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Whitney arcs and 1-critical arcs
by

Marianna Csornyei (London), Jan Kalis (Boca Raton, FL),
and Ludék Zajicek (Praha)

Abstract. A simple arc v C R" is called a Whitney arc if there exists a non-constant
real function f on « such that limy—q, yey |f(y) — f(2)|/|ly — x| = 0 for every = € ~; v
is 1-critical if there exists an f € C*(R™) such that f'(z) = 0 for every € y and f is
not constant on . We show that the two notions are equivalent if v is a quasiarc, but for
general simple arcs the Whitney property is weaker. Our example also gives an arc v in R?
each of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone
Whitney arc. This answers completely a problem of G. Petruska which was solved for
n > 3 by the first author in 1999.

1. Introduction. A famous example of Whitney [10] shows that there
exist a simple arc v C R? and a C! function f on R? such that each point
of ~ is critical for f, and f is not constant on 7. A slightly weaker example
was independently constructed by Choquet in [1]. Namely, he constructed a
simple arc v C R? which is Whitney by the following terminology introduced
in [8] and used in [4].

DEFINITION 1.1. We say that a simple arc v C R™ is a Whitney arc if
there exists a non-constant real function f on « such that

=0 for each x € ~.
y—z,yey |y — 1z

It seems that the difference between Whitney arcs thus defined and arcs
considered by Whitney is not sufficiently emphasized in the literature (see
e.g. remarks in [9, p. 399] on Choquet’s results). The aim of the present
article is to study this difference. First we recall the terminology of [9] which
corresponds precisely to the example of Whitney.
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DEFINITION 1.2. We say that a simple arc v C R" is a 1-critical arc if
there exists a C'! function on R™ which is not constant on v and f’(x) = 0
for each x € 7.

Of course, each 1-critical arc is Whitney but the opposite implication
does not hold. If the convergence in (1) were uniform in = € v then Whit-
ney’s extension theorem would imply that f can be extended to R™ as a
C' function with derivative 0 at the points of v; however, without assuming
uniform convergence this is not the case. In Section 3 we will construct a
Whitney arc v in R? (slightly modifying the original construction of Whit-
ney) which is not 1-critical.

No full characterization of 1-critical arcs or Whitney arcs is known (even
in R?). However, there are interesting necessary or sufficient conditions. It
is not difficult to prove (see [1] and Lemma 4.1 below) that no Whitney arc
has o-finite 1-dimensional Hausdorff measure. Choquet also proved that no
graph of a continuous f : [a,b] — R is Whitney. This result easily implies
[5] that if v C R™ has a parametrization whose n — 1 coordinates have finite
variation, then 7 is not a Whitney arc. Interesting necessary [8, Theorem 3]
and sufficient [8, Theorem 2] conditions for v C R™ to be Whitney were
proved by Laczkovich and Petruska.

Norton [9] proved that each simple arc v in R™ which is a quasiarc and
has Hausdorff dimension greater than 1 is 1-critical, and noted that such arcs
“are in the plentiful supply (e.g. as Julia sets for certain rational maps in the
plane)”. (Note that all arcs constructed in [1], [4], [8] and [10] are quasiarcs.)
We prove (Theorem 2.2) that if a Whitney arc in R™ is a quasiarc, then it
is 1-critical. That is, for quasiarcs the two notions are equivalent.

A modification of the construction of Whitney (see Section 3) is used
as a basic building block in an iterative construction in Section 4, which
gives an example of a Whitney arc which is not 1-critical and also has other
interesting properties. To describe them, recall that a real function f defined
(at least) on a simple arc v C R™ is said to be monotone (resp. strictly
monotone) along v if f o ¢ is monotone (resp. strictly monotone) for each
homeomorphic parametrization ¢ of . Following [4], we say that a simple
arc 7 C R™ is a monotone (resp. strictly monotone) Whitney arc if there
exists a non-constant f on 7 that is monotone (resp. strictly monotone)
along v and satisfies (1).

