
FUNDAMENTA

MATHEMATICAE

199 (2008)

Best constants for Lipschitz embeddings of
metric spaces into c0

by

N. J. Kalton (Columbia, MO) and G. Lancien (Besançon)

Abstract. We answer a question of Aharoni by showing that every separable metric
space can be Lipschitz 2-embedded into c0 and this result is sharp; this improves ear-
lier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best
constant for Lipschitz embeddings of the classical `p-spaces into c0 and give other ap-
plications. We prove that if a Banach space embeds almost isometrically into c0, then it
embeds linearly almost isometrically into c0. We also study Lipschitz embeddings into c+

0 .

1. Introduction. In 1974, Aharoni [1] proved that every separable met-
ric space (M,d) is Lipschitz isomorphic to a subset of the Banach space c0.
Thus, for some constant K, there is a map f : M → c0 which satisfies the
inequality

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ Kd(x, y), x, y ∈M.

Aharoni proved this result with K = 6 + ε where ε > 0, so that every
separable metric space (6 + ε)-embeds into c0. He also noted that if one
takes M to be the Banach space `1, one cannot have K < 2. In fact, the
map defined by Aharoni took values in the positive cone c+0 of c0. Later
Assouad [3] refined Aharoni’s result by showing that every separable metric
space (3 + ε)-embeds into c+0 (see [6, pp. 176 ff.]). A further improvement
was obtained by Pelant in 1994 [16] who showed that every separable metric
space 3-embeds into c+0 and that this result is sharp in the sense that `1
cannot be λ-embedded into c+0 with λ < 3 (see also [2] for the lower bound).

These results leave open the question of the best constant for Lipschitz
embeddings into c0. Note that c0 can only be 2-embedded into c+0 . The
main result of this paper is that every separable metric space 2-embeds
into c0, and this is sharp by Aharoni’s remark above. To prove this result,
for 1 < λ ≤ 2 we establish a criterion Π(λ) which is sufficient to imply
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that a separable metric space λ-embeds into c0 (and the converse state-
ment is almost true). This criterion enables us to establish sharp results
concerning the embedding of `p-spaces into c0: thus `p 21/p-embeds into c0 if
1 ≤ p <∞, and the constant is best possible. Using a previous work of the
first author and D. Werner [12], we also show that a Banach space which
embeds almost isometrically into c0 embeds linearly almost isometrically
into c0.

The same techniques can be applied to embeddings into c+0 . Here we
show that `p (2p + 1)1/p-embeds into c+0 and `+p 31/p-embeds into c+0 and in
each case the result is best possible.

We conclude the paper by proving that every separable ultrametric space
embeds isometrically into c+0 and the infinite branching tree embeds isomet-
rically into c0.

2. Lipschitz embeddings into c0. Let (M,d) be a metric space and
let A and B be non-empty subsets of M.

We define

δ(A,B) = inf
a∈A, b∈B

d(a, b), D(A,B) = sup
a∈A, b∈B

d(a, b).

In this paper all metric balls are closed with strictly positive radii.
If f : (M1, d1) → (M2, d2) is a Lipschitz map between metric spaces we

write Lip(f) for the Lipschitz constant of f , i.e. the least constant K such
that d2(f(x), f(y)) ≤ Kd1(x, y) for x, y ∈M1.

Lemma 2.1. Let (M,d) be a metric space and suppose that A,B and
C are non-empty subsets of M. Then for ε > 0, there exists a Lipschitz
function f : M → R with Lip(f) ≤ 1 such that

(i) |f(x)| ≤ ε, x ∈ C,
(ii) |f(x) − f(y)| = θ = min(δ(A,B), δ(A,C) + δ(B,C) + 2ε), x ∈ A,

y ∈ B.

Proof. Let us augment M by adding an extra point 0; let M∗ = M∪{0}.
We define

d∗(x, y) =


min(d(x, y), d(x,C) + d(y, C) + 2ε), x, y ∈M ,
d(x,C) + ε, x ∈M , y = 0,
d(y, C) + ε, x = 0, y ∈M ,
0, x = y = 0.

One can easily check that d∗ is a metric on M∗. We can pick s, t in R such
that

−(δ(B,C) + ε) ≤ s ≤ 0 ≤ t ≤ δ(A,C) + ε and t− s = θ.
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Then we define g : A ∪ B ∪ {0} → R by g = t on A, g = s on B and
g(0) = 0. This function is 1-Lipschitz for d∗ and can be extended to a
1-Lipschitz function f∗ on (M∗, d∗). Let f be the restriction of f∗ to M .
Then f satisfies the conditions of the lemma.

For λ > 1, we say that a metric space (M,d) has property Π(λ) if given
any µ > λ there exists ν > µ such that if B1 and B2 are two metric balls
of radii r1, r2 respectively then there are finitely many sets (Uj)N

j=1, (Vj)N
j=1

such that
λδ(Uj , Vj) ≥ ν(r1 + r2), 1 ≤ j ≤ N,

and

{(x, y) ∈ B1 ×B2 : d(x, y) > µ(r1 + r2)} ⊂
N⋃

j=1

(Uj × Vj).

In this definition the sets Uj , Vj are allowed to be repeated. It is clearly
possible, without loss of generality, to assume they are closed. We can also
(altering the value of ν) assume that they are open.

Lemma 2.2. Every metric space has property Π(2).

Proof. For µ > 2, let

U = B1 ∩ {x : ∃y ∈ B2, d(x, y) > µ(r1 + r2)},
V = B2 ∩ {y : ∃x ∈ B1, d(x, y) > µ(r1 + r2)}.

Then
{(x, y) ∈ B1 ×B2 : d(x, y) > µ(r1 + r2)} ⊂ U × V.

