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Rainbow Ramsey theorems for colorings
establishing negative partition relations

by

Andras Hajnal (Budapest)

Abstract. Given a function f, a subset of its domain is a rainbow subset for f if f is
one-to-one on it. We start with an old Erdés problem: Assume f is a coloring of the pairs
of w1 with three colors such that every subset A of w; of size w; contains a pair of each
color. Does there exist a rainbow triangle? We investigate rainbow problems and results
of this style for colorings of pairs establishing negative “square bracket” relations.

1. Introduction and history. Anti-Ramsey theorems appeared prob-
ably for the first time in the 1973 paper [9] of Richard Rado, claiming the
existence of subsets with elements of different colors of the domain of a given
coloring. Later in the game, the more expressive name of rainbow subset was
coined. In this paper we will mostly consider 2-partitions, i.e. colorings f
of unordered pairs of a set. A subset of pairs will be called a rainbow sub-
set (for f) if f is one-to-one on it. Our starting point will be a problem of
Paul Erdés, stated long before any of these names were coined:

Assume f : [w1]? — 3 is a 2-partition of w; with three colors such that
each subset A C wy of size wy contains a pair of each color. Does there exist
a rainbow triangle for f7

This is Problem 68 of [3] written in 1967. We restate it in the jargon of
partition relations developed in [5]:

PROBLEM 1.1. Assume f : [w1]®> — 3 establishes wy #> [w1]3. Does there
exist a rainbow triangle for f?

We knew that the answer is affirmative under some stronger condi-
tions e.g.
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FacT 1.2. Assume f : [w1]? — 3 establishes wy / [(w,w1)]} (i.e. for
A€ [w1] and B € [w1]*1, f takes all three values on [A, B]''). Then there
exists a rainbow triangle for f.

However, in those early days, we could only construct an f satisfying the
condition of 1.2 using CH.

DEFINITION 1.3. For a coloring d : [k]? — w1, k < w we write d = f if
there is a one-to-one map @ : k — wy such that

d({n,m}) = F({®(n), &(m)}) for n,m € k.
We could generalize 1.2 to

FACT 1.4. Assume f : [w]® — wy establishes wi /> [(w,w1)]2,. Then
d = f for an arbitrary d : [w]* — w;.

As already mentioned, we were not able to verify in ZFC that this does
not hold vacuously and it bothered us that we could not lift it e.g. replac-
ing w,w; by wi,ws respectively. The next steps were taken in a paper of
Shelah [10] written in 1975. He proved

THEOREM 1.5 (Shelah [10]).

1. CH implies that 1.1 fails for some f with w colors.
2. o implies that 1.1 fails for an f with wy colors.

Shelah also showed in [10] that a possible “lifting”of Fact 1.4 is consis-
tently false say adding one Cohen real to a model of GCH. In more detail,
he constructed a graph of size w; from the Cohen real which does not embed
isomorphically into any graph of the ground model. Then any graph of the
ground model establishing the partition relation wy /4 [(w2,w1)]2, satisfies
the same relation in the new model, and we have a graph of size w; that
does not embed into it.

Knowing all this, in our 1978 paper [2] we stated implicitly a generaliza-
tion of 1.4.

THEOREM 1.6 ([2]). Assume that f establishes wy /> [(wi;w1)]2. Then
d = f for an arbitrary d : [w]* — w.

%]

The symbol with the semi-colon “;” means that all w; by w; “half-graphs”
are totally multicolored, i.e. for all A, B C wy with |A| = |B| = wj and n < w
there are o € A and 8 € B with a < ( such that f({c,3}) = n. I want to
mention that [2] seems to be the first paper in print where this important
concept was used. I think it was invented (discovered) by Fred Galvin. The
following was proved 37 years later by Justin Moore:

THEOREM 1.7 (Moore [7]). (ZFC) There is an f establishing
wi 7 [(wiswi)] 3,
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This is a byproduct of Moore’s result [7] showing the existence of L-
spaces in ZFC. All the above justifies revisiting the old Problem 1.1.

2. # relations. First we remark that we still do not know if the conclu-
sions of either clauses of Theorem 1.5 can be proved under weaker conditions.
Next we want to show that a Theorem 1.7 type generalization cannot hold
if we only assume that each [A]? with |A| = w; is totally multicolored.

THEOREM 2.1. There exist a rainbow d : [4]> — 6 and an f : [w1]> — 6
establishing wy /> [w1]2 such that

d+ f.
Proof. First we define e : [4]> — W and g : [w1]?> — W where

W = {<+, +)7 (+7 _)7 (—, +)7 (_7 _>}
Let
e({ovl}) = (+7_)7 6({1,2}) = (_7+)7 6({273}) = (+7_)7
6({073}) = (_v+)7 6({0,2}) = (+’+)) 6({1’3}) = (_’_)'

Let <g and <4 be real and Aronszajn type orderings of wi. For a <
B <wi let g(a, B) = (u,v) with u,v € {4+, —}, where u = + iff & <4 (3, and
v=—+iff a <pr B.

