Whitney arcs and 1-critical arcs

by

Marianna Csörnyei (London), Jan Kališ (Boca Raton, FL), and Luděk Zajíček (Praha)

Abstract. A simple arc $\gamma \subset \mathbb{R}^n$ is called a Whitney arc if there exists a non-constant real function f on γ such that $\lim_{y\to x, y\in\gamma} |f(y) - f(x)|/|y - x| = 0$ for every $x \in \gamma$; γ is 1-critical if there exists an $f \in C^1(\mathbb{R}^n)$ such that f'(x) = 0 for every $x \in \gamma$ and f is not constant on γ . We show that the two notions are equivalent if γ is a quasiarc, but for general simple arcs the Whitney property is weaker. Our example also gives an arc γ in \mathbb{R}^2 each of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone Whitney arc. This answers completely a problem of G. Petruska which was solved for $n \geq 3$ by the first author in 1999.

1. Introduction. A famous example of Whitney [10] shows that there exist a simple arc $\gamma \subset \mathbb{R}^2$ and a C^1 function f on \mathbb{R}^2 such that each point of γ is critical for f, and f is not constant on γ . A slightly weaker example was independently constructed by Choquet in [1]. Namely, he constructed a simple arc $\gamma \subset \mathbb{R}^2$ which is *Whitney* by the following terminology introduced in [8] and used in [4].

DEFINITION 1.1. We say that a simple arc $\gamma \subset \mathbb{R}^n$ is a Whitney arc if there exists a non-constant real function f on γ such that

(1)
$$\lim_{y \to x, y \in \gamma} \frac{|f(y) - f(x)|}{|y - x|} = 0 \quad \text{for each } x \in \gamma.$$

It seems that the difference between Whitney arcs thus defined and arcs considered by Whitney is not sufficiently emphasized in the literature (see e.g. remarks in [9, p. 399] on Choquet's results). The aim of the present article is to study this difference. First we recall the terminology of [9] which corresponds precisely to the example of Whitney.

²⁰⁰⁰ Mathematics Subject Classification: Primary 26B05; Secondary 26A30. Key words and phrases: Whitney curve, quasiarc.

The third named author was supported by the grant MSM 0021620839 from the Czech Ministry of Education.

DEFINITION 1.2. We say that a simple arc $\gamma \subset \mathbb{R}^n$ is a 1-*critical arc* if there exists a C^1 function on \mathbb{R}^n which is not constant on γ and f'(x) = 0for each $x \in \gamma$.

Of course, each 1-critical arc is Whitney but the opposite implication does not hold. If the convergence in (1) were uniform in $x \in \gamma$ then Whitney's extension theorem would imply that f can be extended to \mathbb{R}^n as a C^1 function with derivative 0 at the points of γ ; however, without assuming uniform convergence this is not the case. In Section 3 we will construct a Whitney arc γ in \mathbb{R}^2 (slightly modifying the original construction of Whitney) which is not 1-critical.

No full characterization of 1-critical arcs or Whitney arcs is known (even in \mathbb{R}^2). However, there are interesting necessary or sufficient conditions. It is not difficult to prove (see [1] and Lemma 4.1 below) that no Whitney arc has σ -finite 1-dimensional Hausdorff measure. Choquet also proved that no graph of a continuous $f : [a, b] \to \mathbb{R}$ is Whitney. This result easily implies [5] that if $\gamma \subset \mathbb{R}^n$ has a parametrization whose n-1 coordinates have finite variation, then γ is not a Whitney arc. Interesting necessary [8, Theorem 3] and sufficient [8, Theorem 2] conditions for $\gamma \subset \mathbb{R}^n$ to be Whitney were proved by Laczkovich and Petruska.

Norton [9] proved that each simple arc γ in \mathbb{R}^n which is a quasiarc and has Hausdorff dimension greater than 1 is 1-critical, and noted that such arcs "are in the plentiful supply (e.g. as Julia sets for certain rational maps in the plane)". (Note that all arcs constructed in [1], [4], [8] and [10] are quasiarcs.) We prove (Theorem 2.2) that if a Whitney arc in \mathbb{R}^n is a quasiarc, then it is 1-critical. That is, for quasiarcs the two notions are equivalent.

