1, ω1)] 2
3. Let d : [3]2 → 3 be

one-to-one. Then d⇒ f , i.e. all possible rainbow triangles exist.

Proof. The assumption implies that for some α ∈ ω1 both sets

{β ∈ ω1 : f(α, β) = d(0, 1)}, {γ ∈ ω1 : f(α, γ) = d(0, 2)}
are of cardinality ω1.

Fact 2.3. There exist a rainbow d : [5]2 → 10 and an f : [ω1]2 → 10
establishing ω1 6→ [(ω1, ω1)]210 such that

d 6⇒ f.
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Proof (outline). Define e : [5]2 → 2 by the stipulation

e({i, j}) = 0 for i < 5 and j ≡ i+ 1 mod 5.

That is, e is a “pentagon without a diagonal”. Let d : [5]2 → 10 be one-
to-one such that d({i, i + 1}) < 5 iff e({i, , i + 1}) = 0. Let <R be a real
type ordering of ω1. Let g(α, β) : [ω1]2 → 2 be the “Sierpiński” partition,
that is, g(α, β) = 0 iff α <R β for α < β < ω1. It is well known that every
complete bipartite ω1 by ω1 half-graph contains a complete bipartite ω1 by
ω1 half-graph in both colors for g. Again by Moore’s theorem, we can take
an h establishing ω1 6→ [(ω1;ω1)] 2

5. Set f = g · 5 + h. Then f establishes
ω1 6→ [(ω1, ω1)]210 and d ⇒ f would imply e ⇒ g, which is known to be
false.

Problem 2.4. Can we improve 2.3 to have a d : [4]2 → 6 and an f
establishing ω1 6→ [(ω1, ω1)]26?

3. Rainbow theorems

Theorem 3.1. Assume f : [ω1]2 → ω establishes ω1 6→ [(ω1, ω1)] 2
ω.

Then there exists an infinite rainbow set.

Proof. We use A,B,C, . . . to denote subsets of ω1 of size ω1, and
N,M, . . . to denote infinite subsets of ω; moreover, we set

fj(x) = {y ∈ ω1 : f(x, y) = f({x, y}) = j}
for j < ω and x ∈ ω1.

3.1.1. Assume B ∩ C = ∅ and

∀n ∈M ∀x ∈ B (|fn(x) ∩ C| ≤ ω).

Then
∀n ∈M ∀C ′ ⊆ C ∃y ∈ C ′ (|fn(y) ∩B| = ω1).

Otherwise we could pick, by transfinite induction, a pair (B′, C ′′) omit-
ting the color n.

Let (∗)(A,N) be the following property of A and N : There are B,C ⊆ A
and M ⊆ N such that

∀B′ ⊆ B ∀C ′ ⊆ C ∀m ∈M ∃x ∈ B′ (|fm(x) ∩ C ′| = ω1).

When (∗)(A,N) holds we denote by

B(A,N), C(A,N), M(A,N)

the relevant sets B,C,M respectively, with B ∩ C = ∅.

3.1.2. Assume that for some A0, N0, (∗)(A,N) holds for all A ⊆ A0 and
N ⊆ N0. Then there is an infinite rainbow subset.
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Define Ak, Bk, Nk by induction on k < ω. Assume Ak, Nk are defined. Let
Bk = B(Ak, Nk), Ak+1 = C(Ak, Nk), Nk+1 = N(Ak, Nk). Let {N ′k : k < ω}
be a disjoint refinement of {Nk : k < ω} and let

N ′k = {nki : i < ω}
be a one-to-one enumeration of N ′k for k < ω. It is now easy to pick xi ∈ Ai
for i < ω in such a way that c(xi, xj) = nij for i < j < ω. This proves 3.1.2,
as {xi : i < ω} is an infinite rainbow set.

Hence to finish the proof of Theorem 3.1 it is sufficient to prove

3.1.3. Assume (∗)(A,N) is false for some A and N . Then A has an
infinite rainbow subset.

Let N =
⋃
k<ωNk, A =

⋃
k<ω Ak be disjoint partitions. To prove 3.1.3

we first prove

3.1.4. There are x ∈ A0 and {ni ∈ N0 : 1 ≤ i < ω} one-to-one such that

|fni(x) ∩Ai| = ω1 for 1 ≤ i < ω.

For an x ∈ A0 we try to choose ni, 1 ≤ i < ω, by induction on i. Assume
we have chosen nk, 1 ≤ k ≤ i, with |fnk

(x)∩Ak| = ω1. If there is always an
n such that

(+) n ∈ N0 \ {nk : 1 ≤ k ≤ i} and |fn(x) ∩Ai+1| = ω1

we can choose ni+1 to be the smallest of these and 3.1.3 is true. If not, let
i(x) be the smallest i for which (+) fails. If (+) fails for all x ∈ A0 then for
some 1 ≤ i < ω and M = N0 \ {nk : 1 ≤ i},

C = {x ∈ A0 : i(x) = i}
has cardinality ω1. Choosing B = Ai+1 we find that

|fn(x) ∩B| ≤ ω for n ∈M and x ∈ C.

But then, by 3.1.2, for all n ∈ M there is x ∈ B with |fn(x) ∩ C| = ω1,
a contradiction to the assumption that (∗)(A,N) is false. This shows 3.1.4.
To finish the proof of 3.1.3 and Theorem 3.1, we can use 3.1.4 inductively.

