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Abstract. A simple arc γ ⊂ Rn is called a Whitney arc if there exists a non-constant
real function f on γ such that limy→x, y∈γ |f(y)− f(x)|/|y − x| = 0 for every x ∈ γ; γ
is 1-critical if there exists an f ∈ C1(Rn) such that f ′(x) = 0 for every x ∈ γ and f is
not constant on γ. We show that the two notions are equivalent if γ is a quasiarc, but for
general simple arcs the Whitney property is weaker. Our example also gives an arc γ in R2

each of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone
Whitney arc. This answers completely a problem of G. Petruska which was solved for
n ≥ 3 by the first author in 1999.

1. Introduction. A famous example of Whitney [10] shows that there
exist a simple arc γ ⊂ R2 and a C1 function f on R2 such that each point
of γ is critical for f , and f is not constant on γ. A slightly weaker example
was independently constructed by Choquet in [1]. Namely, he constructed a
simple arc γ ⊂ R2 which is Whitney by the following terminology introduced
in [8] and used in [4].

Definition 1.1. We say that a simple arc γ ⊂ Rn is a Whitney arc if
there exists a non-constant real function f on γ such that

(1) lim
y→x, y∈γ

|f(y)− f(x)|
|y − x|

= 0 for each x ∈ γ.

It seems that the difference between Whitney arcs thus defined and arcs
considered by Whitney is not sufficiently emphasized in the literature (see
e.g. remarks in [9, p. 399] on Choquet’s results). The aim of the present
article is to study this difference. First we recall the terminology of [9] which
corresponds precisely to the example of Whitney.
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Definition 1.2. We say that a simple arc γ ⊂ Rn is a 1-critical arc if
there exists a C1 function on Rn which is not constant on γ and f ′(x) = 0
for each x ∈ γ.

Of course, each 1-critical arc is Whitney but the opposite implication
does not hold. If the convergence in (1) were uniform in x ∈ γ then Whit-
ney’s extension theorem would imply that f can be extended to Rn as a
C1 function with derivative 0 at the points of γ; however, without assuming
uniform convergence this is not the case. In Section 3 we will construct a
Whitney arc γ in R2 (slightly modifying the original construction of Whit-
ney) which is not 1-critical.

No full characterization of 1-critical arcs or Whitney arcs is known (even
in R2). However, there are interesting necessary or sufficient conditions. It
is not difficult to prove (see [1] and Lemma 4.1 below) that no Whitney arc
has σ-finite 1-dimensional Hausdorff measure. Choquet also proved that no
graph of a continuous f : [a, b] → R is Whitney. This result easily implies
[5] that if γ ⊂ Rn has a parametrization whose n− 1 coordinates have finite
variation, then γ is not a Whitney arc. Interesting necessary [8, Theorem 3]
and sufficient [8, Theorem 2] conditions for γ ⊂ Rn to be Whitney were
proved by Laczkovich and Petruska.

Norton [9] proved that each simple arc γ in Rn which is a quasiarc and
has Hausdorff dimension greater than 1 is 1-critical, and noted that such arcs
“are in the plentiful supply (e.g. as Julia sets for certain rational maps in the
plane)”. (Note that all arcs constructed in [1], [4], [8] and [10] are quasiarcs.)
We prove (Theorem 2.2) that if a Whitney arc in Rn is a quasiarc, then it
is 1-critical. That is, for quasiarcs the two notions are equivalent.

A modification of the construction of Whitney (see Section 3) is used
as a basic building block in an iterative construction in Section 4, which
gives an example of a Whitney arc which is not 1-critical and also has other
interesting properties. To describe them, recall that a real function f defined
(at least) on a simple arc γ ⊂ Rn is said to be monotone (resp. strictly
monotone) along γ if f ◦ ϕ is monotone (resp. strictly monotone) for each
homeomorphic parametrization ϕ of γ. Following [4], we say that a simple
arc γ ⊂ Rn is a monotone (resp. strictly monotone) Whitney arc if there
exists a non-constant f on γ that is monotone (resp. strictly monotone)
along γ and satisfies (1).