Petruska raised the question whether there exists a simple arc «y for which
every subarc is Whitney, but for which there is no parametrization ¢ of ~
satisfying

im —‘t — ol
t=to [p(t) — (to)|
(which is clearly equivalent to 7 not being a strictly monotone Whitney arc).

=0, toel0,1]
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This question was answered affirmatively in [4] for n > 3, and it remained
open in R? (see Problem 4 in [4]). Our example gives an affirmative answer
also for n = 2. We construct an arc v C R? such that each of its subarcs is
a monotone Whitney arc but any Lipschitz function satisfying (1) on any
subarc 7/ of v is constant on ~/. From the last property it will easily follow
that each function satisfying (1) on -y is locally constant on a relatively open
dense subset of 7 (and so 7 is not a strictly monotone Whitney arc).

For the sake of completeness we remark that Theorem 2.2 implies that
every Whitney quasiarc is a monotone Whitney arc. However, if ~ is not
a quasiarc then this is no longer true: Kolaf ([6]) recently constructed a
I-critical arc in R? which is not a monotone Whitney arc (and since each
1-critical arc is a Whitney arc, this solves Problem 2 in [4]).

2. Whitney quasiarcs are 1-critical. We denote by X\ the Lebesgue
measure on R. In the following we will use the well-known notion of a
quasiarc.

DEFINITION 2.1. We say that a simple arc v C R" is a quasiarc if there
exists K > 0 such that, for any distinct x,y € v, the subarc of v “between
x and y” (in the natural sense) is contained in some ball of radius K|z — y|.

THEOREM 2.2. Let v C R"™ be a Whitney arc which is a quasiarc. Then
there exists a C function f on R™ that is non-constant monotone along v,
and f'(x) = 0 for every x € . In particular, ~y is 1-critical.

Proof. Let ¢ : [0,1] — R™ be a continuous injective parametrization
of 7. Choose a non-constant f : vy — R such that (1) holds. We can suppose
that g := f o ¢ is not non-increasing (otherwise we take — f instead of f).
So we can choose 0 < a < b < 1 such that g(a) < g(b). For each y €
[9(a), g(b)] put w(y) = min{z € [a,b] : g(x) = y}. Since g is continuous, w is
clearly (strictly) increasing. Using Lusin’s theorem and then the Cantor—
Bendixson theorem we can choose a set T* C [g(a), g(b)] such that A\(T™) > 0
and w|p+ is continuous. Put T := w(T™). Then gy := g|r is an increasing
homeomorphism between 7" and 7™, and go = fo o ¢|r where fo := f| (1) is
a homeomorphism between ¢(7) and 1.

Let, for z € ~,
nk(x) = Sup{ ’f(y) — f(w)|
ly — |

Then limg_.o ni(z) — 0 for every x € ~. It is easy to prove that py :=
N © f(;l is a Borel function on T*. Since pry — 0 at every point of T™,
applying Egorov’s theorem (see [3, 2.3.7]) we can find a closed H* C T*
with A(H*) > 0 such that p; — 0 uniformly on H*. That is, the limit in (1)
is uniform on f; ' (H™*).

:y€7,0<|y—x|<1//@}.
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Set H := gy ' (H*). We can define a (strictly) increasing continuous func-
tion g on [0,1] which extends go|y and is linear on each component of
[0,1] \ H. Put q(t) := M((—00,t] N H*) and F := gogo ! Then F is a
non-constant function monotone along . We will prove that

