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The monoid of suspensions and loops
modulo Bousfield equivalence

by

Jeff Strom (Kalamazoo, MI)

Abstract. The suspension and loop space functors, Σ and Ω, operate on the lattice
of Bousfield classes of (sufficiently highly connected) topological spaces, and therefore
generate a submonoid L of the complete set of operations on the Bousfield lattice. We
determine the structure of L in terms of a single parameter of homotopy theory which is
closely tied to the problem of desuspending weak cellular inequalities.

Introduction. A topological space Y is said to be X-acyclic if the weak
contractibility of the space of pointed maps from X to Z implies the weak
contractibility of the maps from Y to Z, that is, if the implication

map∗(X,Z) ∼ ∗ ⇒ map∗(Y,Z) ∼ ∗
holds for all spaces Z. This relation is denoted X < Y , and is referred to as
a weak cellular inequality. Spaces X and Y are Bousfield equivalent if both
X < Y and Y < X; the Bousfield equivalence class of X is denoted 〈X〉.
Bousfield classes (of spectra) play an important role in stable homotopy the-
ory, and are crucial to the development of unstable analogs of the nilpotence
and periodicity results of Devinatz, Hopkins and Smith.

Chachólski has shown [2] that the suspension and loop space functors Σ
and Ω respect weak cellular inequalities; that is, if X < Y , then also ΣX <
ΣY and ΩX < ΩY , provided X and Y are both path connected. Conse-
quently, if 〈X〉 = 〈Y 〉, then 〈ΣX〉 = 〈ΣY 〉 and 〈ΩX〉 = 〈ΩY 〉. It is easily
proved using the James reduced product construction that 〈ΣΩΣX〉 =
〈ΣX〉 for any space X. Additionally, it was observed in the 1950’s that a
connected space X is an H-space if and only if it is a retract of ΩΣX. This
implies that 〈ΩΣΩX〉 = 〈ΩX〉 for any connected space X. It is less obvious,
however, that for every path connected space X,

〈Σ3Ω4Σ2Ω3Σ5X〉 = 〈Σ3X〉
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and, further, that there are arbitrarily highly connected spaces X for which

〈Σ3Ω4Σ2Ω3Σ5X〉 6= 〈Σ4Ω5Σ3Ω6Σ4Ω2Σ5X〉.

The purpose of this paper is to develop a systematic framework for analyzing
relations of this kind.

Let F be the free monoid on the symbols Σ and Ω, and let it act on
topological spaces in the obvious way. Since the loop space and suspension
functors respect Bousfield equivalence (of path connected spaces), this action
induces an action of F on Bousfield classes. We define an equivalence relation
∼ on F by saying W1 ∼ W2 if and only if 〈W1X〉 = 〈W2X〉 for every
sufficiently highly connected space X (see §2.1 for details concerning the
connectivity condition). The set L of ∼-equivalence classes inherits a monoid
structure and the quotient map q : F → L is a monoid map. This map q
clearly encodes all relations of the kind discussed above. Our object is to
give an explicit description of the monoid L and the map q.

To facilitate our study of L, we introduce two functions, d : F → Z and
c : F → Z, called the degree and the connectivity. The degree of W ∈ F
is the difference between the connectivity of X and that of WX for highly
connected spaces X; the connectivity of W is defined by setting c(Σ) = 0,
c(Ω) = −1 and c(W2W1) = min{c(W1), c(W2) + d(W1)}. It is not hard to
see that if W1 ∼ W2, then d(W1) = d(W2). It will follow from our main
theorem that c also respects ∼.

Our main result explicitly identifies the monoid L in terms of an as yet
undetermined parameter of homotopy theory:

κ = inf{n | ΩnΩΣ ∼ Ωn},

where we interpret the infimum of the empty set to be ∞, as usual. The
parameter κ is intimately bound up with the problem of desuspending weak
cellular inequalities (see Proposition 12). We conjecture that κ =∞.

Theorem 11. L is the quotient of F by ∼, which is the unique multi-
plicative equivalence relation on F satisfying the following six conditions:

(R1) ΩΣ2 ∼ Σ,
(R2) ΩΣΩ ∼ Ω,
(R3) ΣΩΣ ∼ Σ,
(Sκ) ΩκΩΣ ∼ Ωκ and ΩlΩΣ 6∼ Ωl for all l < κ,
(N) ΣΩ2 6∼ Ω,
(D) W1 ∼W2 implies d(W1) = d(W2).

