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Abstract. Let X be a space with the homotopy type of a bouquet of k circles, and let
f : X → X be a map. In certain cases, algebraic techniques can be used to calculate N(f),
the Nielsen number of f , which is a homotopy invariant lower bound on the number of
fixed points for maps homotopic to f . Given two fixed points of f , x and y, and their
corresponding group elements, Wx and Wy, the fixed points are Nielsen equivalent if and
only if there is a solution z ∈ π1(X) to the equation z = W−1

y f](z)Wx. The Nielsen
number is the number of equivalence classes that have nonzero fixed point index.

A variety of methods for determining the Nielsen classes, each with their own restric-
tions on the map f , have been developed by Wagner, Kim, and (when the fundamental
group is free on two generators) by Kim and Yi. In order to describe many of these meth-
ods with a common terminology, we introduce new definitions that describe the types of
bounds on |z| that can occur. The best directions for future research become clear when
this new nomenclature is used.

To illustrate the new concepts, we extend Wagner’s ideas, regarding W-characteristic
maps and maps with remnant, to two new classes of maps that have only partial remnant.
We prove that for these classes of maps Wagner’s algorithm will find almost all Nielsen
equivalences, and the algorithm is extended to find all Nielsen equivalences. The proof
that our algorithm does find the Nielsen number is complex even though these two classes
of maps are restrictive.

For our classes of maps (MRN maps and 2C3 maps), the number of possible solutions
z is at most 11 for MRN maps and 14 for 2C3 maps. In addition, the length of any solution
is at most three for MRN maps and four for 2C3 maps. This makes a computer search
reasonable. Many examples are included.

1. Introduction. Let X be a space that has the homotopy type of a
bouquet of circles, and let f : X → X be a map. Our goal is to estimate
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min[f ] = min{|Fix(g)| : g ∼ f}. For some spaces that have a free fundamen-
tal group on two generators, there are algorithms for calculating min[f ]. For
most situations we seek to estimate min[f ] with the Nielsen number, N [f ].
The Nielsen number of f is a homotopy invariant lower bound for min[f ].
For a map that is homotopic to a homeomorphism, N [f ] = min[f ]. Other-
wise, it is possible for min[f ] −N [f ] to be arbitrarily large. A summary of
results regarding Wecken properties (the sharpness of the lower bound N [f ])
is presented in [11]. Standard references for an introduction to Nielsen fixed
point theory are [1] and [9].

For maps that are homotopic to a homeomorphism on surfaces with
negative Euler characteristic, Kelly [12] uses geometric results of Bestvina
and Handel [2] to produce an algorithm for calculating N [f ]. Recently in [3]
Bogopolski et al. proved that free-by-cyclic groups have solvable conjugacy
problems, but it is not clear how to apply this result to our situation.

We concentrate here on results that apply to free fundamental groups
of any finite rank and algorithms that allow us to find easily the Nielsen
number of a self-map on the associated space. There are significant results
for the special case in which the fundamental group is free with rank two.
For the disc with two holes, Kelly [10] presents a geometric algorithm for
computing min[f ]. In the same paper he proves that min[f ] −N [f ] can be
arbitrarily large on this space. Wagner produces examples of this in [17].
Llibre and Nunes [15] provide an algorithm for finding min[f ] when the
space is the figure eight. Recently, Kim [14] extended Yi’s work from [18] so
that there is now an algebraic algorithm for finding N [f ] on any space for
which π1(X) is free of rank two. They use mutants to replace f with a map
homotopic to f that has remnant. Then Wagner’s algorithm can be used to
find N [f ]. (We discuss remnant and Wagner’s algorithm below.) However,
all of these results are algorithmic only on free fundamental groups of rank
two.

In the study of Nielsen periodic point theory, there is interest in spaces
that have the homotopy type of a wedge of circles (see [7]). In order to
calculate the Nielsen periodic point numbers, information about the Nielsen
classes of the fixed points for each iterate of the original map is needed.

To calculate the Nielsen number of a map f , we must find the number
of orbits of a group action that have nonzero fixed point index. The group
action is the Reidemeister action of π1(X) on π1(X). The element z acts on
the element α to produce

z ◦ α = f](z)αz−1.

Two words that are in the same orbit are said to be Reidemeister equiva-
lent. The difficulty in finding N [f ] arises when we have two group elements α
and β, each representing a fixed point of f , and we must determine whether
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they are in the same Reidemeister orbit. That is, we must search for a word
z ∈ π1(X) so that z acts on α to produce β. We study here cases in which
there are upper bounds on the length of the z’s that must be considered.
When such bounds exist and are sufficiently small, a computer search can
be used to determine Reidemeister equivalence and the Nielsen number.

Suppose that π1(X) is a free group of rank k. We begin, as did Wag-
ner in [16], by replacing X by the wedge of k circles and by replacing f
with a new map of a particular form that induces the same homomorphism
on π1(X). We call the new space and map X and f . For this new map,
the fixed points correspond to certain initial subwords of the f(ai) for the
generators ai of π1(X). These subwords can be determined, along with the
index of the corresponding fixed point, by using the Fox calculus as in [4].
We call the resulting element of Z[π1(X)] the Fox trace for f . Once the
terms of the Fox trace are collected into Reidemeister orbits, the resulting
element of the free Z-module generated by the Reidemeister orbits is equal
to the Reidemeister trace (or the generalized Lefschetz number). See, for
example, [5]. The Nielsen number is the number of terms with nonzero co-
efficient in the Reidemeister trace. In [16], Wagner describes an equivalent
method for finding the Fox trace. For each x ∈ Fix(f), we use Wx to denote
the element of π1(X) that represents x in the Fox trace.

In [16] Wagner makes a breakthrough when she concentrates on algebraic
techniques for determining Reidemeister equivalence only between terms of
the Fox trace (instead of between any two elements of π1(X)). She provides
a method for finding many Reidemeister equivalences between terms in the
Fox trace. When this method finds all such Reidemeister equivalences for a
homomorphism f], the homomorphism is called W-characteristic, and the
method becomes Wagner’s algorithm. But which maps are W-characteristic?
This is difficult to determine in general.

Wagner defines a property for maps called having remnant, which we
repeat in Definition 5.1. Roughly, a map has remnant if it has limitations
on the amount of cancellation in products of the form f](ai)f](aj), where ai
and aj are generators of π1(X). The first proof of the following theorem is
in [16], and simplified proofs appear in [6] and [13].

Theorem 1.1 (Wagner’s Theorem). Any map with remnant is W -char-
acteristic.

It is the proof of this theorem that has been the inspiration for the work
of Kim in [13] and the results in this paper. Wagner includes in [16] an
example of a map that is W-characteristic and does not have remnant.

In [17], Wagner defines a simple map and provides a formula for N(f) for
any map on a hyperbolic surface that is both simple and W-characteristic.
This formula will become more useful as more classes of W-characteristic
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maps are identified. For now, if a map does not have remnant then the
only way to determine whether it is W-characteristic is to calculate its
Nielsen number by some other means and compare the result with Wag-
ner’s method. Potentially more useful is Corollary 2.3 from [17], in which
Wagner presents an upper bound for N(f) when f is simple but might not
be W-characteristic.

Let x, y ∈ Fix(f) be represented, respectively, by the words Wx and
Wy in the Fox trace. If Wx and Wy are Reidemeister equivalent (and thus
the points x and y are Nielsen equivalent), we define the algebraic distance
between them, d(x, y) = d(Wx,Wy), to be the minimum length of all words
z for which z◦Wx = Wy. We define far(f]) to be the maximum such distance
over all pairs of Nielsen equivalent fixed points.

The work of Kim in [13] on maps with bounded solution length can be
expressed using these new terms, as we discuss at the end of Section 3.