(2) lim 1Ey) = Flz)) =0 uniformly with respect to = € ~.
yowaey |y — x|
To this end consider an arbitrary € > 0. Let K > 1 witness the fact that v is
a quasiarc. Note that F' = qgo f on ¢(H) and ¢ is Lipschitz with constant 1,
therefore |F(y) — F(z)| < |f(y) — f(z)| for each x,y € ¢(H). Using also the
fact that the limit (1) is uniform with respect to x € @(H) = f; ' (H*), we
can find § > 0 such that
|F(z) = F(y)|
®) ey 2K
Let x,y € 7 be arbitrary points with 0 < |z — y| < §(4K)~! and F(z) #
F(y). We can suppose that = ¢(t;) and y = ¢(t,) with ¢, < t,.
Since F is constant on the intervals contiguous to ¢(H) and F'(x) # F(y),
we see that H has at least two points in [t;,t,]. Define

sy :=min(H N [tz t,]) and s, = max(H N [tg,t,]).

whenever z,y € p(H) and 0 < |z — y| < 4.

Clearly t; < s, < sy < t, and F is constant on ¢([ts,s:]) and ¢([sy,,]).
The definition of K gives

0(s2) — 9(5,)] < 2K [ip(ts) — (k)] < 2K % <

and thus (3) gives
[F(x) = Fy)| _ [F(e(te)) = Flo(ty))l _ [F(p(s2)) = Flp(sy))]
|2 — ] o(te) —0(t)l 7 gile(sa) —@(sy)]

9
<2K — =
2K

&,

which proves (2).

Whitney’s extension theorem (see e.g. [2, p. 245]) and (2) immediately
imply that there exists an extension F of F such that F € C*(R") and
(FY(z) = 0 for each z € ~. Since F is a non-constant monotone function
along ~, we have proved Theorem 2.2. =

3. A modified Whitney’s example: a Whitney arc which is not
1-critical. In this section we slightly modify the original construction of
Whitney to obtain a class of Whitney arcs (called here MW-arcs for short)
and prove some of their properties that are used in this section to give a
simple construction of a Whitney arc which is not 1-critical, and are also
used in Section 4 for constructing our main example.
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3.1. For the convenience of the reader we first repeat (almost word for
word) the construction of Whitney from [10].

Let Q@ = Qg := [0,1]%. Let Qo, Q1, Q2, Q3 be closed squares of side
1/3 lying inside to @ in clockwise order, each at distance 1/12 from the
boundary of ) as in Figure 1. Let ¢ and ¢’ be the centres of the sides of Q
along Qo, Q1, and along Q3, Qo. Let ¢; and ¢} be the centres of two adjacent
edges of Q; (1 =0,1,2,3), as in Figure 1. Let 4; (i =0, 1,2,3,4) be the line
segments as in Figure 1.

s

‘ Q2 K A3q3 ‘ Q3 ‘

q, q

A, Q Ay e
9
% 9
| Q| e Q|
Ay 9%
q

Fig. 1. Construction

Suppose we have constructed squares ();, . ;,, points g, .. 4,, q’liln.it’ and line
segments A;, 4, ; (each iy =0,1,2,3; 7 =0,1,2,3,4) for t < s. By taking a
square (Q;,...i,_,, shrinking it to a third of its size, and turning it around and
upside down if necessary, we may place it in @, 4, , so that ¢;,. ;. , and
4, ..., €0 into ¢;,. i, and ¢ ,; ., and thus construct four new squares
Qiy.i. (is = 0,1,2,3) as images of Qj, i, ,i., furthermore points g, ..,

qglmis and segments A;, ; _,; for j = 0,1,2,3,4 as images of g;,..i,_,i,»
qgl-n’is—Z'L’s and A;, . ;,_,;, respectively. We denote the point QNQ;, NQ;,i,N- - -
by thz...-

It is not difficult to see that the line segments A;, ;. together with the
points Q;,i,... form a simple arc A (a canonical parametrization is described
in [10]).
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Now define I on A as follows:

1y % +o 42,z € Aiiyias
F(z) = 4 4 .
() = 21 12
D24t 0= Qun

Whitney proved that F is a restriction of a C'! function F* defined on the
plane such that each point of A is critical for F™.