Petruska raised the question whether there exists a simple arc γ for which
every subarc is Whitney, but for which there is no parametrization ϕ of γ
satisfying

lim
t→t0

|t− t0|
|ϕ(t)− ϕ(t0)|

= 0, t0 ∈ [0, 1]

(which is clearly equivalent to γ not being a strictly monotone Whitney arc).



Whitney arcs and 1-critical arcs 121

This question was answered affirmatively in [4] for n ≥ 3, and it remained
open in R2 (see Problem 4 in [4]). Our example gives an affirmative answer
also for n = 2. We construct an arc γ ⊂ R2 such that each of its subarcs is
a monotone Whitney arc but any Lipschitz function satisfying (1) on any
subarc γ′ of γ is constant on γ′. From the last property it will easily follow
that each function satisfying (1) on γ is locally constant on a relatively open
dense subset of γ (and so γ is not a strictly monotone Whitney arc).

For the sake of completeness we remark that Theorem 2.2 implies that
every Whitney quasiarc is a monotone Whitney arc. However, if γ is not
a quasiarc then this is no longer true: Kolář ([6]) recently constructed a
1-critical arc in R2 which is not a monotone Whitney arc (and since each
1-critical arc is a Whitney arc, this solves Problem 2 in [4]).

2. Whitney quasiarcs are 1-critical. We denote by λ the Lebesgue
measure on R. In the following we will use the well-known notion of a
quasiarc.

Definition 2.1. We say that a simple arc γ ⊂ Rn is a quasiarc if there
exists K > 0 such that, for any distinct x, y ∈ γ, the subarc of γ “between
x and y” (in the natural sense) is contained in some ball of radius K|x− y|.

Theorem 2.2. Let γ ⊂ Rn be a Whitney arc which is a quasiarc. Then
there exists a C1 function f on Rn that is non-constant monotone along γ,
and f ′(x) = 0 for every x ∈ γ. In particular , γ is 1-critical.

Proof. Let ϕ : [0, 1] → Rn be a continuous injective parametrization
of γ. Choose a non-constant f : γ → R such that (1) holds. We can suppose
that g := f ◦ ϕ is not non-increasing (otherwise we take −f instead of f).
So we can choose 0 ≤ a < b ≤ 1 such that g(a) < g(b). For each y ∈
[g(a), g(b)] put ω(y) = min{x ∈ [a, b] : g(x) = y}. Since g is continuous, ω is
clearly (strictly) increasing. Using Lusin’s theorem and then the Cantor–
Bendixson theorem we can choose a set T ∗ ⊂ [g(a), g(b)] such that λ(T ∗) > 0
and ω|T ∗ is continuous. Put T := ω(T ∗). Then g0 := g|T is an increasing
homeomorphism between T and T ∗, and g0 = f0 ◦ϕ|T where f0 := f |ϕ(T ) is
a homeomorphism between ϕ(T ) and T ∗.

Let, for x ∈ γ,

ηk(x) := sup
{
|f(y)− f(x)|
|y − x|

: y ∈ γ, 0 < |y − x| < 1/k
}
.

Then limk→∞ ηk(x) → 0 for every x ∈ γ. It is easy to prove that pk :=
ηk ◦ f−1

0 is a Borel function on T ∗. Since pk → 0 at every point of T ∗,
applying Egorov’s theorem (see [3, 2.3.7]) we can find a closed H∗ ⊂ T ∗

with λ(H∗) > 0 such that pk → 0 uniformly on H∗. That is, the limit in (1)
is uniform on f−1

0 (H∗).
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Set H := g−1
0 (H∗). We can define a (strictly) increasing continuous func-

tion g̃ on [0, 1] which extends g0|H and is linear on each component of
[0, 1] \ H. Put q(t) := λ((−∞, t] ∩ H∗) and F := q ◦ g̃ ◦ ϕ−1. Then F is a
non-constant function monotone along γ. We will prove that

(2) lim
y→x, x∈γ

|F (y)− F (x)|
|y − x|

= 0 uniformly with respect to x ∈ γ.