As a result of Wagner’s work we conclude in Theorem 3.3 that many
maps with remnant have far(f]) ≤ 2. For these maps we have an even
stronger result. Given any two terms of the Fox trace, one need only consider
four possible solutions z to determine whether the words are Reidemeister
equivalent. In general, a map f with remnant has far(f]) ≤ |Fix(f)|+ 1.

A class of maps called MRN maps, in the restricted setting of a funda-
mental group of rank two, is defined in [6]. These maps have partial remnant
and have many restrictions on the cancellation of words in the image of f]. It
is announced in [6] that MRN maps have far(f]) ≤ 3. As with Theorem 3.3,
it turns out that one need only check 11 words rather than the 53 words of
length at most three. See Theorem 5.9. The original plan was to include the
proof of this result in the present paper.

Instead, we introduce a larger class of maps defined for any rank funda-
mental group, maps of type 2C3, and prove that these maps have far(f]) ≤ 4.
In fact, for a given pair of terms from the Fox trace, there are only 14 words
z to check in order to determine whether the terms are Reidemeister equiva-
lent. See Theorems 5.12 and 5.13. The techniques needed for the proof about
MRN maps are the same as the techniques used in the proofs we provide.
We are able to describe precisely the situations in which Wagner’s method
will fail to find an existing Reidemeister equivalence for an MRN map or a
2C3 map.

There are certainly many maps that do not fit into the classes of maps
we have studied. Consider Example 6.2, where for any n ∈ N there is a map
with no remnant for which far(f]) ≥ n.

Having an upper bound for far(f]) is useful, but Wagner’s results are
deeper than this. In fact, for any n ∈ N there is a map with remnant for
which far(f]) ≥ n. See Example 6.1. Yet Wagner’s algorithm can find all
Reidemeister equivalences easily for maps with remnant. If we study only
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far(f]), we miss the opportunity to extend Wagner’s techniques in all its
generality.

We define (as we did in [6]) a map to be n-characteristic if for any two
Nielsen equivalent fixed points x and y there is a sequence of fixed points
x1, . . . , xt such that x = x1, y = xt, and for each i = 1, . . . , t− 1 we have xi
Nielsen equivalent to xi+1 and d(xi, xi+1) ≤ n.

If a map is n-characteristic, then to determine the Nielsen classes one
need only act on each word that represents a fixed point by each z of length
at most n and keep track of equivalences as they are found.

In Theorems 4.2, 5.9, and 5.12, respectively, we note that any W-char-
acteristic map is 2-characteristic, that any MRN map is 2-characteristic,
and that any map of type 2C3 is 3-characteristic. As mentioned above for
far(f]), we prove in the first two theorems that we need only check a limited
number of z’s rather than all that have length at most 2.

We have determined some properties that affect whether a map can
be proven to be n-characteristic, and we give these properties names in
Section 5.1. The minimum of the length of the remnant of f](ai) is crucial.
Cyclical cancellation is restrictive but makes proofs much easier to manage.
A map has second order stable remnant if the remnant as defined by Wagner
remains uncancelled in triples f](ai)f](aj)f](ak). This property is crucial
when f](aj) does not have remnant.

While this paper was in preparation, this author and Kim [8] defined
maps with k-remnant and proved that such maps are (k+ 1)-characteristic.
A map has k-remnant if, roughly, there is limited cancellation in the product
of the images of two words with length k.

In the future, there will be many more results involving maps that do or
do not have these properties. Perhaps significant results will result from a
combination of Kim’s bounded solution length arguments and the techniques
used here to prove that maps of type 2C3 are 3-characteristic.

We prove in Example 6.3 that there is a map of type 2C3 that has
far(f]) = 4, and in Example 6.4 we prove that there is a map of type 2C3
that is not 2-characteristic. Thus the bounds in Theorem 5.12 are sharp. We
cannot do better. Example 6.4 is also an example of a map that has type
2C3 and is not W-characteristic.

The paper is organized as follows. Section 2 contains an overview of
the necessary background. In Section 3 we provide the new definitions of
the algebraic distance between fixed points and far(f]). The concept of an
n-characteristic homomorphism is defined in Section 4. Section 5.1 contains
new definitions of minimum remnant length, cyclical cancellation, and sec-
ond order stable remnant. The rest of Section 5 contains definitions of MRN
maps and 2C3 maps and the statements of the theorems regarding their
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properties as described above. The examples are worked out in Section 6.
In Section 7 we prove Theorems 5.12 and 5.13.

Thanks to Bob Brown, Seung Won Kim, and Ed Keppelmann for helpful
conversations. The referee deserves thanks for careful reading and many
useful comments.

2. Preliminaries. A detailed description of the necessary background
can be found in [5] and [6], and the reader is encouraged to refer to these
sources for details that are omitted here.

2.1. The standard form of the self-map. We begin with a self-map on
a surface with boundary. Let ϕ be the induced endomorphism on the fun-
damental group, which is a free group generated by a1, . . . , ak. As in [16],
we replace the surface with a bouquet of k circles, X, and we replace the
map with a map f : X → X such that f] = ϕ. We use Wagner’s precise
definition of this new map f (see [16] or [6] for details). Thus the base point
x0 (the wedge point) is fixed by f , and all fixed points of f are isolated. In
addition, there is a bijection between Fix(f)\{x0} and the occurrences of ai
and a−1

i in the word f](ai) for each i.

2.2. The Fox trace and the Reidemeister action. The Fox trace, previ-
ously called the unreduced Reidemeister trace, is the element of Z[π1(X)]
given by

FT(f]) = 1−
∑
j

∂f](aj)
∂aj

,

where the aj are the generators of π1(X) and the derivatives use the Fox
calculus. See [4]. We do not even cancel identical terms that have opposite
coefficients. The terms are labeled Wi in order, and these are called the
terms of the Fox trace. We set F to be the sequence of these terms. Note
that we may have two terms being the same group element. The terms are
exactly the W ’s that Wagner defines in [16], which can be verified by using
the so called product rule from the Fox calculus.

The map f has exactly one fixed point for each term in F . We name the
fixed points x0 (the wedge point), x1, . . . , xm following each loop in order,
and we see that xi is represented by Wi in the Fox trace. See Example 6.1.
When convenient, we use Wx to denote the term in the Fox trace that
represents the fixed point x.

The Reidemeister action of π1(X) on π1(X) is defined as follows. For
any z, α ∈ π1(X), z acts on α by

z ◦ α = f](z)αz−1.
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The orbits of the action are Reidemeister classes, and two group elements
are Reidemeister equivalent if they are in the same Reidemeister class. We
are interested in Reidemeister equivalences only between the terms of the
Fox trace, so in some sense we are interested in the action of π1(X) on F .

Two fixed points x, y ∈ Fix(f) are Nielsen equivalent (in the same
Nielsen class) if and only if the corresponding terms, Wx and Wy, are Reide-
meister equivalent. That is, x ∼ y if and only if there is a solution z ∈ π1(X)
to the equation

(1) z = W−1
y f](z)Wx.

The Nielsen number N [f ] is the number of Nielsen classes with nonzero
index.

3. Algebraic distance and far(f])

Definition 3.1. Let x, y ∈ Fix(f) be Nielsen equivalent fixed points.
Then the algebraic distance between x and y is

d(x, y) = min{|z| : z ∈ π1(X) and z = W−1
y f](z)Wx}.

When convenient, we extend this definition to terms in the Fox trace so that
d(Wx,Wy) = d(x, y).

When the algebraic distances between related fixed points are known to
be bounded by n, then all Nielsen equivalences can be discovered by acting
on each Wx repeatedly using all words z ∈ π1(X) with |z| ≤ n. The next
definition makes this idea precise.

Definition 3.2 (The algebraic distance to the farthest fixed point). Let
x ∈ Fix(f). We define far(x) and far(f]) by

far(x) = max{d(x, y) : y ∈ Fix(f)}, far(f]) = max{far(x) : x ∈ Fix(f)}.