Here is a problem that has not been looked at very thoroughly:

Problem 3.2. Under the conditions of 3.1, is there a rainbow set con-
taining all the colors?

Theorem 3.3. For every 1 < k < ω there is an n ∈ ω with
(
k
2

)
≤ n

such that every f satisfying ω1 6→ [(ω1, ω1)]2n has a rainbow set of size k.

Proof. We prove the following statement by induction on 2 ≤ k < ω.
There is an n < ω such that if Dom(f) ⊆ [ω1]2 satisfies ω1 6→ [(ω1, ω1)]2n
(note that this means that for all A,B ⊆ ω1 with |A| = |B| = ω1 and for
all i < n there are α ∈ A and β ∈ B with {α, β} ∈ Dom(f) such that
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f({α, β}) = i) and {Ai : i < n} are pairwise disjoint subsets of ω1 of size
ω1, then there is a rainbow partial transversal P ([P ]2 ⊆ Dom(f)) of size k
for these sets. Just as in the proof of 3.1, put

fj(x) = {y ∈ ω1 : f(x, y) = f({x, y}) = j}
for j < ω and x ∈ ω1. Assume n is good for k and A0, . . . , A2n−1 are pairwise
disjoint subsets of ω1 of size ω1 with union A.

Let (∗) denote the following statement: There are x, ix, Nx, ϕx such that
x ∈ Aix , Nx ⊆ 2n \ {ix}, ϕx : Nx → 2n is one-to-one,

|fϕx(j)(x) ∩Aj | = ω1 for j ∈ Nx,

and |Nx| = n. If (∗) holds for an x then applying the induction hypothesis
for the sets

fϕx(j)(x) ∩Aj , j ∈ Nx,

and for the color set 2n \ ϕ[Nx] we get a rainbow partial transversal of size
k for these sets, and adding x to it we get a rainbow transversal of size k+1
for the sets A0, . . . , A2n−1.

If (∗) is false, choosing an Nx of maximal size for x ∈ A we will have
|Nx| ≤ n − 1 for x ∈ A. By thinning out, we get sets Bi ⊆ Ai, i < 2n, of
size ω1 and Ni,Mi ⊆ 2n, i < 2n, such that Nx = Ni and Mi = ϕx[Ni] for
x ∈ Bi for i < 2n.

Then i 7→ Ni is a set mapping of order at most n−1 on 2n. By a theorem
of de Bruijn and Erdős, from 1951, there are i 6= j such that i /∈ Nj and
j /∈ Ni. As |Mi∪Mj | < 2n we can choose l /∈Mi∪Mj . By the maximality of
Ni we know that |fl(x)∩Bj | ≤ ω for x ∈ Bi and likewise |fl(x) ∩Bi| ≤ ω for
x ∈ Bj . We could then pick, by an easy transfinite induction, sets Ci ⊆ Bi
and Cj ⊆ Bj , both of size ω1, such that the color l is missing from the bipar-
tite (ω1, ω1) determined by Ci and Cj. This contradicts the assumption.

Corollary 3.4. In Theorem 3.3, n can be chosen to be 2k−2 for 2 ≤
k < ω.

Problem 3.5. Can n be taken to be
(
k
2

)
in Theorem 3.3?

4. Resurrecting the problem for larger cardinals. We explained
in Section 1 how Shelah’s example described in 1.5 forced us to consider
problems only for underlying sets of size at most ω1. In [2] written in 1978
we tried to ask if we can get every graph of size ω1 as an induced subgraph
provided the graph shows ω2 6→ [(ω1, ω)]2ω1

, a stronger assumption that one
can only make consistent. Recently Soukup showed that the simple method
of adding one Cohen real gives a negative answer as well. Working through
the material of this paper I realized that this trick only kills questions of ⇒
type. The following is probably the simplest problem I cannot solve:
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Problem 4.1. Assume GCH and let f establish

ω2 6→ [(ω1, ω2)]2ω1
.

Does there exist a rainbow subset of size ω1 for f?

In fact, we do not know a single case where for some κ > λ > ω some f :
[κ]2 → λ establishes κ 6→ [(κ, κ)]2λ and for all such f there is an uncountable
rainbow set.

5. Finitary problems. In our paper [4] we considered finitary Ramsey
problems and proved in 1989

Theorem 5.1 (Erdős–Hajnal [4, Theorem 1.3]). Assume 2 ≤ k, s < ω
and d : [k]2 → s. Then there are n0 and a real number r > 0 such that for
all f : [n]2 → s establishing

n 6→ [er
√

logn]2s,

d⇒ f holds.

In fact, we only wrote down the proof of this result for s = 2. Janos Pach
kindly communicated to us that he can prove a much stronger result for a
great many cases. Most relevant to this paper, he can prove:

Theorem 5.2 (Fox–Pach [6]). There are n0 and ε > 0 such that for any
n > n0 and f establishing

n 6→ [nε]23
there is a rainbow triangle for f .
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[2] P. Erdős and A. Hajnal, Embedding theorems for graphs establishing negative parti-
tion relations, Period. Math. Hungar. 9 (1978), 205–230.

[3] —, —, Unsolved problems in set theory , in: Proc. Sympos. Pure Math. 13, Part I,
Amer. Math. Soc., Providence, RI, 1971, 17–48.

[4] —, —, Ramsey type theorems, Discrete Appl. Math. 25 (1989), 39–52.
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