A modification of the construction of Whitney (see Section 3) is used as a basic building block in an iterative construction in Section 4, which gives an example of a Whitney arc which is not 1-critical and also has other interesting properties. To describe them, recall that a real function f defined (at least) on a simple arc $\gamma \subset \mathbb{R}^n$ is said to be *monotone* (resp. *strictly monotone*) along γ if $f \circ \varphi$ is monotone (resp. strictly monotone) for each homeomorphic parametrization φ of γ . Following [4], we say that a simple arc $\gamma \subset \mathbb{R}^n$ is a *monotone* (resp. *strictly monotone*) Whitney arc if there exists a non-constant f on γ that is monotone (resp. strictly monotone) along γ and satisfies (1).

Petruska raised the question whether there exists a simple arc γ for which every subarc is Whitney, but for which there is no parametrization φ of γ satisfying

$$\lim_{t \to t_0} \frac{|t - t_0|}{|\varphi(t) - \varphi(t_0)|} = 0, \quad t_0 \in [0, 1]$$

(which is clearly equivalent to γ not being a strictly monotone Whitney arc).

This question was answered affirmatively in [4] for $n \geq 3$, and it remained open in \mathbb{R}^2 (see Problem 4 in [4]). Our example gives an affirmative answer also for n = 2. We construct an arc $\gamma \subset \mathbb{R}^2$ such that each of its subarcs is a monotone Whitney arc but any Lipschitz function satisfying (1) on any subarc γ' of γ is constant on γ' . From the last property it will easily follow that each function satisfying (1) on γ is locally constant on a relatively open dense subset of γ (and so γ is not a strictly monotone Whitney arc).

For the sake of completeness we remark that Theorem 2.2 implies that every Whitney quasiarc is a monotone Whitney arc. However, if γ is not a quasiarc then this is no longer true: Kolář ([6]) recently constructed a 1-critical arc in \mathbb{R}^2 which is not a monotone Whitney arc (and since each 1-critical arc is a Whitney arc, this solves Problem 2 in [4]).

2. Whitney quasiarcs are 1-critical. We denote by λ the Lebesgue measure on \mathbb{R} . In the following we will use the well-known notion of a quasiarc.

DEFINITION 2.1. We say that a simple arc $\gamma \subset \mathbb{R}^n$ is a *quasiarc* if there exists K > 0 such that, for any distinct $x, y \in \gamma$, the subarc of γ "between x and y" (in the natural sense) is contained in some ball of radius K|x-y|.

THEOREM 2.2. Let $\gamma \subset \mathbb{R}^n$ be a Whitney arc which is a quasiarc. Then there exists a C^1 function f on \mathbb{R}^n that is non-constant monotone along γ , and f'(x) = 0 for every $x \in \gamma$. In particular, γ is 1-critical.

Proof. Let $\varphi : [0,1] \to \mathbb{R}^n$ be a continuous injective parametrization of γ . Choose a non-constant $f : \gamma \to \mathbb{R}$ such that (1) holds. We can suppose that $g := f \circ \varphi$ is not non-increasing (otherwise we take -f instead of f). So we can choose $0 \leq a < b \leq 1$ such that g(a) < g(b). For each $y \in$ [g(a), g(b)] put $\omega(y) = \min\{x \in [a, b] : g(x) = y\}$. Since g is continuous, ω is clearly (strictly) increasing. Using Lusin's theorem and then the Cantor– Bendixson theorem we can choose a set $T^* \subset [g(a), g(b)]$ such that $\lambda(T^*) > 0$ and $\omega|_{T^*}$ is continuous. Put $T := \omega(T^*)$. Then $g_0 := g|_T$ is an increasing homeomorphism between T and T^* , and $g_0 = f_0 \circ \varphi|_T$ where $f_0 := f|_{\varphi(T)}$ is a homeomorphism between $\varphi(T)$ and T^* .

Let, for $x \in \gamma$,

$$\eta_k(x) := \sup\left\{\frac{|f(y) - f(x)|}{|y - x|} : y \in \gamma, \ 0 < |y - x| < 1/k\right\}.$$

Then $\lim_{k\to\infty} \eta_k(x) \to 0$ for every $x \in \gamma$. It is easy to prove that $p_k := \eta_k \circ f_0^{-1}$ is a Borel function on T^* . Since $p_k \to 0$ at every point of T^* , applying Egorov's theorem (see [3, 2.3.7]) we can find a closed $H^* \subset T^*$ with $\lambda(H^*) > 0$ such that $p_k \to 0$ uniformly on H^* . That is, the limit in (1) is uniform on $f_0^{-1}(H^*)$.