To this end consider an arbitrary ε > 0. Let K ≥ 1 witness the fact that γ is
a quasiarc. Note that F = q ◦ f on ϕ(H) and q is Lipschitz with constant 1,
therefore |F (y)−F (x)| ≤ |f(y)− f(x)| for each x, y ∈ ϕ(H). Using also the
fact that the limit (1) is uniform with respect to x ∈ ϕ(H) = f−1

0 (H∗), we
can find δ > 0 such that

(3)
|F (x)− F (y)|
|x− y|

<
ε

2K
whenever x, y ∈ ϕ(H) and 0 < |x− y| < δ.

Let x, y ∈ γ be arbitrary points with 0 < |x − y| < δ(4K)−1 and F (x) 6=
F (y). We can suppose that x = ϕ(tx) and y = ϕ(ty) with tx < ty.

Since F is constant on the intervals contiguous to ϕ(H) and F (x) 6= F (y),
we see that H has at least two points in [tx, ty]. Define

sx := min(H ∩ [tx, ty]) and sy = max(H ∩ [tx, ty]).

Clearly tx ≤ sx < sy ≤ ty and F is constant on ϕ([tx, sx]) and ϕ([sy, ty]).
The definition of K gives

|ϕ(sx)− ϕ(sy)| ≤ 2K|ϕ(tx)− ϕ(ty)| ≤ 2K
δ

4K
< δ

and thus (3) gives

|F (x)− F (y)|
|x− y|

=
|F (ϕ(tx))− F (ϕ(ty))|
|ϕ(tx)− ϕ(ty)|

≤ |F (ϕ(sx))− F (ϕ(sy))|
1

2K |ϕ(sx)− ϕ(sy)|

< 2K
ε

2K
= ε,

which proves (2).
Whitney’s extension theorem (see e.g. [2, p. 245]) and (2) immediately

imply that there exists an extension F̃ of F such that F̃ ∈ C1(Rn) and
(F̃ )′(x) = 0 for each x ∈ γ. Since F is a non-constant monotone function
along γ, we have proved Theorem 2.2.

3. A modified Whitney’s example: a Whitney arc which is not
1-critical. In this section we slightly modify the original construction of
Whitney to obtain a class of Whitney arcs (called here MW-arcs for short)
and prove some of their properties that are used in this section to give a
simple construction of a Whitney arc which is not 1-critical, and are also
used in Section 4 for constructing our main example.
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3.1. For the convenience of the reader we first repeat (almost word for
word) the construction of Whitney from [10].

Let Q = Q∅ := [0, 1]2. Let Q0, Q1, Q2, Q3 be closed squares of side
1/3 lying inside to Q in clockwise order, each at distance 1/12 from the
boundary of Q as in Figure 1. Let q and q′ be the centres of the sides of Q
along Q0, Q1, and along Q3, Q0. Let qi and q′i be the centres of two adjacent
edges of Qi (i = 0, 1, 2, 3), as in Figure 1. Let Ai (i = 0, 1, 2, 3, 4) be the line
segments as in Figure 1.

Fig. 1. Construction

Suppose we have constructed squaresQi1...it , points qi1...it , q
′
i1...it

, and line
segments Ai1...it,j (each ik = 0, 1, 2, 3; j = 0, 1, 2, 3, 4) for t < s. By taking a
square Qi1...is−2 , shrinking it to a third of its size, and turning it around and
upside down if necessary, we may place it in Qi1...is−1 so that qi1...is−2 and
q′i1...is−2

go into qi1...is−1 and q′i1...is−1
, and thus construct four new squares

Qi1...is (is = 0, 1, 2, 3) as images of Qi1...is−2is , furthermore points qi1...is ,
q′i1...is and segments Ai1...is−1j for j = 0, 1, 2, 3, 4 as images of qi1...is−2is ,
q′i1...is−2is

and Ai1...is−2j , respectively. We denote the point Q∩Qi1∩Qi1i2∩· · ·
by Qi1i2....