Suppose x ∈ U, y ∈ V. Assume, without loss of generality, that r1 ≤ r2.
Then there exists x′ ∈ U with d(x′, y) > µ(r1 + r2). Hence

d(x, y) > µ(r1 + r2)− d(x, x′) ≥ µ(r1 + r2)− 2r1 ≥ (µ− 1)(r1 + r2).

Therefore we can take ν = 2µ− 2 > µ.

We say that a metric space is locally compact (respectively, locally finite)
if all its metric balls are relatively compact (respectively, finite). Note that
we do not use the terminology “locally compact” in the usual way. The
metric spaces with relatively compact metric balls are often called proper
metric spaces.

Lemma 2.3. Let λ > 1. Then every locally compact metric space has
property Π(λ).

Proof. Let µ > λ > 1 and B1, B2 be two balls of a locally compact metric
space (M,d), with respective radii r1 and r2. Pick ν such that µ < ν < λµ.
We define ∆ = {(x, y) ∈ B1×B2 : d(x, y) > µ(r1 + r2)}. Let ε > 0. Since M
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is locally compact, there are finitely many points (xj , yj)N
j=1 in ∆ such that

∆ ⊂
N⋃

j=1

(Uj × Vj), where Uj = B(xj , ε) and Vj = B(yj , ε).

Then, for all 1 ≤ j ≤ N , λδ(Uj , Vj) > λµ(r1 + r2) − 2λε > ν(r1 + r2), if ε
was chosen small enough, namely ε < (2λ)−1(λµ− ν)(r1 + r2).

Proposition 2.4. Let λ0 ≥ 1. If a metric space (M,d) λ0-embeds into
c0 then it has property Π(λ) for every λ > λ0.

Proof. Suppose µ > λ. Let B1, B2 be metric balls of radii r1, r2 and
centers a1, a2. Let ∆ = {(x, y) ∈ B1 × B2 : d(x, y) > µ(r1 + r2)}. Let
f : M → c0 be an embedding such that

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ λ0d(x, y), x, y ∈M.

Suppose f(x) = (fi(x))∞i=1. Then there exists n so that

|fi(a1)− fi(a2)| < (µ− λ)(r1 + r2), i ≥ n+ 1.

Thus if (x, y) ∈ ∆ we have

|fi(x)− fi(y)| < (µ− λ)(r1 + r2) + λ0r1 + λ0r2 < d(x, y), i ≥ n+ 1.

Hence
d(x, y) ≤ max

1≤i≤n
|fi(x)− fi(y)|, (x, y) ∈ ∆.

Choose ε > 0 so that λ(µ − ε) > λ0µ. By a compactness argument we can
find coverings (Wk)m

k=1 of B1 and (W ′k)m′
k=1 of B2 such that

|fi(x)− fi(x′)| ≤ 1
2ε(r1 + r2), x, x′ ∈Wk, 1 ≤ i ≤ n, 1 ≤ k ≤ m,

and

|fi(x)− fi(x′)| ≤ 1
2ε(r1 + r2), x, x′ ∈W ′k, 1 ≤ i ≤ n, 1 ≤ k ≤ m′.

Let
S = {(k, k′) : 1 ≤ k ≤ m, 1 ≤ k′ ≤ m′, Wk ×W ′k′ ∩∆ 6= ∅}

and then define (Uj)N
j=1, (Vj)N

j=1 in such a way that (Uj × Vj)N
j=1 is an

enumeration of (Wk×Wk′)(k,k′)∈S . Clearly, ∆ ⊂
⋃N

j=1 Uj×Vj . Now suppose
x ∈ Uj , y ∈ Vj . Then there exist x′ ∈ Uj , y′ ∈ Vj so that d(x′, y′) > µ(r1+r2).
Thus there exists i, 1 ≤ i ≤ n, so that |fi(x′)−fi(y′)| > µ(r1 +r2). However,

|fi(x)− fi(y)| ≥ |fi(x′)− fi(y′)| − ε(r1 + r2) > (µ− ε)(r1 + r2).

Hence
δ(Uj , Vj) ≥

µ− ε
λ0

(r1 + r2).

Thus we can take ν = λλ−1
0 (µ− ε) > µ.
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We next observe that the definition of Π(λ) implies a formally stronger
conclusion.

Lemma 2.5. Let (M,d) be a metric space with property Π(λ). Then
for every µ > λ there is a constant ν > µ so that if B1 and B2 are
two metric balls of radii r1, r2 respectively then there are finitely many sets
(Uj)N

j=1, (Vj)N
j=1 such that if (x, y) ∈ B1 ×B2 and d(x, y) > µ(r1 + r2) then

there exists 1 ≤ j ≤ N so that x ∈ Uj , y ∈ Vj and

λµδ(Uj , Vj) ≥ νd(x, y).

Proof. By the definition of Π(λ) there exists ν ′ > λ so that if B1 and B2

are two metric balls of radii r1, r2 respectively then there are finitely many
sets (Uj)N

j=1, (Vj)N
j=1 such that

λδ(Uj , Vj) ≥ ν ′(r1 + r2), 1 ≤ j ≤ N,
and

{(x, y) ∈ B1 ×B2 : d(x, y) > µ(r1 + r2)} ⊂
N⋃

j=1

(Uj × Vj).

Suppose µ < ν < ν ′ and let ε > 0 be chosen so that (1 + ε)ν = ν ′. Let
B1, B2 be a pair of metric balls of radii r1, r2 > 0. Let D = D(B1, B2) and
let m be the greatest integer such that (1 + ε)mµ(r1 + r2) ≤ D. We define
B

(k)
1 for 0 ≤ k ≤ m to be the ball with the same center as B1 and radius

(1 + ε)kr1; similarly, B(k)
2 for 0 ≤ k ≤ m is the ball with the same center

as B2 and radius (1 + ε)kr2. For each 0 ≤ k ≤ m we may determine sets
Ukl, Vkl for 1 ≤ l ≤ Nk so that

λδ(Ukl, Vkl) ≥ ν ′(1 + ε)k(r1 + r2)

and

{(x, y) ∈ B(k)
1 ×B(k)

2 : d(x, y) > µ(1 + ε)k(r1 + r2)} ⊂
Nk⋃
l=1

(Ukl × Vkl).