Let xc,d = Σd−cΩ−c and yc,d = Σd−cΩ−cΩΣ; these elements have con-
nectivity c and degree d. If c ≤ −κ, then xc,d ∼ yc,d, but otherwise no two
of these words are equivalent. Therefore, every word W ∈ F is equivalent
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to exactly one element of the set

R = {x0,0} ∪ {xc,d | c < 0, d ≥ c} ∪ {yc,d | −κ < c ≤ 0, d ≥ c}.
Writing xc,d and yc,d for the equivalence classes of xc,d and yc,d, we have

L = {x0,0, xc,d, yc,d | c, d as in R above}.

Every nontrivial W ∈ F has a unique factorization of the form W =
W ′T , where T ∈ {Σ,Ω}. We call T the initial letter of W because it is the
first operation that is applied in evaluating WX for a space X. Theorem 11
implies the following criterion for the equivalence of two words.

Proposition 15. Let W1,W2 be nonempty words in F . Then W1 ∼W2

if the following three conditions hold :

(1) the initial letters of W1 and W2 are the same,
(2) d(W1) = d(W2),
(3) c(W1) = c(W2).

Conversely , if W1 ∼ W2, then conditions (2) and (3) hold ; condition (1)
also holds if c(W1) = c(W2) > −κ.

If W1 ∼W2, then 〈W1X〉 = 〈W2X〉 for all “sufficiently highly connected”
spaces X. For practical use, it is essential to know exactly how highly con-
nected X must be for this implication to be valid.

Corollary 16. If conditions (1)–(3) of Proposition 15 hold , then 〈W1X〉
= 〈W2X〉 for all c-connected spaces X, where c = c(W1) = c(W2).

Proposition 15 and Corollary 16 do not completely settle the question:
without knowing the value of κ, we cannot say whether or not two words
with different initial letters are equivalent.

As mentioned above, Theorem 11 is an implicit description of the quo-
tient map q : F → L. The explicit formula is given in the following propo-
sition.

Proposition 18. Let W ∈ F be a nonempty word , and write d = d(W )
and c = c(W ). Then

q(W ) =

{
xc,d if the initial letter of W is Ω,
yc,d if the initial letter of W is Σ,

where xc,d = yc,d for c ≤ −κ.

We conclude by describing the multiplicative structure of L explicitly in
terms of the elements xc,d and yc,d.

Proposition 20. Let zc,d denote a generic element of L with the indi-
cated connectivity and degree. The product in L is given by the formulas
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zc,d · xc′,d′ = xm,d+d′ and zc,d · yc′,d′ = ym,d+d′ ,

where m = min{c′, d′ + c} and xc,d = yc,d for c ≤ −κ.

It follows that the x-elements constitute a submonoid X ⊆ L and simi-
larly for the y-elements.

Acknowledgments. I am pleased to acknowledge the helpful advice
provided by W. Chachólski, E. Dror Farjoun, M. Intermont, Lê Minh Hà
and M. Kinyon during the preparation of this paper.

1. Preliminaries. An equivalence relation ≈ on a monoid M is multi-
plicative if x1 ≈ x′1 and x2 ≈ x′2 implies x1x2 ≈ x′1x

′
2. If ≈ is a multiplica-

tive equivalence relation, then the set N of ≈-equivalence classes inherits a
monoid structure and the quotient M→N is a monoid map.

An equivalence relation on a set S can be viewed as a subset of S × S
with certain properties. Since an intersection of equivalence relations is also
an equivalence relation, any subset A ⊆ S is contained in a unique smallest
equivalence relation, the equivalence relation generated by A.

Homotopy equivalence of pointed topological spaces is denoted '. The
loop space of a pointed space X is the pointed space of pointed maps
ΩX = map∗(S1, X). The Eckman–Hilton dual of the loop space functor
is the suspension functor defined by ΣX = S1 ∧ X, where ∧ denotes the
smash product. A space X is n-connected if ΩkX is a path connected space
for 0 ≤ k ≤ n; X is weakly contractible if it is n-connected for all n ≥ 1.
Refer to [5] for more detail on the basic notions of homotopy theory.