It is not difficult to see that the line segments Ai1...is together with the
points Qi1i2... form a simple arc A (a canonical parametrization is described
in [10]).
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Now define F on A as follows:

F (x) :=


i1
4

+
i2
42

+ · · ·+ is
4s
, x ∈ Ai1i2...is ,

i1
4

+
i2
42

+ · · · , x = Qi1i2....

Whitney proved that F is a restriction of a C1 function F ∗ defined on the
plane such that each point of A is critical for F ∗.

3.2. Now we will make some modifications which lead to a class of Whit-
ney (but not 1-critical) arcs.

In the following, the symbol i will always denote a sequence i = i1 . . . ik
where in ∈ {0, 1, 2, 3} (for k = 0 we set i = ∅); we define |i| := k. For each
i = i1 . . . ik and j ∈ {0, 1, 2, 3, 4} we choose an arbitrary simple arc γi,j lying
(except the endpoints) in intQi \ (Qi0 ∪Qi1 ∪Qi2 ∪Qi3) that connects the
same points as Ai,j , such that the arcs γi,j are pairwise disjoint and

(4) dist(γi,j , γi,j+1) < 1/5k, j = 0, 1, 2, 3.

It is easy to show that the arcs γi,j together with the points Qi1i2... form a
simple arc γ. We will choose points ai,j , bi,j ∈ γi,j such that

(5) dist(ai,j , bi,j+1) < 1/5k, j = 0, 1, 2, 3.

We will call any arc constructed in this way an MW-arc (that is, an arc
obtained by the modified Whitney construction).

3.3. We show that each MW-arc γ is a monotone Whitney arc. To this
end consider the function f on γ which agrees with F at the points Qi1i2...
and is constant on each γi,j with the same value as F has on Ai,j . Clearly
f is monotone along γ. We will show that (1) holds. It is immediate that
(1) holds at the points of the arcs γi,j , since f is constant on these arcs and
each such arc has, in the space γ, a neighbourhood formed by three (or two)
arcs γi,j . Now let x = Qi1i2... and let y be an arbitrary point of γ different
from x. Consider the largest k with y ∈ Qi1...ik = Qi. Then we can see that
|f(x)−f(y)| ≤ 1/4k, while |x−y| ≥ dist(Qiik+1ik+2

, ∂Qiik+1
) = 1/(12 ·3k+1).

This shows

lim
y→x, y∈γ

|f(y)− f(x)|
|y − x|

≤ lim
k→∞

12 · 3k+1

4k
= 0.

3.4. Now we will show that if f is a Lipschitz function on an MW-arc γ,
then

(6) λ(f(γ)) ≤
∑

i, 0≤j≤4

λ(f(γi,j)).
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Let f be Lipschitz with constant K. For each k ∈ N, let

Ik :=
⋃

|i|≤k, 0≤j≤4

f(γi,j) ∪
⋃

|i|=k, 0≤j≤3

[f(ai,j), f(bi,j+1)].

It is easy to see that Ik is a closed interval, since it is clearly connected
and closed; let Ik =: [u, v]. Now observe that f(γ) ⊂ [u − K

√
2/3k+1, v +

K
√

2/3k+1]. This follows by the Lipschitz property of f , the definition of
Ik and the obvious fact that dist(c,

⋃
|i|≤k, 0≤j≤4 γi,j) ≤

√
2/3k+1 for every

c ∈ γ.
Clearly

λ
(
Ik \

⋃
|i|≤k, 0≤j≤4

f(γi,j)
)
≤

∑
|i|=k, 0≤j≤3

|f(bi,j+1)− f(ai,j)| ≤
K4k+1

5k
.