Now if x ∈ B1, y ∈ B2 with d(x, y) > µ(r1 + r2) we may choose 0 ≤ k ≤ m
so that

(1 + ε)kµ(r1 + r2) < d(x, y) ≤ (1 + ε)k+1µ(r1 + r2).

Then for a suitable 1 ≤ l ≤ Nk we have x ∈ Ukl, y ∈ Vkl and

λµδ(Ukl, Vkl) ≥ ν ′(1 + ε)kµ(r1 + r2) ≥ ν ′

1 + ε
d(x, y) = νd(x, y).

Relabeling the sets (Ukl, Vkl)l≤Nk, 0≤k≤m gives the conclusion.

Lemma 2.6. Suppose (M,d) has property Π(λ). Suppose 0 < α < β. Let
F,G be finite subsets of M and let ∆(F,G, α, β) be the set of (x, y) ∈M×M
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such that

λ(d(x,G) + d(y,G)) + α ≤ d(x, y) < λ(d(x, F ) + d(y, F )) + β.

Then there is a finite set F = F(F,G, α, β) of functions f : M → R with
Lip(f) ≤ λ such that

|f(x)| ≤ λβ, x ∈ F,
and

d(x, y) < max
f∈F
|f(x)− f(y)|, (x, y) ∈ ∆(F,G, α, β).

Proof. Let R be the diameter of G. Then for (x, y) ∈ ∆(F,G, α, β) we
have

λ(d(x, y)−R) + α ≤ d(x, y),

so that
(λ− 1)d(x, y) < λR.

Hence
d(x,G) + d(y,G) <

R

λ− 1
.

We next let

µ = λ+
(λ− 1)α

2R
and choose ν = ν(µ) according to the conclusion of Lemma 2.5.

We now fix ε > 0 so that 4µε < α. Let E = {x : d(x,G) < (λ− 1)−1R}.
Since E is metrically bounded and F ∪ G is finite we can partition E into
finitely many subsets (E1, . . . , Em) so that for each z ∈ F ∪G we have

|d(x, z)− d(x′, z)| ≤ ε, x, x′ ∈ Ej , 1 ≤ j ≤ m.
Since G is finite, for each j there exist zj ∈ G and rj ≥ 0 so that

inf
x∈Ej

d(x, zj) = inf
x∈Ej

d(x,G) = rj .

Thus Ej is contained in a ball Bj centered at zj with radius rj + ε.

For each pair (j, k) we can find finitely many pairs of sets (Ujkl, Vjkl)
Njk

l=1
such that for every (x, y) ∈ Ej × Ek with d(x, y) > µ(rj + rk + 2ε) there
exists 1 ≤ l ≤ Njk with x ∈ Ujkl, y ∈ Vjkl and

λµδ(Ujkl, Vjkl) ≥ νd(x, y).

We may as well assume that Ujkl ⊂ Ej and Vjkl ⊂ Ek.
Then we apply Lemma 2.1 to construct Lipschitz functions fjkl : M → R

where 1 ≤ j, k ≤ m, 1 ≤ l ≤ Njk such that Lip(fjkl) ≤ λ,
|fjkl(x)| ≤ λβ, x ∈ F,

and
|fjkl(x)− fjkl(y)| ≥ λθjkl, x ∈ Ujkl, y ∈ Vjkl,
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where
θjkl = min (δ(Ujkl, Vjkl), δ(Ujkl, F ) + δ(Vjkl, F ) + 2β).

Now let us suppose (x, y) ∈ ∆(F,G, α, β). Then there exists (j, k) so that
x ∈ Ej , y ∈ Ek. Note that

d(x, y) ≥ λ(d(x,G) + d(y,G)) + α ≥ λ(rj + rk) + α

= µ(rj + rk + 2ε) + α− 2µε− (µ− λ)(rj + rk)

≥ µ(rj + rk + 2ε) + α− 2µε− (µ− λ)(λ− 1)−1R

> µ(rj + rk + 2ε).

Thus there exists 1 ≤ l ≤ Njk so that x ∈ Ujkl, y ∈ Vjkl and

λδ(Ujkl, Vjkl) ≥
ν

µ
d(x, y) > d(x, y).

On the other hand, ε < α/2 < β/2. So

λ(δ(Ujkl, F ) + δ(Vjkl, F ) + 2β) ≥ λ(d(x, F ) + d(y, F ) + 2β − 2ε)

> λ(d(x, F ) + d(y, F ) + β)

> d(x, y) + (λ− 1)β.

Hence
|fjkl(x)− fjkl(y)| ≥ λθjkl > d(x, y).

Thus we can take for F the collection of all functions fjkl for 1 ≤ j, k ≤ m
and 1 ≤ l ≤ Njk.

We now state our main result.

Theorem 2.7. If a separable metric space (M,d) has property Π(λ) for
λ > 1, then there is a Lipschitz embedding f : M → c0 with

d(x, y) < ‖f(x)− f(y)‖ ≤ λd(x, y), x, y ∈M, x 6= y.

Proof. Let (un)∞n=1 be a countable dense set of distinct points of M. Set
Fk = {u1, . . . , uk} for n ≥ 1. Let (εn)∞n=1 be a strictly decreasing sequence
with limn→∞ εn = 0.