A path connected pointed (1) spaceY isX-acyclic if whenever map∗(X,Z)
is weakly contractible, then map∗(Y,Z) is also weakly contractible. This re-
lation is denoted X < Y , and it is a partial order on the collection of topolog-
ical spaces. Spaces X and Y are Bousfield equivalent if X < Y and Y < X.
The Bousfield class of X is the class 〈X〉 = {Z | Z is Bousfield equivalent
to X}. Chachólski proved the following key results in [2, Cors. 18.2 & 18.4].

Proposition 1. If X and Y are path connected and X < Y , then ΣX <
ΣY and ΩX < ΩY .

Corollary 2. If X and Y are path connected and 〈X〉 = 〈Y 〉, then
〈ΣX〉 = 〈ΣY 〉 and 〈ΩX〉 = 〈ΩY 〉.

2. The framework. In this section we define our object of study: the
monoid of operations on the Bousfield lattice generated by the loop space
and suspension functors.

(1) In this paper we work exclusively with highly connected spaces, so we do not have
to worry about choice of basepoints.
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2.1. The monoid of suspensions and loops. Let F be the free monoid on
the symbols Σ and Ω. This monoid acts on pointed topological spaces in
the obvious way:

Σ ·X = ΣX and Ω ·X = ΩX.

We define an equivalence relation ∼ on elements of F by defining W1 ∼W2

if and only if there is an integer n = n(W1,W2) such that 〈W1X〉 = 〈W2X〉
whenever X is n-connected. We refer to n-connected spaces as “sufficiently
highly connected”.

We write L for the set of ∼-equivalence classes of F , and q : F → L for
the canonical map.

Proposition 3. The equivalence relation ∼ is multiplicative. Therefore,
the set L inherits a monoid structure from F for which the canonical map
q : F → L is a monoid map.

Proof. Using Corollary 2, it follows by induction on word length in
F that if 〈X〉 = 〈Y 〉, then 〈WX〉 = 〈WY 〉 for any W ∈ F and any
sufficiently highly connected spaces X and Y . Now suppose that W1 ∼
W ′1 and W2 ∼ W ′2. Then, for any sufficiently highly connected space X,
〈W1X〉 = 〈W ′1X〉 and hence 〈W2W1X〉 = 〈W2W

′
1X〉 = 〈W ′2W ′1X〉. There-

fore W2W1 ∼W ′2W ′1.

Comment on connectivity. The statement in Proposition 1 about looping
weak cellular inequalities is false without the assumption that the spaces
in question are connected. For example, consider disjoint unions of Moore
spaces X = M(Z/p, n)qM(Z/p, n) and Y = M(Z/q, n)qM(Z/q, n), where
n is large, and p and q are distinct primes. Then 〈X〉 = 〈S0〉 = 〈Y 〉, but
〈ΩX〉 = 〈ΩM(Z/p, n)〉 6= 〈ΩM(Z/q, n)〉 = 〈ΩY 〉. Examples of this kind
force us to impose the connectivity restiction in the definition of ∼; otherwise
we would have Ω 6∼ Ω, and ∼ would not be an equivalence relation.

2.2. Connectivity and degree. We will make use of two functions on F ,
d : F → Z and c : F → Z, called the degree and the connectivity. The
function d is determined by the rules

d(Σ) = +1, d(Ω) = −1, d(W2W1) = d(W2) + d(W1).

If W ∈ F is a nontrivial word, write it in the form W = TrTr−1 · · ·T2T1

where each Tk is in {Σ,Ω}; for 1 ≤ k ≤ r, set W (k) = TkTk−1 · · ·T2T1.
Then c is the function defined by setting c(1) = 0 and

c(W ) = min{d(W (k)) | 1 ≤ k ≤ r}
for nontrivial W . The connectivity c clearly satisfies the equation

c(W2W1) = min{c(W1), d(W1) + c(W2)}.
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Lemma 4. Let X be a space that is a-connected but not (a+1)-connected ,
and let W ∈ F with d = d(W ) and c = c(W ). If a+ c ≥ 0, then

(a) WX is (a+ d)-connected ,
(b) W (k)X is path connected for all k,
(c) if a ≥ 1, then WX is not (a+ d+ 1)-connected ,
(d) if W1 ∼W2, then d(W1) = d(W2).