3.2. Now we will make some modifications which lead to a class of Whit-
ney (but not 1-critical) arcs.

In the following, the symbol i will always denote a sequence i = 77 ... 1
where i, € {0,1,2,3} (for k = 0 we set i = ()); we define |i| := k. For each
i =11...9; and j € {0,1,2,3,4} we choose an arbitrary simple arc ; ; lying
(except the endpoints) in int Q; \ (Qio U Qi1 U Qi2 U @;3) that connects the
same points as A; j, such that the arcs ; ; are pairwise disjoint and

(4) dist(yi4,7ij41) < 1/5%, §=0,1,2,3.

It is easy to show that the arcs v; ; together with the points Q;,;,... form a
simple arc «v. We will choose points a; j, b; j € ~; ; such that

(5) dist(aij,bij+1) < 1/5%, j=0,1,2,3.

We will call any arc constructed in this way an MW-arc (that is, an arc
obtained by the modified Whitney construction).

3.3. We show that each MW-arc v is a monotone Whitney arc. To this
end consider the function f on v which agrees with F' at the points Q;,i,...
and is constant on each ; ; with the same value as F' has on A; ;. Clearly
f is monotone along . We will show that (1) holds. It is immediate that
(1) holds at the points of the arcs ~; ;, since f is constant on these arcs and
each such arc has, in the space v, a neighbourhood formed by three (or two)
arcs 7, ;. Now let © = Q;,;,... and let y be an arbitrary point of v different
from x. Consider the largest k£ with y € Q;,..;, = Q;. Then we can see that

If(x)—f(y)] < 1/4]‘3, while |z —y| > dist(Qiiy iy o) OQiiy, ) = 1/(12-3k+1).

This shows
b H@ = F@
Yy—, yey ‘y — .Cc‘ k—o0 4k

12 . 3k+1
e~

3.4. Now we will show that if f is a Lipschitz function on an MW-arc ~,
then

(6) AF) < D Af(ag).

4,0<5<4
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Let f be Lipschitz with constant K. For each k € N, let
L= UJ rfupu U [flesy), Fbij)):

li|<k,0<j<4 lil=F, 0<j<3
It is easy to see that Iy is a closed interval, since it is clearly connected
and closed; let I =: [u,v]. Now observe that f(y) C [u — K+/2/3% v +
K+/2/3+1]. This follows by the Lipschitz property of f, the definition of
I, and the obvious fact that diSt(CvU\;‘\gk,ogjg Vi) < V2/3FF1 for every
cEn.

Clearly
K4k+1
AN U fow) < X 1) — flaw)l < =5
li|<k,0<j<4 |i|=k,0<5<3
Therefore

k+1
AFEOD < S M) + TET L areyaysh,

5k
1,0<5<4

which easily implies (6).
Similarly to (6), we find that for each ¢* =i ...3},

(7) AFNQe) < Y AMf(iy N Qi)

3,0<5<4
3.5. Now we can prove the following result:

THEOREM 3.1. There exists a Whitney arc v C R? which is not 1-
critical. Moreover, there exists mo non-constant Lipschitz function f on ~
which satisfies (1).

Proof. We choose 7 as an arbitrary MW-arc for which all the arcs ; ;
are polygons. Thus 7 is a (monotone) Whitney arc.

Now suppose that f is a Lipschitz function on « which satisfies (1) on ~.
Then, since a polygon is not a Whitney arc, A(f(7;;)) = 0 for each arc v; ;
and hence (6) implies that A(f(v)) = 0 and thus f is constant on 7. Since
each C' function on R? is Lipschitz on ~, we have proved that the arc v is
not 1-critical. m

4. The main example. We will need the following result (see [1, p. 49]).

LEMMA 4.1. Suppose that A C R™ has o-finite one-dimensional Haus-
dorff measure and f is a real function on A such that

L)~ S

y—x,yeA |y — IL‘|

Then \(f(A)) = 0.

=0 for each x € A.
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Using the generalized Whitney construction from Section 3 we will now
prove the following main result of the present article.