Therefore

λ(f(γ)) ≤
∑

i, 0≤j≤4

λ(f(γi,j)) +
K4k+1

5k
+ 2K

√
2/3k+1,

which easily implies (6).
Similarly to (6), we find that for each i∗ = i∗1 . . . i

∗
s,

(7) λ(f(γ ∩Qi∗)) ≤
∑

i, 0≤j≤4

λ(f(γi,j ∩Qi∗)).

3.5. Now we can prove the following result:

Theorem 3.1. There exists a Whitney arc γ ⊂ R2 which is not 1-
critical. Moreover , there exists no non-constant Lipschitz function f on γ
which satisfies (1).

Proof. We choose γ as an arbitrary MW-arc for which all the arcs γi,j
are polygons. Thus γ is a (monotone) Whitney arc.

Now suppose that f is a Lipschitz function on γ which satisfies (1) on γ.
Then, since a polygon is not a Whitney arc, λ(f(γi,j)) = 0 for each arc γi,j
and hence (6) implies that λ(f(γ)) = 0 and thus f is constant on γ. Since
each C1 function on R2 is Lipschitz on γ, we have proved that the arc γ is
not 1-critical.

4. The main example. We will need the following result (see [1, p. 49]).

Lemma 4.1. Suppose that A ⊂ Rn has σ-finite one-dimensional Haus-
dorff measure and f is a real function on A such that

lim
y→x, y∈A

|f(y)− f(x)|
|y − x|

= 0 for each x ∈ A.

Then λ(f(A)) = 0.
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Using the generalized Whitney construction from Section 3 we will now
prove the following main result of the present article.

Theorem 4.2. There exists a simple arc γ ⊂ R2 such that :

(i) Each subarc of γ is a monotone Whitney arc.
(ii) There is no non-constant Lipschitz function f on any subarc γ∗ of

γ such that f satisfies (1) on γ∗.
(iii) Each function satisfying (1) on γ is locally constant on a relatively

open dense subset of γ. In particular , γ is not a strictly monotone
arc.

Proof. First note that (iii) is an easy consequence of (ii). Indeed, suppose
that (ii) holds, f satisfies (1) on γ, and γ∗ is an arbitrary subarc of γ. For
each n ∈ N, let Zn denote the set of all x ∈ γ∗ such that |f(y)−f(x)| ≤ |y−x|
whenever y ∈ γ and |y − x| ≤ 1/n. Since each Zn is closed and γ∗ =

⋃
Zn,

the Baire category theorem implies that there exists n ∈ N and a subarc γ∗∗

of γ∗ with diam γ∗∗ < 1/n and γ∗∗ ⊂ Zn. Then f is Lipschitz on γ∗∗ and
thus constant on γ∗∗ by (ii), and (iii) follows.

Now we fix an arbitrary MW-arc γ̃ for which all the arcs γ̃i,j are polygons
and we will construct γ by an iterative procedure, as follows.

Step 1. Let γ1 := γ̃. We choose a countable set Q1 of disjoint closed
squares such that each square in Q1 is inside Qi \ (Qi0 ∪Qi1 ∪Qi2 ∪Qi3) for
some i, it meets precisely one arc γ̃i,j , and its intersection with γ̃i,j is a line
segment that connects the centres of two adjacent edges of the square. We
also require that

⋃
Q1 covers a dense subset of

⋃
i,j γ̃i,j ,

(8) no point ai,j or bi,j (cf. (5)) is contained in
⋃
Q1 and

(9) r :=
∑

Q∗∈Q1

edge length of Q∗ < 1.