Proof. Part (a) follows by induction because it is true for Σ and Ω. Part
(a) implies (b) because c ≤ d(W (k)). Part (c) can be proved by tracking the
bottom homotopy/homology group using the Hurewicz theorem. For (d), let
W1 ∼W2 with degrees d1 and d2. Then we can find an a-connected space X
with a+ c ≥ 0 for which 〈W1X〉 = 〈W2X〉. This forces the connectivities of
W1X and W2X to be equal. By (c), we have d1 + a = d2 + a, so d1 = d2.

3. Relations in F . In this section we prove the three basic relations
between elements of F , and use them to derive other relations. We finish
the section by establishing the invalidity of a key relation.

3.1. Three basic relations and some consequences. We begin with our
three fundamental relations. We derive some more generally useful relations
from them in a corollary afterward.

Proposition 5. For any path connected space X,

(a) 〈ΩΣ2X〉 = 〈ΣX〉,
(b) 〈ΩΣΩX〉 = 〈ΩX〉,
(c) 〈ΣΩΣX〉 = 〈ΣX〉.
Proof. The relation (a) can be traced back as far as Dror Farjoun and

Chachólski, but it does not seem to be equivalent to a classical result. First
of all, [1, Cor. 3.5] (or the James construction) immediately yields ΣX <
ΩΣ(ΣX). The main point is the reverse inequality. For this, let F be the
fiber of the canonical map ΣX → ΩΣ(ΣX), so F → ΣX → ΩΣ(ΣX)
is a fibration sequence. Then according to [1, Lem. 8.9], ΩΣ(ΣX) < F , so
ΩΣ(ΣX) < ΣX. (Alternatively, combine [3, Cor. 5.B.6] with [1, Thm. 8.4].)

According to [1, Cor. 3.5(3)], 〈ΩΣΩX〉 = 〈ΩX〉 for any space X, prov-
ing (b). Putting together parts (2) and (4) of [1, Prop. 10.6] yields (c).

Proposition 5 immediately yields the following relations in F .

Theorem 6. The following relations are valid in F :

(R1) ΩΣ2 ∼ Σ,
(R2) ΩΣΩ ∼ Ω,
(R3) ΣΩΣ ∼ Σ.

We will refer to (R1)–(R3) as the three basic relations. They imply the
following more generally applicable relations.
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Corollary 7. The following relations are valid in F :

(a) ΩnΣn ∼ ΩΣ for n ≥ 1,
(b) (ΩnΣn)Σ ∼ Σ for n ≥ 0,
(c) (ΩnΣn)Ω ∼ Ω for n ≥ 0,
(d) Σ(ΩnΣn) ∼ Σ for n ≥ 0.

Proof. Part (a) is the key. To prove it, we proceed by induction on n,
the case n = 1 being trivial:

ΩnΣn ∼ Ωn−1(ΩΣ2)Σn−2

∼ Ωn−1ΣΣn−2 by (R1)

∼ Ωn−1Σn−1

∼ ΩΣ by the inductive hypothesis.

Now we use (a) to derive (b)–(d) by directly computing

(ΩnΣn)Σ ∼ ΩΣΣ ∼ Σ by (R1),
(ΩnΣn)Ω ∼ ΩΣΩ ∼ Ω by (R2),
Σ(ΩnΣn) ∼ ΣΩΣ ∼ Σ by (R3).

Parts (b) and (c) of Corollary 7 imply the following left cancellation rule
for suspensions.

Corollary 8. If W1,W2 ∈ F are nontrivial words, then ΣnW1 ∼
ΣnW2 if and only if W1 ∼W2.

The nontriviality of W1 and W2 is an essential hypothesis in Corollary 8.

3.2. An irrelation. We will use the following irrelation to clarify the
structure of the monoid L.

Proposition 9. ΣΩk+1 6∼ Ωk for k ≥ 0.

Proof. Fix an odd prime p, and let Kn = K(Z/p, n). Then, according to
Ravenel and Wilson [4], Kn+1 is acyclic with respect to the p-local Morava
K-theory K(n)∗ and Kn is not K(n)∗-acyclic. It follows that Kn+1 6< ΣKn

for all n ≥ 1. Since we have canonical equivalences Kn+1 ' ΩkKn+k+1 and
Kn ' Ωk+1Kn+k+1,

ΩkKn+k+1 ' Kn+1 6< ΣKn ' ΣΩk+1Kn+k+1.

These spaces can be chosen to be arbitrarily highly connected by adjusting n,
so the result is proved.