M. Csörnyei et al.

Set $H := g_0^{-1}(H^*)$. We can define a (strictly) increasing continuous function \widetilde{g} on [0,1] which extends $g_0|_H$ and is linear on each component of $[0,1] \setminus H$. Put $q(t) := \lambda((-\infty,t] \cap H^*)$ and $F := q \circ \widetilde{g} \circ \varphi^{-1}$. Then F is a non-constant function monotone along γ . We will prove that

(2)
$$\lim_{y \to x, x \in \gamma} \frac{|F(y) - F(x)|}{|y - x|} = 0 \quad \text{uniformly with respect to } x \in \gamma.$$

To this end consider an arbitrary $\varepsilon > 0$. Let $K \ge 1$ witness the fact that γ is a quasiarc. Note that $F = q \circ f$ on $\varphi(H)$ and q is Lipschitz with constant 1, therefore $|F(y) - F(x)| \le |f(y) - f(x)|$ for each $x, y \in \varphi(H)$. Using also the fact that the limit (1) is uniform with respect to $x \in \varphi(H) = f_0^{-1}(H^*)$, we can find $\delta > 0$ such that

(3)
$$\frac{|F(x) - F(y)|}{|x - y|} < \frac{\varepsilon}{2K}$$
 whenever $x, y \in \varphi(H)$ and $0 < |x - y| < \delta$.

Let $x, y \in \gamma$ be arbitrary points with $0 < |x - y| < \delta(4K)^{-1}$ and $F(x) \neq F(y)$. We can suppose that $x = \varphi(t_x)$ and $y = \varphi(t_y)$ with $t_x < t_y$.

Since F is constant on the intervals contiguous to $\varphi(H)$ and $F(x) \neq F(y)$, we see that H has at least two points in $[t_x, t_y]$. Define

$$s_x := \min(H \cap [t_x, t_y])$$
 and $s_y = \max(H \cap [t_x, t_y]).$

Clearly $t_x \leq s_x < s_y \leq t_y$ and F is constant on $\varphi([t_x, s_x])$ and $\varphi([s_y, t_y])$. The definition of K gives

$$|\varphi(s_x) - \varphi(s_y)| \le 2K|\varphi(t_x) - \varphi(t_y)| \le 2K \frac{\delta}{4K} < \delta$$

and thus (3) gives

$$\frac{|F(x) - F(y)|}{|x - y|} = \frac{|F(\varphi(t_x)) - F(\varphi(t_y))|}{|\varphi(t_x) - \varphi(t_y)|} \le \frac{|F(\varphi(s_x)) - F(\varphi(s_y))|}{\frac{1}{2K}|\varphi(s_x) - \varphi(s_y)|} < 2K \frac{\varepsilon}{2K} = \varepsilon,$$

which proves (2).

Whitney's extension theorem (see e.g. [2, p. 245]) and (2) immediately imply that there exists an extension \widetilde{F} of F such that $\widetilde{F} \in C^1(\mathbb{R}^n)$ and $(\widetilde{F})'(x) = 0$ for each $x \in \gamma$. Since F is a non-constant monotone function along γ , we have proved Theorem 2.2.

3. A modified Whitney's example: a Whitney arc which is not 1-critical. In this section we slightly modify the original construction of Whitney to obtain a class of Whitney arcs (called here MW-arcs for short) and prove some of their properties that are used in this section to give a simple construction of a Whitney arc which is not 1-critical, and are also used in Section 4 for constructing our main example. **3.1.** For the convenience of the reader we first repeat (almost word for word) the construction of Whitney from [10].

Let $Q = Q_{\emptyset} := [0,1]^2$. Let Q_0 , Q_1 , Q_2 , Q_3 be closed squares of side 1/3 lying inside to Q in clockwise order, each at distance 1/12 from the boundary of Q as in Figure 1. Let q and q' be the centres of the sides of Q along Q_0 , Q_1 , and along Q_3 , Q_0 . Let q_i and q'_i be the centres of two adjacent edges of Q_i (i = 0, 1, 2, 3), as in Figure 1. Let A_i (i = 0, 1, 2, 3, 4) be the line segments as in Figure 1.