The Nielsen class containing x equals the set of fixed points y for which
Wy ∈ {f](z−1)Wxz : z ∈ π1(X) and |z| ≤ far(x)}. Thus if far(x) ≤ n the
entire Nielsen class containing x can be determined by repeatedly acting on
Wx using all z ∈ π1(X) for which |z| ≤ n and comparing the results with
the terms in F . As we mentioned in the introduction, Examples 6.1 and 6.2
both show that maps can have arbitrarily large values of far(f]).

We can now restate some of the known results for Reidemeister equiva-
lence using far(f]). See Section 5 for the definition of remnant.

Theorem 3.3. Let f be a map.

1. Suppose that f has remnant such that for each generator ai the length
of the remnant of f](ai) is at least two. Then far(f]) ≤ 2.

2. In fact , if f has remnant and for each ai the remnant of f](ai) is
not equal to ai, then far(f]) ≤ 2.
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3. Suppose that p, q ∈ Fix(f). Even if f does not have remnant , if
Wagner’s method finds a Reidemeister equivalence between Wp and
Wq, then d(p, q) ≤ |Fix(f)|+ 1.

4. Thus, if f has remnant we can conclude that far(f]) ≤ |Fix(f)|+ 1.

Outline of proof of Theorem 3.3. A careful reading of the proof of The-
orem 1.1 (see [6], [13], or [16]) will be sufficient to prove the first two parts
of the theorem.

Wagner’s method finds a Reidemeister equivalence when there is, for
some k, a sequence of fixed points x1, . . . , xk connecting Wp and Wq as de-
scribed, for example, in [16] and [6]. The solution z that results has length at
most k+1. The length k+1 can occur only when W 1 = W 2 and Wi = W i+1

for i = 2, . . . , k−1. But these occur only if d(x1, x2) = 2 and d(xi, xi+1) = 1
for each i. These short solutions when concatenated become the z that we
need to connect p and q. Any other chain of equivalences results in a shorter
total length of z.

3.1. Bounded solution length. In [13], Kim extends the ideas of Wagner
in a different way. Given a map f that does not have remnant, he first uses
Wagner’s method to find as many Reidemeister equivalences as possible with
that method. Then, for any two fixed points x and y that Wagner’s method
does not find to be equivalent, he considers the possible lengths of potential
solutions to equation (1).

Definition 3.4 (Kim). Let x, y ∈ Fix(f) be such that Wagner’s method
does not find an equivalence between them. Then x and y have bounded so-
lution length if there is an n ∈ Z such that for every z ∈ π1(X) for which
|z| > n we have |W−1

y f](z)Wx| > |z|. When x and y have bounded solu-
tion length, the smallest such n is the solution bound for x and y, writ-
ten nx,y.

If for any two fixed points of f either Wagner’s method finds an equiv-
alence between them or else they have bounded solution length, then f has
bounded solution length with solution bound , SB, given by the maximum of
the solution bounds for the pairs of fixed points.

Combining Theorem 3.3 with this definition results in the following.

Theorem 3.5. Any map f that has bounded solution length with SB = s
has far(f]) ≤ max{|Fix(f)|+ 1, s}.

Kim goes on to prove that several classes of maps have SB ≤ 16 and
announces that (by a tedious proof) the upper bound can be reduced to 10.
These upper bounds are too large to be useful in computer calculations in
general, but the ideas in the proofs will surely contribute to better bounds
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in the future. A map f that has far(f]) bounded does not necessarily have
bounded solution length because the existence of a short solution z for a pair
of fixed points does not preclude the existence of arbitrarily long solutions
to the same equation. Kim relates his results to ours for MRN maps, as we
will mention in Section 5.2.

4. n-characteristic homomorphisms. In Example 6.1, we present for
each n∈Z an endomorphism f] that is W-characteristic but has far(f])>n.
Yet Wagner’s algorithm can quickly determine all of the Reidemeister equiv-
alences and the Nielsen number. Thus the qualities of W-characteristic en-
domorphisms that we would like to extend to other settings cannot be de-
scribed in terms of bounds on far(f]). For this reason we present another
concept, first introduced in [6].

Definition 4.1. The endomorphism f] is n-characteristic if for any two
Nielsen related fixed points x and y there is a sequence (q1, . . . , qr) of Nielsen
related fixed points such that x = q1, y = qr and for i = 1, . . . , r−1 we have
d(qi, qi+1) ≤ n.

If f] is n-characteristic then the Nielsen classes can be determined in a
finite number of steps. Suppose that π1(X) is generated by a1, . . . , ak and
that f] is n-characteristic. For a given fixed point x = q1 on the aj loop, we
would like to find all sequences of fixed points as in the definition above. If
we act on Wx repeatedly using each of the many elements z ∈ π1(X) with
|z| ≤ n, we will find all possible elements q2.

The following theorem, which is Remark 4.9 from [6], is the key to ex-
tending Wagner’s results. It states that the number of calculations needed
to find the Nielsen classes and Reidemeister structure for W-characteristic
maps is much smaller than the number of calculations needed for an ar-
bitrary 2-characteristic map. We seek other classes of maps for which the
number of calculations needed is known to be relatively small.

Theorem 4.2. Any W-characteristic homomorphism is also 2-charac-
teristic. Given fixed points x on the ai loop and y on the aj loop, d(x, y) ≤ 2
if and only if the set {1, a−1

i , aj , aja
−1
i } contains a solution z to (1). On the

other hand , Example 6 of [6] proves that a 2-characteristic map need not be
W-characteristic.

Proof. Given an endomorphism f] that is W-characteristic, suppose that
Wi and Wj are terms from the Fox trace that come from partial derivatives
involving generators ai and aj , respectively. Then (using ideas introduced
by Wagner) we have three cases. If Wi = Wj , then Wi and Wk are equivalent
using z = 1. If Wi = W k, then Wi = W k = f](a−1

k )Wk ak. Thus z = a−1
k is
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a solution to (1). If W i = W k, then

f](a−1
i )Wi ai = f](a−1

k )Wkak and Wi = f](aia−1
k )Wk aka

−1
i .

Thus in this case z = aia
−1
k is a solution to (1).

In Example 4.6 of [13], Kim proves that a W-characteristic map need
not have bounded solution length. But, by combining Theorem 4.2 with the
definition of bounded solution length, Kim proved the following theorem.

Theorem 4.3 (Kim, Thm. 4.5 from [13]). If f has bounded solution
length with SB = s, then f is n-characteristic with n = max{2, s}.

5. New concepts and two classes of maps. Let π1(X) = 〈a1, . . . , ak〉.
Let f] : π1(X)→ π1(X) be any homomorphism, and let G± be {a1, . . . , ak}∪
{a−1

1 , . . . , a−1
k }.

We use the notation of [6]. Then for each word f](ai) in π1(X) we consider
the initial subwords of f](ai) that cancel when we reduce each of the products
in the set {f](aj)f](ai) : j = 1, . . . , k} ∪ {f](a−1

j )f](ai) : j 6= i}. We let Ui
denote the longest of all these initial segments. Similarly, we consider the
terminal subwords of f](ai) that cancel when we reduce each of the products
in the set {f](ai)f](aj) : j = 1, . . . , k} ∪ {f](ai)f](a−1

j ) : j 6= i}. The longest
of these terminal segments is denoted by Vi.

Definition 5.1 (Wagner). If |Ui|+ |Vi| < |f](ai)|, then f](ai) has rem-
nant , and the remnant of f](ai) is Xi = U−1

i f](ai)V −1
i . When each word

f](ai) has remnant, then the homomorphism f] has remnant .

Note that if f](ai) does not have remnant, then it is possible to have
|Ui|+ |Vi| > |f](ai)|, and in this case Ui and Vi overlap in the word f](ai).