4. The main theorem. Our main result describes the monoid L and
the quotient map q : F → L. It turns out that the structure of L and the
map q are purely algebraic consequences of the information established in
Sections 2 and 3.
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4.1. The monoids Mk. Our object in this subsection is a purely alge-
braic investigation of multiplicative equivalence relations ≈ on F that have
the following basic properties:

(R1) ΩΣ2 ≈ Σ,
(R2) ΩΣΩ ≈ Ω,
(R3) ΣΩΣ ≈ Σ,
(Sk) ΩkΩΣ ≈ Ωk and ΩlΩΣ 6≈ Ωl for all l < k,
(N) ΣΩ2 6≈ Ω,
(D) W1 ≈W2 implies d(W1) = d(W2).

We interpret (S∞) to be the empty relation. Let ∼k be the multiplicative
equivalence relation on F generated by (R1)–(R3), (Sk), (N) and (D); let
Mk be the monoid of ∼k-equivalence classes in F .

Comment on (Sk). The condition ΩkΩΣ ≈ Ωk implies Ωk+1ΩΣ ≈
Ωk+1, so W1 ∼k W2 implies W1 ∼l W2 for l ≤ k. It seems likely that
ΩkΩΣ ≈ Ωk does not imply Ωk−1ΩΣ ≈ Ωk−1 for any k, but we have not
proved this. Thus we have not ruled out the possibility that (Sk) might be
inconsistent with (R1)–(R3), (N) and (D) for certain values of k.

Proposition 10. Let ≈ be any multiplicative equivalence relation which
satisfies (R1)–(R3), (Sk), (N), and (D). Then

(a) the equivalence relations ≈ and ∼k coincide;
(b) every element W ∈ F is ∼∞-equivalent to one of the following stan-

dard forms:

xc,d = Σd−cΩ−c for d ≥ c and c < 0,

yc,d = Σd−cΩ−c(ΩΣ) for d ≥ c and c ≤ 0,
x0,0 = 1

(note that c = c(xc,d) = c(yc,d) and d = d(xc,d) = d(yc,d));
(c) if W ∈ F with c = c(W ) and d = d(W ), then

(i) if c ≤ −k, then W ≈ xc,d ≈ yc,d only ,
(ii) if c > −k, then W is ≈-equivalent to xc,d or yc,d, but not both.

Proof. We prove (a) as a consequence of (b) and (c) as follows. The
conclusion (b) for ∼∞ implies that (b) holds for both ≈ and ∼k. Also, (c)
holds for both ≈ and ∼k. Let

R = {x0,0} ∪ {xc,d | d ≥ c, c < 0} ∪ {yc,d | d ≥ c, −k < c ≤ 0}.
Then (b) and (c) together imply that every word W ∈ F is ≈-equivalent to
exactly one element of R, and similarly for ∼k. Clearly, W1 ∼k W2 implies
W1 ≈W2; we have to prove the reverse implication. Suppose W1 ≈W2, and
let z1, z2 ∈ R be the unique elements such that W1 ∼k z1 and W2 ∼k z2.
Then we have z1 ≈ W1 ≈ W2 ≈ z2. Since no two distinct elements in the
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set R are ≈-equivalent by (c), it must be that z1 = z2, and so W1 ∼k z1 =
z2 ∼k W2, which completes the proof of (a).

Now we prove (b). By repeated use of (R1) (or, equivalently, by Corol-
lary 7), each word W ∈ F is ∼∞-equivalent to one in which no Ω appears
to the left of a Σ2. Thus W is ∼∞-equivalent to a word of the form

ΣaΩb1ΣΩb2ΣΩb3 · · ·Ωbr−1ΣΩbrΣε

where ε = 0 or ε = 1 and each bi > 0. Using (R2), we remove each internal
Σ, showing that W ∼∞ ΣaΩbΣε for some a and b. Finally, if a ≥ ε = b = 1,
then (R3) reduces the word further, showing that W ∼∞ Σa.

To prove (c), we show that no two distinct elements of the set R are
≈-equivalent to one another. By property (D), the only possiblities for such
relations are

xc,d ≈ yc′,d for any c, c′, xc,d ≈ xc′,d for c 6= c′, yc,d ≈ yc′,d for c 6= c′.