Using Lemma 2.6 we can find an increasing sequence (nk)∞k=0 of integers
(with n0 = 0) and a sequence (fj)∞j=1 of Lipschitz functions fj : M → R
with Lip(fj) ≤ λ so that

|fj(x)| ≤ λεk, x ∈ Fk, nk−1 < j ≤ nk,

and if

(2.1) λ(d(x, Fk+1)+d(y, Fk+1))+εk+1≤ d(x, y)<λ(d(x, Fk)+d(y, Fk))+εk
then

max
nk−1<j≤nk

|fj(x)− fj(y)| > d(x, y).
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Define the map f : M → `∞ by f(x) = (fj(x))∞j=1. Then Lip(f) ≤ λ and
since f maps each uj into c0, f(M) ⊂ c0. Furthermore, if x 6= y the sequence

σk = λ(d(x, Fk) + d(y, Fk)) + εk

is decreasing with σ1 > d(x, y) and limk→∞ σk = 0. Hence there is exactly
one choice of k so that (2.1) holds and thus ‖f(x)− f(y)‖ > d(x, y).

As a corollary, we obtain the following improvement of Aharoni’s theo-
rem.

Theorem 2.8. For every separable metric space (M,d) there is a Lip-
schitz embedding f : M → c0 so that

d(x, y) < ‖f(x)− f(y)‖ ≤ 2d(x, y), x, y ∈M, x 6= y.

Proof. Combine Lemma 2.2 and Theorem 2.7.

Remark. It follows from Proposition 3 in Aharoni’s original paper [1]
that the above statement is optimal.

Theorem 2.9. For every locally compact metric space (M,d) and every
λ > 1, (M,d) λ-embeds into c0. This result is best possible.

Proof. The existence of the embedding follows immediately from the
combination of Lemma 2.3 and Theorem 2.7. The optimality of the state-
ment follows from Proposition 3.2 in [16], where J. Pelant proved that [0, 1]N

equipped with the distance d((xn), (yn)) =
∑

2−n|xn − yn| cannot be iso-
metrically embedded into c0.

To complete the picture we shall now give a locally finite counterexample.
Let (en)∞n=0 be the canonical basis of `1 and consider the following locally
finite metric subspace of `1: M = {0, e0} ∪ {nen, e0 + nen : n ≥ 1}. Assume
that f = (fk)∞k=1 is an isometry from M into c0 such that f(0) = 0. Then
for all n 6= m in N, there exists k = kn,m ≥ 1 such that

|fk(e0 + nen)− fk(mem)| = 1 + n+m.

Since fk(0) = 0, we deduce that there is ε = εn,m ∈ {−1, 1} such that
fk(e0 + nen) = ε(1 + n) and fk(mem) = −εm. Therefore fk(e0) = ε and
fk(nen) = εn.

Since f(e0) ∈ c0, there exists an integer K such that for all positive
integers n 6= m, kn,m ≤ K. Hence, if α(k, n) is the sign of fk(nen), we see that
there exists k ≤ K so that α(k, n) 6= α(k,m) whenever 1≤ n<m. But on
the other hand, there is clearly an infinite subset A of N such that for every
k ≤ K and every n,m ∈ A, α(k, n) = α(k,m). This is a contradiction.

3. Embeddings of classical Banach spaces. In this section we will
consider the best constants for embedding certain classical Banach spaces
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into c0. We start by establishing a lower bound condition, using the Borsuk–
Ulam theorem.

Proposition 3.1. Suppose that X is a Banach space and f : X → c0 is
a Lipschitz embedding with constant λ0. Then for any u ∈ X with ‖u‖ = 1
and any infinite-dimensional subspace Y of X we have

inf
y∈Y
‖y‖=1

‖u+ y‖ ≤ λ0.

Proof. It follows from Proposition 2.4 that X has property Π(λ) for any
λ > λ0. Let us consider B1 = −u+BX and B2 = u+BX , where BX denotes
the closed unit ball of X. Suppose µ > λ0 and select µ > λ > λ0. Then,
for some ν > µ, we can find finitely many sets (Uj , Vj)N

j=1 (which we can
assume to be closed) satisfying

λδ(Uj , Vj) ≥ 2ν and {(x, y) ∈ B1 ×B2 : ‖x− y‖ > 2µ} ⊂
N⋃

j=1

(Uj × Vj).

Now let E be any subspace of X of dimension greater than N and let

Aj = {e ∈ E : ‖e‖ = 1, (−u+ e, u− e) ∈ Uj × Vj}.
Thus the sets Aj are all closed subsets of the unit sphere SE of E. Assume
that for any e ∈ SE , ‖u − e‖ > µ. Then A1 ∪ · · · ∪ AN = SE . We now
use a classical corollary of the Borsuk–Ulam theorem which is in fact due to
Lyusternik and Shnirelman [13] and predates Borsuk’s work (see [14, p. 23]).
This gives the existence of e in SE and k ≤ N such that e and −e belong to
Ak, i.e. −u± e ∈ Uk and u± e ∈ Vk. This in turn implies δ(Uk, Vk) ≤ 2 and
hence λ ≥ ν > µ, which is a contradiction. Thus there exists e ∈ SE with
‖u− e‖ ≤ µ.

Since this is true for every finite-dimensional subspace E of dimension
greater than N and every µ > λ0, the conclusion follows.

Theorem 3.2. Suppose 1 ≤ p <∞. Then there is a Lipschitz embedding
of `p into c0 with constant 21/p, and this constant is best possible.

Proof. The fact that `p does not λ-embed into c0 when λ < 21/p follows
immediately from Proposition 3.1. So we only need to show that `p satisfies
condition Π(21/p).

Let B1 and B2 be balls with centers a1, a2 and radii r1, r2. Suppose
µ > 21/p. Then µ < 21/p(µp − 1)1/p. We pick ν such that

µ < ν < 21/p(µp − 1)1/p

and we fix ε > 0 so that

21/p(µp(r1 + r2)p − (r1 + r2 + 2ε)p)1/p − 21+1/pε > ν(r1 + r2).
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We first select N ∈ N so that
∞∑

k=N+1

|a1(k)|p,
∞∑

k=N+1

|a2(k)|p < εp.