It is a well known property of these orderings that for all B € [w;]“!
there are C, D, E, F € [B]*“* such that C <4 D, C <p D, E <4 F and
F <p E. This implies that each B € [w1]*“' contains a complete w; by wy
half-graph for g in each of the colors in W.

It is an easy exercise to see that ¢ # g. Let now h be as in Moore’s
Theorem 1.7. Then k = (g, h) establishes wy # [w1]2,. Using k and e it is a
matter of easy calculation to get f and d as required in the theorem. =

Next we are going to investigate the cases when f establishes
w1 7 [(wi,w1)]3,
i.e. all w1 by wy subgraphs are totally multicolored for some .

FacT 2.2. Assume f establishes wy /> [(w1,w1)]3. Let d : [3]> — 3 be
one-to-one. Then d = f, i.e. all possible rainbow triangles exist.

Proof. The assumption implies that for some a € w; both sets
{ﬁewl :f(a,ﬁ):d(O, 1)}’ {’yEwl f(aa’Y):d(Ov2)}
are of cardinality wi. m

Fact 2.3. There exist a rainbow d : [5]> — 10 and an f : [w1]?> — 10
establishing w1 # [(w1,w1)]3, such that

d=# f.
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Proof (outline). Define e : [5]> — 2 by the stipulation
e({i,j}) =0 fori<band j=1i+1modb5.

That is, e is a “pentagon without a diagonal”. Let d : [5]> — 10 be one-
to-one such that d({i,7 + 1}) < 5 iff e({7,,7i + 1}) = 0. Let <p be a real
type ordering of w;. Let g(a, 3) : [w1]?> — 2 be the “Sierpinski” partition,
that is, g(a, 8) = 0 iff a <g § for a < f < w;. It is well known that every
complete bipartite w; by wy half-graph contains a complete bipartite wi by
wq half-graph in both colors for g. Again by Moore’s theorem, we can take
an h establishing w1 # [(wi;w1)]2. Set f = g5+ h. Then f establishes
w1 7 [(w1,w1)]3, and d = f would imply e = g, which is known to be
false. m

PROBLEM 2.4. Can we improve 2.3 to have a d : [4]> — 6 and an f
establishing wy > [(w1,w1)]27?

3. Rainbow theorems

THEOREM 3.1. Assume f : [w1]? — w establishes wy + [(w1,w1)]?.
Then there exists an infinite rainbow set.

Proof. We use A,B,C,... to denote subsets of w; of size wi, and
N, M, ... to denote infinite subsets of w; moreover, we set

fite) ={y e wr: f(z,y) = f({z,y}) = j}
for j <w and = € w;.
3.1.1. Assume BNC =0 and
VYne M Vz € B (|fu(x) NC| <w).

Then
Vne MVC' CC Jyel (|fuly) N Bl =uw).

Otherwise we could pick, by transfinite induction, a pair (B’,C") omit-
ting the color n. =

Let (%)(A, N) be the following property of A and N: There are B,C C A
and M C N such that

VB'CBVYC'CCVme M Jz € B (|f(x) NC'| = w1).
When (x)(A, N) holds we denote by
B(A,N), C(A,N), M(A,N)
the relevant sets B, C, M respectively, with BN C = (.

3.1.2. Assume that for some Ao, No, (x)(A, N) holds for all A C Ay and
N C Ny. Then there is an infinite rainbow subset.
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Define Ay, By, Nj, by induction on k < w. Assume Ay, Nj, are defined. Let
By, = B(Ag, Ni), Agy1 = C(Ag, Ni.), Ngy1 = N(Ag, Ny). Let {N}, - k < w}
be a disjoint refinement of {NVj, : k < w} and let
Nj = {nf:i<w}
be a one-to-one enumeration of Nj, for k < w. It is now easy to pick z; € 4;
for i <w in such a way that c(x;,z;) = nj for i < j < w. This proves 3.1.2,
as {z; 1 4 < w} is an infinite rainbow set. =

Hence to finish the proof of Theorem 3.1 it is sufficient to prove

3.1.3. Assume (x)(A,N) is false for some A and N. Then A has an
infinite rainbow subset.

Let N = U< Niy A = Uj<y, Ax be disjoint partitions. To prove 3.1.3
we first prove

3.1.4. There are x € Ay and {n; € Ny : 1 <i < w} one-to-one such that
|[fr, (@) NAi]l =w1  for1<i<w.
For an x € Ay we try to choose n;, 1 < i < w, by induction on i. Assume

we have chosen ny, 1 < k <, with | fy,, () N Ag| = wi. If there is always an
n such that

(+) neNog\{nrp:1<k<i} and |[fu(x)NAit1] =w1
we can choose n;+1 to be the smallest of these and 3.1.3 is true. If not, let
i(x) be the smallest ¢ for which (+) fails. If (+) fails for all x € A then for
some 1 <i<wand M =Ny \ {ng:1<1i},
C={xedy:ilx) =1}
has cardinality wy. Choosing B = A;11 we find that
|fun(x)NB|<w forne M andzxeC.