First consider the possibility that xc,d ≈ yc,d (note that if c = 0, then
d = 0 as well). By Corollary 8 we can cancel Σd−c on the left, so the relations

Σd−cΩ−c ≈ Σd−cΩ−cΩΣ, Ω−c ≈ Ω−cΩΣ,

are equivalent to one another. Since the latter relation is valid precisely
when c ≤ −k by (Sk), xc,d ≈ yc,d if and only if c ≤ −k.

We now show that any other relation within the list of part (b) implies
the (false) relation ΣΩ2 ≈ Ω. In fact, if c 6= c′, then

xc,d ≈ yc′,d,
Σd−cΩ−c ≈ Σd−c′Ω−c

′
ΩΣ,

(Σd−cΩ−c)Ω ≈ (Ωd−c′Σd−c′Ω−c
′
ΩΣ)Ω,

Σd−cΩ−c+1 ≈ Σd−c′Ω−c
′+1Ω by (R2),

xc−1,d−1 ≈ xc′−1,d−1.

In the same way, if yc,d ≈ yc′,d (with c 6= c′), then xc−1,d−1 ≈ xc′−1,d−1,
and so it suffices to show that the equivalence of any two of the x terms
implies the (invalid) relation ΣΩ2 ≈ Ω. Assume that c < c′, which implies
d− c > d− c′, and

xc+2,d+2 ≈ xc′+2,d+2,

Σd−cΩ−c−2 ≈ Σd−c′Ω−c
′−2,

Σd−cΩ−c ≈ Σd−c′Ω−c
′

with c, c′ < −1,

Ωd−c−1(Σd−cΩ−c) ≈ Ωd−c−1(Σd−c′Ω−c
′
),
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ΣΩ−c ≈ Ω−c−1 by Corollary 7(b), (c)
and to match degrees,

(ΣΩΩ−c−1)Σ−c−1 ≈ (Ω−c−1)Σ−c−1,

ΣΩ2Σ ≈ ΩΣ by Corollary 7(a), (b),

(ΣΩ2Σ)Ω ≈ (ΩΣ)Ω,

ΣΩ2 ≈ Ω by (R2).

By our assumption (N), this last relation is not valid, so we have proved
that each W ∈ F is ≈-equivalent to exactly one element of R.

It remains to determine which elements in R could possibly represent
a given W ∈ F . Since each of the relations (R1)–(R3) and (Sk) preserves
connectivity, if W1 ≈W2 then c(W1) = c(W2) and d(W1) = d(W2). Writing
c(W ) = c and d(W ) = d, we conclude that W can only be equivalent to xc,d
or yc,d, and the proof of (c) is complete.

4.2. The structure of L. We determine the structure of L in terms of a
new and as yet undetermined parameter of homotopy theory: κ = inf{n |
ΩnΩΣ ∼ Ωn}.

Theorem 11.

(a) L ∼=Mκ,
(b) writing xc,d and yc,d for the ∼-equivalence classes of xc,d and yc,d,

the map q : F → L is determined by q(Σ) = y0,1 and q(Ω) = x−1,−1.

Proof. We know from Proposition 3 that ∼ is a multiplicative equiva-
lence relation. It follows from Theorem 6 that (R1)–(R3) are valid for ∼,
and (Sκ) holds by definition. Since (N) holds by Proposition 9 and (D) is
Lemma 4(d), part (a) follows from Proposition 10. Part (b) is immediate.

The number κ is a new and fundamental parameter of homotopy the-
ory. It is intimately related to the problem of desuspending weak cellular
inequalities, as the next propostion shows.

Proposition 12. The following are equivalent :

(a) ΩkΩΣ ∼ Ωk,
(b) for sufficiently highly connected spaces A and X,

Σ(ΣkA) < ΣX ⇔ ΣkA < X.

The proof is a straightforward generalization of the proof of Chachólski’s
desuspension theorem [1, Thm. 8.4]. We omit the details.

Conjecture. κ =∞.
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5. Consequences. The purpose of this section is to detail certain con-
sequences of Theorem 11. We begin by showing that c-connected spaces are
“sufficiently highly connected” to conclude 〈W1X〉 = 〈W2X〉 from W1 ∼∞
W2, where c = c(W1) = c(W2). We give an easily applied criterion for decid-
ing when two words are ∼-equivalent, and derive an explicit formula for the
quotient map q. Finally, we give an explicit description of the multiplicative
structure of L.