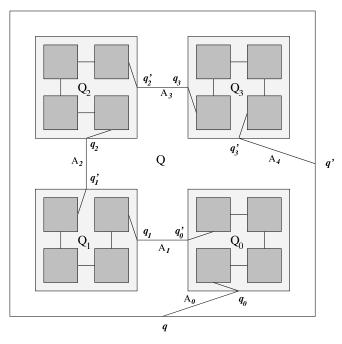


Fig. 1. Construction

Suppose we have constructed squares $Q_{i_1...i_t}$, points $q_{i_1...i_t}$, $q'_{i_1...i_t}$, and line segments $A_{i_1...i_{t,j}}$ (each $i_k = 0, 1, 2, 3; j = 0, 1, 2, 3, 4$) for t < s. By taking a square $Q_{i_1...i_{s-2}}$, shrinking it to a third of its size, and turning it around and upside down if necessary, we may place it in $Q_{i_1...i_{s-1}}$ so that $q_{i_1...i_{s-2}}$ and $q'_{i_1...i_{s-2}}$ go into $q_{i_1...i_{s-1}}$ and $q'_{i_1...i_{s-1}}$, and thus construct four new squares $Q_{i_1...i_s}$ ($i_s = 0, 1, 2, 3$) as images of $Q_{i_1...i_{s-2}i_s}$, furthermore points $q_{i_1...i_s}$, $q'_{i_1...i_s}$ and segments $A_{i_1...i_{s-1}j}$ for j = 0, 1, 2, 3, 4 as images of $q_{i_1...i_{s-2}i_s}$, $q'_{i_1...i_{s-2}i_s}$ and $A_{i_1...i_{s-2}j}$, respectively. We denote the point $Q \cap Q_{i_1} \cap Q_{i_1i_2} \cap \cdots$ by $Q_{i_1i_2...}$

It is not difficult to see that the line segments $A_{i_1...i_s}$ together with the points $Q_{i_1i_2...}$ form a simple arc A (a canonical parametrization is described in [10]).

Now define F on A as follows:

$$F(x) := \begin{cases} \frac{i_1}{4} + \frac{i_2}{4^2} + \dots + \frac{i_s}{4^s}, & x \in A_{i_1 i_2 \dots i_s}, \\ \frac{i_1}{4} + \frac{i_2}{4^2} + \dots, & x = Q_{i_1 i_2 \dots}. \end{cases}$$

Whitney proved that F is a restriction of a C^1 function F^* defined on the plane such that each point of A is critical for F^* .

3.2. Now we will make some modifications which lead to a class of Whitney (but not 1-critical) arcs.

In the following, the symbol \underline{i} will always denote a sequence $\underline{i} = i_1 \dots i_k$ where $i_n \in \{0, 1, 2, 3\}$ (for k = 0 we set $\underline{i} = \emptyset$); we define $|\underline{i}| := k$. For each $\underline{i} = i_1 \dots i_k$ and $j \in \{0, 1, 2, 3, 4\}$ we choose an arbitrary simple arc $\gamma_{\underline{i}, j}$ lying (except the endpoints) in int $Q_{\underline{i}} \setminus (Q_{\underline{i}0} \cup Q_{\underline{i}1} \cup Q_{\underline{i}2} \cup Q_{\underline{i}3})$ that connects the same points as $A_{i,j}$, such that the arcs $\gamma_{i,j}$ are pairwise disjoint and

(4)
$$\operatorname{dist}(\gamma_{i,j}, \gamma_{i,j+1}) < 1/5^k, \quad j = 0, 1, 2, 3.$$

It is easy to show that the arcs $\gamma_{i,j}$ together with the points $Q_{i_1i_2...}$ form a simple arc γ . We will choose points $a_{\underline{i},j}, b_{\underline{i},j} \in \gamma_{\underline{i},j}$ such that

(5)
$$\operatorname{dist}(a_{i,j}, b_{i,j+1}) < 1/5^k, \quad j = 0, 1, 2, 3.$$

We will call any arc constructed in this way an MW-arc (that is, an arc obtained by the modified Whitney construction).

3.3. We show that each MW-arc γ is a monotone Whitney arc. To this end consider the function f on γ which agrees with F at the points $Q_{i_1i_2...}$ and is constant on each $\gamma_{\underline{i},j}$ with the same value as F has on $A_{\underline{i},j}$. Clearly f is monotone along γ . We will show that (1) holds. It is immediate that (1) holds at the points of the arcs $\gamma_{\underline{i},j}$, since f is constant on these arcs and each such arc has, in the space γ , a neighbourhood formed by three (or two) arcs $\gamma_{\underline{i},j}$. Now let $x = Q_{i_1i_2...}$ and let y be an arbitrary point of γ different from x. Consider the largest k with $y \in Q_{i_1...i_k} = Q_{\underline{i}}$. Then we can see that $|f(x) - f(y)| \leq 1/4^k$, while $|x - y| \geq \text{dist}(Q_{\underline{i}i_{k+1}i_{k+2}}, \overline{\partial}Q_{\underline{i}i_{k+1}}) = 1/(12 \cdot 3^{k+1})$. This shows

$$\lim_{y \to x, y \in \gamma} \frac{|f(y) - f(x)|}{|y - x|} \le \lim_{k \to \infty} \frac{12 \cdot 3^{k+1}}{4^k} = 0.$$