Let E be the linear span of {e1, . . . , eN}, where (ej)∞j=1 is the canonical
basis of `p. Let P the canonical projection of `p onto E, Q = I − P and
R = max(‖a1‖ + r1, ‖a2‖ + r2). Then we partition RBE into finitely many
sets A1, . . . , Am with diamAj < ε.

Now, set Uj = {x ∈ B1 : Px ∈ Aj}, Vj = {x ∈ B2 : Px ∈ Aj} and

S = {(j, k) : ∃(x, y) ∈ Uj × Vk, ‖x− y‖ > µ(r1 + r2)}.
Thus we have

{(x, y) ∈ B1 ×B2 : ‖x− y‖ > µ(r1 + r2)} ⊂
⋃

(j,k)∈S

Uj × Vk.

It remains to estimate δ(Uj , Vk) for (j, k) ∈ S. Suppose that u ∈ Uj , v ∈ Vk

and x ∈ Uj , y ∈ Vk are such that ‖x− y‖ > µ(r1 + r2). Then

‖u− v‖ ≥ ‖Pu− Pv‖ ≥ ‖Px− Py‖ − 2ε.

On the other hand,
r1 ≥ ‖x− a1‖ ≥ ‖Qx−Qa1‖ ≥ ‖Qx‖ − ε,
r2 ≥ ‖y − a2‖ ≥ ‖Qy −Qa2‖ ≥ ‖Qy‖ − ε.

Thus
‖Qx−Qy‖ ≤ r1 + r2 + 2ε.

Now

µp(r1 + r2)p< ‖Px− Py‖p + ‖Qx−Qy‖p ≤ ‖Px− Py‖p + (r1 + r2 + 2ε)p.

Hence
‖Px− Py‖p > µp(r1 + r2)p − (r1 + r2 + 2ε)p

and thus
21/pδ(Uj , Vk)≥ 21/p(µp(r1+r2)p− (r1+r2+2ε)p)1/p−21+1/pε> ν(r1+r2).

We now give a second lower bound condition in place of Proposition 3.1.
We do not know whether the conclusion can be improved replacing λ3

0 by λ0.
If X has a 1-unconditional basis, λ3

0 can be improved to λ2
0.

Proposition 3.3. If X is a separable Banach space and f : X → c0 is
a Lipschitz embedding with constant λ0 then if ‖x‖ = 1 and (xn)∞n=1 is a
normalized weakly null sequence in X, we have

(3.2) lim sup
n→∞

‖x+ xn‖ ≤ λ3
0.

Proof. We assume that ‖x−y‖ ≤ ‖f(x)−f(y)‖ ≤ λ0‖x−y‖ for x, y ∈ X.
Let U be a non-principal ultrafilter on the natural numbers N. We start by
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proving that if x ∈ X and (yn)∞n=1, (zn)∞n=1 are two weakly null sequences
with limn∈U ‖yn‖ ≤ ‖x‖ and limn∈U ‖zn‖ ≤ ‖x‖ then

λ−1
0 lim

n∈U
‖2x+ yn + zn‖ ≤ lim

m∈U
lim
n∈U
‖2x+ ym + zn‖(3.3)

≤ λ0 lim
n∈U
‖2x+ yn + zn‖.

It suffices to show this under the condition limn∈U ‖yn‖ = α, limn∈U ‖zn‖ =
β where α, β ≤ 1 and ‖x‖ = 1. Fix any ε > 0. Let f(x) = (fj(x))∞j=1. Then
for some N we have

|fj(x)− fj(−x)| < ε, j > N.

Thus

|fj(x+ ym)− fj(−x− zn)| ≤ λ0(‖ym‖+ ‖zn‖) + ε, j > N.

Hence

lim
m∈U

lim
n∈U

max
j>N
|fj(x+ ym)− fj(−x− zn)| ≤ λ0(α+ β) + ε

and
lim
n∈U

max
j>N
|fj(x+ yn)− fj(−x− zn)| ≤ λ0(α+ β) + ε.

Let σj = limn∈U fj(x+ yn) and τj = limn∈U fj(−x− zn). Then

lim
n∈U
|fj(x+ yn)− fj(−x− zn)| = |σj − τj |

and
lim
m∈U

lim
n∈U
|fj(x+ ym)− fj(−x− zn)| = |σj − τj |.

Thus

lim
n∈U
‖2x+ yn + zn‖ ≤ lim

n∈U
‖f(x+ yn)− f(−x− zn)‖

≤ max( max
1≤j≤N

|σj − τj |, λ0(α+ β) + ε)

≤ max(λ0 lim
m∈U

lim
n∈U
‖2x+ ym + zn‖, λ0(α+ β) + ε).

Noting that ε > 0 is arbitrary and that

α+ β ≤ 2 ≤ lim
m∈U

lim
n∈U
‖2x+ ym + zn‖

we deduce that

lim
n∈U
‖2x+ yn + zn‖ ≤ λ0 lim

m∈U
lim
n∈U
‖2x+ ym + zn‖.

The other inequality in (3.3) is similar.
Now choose xn = yn = −zn in (3.3). We obtain

lim
m∈U

lim
n∈U
‖2x+ xm − xn‖ ≤ 2λ0‖x‖



260 N. J. Kalton and G. Lancien

provided (xn)∞n=1 is weakly null and limn∈U ‖xn‖ ≤ ‖x‖. Hence

lim
m∈U

∥∥x+ 1
2xm

∥∥ ≤ λ0‖x‖.

This inequality can be iterated to show that

lim
m∈U

lim
n∈U

∥∥x+ 1
2xm + 1

2xn

∥∥ ≤ λ2
0‖x‖.