5.1. Clarification on connectivity. If W1 ∼ W2, then 〈W1X〉 = 〈W2X〉
for all “sufficiently highly connected” spaces X. For practical use, it is es-
sential to know exactly how highly connected X must be for this implication
to be valid.

Proposition 13.

(a) If W1 ∼W2, then c(W1) = c(W2).
(b) If W1 ∼∞ W2 with c = c(W1) = c(W2), then 〈W1X〉 = 〈W2X〉 for

all c-connected spaces X.

Proof. Part (a) follows from Proposition 10(c), because ∼ and ∼κ are
the same equivalence relation by Theorem 11.

If W1 ∼∞ W2, then W1 can be transformed into W2 by a finite sequence
of substitutions made using the three basic relations. Our claim will follow
by induction, once we verify it for the case in which W1 and W2 differ by
exactly one such substitution. Write W1 = ULV and W2 = URV , where
L ∼ R is one of the three basic relations (in any order).

If X is c-connected, then W
(k)
1 X and W

(k)
2 X are path connected for

all k. In particular, V X is path connected, so 〈LV X〉 = 〈RVX〉 by Proposi-
tion 5. Also, U (k)LV X and U (k)RVX are path connected, and it follows by
induction on k that 〈U (k)LV X〉 = 〈U (k)RVX〉 for all k ≥ 0, proving (b).

We are unable to prove (b) for the relation ∼ because we do not know
enough about κ. If κ =∞, then the proof given above applies directly to ∼.
But if κ <∞, then there are relations of the form ΩkΩΣ ∼ Ωk; and we do
not know how highly connected a space must be in order to render such a
relation valid.

5.2. Determining equivalences. Next we address our motivating prob-
lem by giving a simple criterion for deciding whether two words in F are
equivalent.

We begin with a lemma. It is generally true that W1 ∼∞ W2 implies
W1 ∼ W2; we prove that the converse is true for words of comparatively
high connectivity.

Lemma 14. If c = c(W1) = c(W2) > −κ, then W1 ∼ W2 if and only if
W1 ∼∞ W2.
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Proof. Suppose W1 ∼ W2 and let d = d(W1) = d(W2). By Proposition
10, there are representatives z1, z2 ∈ R such that W1 ∼∞ z1 and W2 ∼∞ z2.
Therefore z1 ∼ W1 ∼ W2 ∼ z2. Furthermore, z1, z2 ∈ {xc,d, yc,d} because
degree and connectivity respect ∼. We know that c > −κ, so xc,d 6∼ yc,d,
and hence z1 = z2. Therefore W1 ∼∞ z1 = z2 ∼∞ W2.

If W ∈ F , we say that the initial letter of W is the unique letter T ∈
{Σ,Ω} such that W can be factored W = W ′T .

Proposition 15. Let W1,W2 be nonempty words in F . Then W1 ∼∞
W2 (and , a fortiori , W1 ∼W2) if the following three conditions hold :

(1) the initial letters of W1 and W2 are the same,
(2) d(W1) = d(W2),
(3) c(W1) = c(W2).

Conversely , if W1 ∼ W2, then conditions (2) and (3) hold ; condition (1)
also holds if c(W1) = c(W2) > −κ.

Proof. Each of the three basic relations (R1)–(R3) preserves initial let-
ters, while (Sk) does not unless k =∞.

Suppose that the three conditions hold for W1 and W2. If their common
initial letter is Ω, then by Proposition 10 they are each ∼∞-equivalent to
some word of the form ΣaΩb. This forces W1 ∼W2, because there is a unique
word of that form with given connectivity and degree. If the common initial
letter is a Σ, then W1 and W2 must each be ∼∞-equivalent to a word of the
form ΣaΩbΩΣ. Again, there is a unique such word with given connectivity
and degree. This completes the proof of the forward implication.

Suppose now that W1 ∼W2. We have already seen that c(W1) = c(W2)
and d(W1) = d(W2). If c(W1) = c(W2) > −κ, then W1 ∼∞ W2 by Lemma
14, so W1 and W2 must have the same initial letters.

Corollary 16. If W1 and W2 satisfy conditions (1)–(3) of Proposi-
tion 15, then 〈W1X〉 = 〈W2X〉 for all c-connected spaces X, where c =
c(W1) = c(W2).

Proposition 15 also implies the following extension of Proposition 13.

Corollary 17. Suppose W1 ∼ W2, where W1 = W ′1Σ and W2 = W ′2Σ
with c(W ′1) = c(W ′2) = 0. Then 〈W1X〉 = 〈W2X〉 for every space X.