3.4. Now we will show that if f is a Lipschitz function on an MW-arc γ , then

(6)
$$\lambda(f(\gamma)) \le \sum_{\underline{i}, 0 \le j \le 4} \lambda(f(\gamma_{\underline{i},j})).$$

Let f be Lipschitz with constant K. For each $k \in \mathbb{N}$, let

$$I_k := \bigcup_{|\underline{i}| \leq k, 0 \leq j \leq 4} f(\gamma_{\underline{i},j}) \cup \bigcup_{|\underline{i}| = k, 0 \leq j \leq 3} [f(a_{\underline{i},j}), f(b_{\underline{i},j+1})].$$

It is easy to see that I_k is a closed interval, since it is clearly connected and closed; let $I_k =: [u, v]$. Now observe that $f(\gamma) \subset [u - K\sqrt{2}/3^{k+1}, v + K\sqrt{2}/3^{k+1}]$. This follows by the Lipschitz property of f, the definition of I_k and the obvious fact that $\operatorname{dist}(c, \bigcup_{|\underline{i}| \leq k, 0 \leq j \leq 4} \gamma_{\underline{i},j}) \leq \sqrt{2}/3^{k+1}$ for every $c \in \gamma$.

Clearly

$$\lambda \Big(I_k \setminus \bigcup_{|\underline{i}| \le k, \ 0 \le j \le 4} f(\gamma_{\underline{i},j}) \Big) \le \sum_{|\underline{i}| = k, \ 0 \le j \le 3} |f(b_{\underline{i},j+1}) - f(a_{\underline{i},j})| \le \frac{K4^{k+1}}{5^k}.$$

Therefore

$$\lambda(f(\gamma)) \le \sum_{\underline{i}, 0 \le j \le 4} \lambda(f(\gamma_{\underline{i}, j})) + \frac{K4^{k+1}}{5^k} + 2K\sqrt{2}/3^{k+1},$$

which easily implies (6).

Similarly to (6), we find that for each $\underline{i}^* = i_1^* \dots i_s^*$,

(7)
$$\lambda(f(\gamma \cap Q_{\underline{i}^*})) \le \sum_{\underline{i}, 0 \le j \le 4} \lambda(f(\gamma_{\underline{i}, j} \cap Q_{\underline{i}^*})).$$

3.5. Now we can prove the following result:

THEOREM 3.1. There exists a Whitney arc $\gamma \subset \mathbb{R}^2$ which is not 1critical. Moreover, there exists no non-constant Lipschitz function f on γ which satisfies (1).

Proof. We choose γ as an arbitrary MW-arc for which all the arcs $\gamma_{\underline{i},j}$ are polygons. Thus γ is a (monotone) Whitney arc.

Now suppose that f is a Lipschitz function on γ which satisfies (1) on γ . Then, since a polygon is not a Whitney arc, $\lambda(f(\gamma_{i,j})) = 0$ for each arc $\gamma_{i,j}$ and hence (6) implies that $\lambda(f(\gamma)) = 0$ and thus f is constant on γ . Since each C^1 function on \mathbb{R}^2 is Lipschitz on γ , we have proved that the arc γ is not 1-critical. \blacksquare

4. The main example. We will need the following result (see [1, p. 49]).

LEMMA 4.1. Suppose that $A \subset \mathbb{R}^n$ has σ -finite one-dimensional Hausdorff measure and f is a real function on A such that

$$\lim_{y \to x, y \in A} \frac{|f(y) - f(x)|}{|y - x|} = 0 \quad \text{for each } x \in A.$$

Then $\lambda(f(A)) = 0$.

Using the generalized Whitney construction from Section 3 we will now prove the following main result of the present article.

THEOREM 4.2. There exists a simple arc $\gamma \subset \mathbb{R}^2$ such that:

- (i) Each subarc of γ is a monotone Whitney arc.
- (ii) There is no non-constant Lipschitz function f on any subarc γ* of γ such that f satisfies (1) on γ*.
- (iii) Each function satisfying (1) on γ is locally constant on a relatively open dense subset of γ . In particular, γ is not a strictly monotone arc.