Let z = z1 · · · zr with zi ∈ G±. Then zi = aj or else zi = a−1
j for some j.

If zi = aj (respectively, zi = a−1
j ), we say that Qi = Uj (Qi = V −1

j ) and
Si = Vj (Si = U−1

j ). Also, if f](aj) has remnant, then we write Ti = Xj

(Ti = X−1
j ).

Example 5.2. Let π1(X) = 〈a1, a2, a3, a4, a5〉, and let f] be of the form

f](a1) = a1 · a4 = U1V1,

f](a2) = a−1
4 · a2a

−1
1 a2 · a5 = U2X2V2 = V −1

1 X2V2,

f](a3) = a1 · a1a1a1 · a5 = U3X3V3 = U1X3V2,

f](a4) = a−1
1 · a5a

−1
2 a5 · a3 = U4X4V4 = U4X4V4,

f](a5) = a−1
1 · a2a3a2 · a3 = U5X5V5 = U4X5V4,

f](a6) = a−1
6 · a1a

−1
5 a1 · a6 = U6X6V6 = U6X6U6.
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Here we have underlined the remnant of f](ai) for each i. Suppose that
z = a5a

−1
3 a1. Then we say that Q2T2S2 = f](z2) = f](a−1

3 ) = V −1
3 X−1

3 U−1
3

with Q2 = V −1
3 , etc.

5.1. New concepts. For a map in which at least one of the f](ai) does
not have remnant, the lengths of the remnants in the other image words are
crucial. The longer the minimum of these lengths, the easier it is to prove
results concerning Reidemeister equivalence for the map.

Definition 5.3. We define the minimum remnant length for f] to be
min{|Xi| : f](ai) has remnant}.

If a homomorphism f] has remnant, then for any word w = w1 · · ·wq ∈
π1(X) we know that in the product f](w1) · · · f](wq) none of the remnants
will cancel at all. However, when we study homomorphisms with only par-
tial remnant, we can have problems. Note that if we were to change the
above example so that f](a2) were a−1

4 · a1a1a2 · a5, then in the product
f](a−1

3 )f](a1)f](a2) we would have cancellation occurring between X−1
3 and

X2. The next definition describes the additional requirement that we need
to avoid this situation. (Compare with the definition of efficient cancellation
in [13].)

Definition 5.4. Let f] be an endomorphism on π1(X) such that f](ai)
has remnant. Then f](ai) has second order stable remnant if in any product
of the form f](ai)f](g1)f](g2) or f](g2)f](g1)f](ai), with g1, g2 ∈ G±, there
is cancellation involving part or all of the subword Xi only if g1 = a−1

i .
We say that f] has second order stable remnant if for each i such that

f](ai) has remnant, f](ai) also has second order stable remnant.

Definition 5.5. A homomorphism f] on π1(X) has cyclical cancellation
if for each i the following hold:

1. We have Ui 6= 1 and Vi 6= 1.
2. There is a unique j such that either j 6= i and U−1

j Ui = 1 or else
VjUi = 1.

3. There is a unique j such that either j 6= i and ViV
−1
j = 1 or else

ViUj = 1.
4. For any j, each product of the form U−1

j Ui, VjUi, ViV −1
j , and ViVj is

either equal to 1 or has no cancellation at all.

Definition 5.6 (The functions λ and %). Let f] have cyclical cancella-
tion. The uniqueness of the cancellations ensures that there are functions
λ : G → G± (respectively, % : G → G±) such that λ(ai) (resp. %(ai)) is
the element g of G± for which f](g) cancels with the left (resp. right side)
of f](ai) as in item 2 (resp. 3) above. Refer to the example below. These
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functions can be extended to all of G± by setting λ(a−1
i ) = (%(ai))−1 and

%(a−1
i ) = (λ(ai))−1.

Example 5.2, Part 2. First note that in this example f] has min-
imum remnant length three and does have second order stable remnant,
even though it does not have remnant.

In addition, f] has cyclical cancellation. The orbits of the action of % on
G± are given by

a1 → a2 → a−1
3 → a1, a−1

1 → a3 → a−1
2 → a−1

1 , a4 → a−1
5 → a4,

a−1
4 → a5 → a−1

4 , a6 → a6, a−1
6 → a−1

6 .

Example 5.7. Next we show what can happen when a map does not
have cyclical cancellation. Suppose that π1(X) = 〈a, b, c〉 and that f] is given
by

f](a) = ac, f](b) = c−1 · bab · c, f](c) = a · c−1b2 · a−1.

As usual, the remnant is underlined. Note that %(a) is not well defined. It
could be b or b−1. There are many possible words w for which f](w) has signi-
ficant cancellation. For example, f](aba−1ca) = f](a)f](b)f](a−1)f](c)f](a),
and there is cancellation between each of the consecutive factors. The ad-
vantage to us in requiring that a map have cyclical cancellation is that there
is a well understood form to words w for which f](w) has cancellation.

5.2. The class of MRN homomorphisms. This class of maps was first
defined in [6]. We repeat the definition here using the new terminology from
Section 5.1. This class is similar to but more restrictive than the class of
2C3 maps that will be introduced in Section 5.3. For one thing, MRN maps
are always defined on spaces of the homotopy type of a wedge of only two
circles.

Definition 5.8. Suppose that π1(X) = 〈a1, a2〉. A map f has Property
MRN if the following hold:

1. f](a1) does not have remnant, and |U1|+ |U2| = f](a1).
2. f](a2) does have remnant with minimum remnant length at least two.
3. f] has cyclical cancellation.
4. Either f] has second order stable remnant or else X2 = sts−1 with tt

reduced (so t is cyclically reduced) and |t| ≥ 2.

Any map that is an MRN map is of the form f](a1) = U1V1 and either
f](a2) = U1X2V1 (type MRN1) or f](a2) = V −1

1 X2U
−1
1 (type MRN2). In [6]

we said that f](a2) = mrn, with r the remnant. Hence the name. Kim proves,
in Theorem 4.12 of [13], that an MRN map with |t| ≥ 3 has bounded solution
length with SB ≤ 16, but our results are more useful in this case.
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The following theorem was stated in [6], and a proof was promised in that
paper. Instead, we include here proofs of Theorems 5.12 and 5.13, concerning
maps of type 2C3. The proofs for MRN maps use the same techniques but
are longer and more tedious.

Theorem 5.9. Maps of type MRN have far(f]) ≤ 3 and are 2-character-
istic. For maps of type MRN1 , fixed points x and y are Nielsen equivalent
if and only if the set

{1, a1, a2, a1a
−1
2 , a−1

1 , a−1
2 , a2a

−1
1 , a2

1a
−1
2 , a2a

−2
1 , a2a

−1
1 a−1

2 , a2a1a
−1
2 }

contains a solution z to (1). The corresponding set for maps of type MRN2 is

{1, a1, a2, a2a1, a
−1
1 , a−1

2 , a−1
1 a−1

2 , a−2
1 a−1

2 , a2a
2
1, a2a1a

−1
2 , a2a

−1
1 a−1

2 }.

Note that there are 53 elements of the fundamental group that have
length at most two, and here we need only check 11 possible solutions for (1).

5.3. The class of 2C3 homomorphisms

Definition 5.10. Assume that π1(X) is the free group on k generators
〈a1, . . . , ak〉. Then any endomorphism f] on π1(X) is of type 2C3 if the
following hold:

1. f] has cyclical cancellation.
2. |U1|+ |V1| = |f](a1)|. Thus f](a1) = U1V1 is reduced and f](a1) does

not have remnant.
3. For j ≥ 2, f](aj) does have remnant and has second order stable

remnant. Thus f] has second order stable remnant. Also, the minimum
remnant length for f] is three.