Now assume ‖x‖ = 1 and (xn)∞n=1 is a normalized weakly null sequence.
Then

lim
n∈U
‖x+ xn‖ = 1

2 lim
n∈U
‖2x+ xn + xn‖

≤ 1
2λ0 lim

m∈U
lim
n∈U
‖2x+ xm + xn‖ ≤ λ3

0.

Theorem 3.4. Let X be a separable Banach space.

(i) If X isometrically embeds into c0, then X is linearly isometric to a
closed subspace of c0.

(ii) If , for every ε > 0, X Lipschitz embeds into c0 with constant at
most 1 + ε, then, for every ε > 0, there is a closed subspace Yε of
c0 with Banach–Mazur distance dBM(X,Yε) < 1 + ε.

Proof. (i) is a direct consequence of the result of [8] that if a separable
Banach space is isometric to a subset of a Banach space Z then it is also
linearly isometric to a subspace of Z.

(ii) Here we first observe that if X contains a subspace isomorphic to `1
then, for any ε > 0, it contains a subspace Zε with Banach–Mazur distance
dBM(Zε, `1) ≤ 1 + ε by James’ distortion theorem [10]. Assume now that X
can be λ-embedded into c0. Thus, for any ε > 0, `1 can be λ(1+ε)-embedded
into c0. Then it follows from Aharoni’s counterexample in [1] that λ ≥ 2.

Suppose now that X does not contain any isomorphic copy of `1. If
‖x‖ = 1 and (xn)∞n=1 is any normalized weakly null sequence then by Propo-
sition 3.3 we have

lim
n→∞

‖x+ xn‖ = 1.

The conclusion then follows from [12, Theorem 3.5].

Remark. The modulus of asymptotic smoothness of a Banach space X
has been defined in [15] as follows. If τ > 0, then

%X(τ) = sup
x∈SX

inf
dim(X/Y )<∞

sup
y∈SY

‖x+ τy‖ − 1.

The space X is said to be asymptotically uniformly flat if %X(τ) = 0 for some
τ > 0. Clearly, this is closely related to equation (3.2). It is shown in [9]
and [11] that a uniformly flat Banach space is isomorphic to a subspace
of c0. This property, or rather its dual version, is used in [9] to show that
a Banach space which is Lipschitz isomorphic to a subspace of c0 is linearly
isomorphic to a subspace of c0.
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4. Embeddings into c+0 . In this section and the following we complete
the already thorough study of Lipschitz embeddings into c+0 made by Pelant
in [16].

Lemma 4.1. Let (M,d) be a metric space and suppose that A, B and
C are non-empty subsets of M. Then for ε > 0, there exists a Lipschitz
function f : M → R+ with Lip(f) ≤ 1 such that

(i) f(x) ≤ ε, x ∈ C,
(ii) |f(x)− f(y)| ≥ θ = min(δ(A,B),max(δ(A,C), δ(B,C)) + ε), x ∈ A,

y ∈ B.
Proof. Assume δ(A,C) ≥ δ(B,C). Then θ = min(δ(A,B), δ(A,C) + ε).

Define
f(x) = max(θ − d(x,A), 0), x ∈M.

Then f(x) = θ for x ∈ A. If x ∈ B then θ − d(x,A) ≤ θ − δ(A,B) ≤ 0, so
that f(x) = 0. Finally, if x ∈ C we have θ − d(x,A) ≤ θ − δ(A,C) ≤ ε, so
that f(x) ≤ ε.

We may now introduce a condition analogous to Π(λ).We say that (M,d)
has property Π+(λ), where λ > 1, if:

(i) Whenever µ > λ there exists ν > µ so that if B1 and B2 are two
metric balls of the same radius r, there are a finite number of sets
(Uj)N

j=1 and (Vj)N
j=1 so that

λδ(Uj , Vj) ≥ νr
and

{(x, y) ∈ B1 ×B2 : d(x, y) > µr} ⊂
N⋃

j=1

(Uj × Vj).

(ii) If 1 < λ ≤ 2, there exists 1 < θ < λ and a function ϕ : M → [0,∞)
so that

(4.4) |ϕ(x)− ϕ(y)| ≤ d(x, y) ≤ θmax(ϕ(x), ϕ(y)), x, y ∈M.

Let us note here that condition (ii) is not required when λ > 2 since for
any fixed a ∈ X the function ϕ(x) = d(x, a) satisfies (4.4) with θ = 2.

We can repeat the same program for property Π+(λ).

Lemma 4.2. Every metric space has property Π+(3).

Proof. For µ > 3, let

U = B1∩{x : ∃y ∈ B2, d(x, y)>µr}, V = B2∩{y : ∃x ∈ B1, d(x, y)>µr}.
Then

{(x, y) ∈ B1 ×B2 : d(x, y) > µr} ⊂ U × V.
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Suppose x ∈ U , y ∈ V. Then there exists x′ ∈ U with d(x′, y) > µr. Hence

d(x, y) > µr − d(x, x′) ≥ (µ− 2)r.

Therefore we can take ν = 3µ− 6 > µ.

Lemma 4.3. Let λ > 2. Then every locally compact metric space has
property Π+(λ).

The proof is immediate. Let us mention that a locally compact metric
space satisfies condition (i) for every λ > 1.

We also have

Lemma 4.4. If λ > 1, then any compact metric space has property
Π+(λ).

Proof. Let (K, d) be a compact metric space. We only have to prove
condition (ii). For ε > 0, pick a finite ε-net F of K and define

ϕε(x) = max
z∈F

(d(x, z)).

For a given λ > 1, ϕε satisfies condition (ii) of Π+(λ) if ε is small enough.

Proposition 4.5. Suppose λ0 ≥ 1 and M is a metric space which Lip-
schitz embeds into c+0 with constant λ0. Then M has property Π+(λ) for all
λ > λ0.