But then, by 3.1.2, for all n € M there is x € B with |f,(z) N C| = wy,
a contradiction to the assumption that (x)(A, N) is false. This shows 3.1.4.
To finish the proof of 3.1.3 and Theorem 3.1, we can use 3.1.4 inductively. =

Here is a problem that has not been looked at very thoroughly:

PrOBLEM 3.2. Under the conditions of 3.1, is there a rainbow set con-
taining all the colors?

THEOREM 3.3. For every 1 < k < w there is an n € w with (g) <n
such that every f satisfying w1 /> [(w1,w1)]? has a rainbow set of size k.

Proof. We prove the following statement by induction on 2 < k < w.
There is an n < w such that if Dom(f) C [w1]? satisfies wy £ [(w1,w1)]?

(note that this means that for all A, B C w; with |A| = |B| = w; and for
all i < n there are « € A and f € B with {a,3} € Dom(f) such that
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f{a,B}) = 1) and {4; : i < n} are pairwise disjoint subsets of w; of size
w1, then there is a rainbow partial transversal P ([P]?> C Dom(f)) of size k
for these sets. Just as in the proof of 3.1, put

filx) ={y € wi: flz,y) = f{=z,y}) = j}
for j < wand x € wy. Assume n is good for k and Ay, ..., As,_1 are pairwise
disjoint subsets of wy of size wy with union A.
Let (%) denote the following statement: There are z, i, N, ¢, such that
x €A, Ny C2n\{is}, pr : Ny — 2n is one-to-one,

‘ftpz(j)(‘r)mAj’ = w1 for j € N,

and |N,| = n. If (%) holds for an x then applying the induction hypothesis
for the sets

fg,z(])(l') N Aj, j € Ny,
and for the color set 2n \ ¢[N,] we get a rainbow partial transversal of size
k for these sets, and adding x to it we get a rainbow transversal of size k+ 1
for the sets Ag, ..., Aop_1.

If (%) is false, choosing an N, of maximal size for x € A we will have
|INs| < n—1for x € A. By thinning out, we get sets B; C A;, i < 2n, of
size wy and N;, M; C 2n, i < 2n, such that N, = N; and M; = @,[V;] for
x € B; for i < 2n.

Then ¢ — Nj is a set mapping of order at most n—1 on 2n. By a theorem
of de Bruijn and Erdés, from 1951, there are i # j such that ¢ ¢ N; and
J ¢ N;. As |M;UM;| < 2n we can choose | ¢ M;UM);. By the maximality of
N; we know that | fi(x) N Bj| < w for € B; and likewise | fj(x) N B;| < w for
x € Bj. We could then pick, by an easy transfinite induction, sets C; C B;
and C; C Bj, both of size w1, such that the color [ is missing from the bipar-
tite (w1, w1) determined by C; and Cj. This contradicts the assumption. m

COROLLARY 3.4. In Theorem 3.3, n can be chosen to be 28=2 for 2 <
k<w.

PROBLEM 3.5. Can n be taken to be (g) i Theorem 3.37

4. Resurrecting the problem for larger cardinals. We explained
in Section 1 how Shelah’s example described in 1.5 forced us to consider
problems only for underlying sets of size at most w;. In [2] written in 1978
we tried to ask if we can get every graph of size w; as an induced subgraph
provided the graph shows wsy [(wl,w)]il, a stronger assumption that one
can only make consistent. Recently Soukup showed that the simple method
of adding one Cohen real gives a negative answer as well. Working through
the material of this paper I realized that this trick only kills questions of =

type. The following is probably the simplest problem I cannot solve:
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PROBLEM 4.1. Assume GCH and let f establish
wy 7 [(wr,w2)]2,.

Does there exist a rainbow subset of size wy for f¢

In fact, we do not know a single case where for some x > A > w some f :
[k]2 — X establishes k # [(k, )] and for all such f there is an uncountable
rainbow set.

5. Finitary problems. In our paper [4] we considered finitary Ramsey
problems and proved in 1989

THEOREM 5.1 (Erdés—Hajnal [4, Theorem 1.3]). Assume 2 < k,s < w
and d : [k]> — s. Then there are ng and a real number r > 0 such that for
all f :[n]?> — s establishing

n o [erVOE

S

d = f holds.

In fact, we only wrote down the proof of this result for s = 2. Janos Pach
kindly communicated to us that he can prove a much stronger result for a
great many cases. Most relevant to this paper, he can prove:

THEOREM 5.2 (Fox—Pach [6]). There are ng and € > 0 such that for any
n > mng and f establishing

n # [n)3

there is a rainbow triangle for f.
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