THEOREM 4.2. There exists a simple arc v C R? such that:

(i) Each subarc of 7y is a monotone Whitney arc.
(ii) There is no non-constant Lipschitz function f on any subarc v* of
v such that f satisfies (1) on ~v*.
(iii) Fach function satisfying (1) on ~y is locally constant on a relatively
open dense subset of v. In particular, v is not a strictly monotone
arc.

Proof. First note that (iii) is an easy consequence of (ii). Indeed, suppose
that (ii) holds, f satisfies (1) on 7, and 4* is an arbitrary subarc of 7. For
each n € N, let Z,, denote the set of all x € v* such that | f(y)—f(z)| < |y—=z|
whenever y € v and |y — z| < 1/n. Since each Z, is closed and v* = |J Z,,
the Baire category theorem implies that there exists n € N and a subarc v**
of v* with diam~** < 1/n and v** C Z,. Then f is Lipschitz on v** and
thus constant on v** by (ii), and (iii) follows.

Now we fix an arbitrary MW-arc 7y for which all the arcs 7; ; are polygons
and we will construct + by an iterative procedure, as follows.

STEP 1. Let 4! := 7. We choose a countable set Q' of disjoint closed
squares such that each square in Q! is inside @Q; \ (Qi0 U Qi1 U Qi2 U Q;3) for
some ¢, it meets precisely one arc 7; j, and its intersection with 7; ; is a line
segment that connects the centres of two adjacent edges of the square. We
also require that |J Q' covers a dense subset of Ui Vi

(8) no point a; j or b; j (cf. (5)) is contained in U o' and
(9) ri= Z edge length of Q* < 1.
Q*eQ!

Step 1 concludes with the arc v = 5 and the set of squares Q'. For
any m > 1, the mth step will conclude with a simple arc v and a set
of disjoint squares Q" such that " intersects each square Q* € Q™ in a
line segment that connects the centres of two adjacent edges of Q*. Observe
that, using (8), we easily deduce that

(10)  any simple arc n C |J Q' U~? such that n\ J Q' =+ \ J Q' is an
MW-arc.

STEP m. Suppose that v™ 1 and Q™ ! have been defined. We will
repeat the same construction as in Step 1 inside each of the squares of
melz

For each Q* € Q™! choose a similarity g~ of the plane that maps the
unit square @ = [0, 1] onto Q*, such that the segment between q and ¢ is
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mapped onto the segment Q* Ny™ 1. Let

= (rgJer v U st
Q*EQm—l
Q" = {Yg+(Q): Q" € Q"' Q € Q'}.

It is easy to see by induction on m that

(11) r’m = Z edge length of Q.
Q*eQm

Let v := (N _; (™ U U Q™). It is geometrically obvious and not difficult
to prove that « is a simple arc. For a precise proof we have at least two
possibilities. The more straightforward one is to define inductively “natural”
parametrizations of v and to check that the limit of these parametrizations
is an injective parametrization of . The other possibility is to apply [7,
Theorem 3, Section V, §47] which gives a sufficient condition for a set to
be a simple arc, which is rather easy to verify for our set 7. (We choose
Cp :=~"UJ Q" for the definition of A, and B, we use the natural order
on ™)

Using (10), we find that v is an MW-arc. Also, for each Q* € (J,._, 9™,
we infer by (10) that

(12) wé*l(fy NQ*) is an MW-arc

and therefore v N @Q* is a monotone Whitney arc. Therefore each subarc of
~ is a monotone Whitney arc.

For each Q* € |U,7_, @™, let 7, .0+ := ¥g+(7i,;) and ; j o« be the subarc
of v with the same endpoints as 7; ; o+

To prove (ii), first suppose that f : v — R is a Lipschitz function defined
on the whole arc v that satisfies (1). Let K denote the Lipschitz constant
of f.