Proof. Since 〈W1X〉 = 〈W ′1(ΣX)〉 and 〈W2X〉 = 〈W ′2(ΣX)〉 and ΣX is
0-connected, it suffices by Proposition 13(b) to show that W1 ∼W ′2. Clearly,
d(W ′1) = d(W ′2), and c(W ′1) = c(W ′2) by hypothesis. The initial letters of W ′1
and W ′2 must be Σ, because otherwise the connectivity would be negative.
Thus, the result follows from Proposition 15.
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5.3. The map q. The proof of Proposition 15 contains, in essence, a
complete description of the map q.

Proposition 18. Let W ∈ F be a nonempty word , and write d = d(W )
and c = c(W ). Then

q(W ) =

{
xc,d if the initial letter of W is Ω
yc,d if the initial letter of W is Σ,

where xc,d = yc,d for c ≤ −κ.

To illustrate the use of these results, we verify the claims made in the
introduction.

Example 19. Let W1 = Σ3Ω4Σ2Ω3Σ5 and W2 = Σ4Ω5Σ3Ω6Σ4Ω2Σ5

as in the introduction. Direct computation yields d(W1) = 3, c(W1) = 0,
d(W2) = 3, and c(W2) = −1, so Proposition 18 and Theorem 11 show that

Σ3Ω4Σ2Ω3Σ5 ∼ Σ3 6∼ Σ4Ω2Σ ∼ Σ3Ω4Σ3Ω6Σ4Ω2Σ5.

Finally, since c(W1) = 0 and Σ3Ω4Σ2Ω3Σ5 ∼ Σ3, Proposition 13(b) implies
〈Σ3Ω4Σ2Ω3Σ5X〉 = 〈Σ3X〉 for all path connected spaces X.

5.4. The multiplicative structure of L. We describe the multiplication
in L explicitly in terms of the elements xc,d and yc,d.

Proposition 20. Let zc,d denote a generic element of L with the indi-
cated connectivity and degree. The product in L is given by the formulas

zc,d · xc′,d′ = xm,d+d′ and zc,d · yc′,d′ = ym,d+d′ ,

where m = min{c′, d′ + c} and xc,d = yc,d for c ≤ −κ.

Proof. It follows from the definition of d and from Proposition 13 that

c(zc,d · zc′,d′) = min{c′, d′ + c} = m and d(zc,d · zc′,d′) = d+ d′,

so it remains to determine whether the products in question are x’s or y’s.
According to Proposition 15, this is determined by the initial letter of the
product when c > −κ, and there is no distinction between x’s and y’s when
c ≤ −κ.

6. Final comments and questions

Variations. There are two evident variations on the basic framework we
have established. First of all, we could use cellular inequalities � instead of
weak cellular inequalities < to define equivalence of words W ∈ F . In this
case, the relation (R1) fails, because, for example, ΩΣ2Sn 6� ΣSn for all
n > 6 [2, 20.10]. Secondly, we could use different test spaces X to decide
equivalence. For example, we could test potential equivalences in F on the
F-orbit of (sufficiently highly connected) finite complexes. In this case, our
proof of (N) fails.
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A partial order on L. Weak cellular inequalities can be used to define
compatible partial orders on the monoids F and L by setting W1 < W2

if and only if W1X < W2X for all sufficiently highly connected spaces X.
Then < is a partial order on L that respects multiplication; also, W1 < W2

if and only if q(W1) < q(W2). Clearly, W1 ∼W2 if and only if W1 < W2 and
W2 < W1. The methods of this paper can be used to show that

(a) xc,d < xc′,d′ if and only if d ≤ d′ and c ≤ c′,
(b) xc,d < yc′,d′ if and only if d ≤ d′ and c ≤ c′,
(c) yc,d < yc′,d′ if and only if d ≤ d′ and c ≤ c′.

We have been unable to resolve the inequalities of the form yc,d < xc′,d′ (see
Question 2 below).

Questions. We conclude with two problems whose solution would com-
plete the description of the structure of L as a monoid, and as an ordered
monoid.

(1) Determine the parameter κ. We conjecture that κ =∞, but it would
be very interesting if it were shown to be finite.

(2) More generally, determine the values of k and l for which ΩkΩΣ
< Ωl.
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