Step 1 concludes with the arc γ1 = γ̃ and the set of squares Q1. For
any m ≥ 1, the mth step will conclude with a simple arc γm and a set
of disjoint squares Qm such that γm intersects each square Q∗ ∈ Qm in a
line segment that connects the centres of two adjacent edges of Q∗. Observe
that, using (8), we easily deduce that

(10) any simple arc η ⊂
⋃
Q1 ∪ γ1 such that η \

⋃
Q1 = γ1 \

⋃
Q1 is an

MW-arc.

Step m. Suppose that γm−1 and Qm−1 have been defined. We will
repeat the same construction as in Step 1 inside each of the squares of
Qm−1:

For each Q∗ ∈ Qm−1 choose a similarity ψQ∗ of the plane that maps the
unit square Q = [0, 1]2 onto Q∗, such that the segment between q and q′ is
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mapped onto the segment Q∗ ∩ γm−1. Let

γm =
(
γm−1 \

⋃
Qm−1

)
∪

⋃
Q∗∈Qm−1

ψQ∗(γ1),

Qm = {ψQ∗(Q̃) : Q∗ ∈ Qm−1, Q̃ ∈ Q1}.

It is easy to see by induction on m that

(11) rm =
∑

Q∗∈Qm
edge length of Q∗.

Let γ :=
⋂∞
m=1(γm ∪

⋃
Qm). It is geometrically obvious and not difficult

to prove that γ is a simple arc. For a precise proof we have at least two
possibilities. The more straightforward one is to define inductively “natural”
parametrizations of γm and to check that the limit of these parametrizations
is an injective parametrization of γ. The other possibility is to apply [7,
Theorem 3, Section V, §47] which gives a sufficient condition for a set to
be a simple arc, which is rather easy to verify for our set γ. (We choose
Cn := γn ∪

⋃
Qn; for the definition of An and Bn we use the natural order

on γn.)
Using (10), we find that γ is an MW-arc. Also, for each Q∗ ∈

⋃∞
m=1Qm,

we infer by (10) that

(12) ψ−1
Q∗(γ ∩Q

∗) is an MW-arc

and therefore γ ∩Q∗ is a monotone Whitney arc. Therefore each subarc of
γ is a monotone Whitney arc.

For each Q∗ ∈
⋃∞
m=1Qm, let γ̃i,j,Q∗ := ψQ∗(γ̃i,j) and γi,j,Q∗ be the subarc

of γ with the same endpoints as γ̃i,j,Q∗ .
To prove (ii), first suppose that f : γ → R is a Lipschitz function defined

on the whole arc γ that satisfies (1). Let K denote the Lipschitz constant
of f .

Consider an arbitrary Q ∈ Qk and an arbitrary arc γi,j,Q. Since

γi,j,Q = (γi,j,Q ∩ γ̃i,j,Q) ∪
⋃

Q∗∈Qk+1, Q∗∩γi,j,Q 6=∅

(Q∗ ∩ γ)

and γi,j,Q ∩ γ̃i,j,Q is rectifiable, Lemma 4.1 implies λ(f(γi,j,Q ∩ γ̃i,j,Q)) = 0
and therefore

(13) λ(f(γi,j,Q)) ≤
∑

Q∗∈Qk+1, Q∗∩γi,j,Q 6=∅

λ(f(Q∗ ∩ γ)).

By (12) and (6) we obtain

λ(f(Q ∩ γ)) ≤
∑
i,j

λ(f(γi,j,Q)).
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Using also (13) we obtain

λ(f(Q ∩ γ)) ≤
∑

Q∗⊂Q,Q∗∈Qk+1

λ(f(Q∗ ∩ γ)).