The name 2C3 comes from second order stable remnant, cyclical cancella-
tion, and minimum remnant length three.

Remark 5.11. An MRN map has type 2C3 if it has second order stable
remnant and has minimum remnant length at least 3.

We prove the following theorem in Section 7.

Theorem 5.12. Any homomorphism f] of type 2C3 is 3-characteristic
and has far(f]) ≤ 4.

Example 6 in [6] demonstrates that an MRN map need not be W-
characteristic. But this example also has type 2C3. Thus a map of type
2C3 need not be W-characteristic. We provide, in Example 6.4, another ho-
momorphism of type 2C3 that is not W-characteristic. This homomorphism
also has the property that it is 3-characteristic but not 2-characteristic. Thus
our result that any 2C3 map is 3-characteristic is as strong as possible. Ex-
ample 6.3 is a map of type 2C3 that has far(f]) = 4. Again, our result is as
strong as possible.
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Theorem 5.13. For 2C3 maps, with Wγ and Wτ terms of the Fox trace
that correspond to fixed points on loops represented by generators aγ and aτ ,
our goal is to determine whether there is a word z ∈ π1(X) that satisfies
z = W−1

γ f](z)Wτ . The following statements hold :

1. Only 14 of the many words of length at most four must be checked as
possible solutions to determine whether Wγ and Wτ are Reidemeister
equivalent. (When π1(X) has rank k, the number of words of length
at most four is more than 8k4.) These 14 words are presented in the
following table. If none of the 14 conditions in the right column apply ,
then Wτ and Wγ are not Reidemeister equivalent.

2. In fact , Wagner’s method will successfully determine whether Wγ and
Wτ are equivalent whenever aγ and aτ are not equal to %(a1), λ(a1),
and their inverses. In this case, there are only four words that could
be solutions, as in Theorem 4.2.

The following table contains the crucial information needed to conclude
that the theorem is true. The proof of both theorems is in Section 7.

z This z can occur as a solution only if

|z| = 0 1 Wγ = Wτ

|z| = 1 aγ Wτ = W γ (Wagner’s notation)

a−1
τ Wγ = W τ

a1 λ(a1) = a−1
γ or %(a1) = aτ

a−1
1 λ(a1) = aγ or %(a−1

1 ) = aτ

|z| = 2 aγa
−1
τ W γ = W τ

aγa
−1
1 λ(a−1

1 ) = aγ

aγa1 λ(a1) = aγ

a1a
−1
τ %(a1) = a−1

τ

a−1
1 a−1

τ %(a−1
1 ) = a−1

τ

|z| = 3 aγa1a
−1
τ λ(a1) = aγ or %(a1) = a−1

τ

aγa
−1
1 a−1

τ λ(a−1
1 ) = aγ or %(a−1

1 ) = a−1
τ

|z| = 4 aγa
2
1a
−1
τ λ(a1) = aγ and %(a1) = a−1

τ

aγa
−2
1 a−1

τ λ(a−1
1 ) = aγ and %(a−1

1 ) = a−1
τ

6. Examples. Example 6.1 provides for each n ∈ N a W-characteristic
(and hence 2-characteristic) map with far(f]) ≥ n.

Example 6.1. Let n ∈ N. Let π1(X) = 〈a1, . . . , an−1〉. We define f] by

f](a1) = a4
1, f](a2) = a2

2a
3
1,

f](ak) = a2
ka

−1
k−1 for k = 3, . . . , n− 1.
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We have fixed points x4 corresponding to the last a1 in f](a1) and y
corresponding to the second occurrence of ak in f](ak). It turns out that
d(x4, y) = n and thus far(f]) ≥ n. To simplify the notation, we will prove
this for n = 5. The proof for other values of n is similar.

Let π1(X) = 〈a, b, c, d〉. We use upper case letters to represent inverses
of generators.

Let f] be given by

a 7→ a4 = aaaa, b 7→ b2a3 = bbaaa,

c 7→ c2B = ccB, d 7→ d2C = ddC.

This map has remnant, and the remnant of each image word is underlined
above. Thus the map is W-characteristic. By Theorem 4.2, the map is 2-
characteristic.

Consider the following table, which for the fixed point xi on loop aj pro-
vides the index of the fixed point as well as Wxi and W xi . See [6, Section 4.1]
for explanations.

i index loop = aj Wi W i = f](a
−1
j )Wi aj

0 +1 −− 1 1 (by definition)

1 −1 a 1 A3

2 −1 a a A2

3 −1 a a2 A

4 −1 a a3 1

5 −1 b 1 A3B

6 −1 b b A3B2

7 −1 c 1 bC

8 −1 c c b

9 −1 d 1 cD

10 −1 d d cD

Note that x4 and y = x10 are Nielsen equivalent because (using Wagner’s
algorithm) we have a chain of Reidemeister equivalences from W4 to W10

given by

W4 ∼W 4 = W1 ∼W 1 = W 6 ∼W6 = W 8 ∼W8 = W 10 ∼W10.

The values of z used for the Reidemeister equivalences above are z =
a, aB,C, and D, respectively. Thus we can conclude (and easily check) that
z = a2BCD is a solution to the equation z = W−1

4 f](z)W10.
Is there a shorter word that is also a solution? Here we use a new ver-

sion of abelianization to prove that the answer is no, which proves that
far(f])≥ 5.

In the free abelian group Gab generated by a, b, c, and d, any element has
a unique expression of the form aibjckdl for i, j, k, l ∈ Z. We use here the
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symbol f] to represent the induced endomorphism on Gab. We seek informa-
tion about any solution z to the equation in Gab given by z = W−1

4 f](z)W10,

which can be rewritten as W4W
−1
10 = z−1f](z).

Let z = aibjckdl ∈ Gab. Then the equation can be written as a3D =
a−ib−jc−kd−lf](aibjckdl) = a3i+3jbj−kck−ldl. Thus any solution z ∈ Gab
must have i = 2, j = −1, k = −1, and l = −1. This implies that in the
fundamental group we must have |z| ≥ |i|+ |j|+ |k|+ |l| = 5.

Even when there is no remnant in any of the image words for f], we can
have far(f]) arbitrarily large, as we demonstrate in the next example.

Example 6.2. Let n ∈ N, π1(X) = 〈a, b, c〉, and let f] be given by

f](a) = (bc)2na(bc)2n, f](b) = c−1, f](c) = b−1.

Note that this homomorphism has no remnant in each image word. There
is a fixed point x with Wx = (bc)2n. Using z = (bc)n in (1), we find that
z = W−1

x0
f](z)Wx. Thus d(x0, x) ≤ 2n.

Using abelianization, we will now prove that d(x0, x) = 2n. Suppose that
z is any solution to z = W−1

x0
f](z)Wx. We will prove that |z| ≥ 2n.

For this paragraph, we work in the abelianization Gab of π1(X), the free
abelian group generated by a, b, and c. Then we can let z = aibjck for some
i, j, k ∈ Z. We see that f](z)z−1 = Wx0W

−1
x = (bc)−2n. But f](z)z−1 =

a−i+ib4ni−j−kc4ni−j−k. Thus we must have j + k = 4ni+ 2n = 2n(2i+ 1).
Returning now to π1(X), we have |z| ≥ |i| + |j| + |k| ≥ |j + k| =

2n|2i + 1|. But |2i + 1| ≥ 1 because i is an integer. Thus any solution
to z = W−1

x0
f](z)Wx must have length at least 2n.

We conclude that far(f]) ≥ 2n.

In the proof of Theorem 5.12 we show that there can be a type 2C3 map
with far(f]) = 4 that is 3-characteristic. Here is an illustration of that case.

Example 6.3. Let π1(X) = 〈a, b, c〉 with f] given by

f](a) = aa, f](b) = cb3a−1 = c · b3 · a−1, f](c) = c4a = c · c3 · a.
Here the remnant is underlined, and we have two cycles for the function %:
a→ c−1 → b→ a and also a−1 → b−1 → c→ a. (Reverse the arrows to find
the orbits for λ.) The remaining requirements for a type 2C3 map are also
met.