Consider an arbitrary Q € QF and an arbitrary arc V,5,Q- Since

Yi5.@ = (V15,0 N YijQ) U U (@ N~)
Q*€QFH1, Q"N 5,00

and 7, ;0 N7i,j0 is rectifiable, Lemma 4.1 implies A(f(7vij.0 N Yi,Q)) = 0
and therefore

(13) Mf(12.0.)) < > Af(@Q7N)).
Q*GQ’“H,Q*Q’YLJ‘,Q#@
By (12) and (6) we obtain
AF@QN7) <D AMFf(115Q))-

4,3
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Using also (13) we obtain

Mo < > MA@
Q*CQ,Q*GQk+1

Using this inequality and (11), we conclude by induction that, for any m € N,
A< DD MA@ Ny) <K D> diamQ* < KvV2r™

QreQm QreQm
and therefore A(f(y)) = 0.

Now let f : #* — R be a Lipschitz function defined on a subarc v*
of v that satisfies (1) on v*. If v* is of the form v* = v N T, where T is
a square of the form T = ¢g«(Q;) (where 7 is a finite sequence (possibly
empty), Q* € Upr_y @™, Q% := {Qp = [0,1]*} and 1, is the identity),
then we deduce that f is constant using (7) and the same argument as
above for v* = ~. A general v* can be written as a union of countably
many subarcs of the above form and a o-rectifiable set. Indeed, consider
any point x € v* which is not an endpoint of v*. If z € |J Q™ for every
m then {z} = (N °_; Q™ for some Q™ € Q™, and if m is large enough
then x € Q™ Ny = Pgom(Qg) Ny C ~*. If z is not of this form, then there
is a largest m so that x € Q* for some Q* € (JQ™. Then z € ¢g-(7),
therefore either = ¥« (Qi4,...) for an infinite sequence i1is... (in which
case T € Y+ (Qiyiy..i,) Ny C ~* if s is sufficiently large), or = € ¥« (i ;)
for some 4, j (and ¥+ (7; ;) is a polygon, therefore it is rectifiable).

Thus, using also Lemma 4.1, we obtain A(f(v*)) = 0 and so f is constant
on~vy*. m

5. Notes on k-critical arcs. The following definition is used in [9)].

DEFINITION 5.1. We say that a simple arc v C R™ is k-critical if there
exists a C* function on R”™ which is not constant on v and f’(x) = 0 for
each x € 7.

The following related notion was implicitly used in [10].

DEFINITION 5.2. We say that a simple arc v C R™ is k*-critical if there
exists a C* function on R™ which is not constant on v and fU)(z) = 0 for
eachx € yand 1 < j <k.

Note that the Morse—Sard theorem implies that there is no k-critical arc
in R™ for k& > n. On the other hand, Whitney [10, p. 517] has showed how the
(above) planar construction can be generalized to obtain an (n —1)*-critical
arc in R".

The following notion is implicitly used in [1].
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DEFINITION 5.3. We say that a simple arc v C R" is ky-critical if there
exists a non-constant real function f on ~ such that

L)~ @)

14
(14) y—w,yey |y — x|

=0 for each x € v.

Note that Choquet [1] observed that no k,-critical arc has o-finite k-
dimensional Hausdorff measure (cf. [5], where also some sufficient and some
necessary conditions are presented).

Proceeding as in the proof of Theorem 2.2, we easily obtain a general-
ization.

THEOREM 5.4. Let v C R™ be a ki-critical arc which is a quasiarc.
Then there exists a C* function f on R™ such that f is a non-constant
monotone function along v, and f'(z) = --- = f®)(z) = 0 for every z € 7.
In particular, v is k*-critical and thus also k-critical.

Modifying the above mentioned Whitney construction of an (n — 1)*-
critical arc in R™ in the same way as in the proof of Theorem 3.1, we obtain
the following result.

THEOREM 5.5. There exists an (n—1).-critical arc vy in R™ which is not

1-critical. Moreover, there exists no non-constant Lipschitz function f on
which satisfies (1).

We do not know whether each k-critical arc is k*-critical.
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