Proof. First note that (iii) is an easy consequence of (ii). Indeed, suppose that (ii) holds, f satisfies (1) on γ , and γ^* is an arbitrary subarc of γ . For each $n \in \mathbb{N}$, let Z_n denote the set of all $x \in \gamma^*$ such that $|f(y) - f(x)| \leq |y - x|$ whenever $y \in \gamma$ and $|y - x| \leq 1/n$. Since each Z_n is closed and $\gamma^* = \bigcup Z_n$, the Baire category theorem implies that there exists $n \in \mathbb{N}$ and a subarc γ^{**} of γ^* with diam $\gamma^{**} < 1/n$ and $\gamma^{**} \subset Z_n$. Then f is Lipschitz on γ^{**} and thus constant on γ^{**} by (ii), and (iii) follows.

Now we fix an arbitrary MW-arc $\tilde{\gamma}$ for which all the arcs $\tilde{\gamma}_{\underline{i},j}$ are polygons and we will construct γ by an iterative procedure, as follows.

STEP 1. Let $\gamma^1 := \widetilde{\gamma}$. We choose a countable set \mathcal{Q}^1 of disjoint closed squares such that each square in \mathcal{Q}^1 is inside $Q_i \setminus (Q_{i0} \cup Q_{i1} \cup Q_{i2} \cup Q_{i3})$ for some \underline{i} , it meets precisely one arc $\widetilde{\gamma}_{\underline{i},j}$, and its intersection with $\widetilde{\gamma}_{\underline{i},j}$ is a line segment that connects the centres of two adjacent edges of the square. We also require that $\bigcup \mathcal{Q}^1$ covers a dense subset of $\bigcup_{i,j} \widetilde{\gamma}_{\underline{i},j}$,

(8) no point $a_{\underline{i},j}$ or $b_{\underline{i},j}$ (cf. (5)) is contained in $\bigcup \mathcal{Q}^1$ and

(9)
$$r := \sum_{Q^* \in \mathcal{Q}^1} \text{edge length of } Q^* < 1.$$

Step 1 concludes with the arc $\gamma^1 = \tilde{\gamma}$ and the set of squares \mathcal{Q}^1 . For any $m \geq 1$, the *m*th step will conclude with a simple arc γ^m and a set of disjoint squares \mathcal{Q}^m such that γ^m intersects each square $Q^* \in \mathcal{Q}^m$ in a line segment that connects the centres of two adjacent edges of Q^* . Observe that, using (8), we easily deduce that

(10) any simple arc $\eta \subset \bigcup Q^1 \cup \gamma^1$ such that $\eta \setminus \bigcup Q^1 = \gamma^1 \setminus \bigcup Q^1$ is an MW-arc.

STEP *m*. Suppose that γ^{m-1} and \mathcal{Q}^{m-1} have been defined. We will repeat the same construction as in Step 1 inside each of the squares of \mathcal{Q}^{m-1} :

For each $Q^* \in \mathcal{Q}^{m-1}$ choose a similarity ψ_{Q^*} of the plane that maps the unit square $Q = [0, 1]^2$ onto Q^* , such that the segment between q and q' is

mapped onto the segment $Q^* \cap \gamma^{m-1}$. Let

$$\gamma^{m} = \left(\gamma^{m-1} \setminus \bigcup \mathcal{Q}^{m-1}\right) \cup \bigcup_{Q^{*} \in \mathcal{Q}^{m-1}} \psi_{Q^{*}}(\gamma^{1}),$$
$$\mathcal{Q}^{m} = \{\psi_{Q^{*}}(\widetilde{Q}) : Q^{*} \in \mathcal{Q}^{m-1}, \, \widetilde{Q} \in \mathcal{Q}^{1}\}.$$

It is easy to see by induction on m that

(11)
$$r^m = \sum_{Q^* \in \mathcal{Q}^m} \text{edge length of } Q^*.$$

Let $\gamma := \bigcap_{m=1}^{\infty} (\gamma^m \cup \bigcup \mathcal{Q}^m)$. It is geometrically obvious and not difficult to prove that γ is a simple arc. For a precise proof we have at least two possibilities. The more straightforward one is to define inductively "natural" parametrizations of γ^m and to check that the limit of these parametrizations is an injective parametrization of γ . The other possibility is to apply [7, Theorem 3, Section V, §47] which gives a sufficient condition for a set to be a simple arc, which is rather easy to verify for our set γ . (We choose $C_n := \gamma^n \cup \bigcup \mathcal{Q}^n$; for the definition of A_n and B_n we use the natural order on γ^n .)

Using (10), we find that γ is an MW-arc. Also, for each $Q^* \in \bigcup_{m=1}^{\infty} \mathcal{Q}^m$, we infer by (10) that

(12)
$$\psi_{Q^*}^{-1}(\gamma \cap Q^*)$$
 is an MW-arc

and therefore $\gamma \cap Q^*$ is a monotone Whitney arc. Therefore each subarc of γ is a monotone Whitney arc.