Consider fixed points xγ on the b loop that has Wγ = cb2 and xτ on the
c loop that has Wτ = c3. Using z = ba2c−1, we find that these fixed points
are Nielsen equivalent and d(Wγ ,Wτ ) ≤ 4.

By abelianization, as in Example 6.2, there is no shorter z. Thus
d(Wγ ,Wτ ) = 4 and far(f]) ≥ 4. But because f] is of type 2C3, far(f]) = 4.

On the other hand, there are intermediate fixed points as follows:
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List the 10 fixed points as usual with x0 the base point. Then xγ = x5 and
xτ = x9. We have d(x5, x2) = 1, using z = b, and d(x2, x1) = 1, using z = a,
and finally d(x1, x9) = 2, using z = ac−1. Note that the three solutions here
multiply to become the solution for connecting x5 and x9 in one step.

Note that in Example 6 of [6] we present a homomorphism that is an
MRN map and is not W-characteristic. Thus Wagner’s method does not
find all Nielsen equivalences. That example is also of type 2C3.

Example 6.4. Here we present another homomorphism that is of type
2C3 and is not W-characteristic. In addition, this example has two fixed
points x2 and x3 for which d(x2, x3) = 3 and no intermediate fixed point ex-
ists. Thus we can conclude that 2C3 maps are not in general 2-characteristic.

Let π1(X) = 〈a, b, c〉 and let f](a) = a−1b, f](b) = a · aba · a, and
f](c) = a · b2c · b. This is a homomorphism of type 2C3. The fixed points are
described in the table below.

i index loop = aj Wi W i = f](a
−1
j )Wi aj

0 +1 −− 1 1 (by definition)

1 +1 a a−1 b−1a

2 −1 b a2 a−2

3 −1 c ab2 b−1

Wagner’s method finds no Reidemeister equivalences, but z = bac−1

works to prove that W2 and W3 are Reidemeister equivalent. Thus this
homomorphism is not W-characteristic.

Could it be that this map is 2-characteristic? We answer this question by
seeking Reidemeister equivalences for W2 for which |z| ≤ 2. Any such equiv-
alence must also hold in the abelianization of π1(X). If the abelianization
of z is aibjck for integers i, j, and k, then we must have |i| + |j| + |k| ≤ 2.
It is straightforward to check that in the abelianized setting there is no
equivalence between W2 and W0 nor between W2 and W1 using z satisfying
|i| + |j| + |k| ≤ 2. Thus in π1(X) itself there can be no such equivalences
with |z| ≤ 2. Thus the map is not 2-characteristic, and our statement that
2C3 maps are 3-characteristic is a sharp result.

7. The proof of Theorems 5.12 and 5.13. Let f] be a homomor-
phism of type 2C3. Assume z ∈ π1(X) is a solution to the equation

(2) z = W−1
γ f](z)Wτ ,

where Wγ and Wτ are terms of the Fox trace.
Let xγ and xτ be the corresponding Nielsen related fixed points, and let

aγ (respectively aτ ) be the generator of π1(X) that corresponds to the loop
containing xγ (resp. xτ ). We assume that |z| ≥ 4. In most cases this leads
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to a contradiction. When it is possible for |z| to be equal to four, we prove
that there is a sequence of intermediate fixed points connecting xγ and xτ
in such a way as to prove that f] is 3-characteristic.

Remark 7.1. Let z ∈ π1(X). If z occurs as a solution to (2), then z−1

also occurs as a solution to (2) using the W ’s in the opposite order. This
means that if we have proven that z cannot occur as a solution for any Wγ

and Wτ , then we also know that z−1 cannot occur as a solution for any Wγ

and Wτ .

7.1. Classifying segments of a word in π1(X). We require a method of
dividing z into subwords wi for which we know the structure of f](wi) and
for which there is no cancellation between images of adjacent subwords. See
Remark 7.3 for an example.

Definition 7.2. Let z = z1 · · · zq be reduced with each zj ∈ G±.
A subword w = zs · · · zt of z is an RP (a reducing piece) if |w| ≥ 2,

%(zj) = zj+1 for j = s, . . . , t − 1, and w is as long as possible with this
property (so that %(zj−1) 6= zj for example).

A subword w = zs · · · zt of z is an NRP (a nonreducing piece) if %(zj) 6=
zj+1 for j = s, . . . , t− 1, and w is as long as possible with this property.

Remark 7.3. To demonstrate, consider again the orbits for Example 5.2.
Suppose that z is the (arbitrary) word given below, with the RPs underlined.
We have

z = a5 · a−1
3 a1 · a−1

2 a−1
1 a3a

−1
2 · a

−1
2 a4 · a6a6 · a1 · a4a

−1
5 .

Thus the image is (with the images of the RPs underlined)

f](z) = U5X5V5 · V −1
3 X−1

3 V1 · V −1
2 X−1

2 X3X
−1
2 U−1

2

· V −1
2 X−1

2 U−1
2 U4X4V4 · U6X6X6V6 · U1V1 · U4X4X

−1
5 U−1

5 .

Note that this product is reduced as written. In addition, the remnant of
each image word remains intact in the reduced form of f](z).

Lemma 7.4. Between any two NRPs there is at least one RP. Because
f] has cyclical cancellation and because f](a1) = U1V1 is reduced , we have
λ(a1) 6= a1 and %(a1) 6= a1. Also, no RP contains both a1 and a−1

1 because
they are in different cycles.

We now introduce more notation. Let z = aγz2 · · · zq with each zj ∈ G±.
For some i, zj is equal to either ai or a−1

i . We write f](zj) = QjTjSj . If
zj = ai, then Qj = Ui, Tb = Xi, and Sj = Vi. If zj = a−1

i , then Qj = V −1
i ,

Tb = X−1
i , and Sj = U−1

i .
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If z is an RP, then f](z) = Q1T1T2 · · ·Tq−1TqSq is reduced except that
each Ti might be trivial. If z is an NRP, then

f](z) = Q1T1S1Q2T2S2 · · ·Qq−1Tq−1Sq−1QqTqSq

is reduced except that each Ti might be trivial.

7.2. Bounds on the length of W−1
γ f](z)Wτ . Let z = aγz2 · · · zq with each

zj ∈ G± and q ≥ 4. We now analyze the possible solutions to (2), which is
z = W−1

γ f](z)Wτ .
First consider f](z), which before reduction is

f](z) = Q1T1S1Q2T2S2 · · ·Qq−1Tq−1Sq−1QqTqSq.

Let B̂ = Q1T1S1Q2, M = T2S2 · · ·Qq−1Tq−1, and Ê = Sq−1QqTqSq. Then
we have chopped f](z) into a beginning, middle, and end. Note that, for
any z with length at least four, there is no cancellation at the dots in the
product

f](z) = B̂ ·M · Ê.

Next we define B = W−1
γ B̂ and E = ÊWτ .

Remark 7.5. For example, consider the element z given in Remark 7.3.
We have

B̂ = U5X5V5V
−1
3 = f](a5)V −1

3 = a−1
1 a2a3a2a3a

−1
5 .

Similarly,

Ê = V4V
−1
5 X−1

5 U−1
5 = a3a

−1
3 a−1

2 a−1
3 a−1

2 a1 = a−1
2 a−1

3 a−1
2 a1.