Using this inequality and (11), we conclude by induction that, for anym ∈ N,

λ(f(γ)) ≤
∑

Q∗∈Qm
λ(f(Q∗ ∩ γ)) ≤ K

∑
Q∗∈Qm

diamQ∗ ≤ K
√

2 rm

and therefore λ(f(γ)) = 0.
Now let f : γ∗ → R be a Lipschitz function defined on a subarc γ∗

of γ that satisfies (1) on γ∗. If γ∗ is of the form γ∗ = γ ∩ T , where T is
a square of the form T = ψQ∗(Qi) (where i is a finite sequence (possibly
empty), Q∗ ∈

⋃∞
m=0Qm, Q0 := {Q∅ = [0, 1]2} and ψQ∅ is the identity),

then we deduce that f is constant using (7) and the same argument as
above for γ∗ = γ. A general γ∗ can be written as a union of countably
many subarcs of the above form and a σ-rectifiable set. Indeed, consider
any point x ∈ γ∗ which is not an endpoint of γ∗. If x ∈

⋃
Qm for every

m then {x} =
⋂∞
m=1Q

m for some Qm ∈ Qm, and if m is large enough
then x ∈ Qm ∩ γ = ψQm(Q∅) ∩ γ ⊂ γ∗. If x is not of this form, then there
is a largest m so that x ∈ Q∗ for some Q∗ ∈

⋃
Qm. Then x ∈ ψQ∗(γ̃),

therefore either x = ψQ∗(Qi1i2...) for an infinite sequence i1i2 . . . (in which
case x ∈ ψQ∗(Qi1i2...is) ∩ γ ⊂ γ∗ if s is sufficiently large), or x ∈ ψQ∗(γ̃i,j)
for some i, j (and ψQ∗(γ̃i,j) is a polygon, therefore it is rectifiable).

Thus, using also Lemma 4.1, we obtain λ(f(γ∗)) = 0 and so f is constant
on γ∗.

5. Notes on k-critical arcs. The following definition is used in [9].

Definition 5.1. We say that a simple arc γ ⊂ Rn is k-critical if there
exists a Ck function on Rn which is not constant on γ and f ′(x) = 0 for
each x ∈ γ.

The following related notion was implicitly used in [10].

Definition 5.2. We say that a simple arc γ ⊂ Rn is k∗-critical if there
exists a Ck function on Rn which is not constant on γ and f (j)(x) = 0 for
each x ∈ γ and 1 ≤ j ≤ k.

Note that the Morse–Sard theorem implies that there is no k-critical arc
in Rn for k ≥ n. On the other hand, Whitney [10, p. 517] has showed how the
(above) planar construction can be generalized to obtain an (n−1)∗-critical
arc in Rn.

The following notion is implicitly used in [1].
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Definition 5.3. We say that a simple arc γ ⊂ Rn is k∗-critical if there
exists a non-constant real function f on γ such that

(14) lim
y→x, y∈γ

|f(y)− f(x)|
|y − x|k

= 0 for each x ∈ γ.

Note that Choquet [1] observed that no k∗-critical arc has σ-finite k-
dimensional Hausdorff measure (cf. [5], where also some sufficient and some
necessary conditions are presented).

Proceeding as in the proof of Theorem 2.2, we easily obtain a general-
ization.

Theorem 5.4. Let γ ⊂ Rn be a k∗-critical arc which is a quasiarc.
Then there exists a Ck function f on Rn such that f is a non-constant
monotone function along γ, and f ′(x) = · · · = f (k)(x) = 0 for every x ∈ γ.
In particular , γ is k∗-critical and thus also k-critical.

Modifying the above mentioned Whitney construction of an (n − 1)∗-
critical arc in Rn in the same way as in the proof of Theorem 3.1, we obtain
the following result.

Theorem 5.5. There exists an (n−1)∗-critical arc γ in Rn which is not
1-critical. Moreover , there exists no non-constant Lipschitz function f on γ
which satisfies (1).

We do not know whether each k-critical arc is k∗-critical.
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186 75 Praha 8, Czech Republic
E-mail: zajicek@karlin.mff.cuni.cz

Department of Mathematical Sciences
Florida Atlantic University

777 Glades Road
Boca Raton, FL 33431, U.S.A.

E-mail: kalis@math.fau.edu

Received 30 September 2005;
in revised form 11 January 2007