For each $Q^* \in \bigcup_{m=1}^{\infty} \mathcal{Q}^m$, let $\tilde{\gamma}_{\underline{i},j,Q^*} := \psi_{Q^*}(\tilde{\gamma}_{\underline{i},j})$ and $\gamma_{\underline{i},j,Q^*}$ be the subarc of γ with the same endpoints as $\tilde{\gamma}_{i,j,Q^*}$.

To prove (ii), first suppose that $f : \gamma \to \mathbb{R}$ is a Lipschitz function defined on the whole arc γ that satisfies (1). Let K denote the Lipschitz constant of f.

Consider an arbitrary $Q \in \mathcal{Q}^k$ and an arbitrary arc $\gamma_{\underline{i},\underline{j},Q}$. Since

$$\gamma_{\underline{i},j,Q} = (\gamma_{\underline{i},j,Q} \cap \widetilde{\gamma}_{\underline{i},j,Q}) \cup \bigcup_{Q^* \in \mathcal{Q}^{k+1}, \, Q^* \cap \gamma_{\underline{i},j,Q} \neq \emptyset} (Q^* \cap \gamma)$$

and $\gamma_{\underline{i},j,Q} \cap \widetilde{\gamma}_{\underline{i},j,Q}$ is rectifiable, Lemma 4.1 implies $\lambda(f(\gamma_{\underline{i},j,Q} \cap \widetilde{\gamma}_{\underline{i},j,Q})) = 0$ and therefore

(13)
$$\lambda(f(\gamma_{\underline{i},j,Q})) \leq \sum_{Q^* \in \mathcal{Q}^{k+1}, \, Q^* \cap \gamma_{\underline{i},j,Q} \neq \emptyset} \lambda(f(Q^* \cap \gamma)).$$

By (12) and (6) we obtain

$$\lambda(f(Q \cap \gamma)) \le \sum_{\underline{i}, j} \lambda(f(\gamma_{\underline{i}, j, Q})).$$

Using also (13) we obtain

$$\lambda(f(Q \cap \gamma)) \leq \sum_{Q^* \subset Q, Q^* \in \mathcal{Q}^{k+1}} \lambda(f(Q^* \cap \gamma)).$$

Using this inequality and (11), we conclude by induction that, for any $m \in \mathbb{N}$,

$$\lambda(f(\gamma)) \le \sum_{Q^* \in \mathcal{Q}^m} \lambda(f(Q^* \cap \gamma)) \le K \sum_{Q^* \in \mathcal{Q}^m} \operatorname{diam} Q^* \le K\sqrt{2} r^m$$

and therefore $\lambda(f(\gamma)) = 0$.

Now let $f: \gamma^* \to \mathbb{R}$ be a Lipschitz function defined on a subarc γ^* of γ that satisfies (1) on γ^* . If γ^* is of the form $\gamma^* = \gamma \cap T$, where T is a square of the form $T = \psi_{Q^*}(Q_i)$ (where \underline{i} is a finite sequence (possibly empty), $Q^* \in \bigcup_{m=0}^{\infty} \mathcal{Q}^m$, $\mathcal{Q}^0 := \{Q_{\emptyset} = [0,1]^2\}$ and $\psi_{Q_{\emptyset}}$ is the identity), then we deduce that f is constant using (7) and the same argument as above for $\gamma^* = \gamma$. A general γ^* can be written as a union of countably many subarcs of the above form and a σ -rectifiable set. Indeed, consider any point $x \in \gamma^*$ which is not an endpoint of γ^* . If $x \in \bigcup \mathcal{Q}^m$ for every m then $\{x\} = \bigcap_{m=1}^{\infty} \mathcal{Q}^m$ for some $\mathcal{Q}^m \in \mathcal{Q}^m$, and if m is large enough then $x \in \mathcal{Q}^m \cap \gamma = \psi_{\mathcal{Q}^m}(Q_{\emptyset}) \cap \gamma \subset \gamma^*$. If x is not of this form, then there is a largest m so that $x \in \mathcal{Q}^*$ for some $\mathcal{Q}^* \in \bigcup \mathcal{Q}^m$. Then $x \in \psi_{\mathcal{Q}^*}(\widetilde{\gamma})$, therefore either $x = \psi_{\mathcal{Q}^*}(Q_{i_1i_2...})$ for an infinite sequence $i_1i_2...$ (in which case $x \in \psi_{\mathcal{Q}^*}(Q_{i_1i_2...i_s}) \cap \gamma \subset \gamma^*$ if s is sufficiently large), or $x \in \psi_{\mathcal{Q}^*}(\widetilde{\gamma}_{i,j})$ for some \underline{i}, j (and $\psi_{\mathcal{Q}^*}(\widetilde{\gamma}_{i,j})$ is a polygon, therefore it is rectifiable).