Proof. We first consider (i) of the definition of Π+(λ). Suppose µ>λ>λ0.
Let B1, B2 be metric balls of radii r > 0 and centers a1, a2.

Let ∆ = {(x, y) ∈ B1 × B2 : d(x, y) > µr} and f : M → c+0 be an
embedding such that

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ λ0d(x, y), x, y ∈M.

Suppose f(x) = (fi(x))∞i=1. Then there exists n so that

fi(a1), fi(a2) < (µ− λ)r, i ≥ n+ 1.

Thus if (x, y) ∈ ∆ we have

|fi(x)− fi(y)| ≤ max(fi(x), fi(y)) < (µ− λ)r + λ0r < d(x, y), i ≥ n+ 1.

Hence
d(x, y) ≤ max

1≤i≤n
|fi(x)− fi(y)|, (x, y) ∈ ∆.

Choose ε > 0 so that λ(µ − ε) > λ0µ. By a compactness argument we can
find coverings (Wk)m

k=1 of B1 and (W ′k)m′
k=1 of B2 such that

|fi(x)− fi(x′)| ≤ 1
2εr, x, x′ ∈Wk, 1 ≤ i ≤ n, 1 ≤ k ≤ m,

and

|fi(x)− fi(x′)| ≤ 1
2εr, x, x′ ∈W ′k, 1 ≤ i ≤ n, 1 ≤ k ≤ m′.
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Let
S = {(k, k′) : 1 ≤ k ≤ m, 1 ≤ k′ ≤ m′, Wk ×W ′k′ ∩∆ 6= ∅}

and define (Uj)N
j=1, (Vj)N

j=1 in such a way that (Uj×Vj)N
j=1 is an enumeration

of (Wk ×Wk′)(k,k′)∈S . Then ∆ ⊂
⋃N

j=1 Uj × Vj and the same calculations as
in the proof of Proposition 2.4 give

λδ(Uj , Vj) ≥ νr with ν = λλ−1
0 (µ− ε) > µ.

If λ ≤ 2 we must also consider (ii). Here we define ϕ(x) = λ−1
0 ‖f(x)‖

where f : M → c+0 is as above. Then ϕ satisfies (4.4) with θ = λ0. Indeed,

|ϕ(x)− ϕ(y)| ≤ λ−1
0 ‖f(x)− f(y)‖ ≤ d(x, y)

and

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ max(‖f(x)‖, ‖f(y)‖) ≤ λ0 max(ϕ(x), ϕ(y)).

Next, in place of Lemma 2.5 we have

Lemma 4.6. Let λ > 1 and (M,d) be a metric space with property
Π+(λ). Then for every µ > λ there is a constant ν > µ so that if B1

and B2 are two metric balls of radius r then there are finitely many sets
(Uj)N

j=1, (Vj)N
j=1 such that if (x, y) ∈ B1 × B2 and d(x, y) > µr then there

exists 1 ≤ j ≤ N so that x ∈ Uj , y ∈ Vj and

λµδ(Uj , Vj) ≥ νd(x, y).

We omit the proof of this, which is very similar to that of Lemma 2.5
and only uses part (i) of the definition of Π+(λ).

Then we have the following analogue of Lemma 2.6.

Lemma 4.7. Let λ > 1. Suppose (M,d) has property Π+(λ). Suppose
0 < α < β. Let F,G be finite subsets of M and let ∆+(F,G, α, β) be the
set of (x, y) ∈M ×M such that

λmax(d(x,G), d(y,G)) + α ≤ d(x, y) < λmax(d(x, F ), d(y, F )) + β.

Then there is a finite set F = F(F,G, α, β) of functions f : M → R+ with
Lip(f) ≤ λ and such that

f(x) ≤ λβ, x ∈ F,
and

d(x, y) < max
f∈F
|f(x)− f(y)|, (x, y) ∈ ∆+(F,G, α, β).

Proof. We first argue that for some constant K we have

d(x, y) ≤ K, x, y ∈ ∆+(F,G, α, β).

If λ > 2 this follows from the fact that

d(x,G) + d(y,G) ≥ d(x, y)−R,
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where R is the diameter of G. Hence

d(x, y) ≤ K = λ(λ− 2)−1R, x, y ∈ ∆+(F,G, α, β).

In the case 1 < λ ≤ 2 let ϕ, θ be as in the definition of Π+(λ) and sat-
isfy (4.4). Let K0 = max{ϕ(z) : z ∈ G}. Thus

λd(x, y) ≤ λθmax(ϕ(x), ϕ(y)) ≤ λθK0 + λθmax(d(x,G), d(y,G))

≤ λθK0 + θd(x, y), x, y ∈ ∆+(F,G, α, β),

so that

d(x, y) ≤ K =
λθK0

λ− θ
, x, y ∈ ∆+(F,G, α, β).

We next let

µ = λ+
αλ

2K
and choose ν = ν(µ) according to the conclusion of Lemma 4.6. We fix ε > 0
so that ε < min(α/2µ, λ−1(λ− 1)β).

Let E = {x : d(x,G) ≤ λ−1K}. Since E is metrically bounded and F ∪G
is finite we can partition E into finitely many subsets (E1, . . . , Em) so that
for each z ∈ F ∪G we have

|d(x, z)− d(x′, z)| ≤ ε, x, x′ ∈ Ej , 1 ≤ j ≤ m.
For each j, we define zj ∈ G and rj , as in the proof of Lemma 2.6, so that

inf
x∈Ej

d(x, zj) = inf
x∈Ej

d(x,G) = rj .

Note that rj ≤ λ−1K and Ej is contained in a ball Bj centered at zj with
radius rj + ε.