Remark 7.6. Recall that Wγ (resp. Wτ ) is an initial segment of f](aγ)
(resp. f](aτ )). Because of this, W−1

γ is never long enough to cancel with M
in W−1

γ f](z)Wτ and a similar statement is true about Wτ . Then

|z| = |W−1
γ f](z)Wτ | = |B|+ |M |+ |E|

because there can be no cancellation at the dots in the product W−1
γ f](z)Wτ

= B ·M · E.
We first put bounds on |B| + |E| and then on |M |. This provides the

facts necessary for the proof of Theorem 5.12.
Let ∆ be the number of times that z begins or ends in an NRP. Thus if

z is all one NRP, ∆ = 2.

Lemma 7.7. Assume that |z| ≥ 4. Then

1. |B|+ |E| ≥ 2∆.
2. If B = 1, then z begins with an RP and for some ε ∈ {−1, 1} we have
z1 = aε1 = %(a−1

γ ).
3. If E = 1, then z ends in an RP and for some ε ∈ {−1, 1} we have
zq = aε1 = λ(aτ ).
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Proof. First suppose that z begins in an NRP. Then Q1T1S1Q2 is re-
duced. Thus

|B| = |W−1
γ Q1T1S1|+ |Q2| ≥ |W−1

γ Q1T1S1|+ 1.

If |B| = 1, then W−1
γ Q1T1S1 = 1, which forces z1 = aγ and Wγ = f](aγ).

But this happens only if f](aγ) ends in a−1
γ . Thus Q2 does not begin in aγ

because z begins in an NRP. But z begins with Q2, and Q2 never cancels
from the right. Thus z1 6= aγ . This is a contradiction, so |B| ≥ 2.

Similarly, if z ends in an NRP, then |E| ≥ 2. Hence |B|+ |E| ≥ 2∆.
Next, suppose that B = 1. By the first part of this lemma, z begins in

an RP, and thus S1 = Q−1
2 . In addition, we must have Wγ = Q1T1.

Suppose that z1 6∈ {a1, a
−1
1 }. Then we must have z1 = aγ or else T1 does

not cancel, and thus Wγ = Q1T1 = UγXγ .
This means that

z = T2S2 · · ·QqTqSqWτ ,

and T2 does not cancel.
There are two ways that Wγ can equal UγXγ . Either Xγ ends in a−1

γ or
Vγ begins with aγ .

Suppose that Xγ ends in a−1
γ . Then T2S2 · · ·QqTqSqWτ cannot begin

with aγ . But z1 = aγ . This is a contradiction.
Next suppose that Vγ begins with aγ . Because z begins in an RP we

infer that Q2 ends in a−1
γ . As above, T2S2 · · ·QqTqSqWτ cannot begin with

aγ , and we have a contradiction.
We have proven that if B = 1 then z must begin with an RP, with either

a1 or a−1
1 , and in either case z1 = %(a−1

γ ).
The third item is proven similarly.

7.3. Tedious definitions for the bound on |M |. Recall that

M = T2S2Q3T3 · · ·Tq−2Sq−2Qq−1Tq−1.

First we let y = z2 · · · zq−1 and we seek a lower bound for |f](y)|. Then we
consider the fact that f](y) = Q2MSq−1 and find a lower bound for |M |.

We consider the contributions of each NRP and RP in y to the length
of f](y).

First we consider the NRPs in y.
Each zj in an NRP of y that is not a1 nor a−1

1 contributes at least 5 to
|f](y)| because |f](zj)| = |Qj | + |Tj | + |Sj | ≥ 1 + 3 + 1, and none of this
cancels in f](y). Let n be the number of such zj .

Each zj that is equal to a1 or a−1
1 contributes at least 2 to |f](y)| because

|f](zj)| = |Qj | + |Sj | ≥ 1 + 1, and none of this cancels in f](y). Let m be
the number of such zj .
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Then the total length of all the NRPs in y is n + m, and these NRPs
contribute at least 5n+ 2m to |f](y)|.

Let `1 be the number of RPs in y that contain neither a1 nor a−1
1 .

Similarly, let `2 be the number of RPs in y that do contain one of a1

or a−1
1 .
Next we consider the RPs in y. The RPs that include neither a1 nor a−1

1

are the easiest to analyze. Recall that `1 is the number of such RPs in y.
Let r be the total number of zj ’s in all the RPs of y that do not contain
a1 nor a−1

1 . Each of these letters zj contributes |Tj | ≥ 3 to |f](y)|. But note
that the first letter of each such RP also contributes |Qj | ≥ 1 and the last
letter of the RP also contributes |Sj | ≥ 1.

Thus the RPs that contain neither a1 nor a−1
1 contribute r to |y| and

contribute 3r + 2`1 to |f](y)|.
Finally, we consider the RPs of y that do contain either a1 or a−1

1 . We
have that `2 is the number of such RPs in y. In such an RP, each zj that is
equal to neither a1 nor a−1

1 contributes |Tj | ≥ 3 to |f](y)|, as above. Let s be
the number of such zj . The zj that are either a1 or a−1

1 contribute nothing
to |y| unless they are the first or last letter of the RP. Let α be the number
of those zj that are a1 or a−1

1 and are at the beginning or the end of an RP.
As above, the first (resp. last) letter of each such RP contributes |Qj | ≥ 1
(|Sj | ≥ 1) to |f](y)|.

Thus the RPs that do contain a1 or a−1
1 contribute s + α to |y| and

3s+ 2`2 to f](y).
So far we know that

|y| = n+m+ r + s+ α, |f](y)| ≥ 5n+ 2m+ 3r + 2`1 + 3s+ 2`2.

Recall that f](y) = Q2MSq−1 and that Q2 and Sq−1 each contributed 1
to the lower bound for |f](y)|. Thus

|z| = |y|+2 = n+m+r+s+α+2, |M | ≥ 5n+2m+3r+2`1+3s+2`2−2,

and hence, using the first part of Lemma 7.7, we have

n+m+ r + s+ α+ 2 = |z| = |W−1
γ f](z)Wτ |

= |B|+ |M |+ |E| ≥ 5n+ 2m+ 3r + 2`1 + 3s+ 2`2 − 2 + 2∆.

In proving Theorem 5.12 we will repeatedly use the following:

(3) 4 + α ≥ 4n+m+ 2r + 2`1 + 2s+ 2`2 + 2∆.

Remark 7.8. Consider again the word z given in Remark 7.3. We have

y = a−1
3 a1 · a−1

2 a−1
1 a3a

−1
2 · a

−1
2 a4 · a6a6 · a1a4.

Note that z ends in an RP (a4a
−1
5 ), but if the last letter is removed from

z to form y then what was part of this RP (a4) is now part of an NRP in y.



114 E. L. Hart

The NRP in y are a−1
2 a4 and a1a4. We have n = 3 and m = 1.

The RPs in y are a−1
3 a1, followed by a−1

2 a−1
1 a3a

−1
2 , and a6a6. Thus `1 = 1,

r = 2, `2 = 2, s = 4, and α = 1.
Thus |y| = n+m+ r + s+ α = 12. Also,

f](y) = V −1
3 X−1

3 V1 · V −1
2 X−1

2 X3X
−1
2 U−1

2

· V −1
2 X−1

2 U−1
2 U4X4V4 · U6X6X6V6 · U1V1U4X4V4,

and |f](y)| is bounded below by the sum of the number of U ’s and V ’s plus
three times the number of X’s. Thus |f](y)| ≥ 14 + 9 · 3 = 41. Our equation
gives us the lower bound |f](y)| ≥ 5n+ 2m+ 3r + 2`1 + 3s+ 2`2 = 41.

Next we note that |M | = |y|− |V −1
3 |− |V4| ≥ 39 because V −1

3 and V4 are
each counted as contributing 1 to the lower bound for |y|.

Lemma 7.9. In addition, α ≤ s+ `2. Thus (3) becomes

(4) 4 ≥ 4n+m+ 2r + 2`1 + s+ `2 + 2∆.