Thus, using also Lemma 4.1, we obtain $\lambda(f(\gamma^*)) = 0$ and so f is constant on γ^* .

5. Notes on k-critical arcs. The following definition is used in [9].

DEFINITION 5.1. We say that a simple arc $\gamma \subset \mathbb{R}^n$ is k-critical if there exists a C^k function on \mathbb{R}^n which is not constant on γ and f'(x) = 0 for each $x \in \gamma$.

The following related notion was implicitly used in [10].

DEFINITION 5.2. We say that a simple arc $\gamma \subset \mathbb{R}^n$ is k^* -critical if there exists a C^k function on \mathbb{R}^n which is not constant on γ and $f^{(j)}(x) = 0$ for each $x \in \gamma$ and $1 \leq j \leq k$.

Note that the Morse–Sard theorem implies that there is no k-critical arc in \mathbb{R}^n for $k \geq n$. On the other hand, Whitney [10, p. 517] has showed how the (above) planar construction can be generalized to obtain an $(n-1)^*$ -critical arc in \mathbb{R}^n .

The following notion is implicitly used in [1].

DEFINITION 5.3. We say that a simple arc $\gamma \subset \mathbb{R}^n$ is k_* -critical if there exists a non-constant real function f on γ such that

(14)
$$\lim_{y \to x, y \in \gamma} \frac{|f(y) - f(x)|}{|y - x|^k} = 0 \quad \text{for each } x \in \gamma.$$

Note that Choquet [1] observed that no k_* -critical arc has σ -finite kdimensional Hausdorff measure (cf. [5], where also some sufficient and some necessary conditions are presented).

Proceeding as in the proof of Theorem 2.2, we easily obtain a generalization.

THEOREM 5.4. Let $\gamma \subset \mathbb{R}^n$ be a k_* -critical arc which is a quasiarc. Then there exists a C^k function f on \mathbb{R}^n such that f is a non-constant monotone function along γ , and $f'(x) = \cdots = f^{(k)}(x) = 0$ for every $x \in \gamma$. In particular, γ is k^* -critical and thus also k-critical.

Modifying the above mentioned Whitney construction of an $(n-1)^*$ critical arc in \mathbb{R}^n in the same way as in the proof of Theorem 3.1, we obtain the following result.

THEOREM 5.5. There exists an $(n-1)_*$ -critical arc γ in \mathbb{R}^n which is not 1-critical. Moreover, there exists no non-constant Lipschitz function f on γ which satisfies (1).

We do not know whether each k-critical arc is k^* -critical.

References

- [1] G. Choquet, L'isométrie des ensembles dans ses rapports avec la théorie du contact et la théorie de la mesure, Mathematica (Timişoara) 20 (1944), 29–64.
- [2] L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, 1992.
- [3] H. Federer, *Geometric Measure Theory*, Grundlehren Math. Wiss. 153, Springer, New York, 1969.
- [4] M. Csörnyei, On Whitney pairs, Fund. Math. 160 (1999), 63–79.
- [5] J. Kališ, On Whitney sets and their generalization, Real Anal. Exchange 30 (2004–2005), 385–392.
- [6] J. Kolář, private communication.
- [7] K. Kuratowski, *Topology II*, Academic Press, New York, 1968.
- [8] M. Laczkovich and G. Petruska, Whitney sets and sets of constancy. On a problem of Whitney, Real Anal. Exchange 10 (1984–85), 313–323.
- [9] A. Norton, Functions not constant on fractal quasi-arcs of critical points, Proc. Amer. Math. Soc. 106 (1989), 397–405.
- [10] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514–517.

M. Csörnyei et al.

Department of Mathematics University College London Gower Street, London WC1E 6BT, United Kingdom E-mail: mari@math.ucl.ac.uk Department of Mathematical Sciences Florida Atlantic University 777 Glades Road Boca Raton, FL 33431, U.S.A. E-mail: kalis@math.fau.edu

Department of Mathematical Analysis Charles University Sokolovská 83 186 75 Praha 8, Czech Republic E-mail: zajicek@karlin.mff.cuni.cz

> Received 30 September 2005; in revised form 11 January 2007

130