Proof. For a given RP that contains a1, the largest number of occur-
rences of a1 occurs when the length of the cycle of a1 is two. That is, to
maximize α, we need to consider the case in which %2(a1) = a1. In this case,
we can have the RP equal to (a1%(a1))ta1. If this is the form of each RP
in f](z), then α = s+ `2. The same holds if we have an RP containing a−1

1 .
An RP of any other form will contribute less to the count for α.

7.4. The proof of Theorem 5.12 at last. We begin the proof by assuming
that |z| ≥ 4. We prove that this forces z to equal one of a short list of words
that all have length 4. For each of these words, we will show that there is
an intermediate fixed point for xγ and xτ so that there are shorter solutions
z that can be used to connect xγ and xτ .

In addition to (4), repeated here,

4 ≥ 4n+m+ 2r + 2`1 + s+ `2 + 2∆,

we have

4 ≤ |z| = n+m+ r + s+ α ≤ n+m+ r + 2s+ `2.

Note that these two inequalities imply that n = 0 and that ∆ is 1 or 0.
Therefore without loss of generality we may assume that z begins in an RP.

Case 1: s = 0. In this case there are no RPs in y, and the only NRPs
in y are made up entirely of powers of a1. Thus y = am1 or y = a−m1 and
m = |z| − 2 = q − 2.

By Remark 7.1, we may assume that z = z1a
q−2
1 zq. Because z begins in

an RP, we know that z1 = λ(a1). (This seems contradictory, but remember
that `1 + `2 is the number of RPs in the subword y. Here z2 is part of an
NRP in y and yet part of an RP in z.)
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In addition, because λ(a1) 6= a±1
1 , Lemma 7.7 guarantees that |B| 6= 0.

The same is true about |E| either because z ends in an NRP (so |E| ≥ 2)
or because z ends in an RP and zq = %(a1) 6= a±1

1 . Thus |B|+ |E| ≥ 2.
(4) becomes

4 ≥ m+ |B|+ |E| ≥ q − 2 + 2 = q = |z|.
This forces z = λ(a1)a1a1%(a1) = (W−1

γ Q1T1) · (V1U1) · (T4S4Wτ ), with B,
M , and E indicated by parentheses on the right side.

We now prove that there are intermediate fixed points connecting xγ
and xτ . We have B = W−1

γ Q1T1 = λ(a1) = z1. Thus z1 6= a±1
1 and |T1| ≥ 3.

In order for most of T1 to cancel when B is reduced, we must have aγ =
z1 = λ(a1). Thus f](aγ) = UγXγU

−1
1 .

Similarly, a−1
τ = zq = %(a1). Thus f](aτ ) = UτXτV1.

We also have M = V1U1 = a2
1, so f](a1) = a2

1. To summarize:

f](a1) = a2
1, f](aγ) = UγXγa

−1
1 = Wγaγa

−1
1 ,

f](aτ ) = UτXτa1 = Wτaτa1.

Let x1 and x2 be the two fixed points on the a1 loop. Using Wagner’s
notation, we have the following information:

Wi W i = f](a
−1
j )Wi aj

x0 1 1

x1 1 a−1
1

x2 a1 1

xγ Wγ a1

xτ Wτ a−1
1

Using the ideas in the proof of Theorem 4.2, we find that d(xγ , x2) ≤ 1
(via z = aγ); d(x2, x1) ≤ 1 (using z = a1); and d(x1, xτ ) ≤ 2 (using z =
a1aτ ). Note that combining these three shorter z’s gives us the original
z = aγa1a1a

−1
τ . Thus xτ ∼ x2 ∼ x1 ∼ xτ with each equivalence requiring a

solution of length at most 2.

Case 2: s ≥ 1. Thus `2 ≥ 1 and 1 ≤ α. This forces r = 0, `1 = 0
(because r ≥ `1) and m+ 2∆ ≤ 2. Thus ∆ = 0 or ∆ = 1.

Case 2A: s ≥ 1 and ∆ = 1 (so that one end of z is an RP and the other
is an NRP). Without loss of generality, we can assume that z1z2 is an RP
and zq is part of an NRP in z. Thus by the proof of Lemma 7.7, |E| ≥ 2.
Returning to (3), replacing 2∆ with |B|+ |E|, we see that

2 ≥ m+ s+ `2 + |B|.
This means that s = 1 = `2 and m = 0 = |B|. Using (3) and then (4),
we find that 4 ≤ |z| ≤ s + α + 2 ≤ 2s + `2 + 2 = 4, and 4 = |z| ≥
3s+ 2`2 − 2 + |B|+ |E| ≥ 5. Thus we have a contradiction.
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Case 2B: s ≥ 1 and ∆ = 0 (so that z begins and ends in RPs). We have
2 ≥ m+ |B|+ |E|.
Subcase 2B(i): |B|+ |E| = 2. We have m= 0 and 4 ≥ s+ `2 + |B|+ |E|

≥ 4. This forces s = `2 = 1, and 1 ≤ α ≤ 2.
Then |z| ≥ 3s = 2`2 − 2 + |B|+ |E| = 5.
Because y has no NRPs and z begins and ends in RPs, it follows that z

is composed entirely of one RP. Thus |z| = 5 and α = 2. Then z must have
the form (for some ε ∈ {1,−1})

z = λ(aε1)aε1%(aε1)aε1%(aε1).

This can happen only if aε1 = %2(aε1) and thus λ(aε1) = %(aε1).
Note that we now have

z1a
ε
1z1a

ε
1z1 = z = (W−1

τ Q1T1) · (T1) · (T1S1Wτ ).

In addition, z1 = %(aε1) 6= aε1 (because f] is a 2C3 homomorphism). Thus
|B| 6= 0 and |E| 6= 0. This forces B = z1 = E. Because M = T1 with length
at least three, and because |B|+|E| = 2, we must have T1 = aε1z1a

ε
1. But this

contradicts the fact that T1 must end in z1 because W−1
τ Q1T1 = B = z1.

Therefore this subcase cannot occur.

Subcase 2B(ii): |B| + |E| = 1. In this subcase we have m ≤ 1, and
without loss of generality we may assume that |B| = 0 and |E| = 1. Then
by Lemma 7.7 (for some ε ∈ {1,−1})

z1z2 = aε1%(aε1).

Recall that because n = 0, any NRP in y must be a power of a1. Because
%(aε1) 6= aε1, z2 cannot be part of an NRP in y. Thus z2 must be part of an
RP in y. The fact that z2 6= aε1 implies that α cannot reach its maximum
value of s+ `2. We now have α ≤ s+ `2 − 1.

Thus our inequalities combine to become

3 ≥ m+ s+ `2 + |E| ≥ m+ 1 + s+ `2,

which implies that m = 0, s = 1, `2 = 1, α = 1, and |z| = 4.
We assume that ε = 1 because the proof for ε = −1 is very similar. Using

arguments similar to those in the previous subcase, we find that

z = a1%(a1)a1%(a1) = (W−1
γ U1) · (T2) · (T2S2Wτ ).

Also E = z4 = %(a1) is the first letter of T2, and M = T2 = a1%(a1)a1. But
a1 6= %(a1). This is a contradiction.

Subcase 2B(iii): |B|+ |E| = 0. Here, for some ε1, ε2 ∈ {1,−1}, we have
z1z2 = aε11 %(aε11 ) and zq−1zq = λ(aε21 )aε21 .

As in the subcases above, z1z2z3 and zq−2zq−1zq must be parts of RPs
in z. Thus s ≥ 2 and α ≤ s + `2 − 2 because the number of a1’s and a−1

1 ’s
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in y is limited by the fact that y begins and ends in letters other than
these.

We have

m+ 2s+ `2 ≥ m+ s+ α+ 2 = |z| ≥ 2m+ 3s+ 2`2 − 2,

and thus 2 ≥ m+ s+ `2 ≥ 3. Thus this subcase cannot occur.
Thus both theorems are proven.
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