Now for each pair (j, k) we denote by Bj,k the ball with center zj and
radius max(rj + ε, rk + ε). By Lemma 4.6, we can find finitely many pairs
of sets (Ũjkl, Ṽjkl)

Njk

l=1 such that for every (x, y) ∈ Bj,k ×Bk,j with d(x, y) >
µ(max(rj , rk) + ε) there exists 1 ≤ l ≤ Njk with x ∈ Ũjkl, y ∈ Ṽjkl and

λµδ(Ũjkl, Ṽjkl) ≥ νd(x, y).

Then we set Ujkl = Ũjkl ∩ Ej and Vjkl = Ṽjkl ∩ Ek.
We now apply Lemma 4.1 to construct Lipschitz functions fjkl :

M → R+ where 1 ≤ j, k ≤ m, 1 ≤ l ≤ Njk are such that Lip(fjkl) ≤ λ,
fjkl(x) ≤ λβ, x ∈ F,

and
|fjkl(x)− fjkl(y)| ≥ λθjkl, x ∈ Ujkl, y ∈ Vjkl,

where

θjkl = min(δ(Ujkl, Vjkl),max(δ(Ujkl, F ), δ(Vjkl, F )) + β).
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Now let us suppose (x, y) ∈ ∆+(F,G, α, β). Then there exists (j, k) so
that x ∈ Ej , y ∈ Ek. It follows from our choice of µ and ε that

d(x, y) ≥ λmax(d(x,G), d(y,G)) + α ≥ λmax(rj , rk) + α

> µ(max(rj , rk) + ε).

Thus there exists 1 ≤ l ≤ Njk so that x ∈ Ujkl, y ∈ Vjkl and

λδ(Ujkl, Vjkl) ≥
ν

µ
d(x, y) > d(x, y).

On the other hand, ε < λ−1(λ− 1)β, so

λmax(δ(Ujkl, F ), δ(Vjkl, F )) + β ≥ λmax(d(x, F ), d(y, F )) + λ(β − ε)
> λmax(d(x, F ), d(y, F )) + β > d(x, y).

Hence
|fjkl(x)− fjkl(y)| ≥ λθjkl > d(x, y).

Thus we can take for F the collection of all functions fjkl for 1 ≤ j, k ≤ m,
1 ≤ l ≤ Njk.

Finally, our theorem is

Theorem 4.8. Suppose a separable metric space (M,d) has property
Π+(λ) with λ > 1. Then there is a Lipschitz embedding f : M → c+0 with

d(x, y) < ‖f(x)− f(y)‖ ≤ λd(x, y), x, y ∈M, x 6= y.

Proof. We use the notation of the proof of Theorem 2.7. Then we build
an increasing sequence (nk)∞k=0 of integers (with n0 = 0) and a sequence
(fj)∞j=1 of Lipschitz functions fj : M → R+ with Lip(fj) ≤ λ so that

fj(x) ≤ λεk, x ∈ Fk, nk−1 < j ≤ nk,

and if

(4.5) λmax(d(x, Fk+1), d(y, Fk+1)) + εk+1

≤ d(x, y) < λmax(d(x, Fk), d(y, Fk)) + εk

then
max

nk−1<j≤nk

|fj(x)− fj(y)| > d(x, y).

If x 6= y then the sequence

τk = λmax(d(x, Fk), d(y, Fk)) + εk

is decreasing and tends to zero.
If λ > 2, we clearly have τ1 > d(x, y).
Assume 1 < λ ≤ 2. Let ϕ be given by part (ii) of property Π+(λ). We

choose ε1 > λϕ(u1). Then

d(x, y) ≤ λmax(ϕ(x), ϕ(y)) < ε1 + λmax(d(x, u1), d(y, u1)) = τ1.
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Hence, in both cases the desired embedding can be defined again by f(x) =
(fj(x))∞j=1.

As a first corollary, we obtain the following two results of Pelant’s ([16]).

Corollary 4.9.

(a) For every separable metric space (M,d) there is a Lipschitz embed-
ding f : M → c+0 so that

d(x, y) < ‖f(x)− f(y)‖ ≤ 3d(x, y), x, y ∈M, x 6= y.

(b) For any compact metric space (K, d) and any λ > 1, (K, d) λ-embeds
into c+0 .

It is proved in [16] that both of the above statements are optimal. This
was also known to Aharoni [2] for part (a).

We also have

Theorem 4.10. For every locally compact metric space (M,d) and every
λ > 2, (M,d) λ-embeds into c+0 . This result is optimal.

Proof. The result is obtained by combining Theorem 4.8 and Lemma 4.3.
We only have to show its optimality.

Let D be the set of all finite sequences with values in {0, 1}, including
the empty sequence denoted ∅, and let D∗ = D \ {∅}. For s ∈ D, we denote
by |s| its length. Then (es)s∈D is the canonical basis of `1(D). We consider
the following metric subspace of `1(D):

M = {0, e∅} ∪ {|s|es, e∅ + |s|es : s ∈ D∗}.
This is clearly a locally finite metric space. Assume now that there exists
f = (fk)∞k=1 : M → c+0 such that

‖x− y‖1 ≤ ‖f(x)− f(y)‖∞ ≤ 2‖x− y‖1, x, y ∈M.

There exists K ≥ 1 such that fk(e∅) < 1 and fk(0) < 1 for all k > K. Then,
using the positivity of f , we obtain

|fk(e∅ + nes)− fk(net)| ≤ max(fk(e∅ + nes), fk(net))

< 1 + 2n, k > K, s 6= t, |s| = |t| = n.

On the other hand,

‖f(e∅ + nes)− f(net)‖∞ ≥ 1 + 2n, s 6= t, |s| = |t| = n.

Thus, for all s 6= t, |s| = |t| = n, there exists k ≤ K so that

|fk(e∅ + nes)− fk(net)| ≥ 1 + 2n.

Let now C = max(‖f(e∅)‖∞, ‖f(0)‖∞). Then

|fk(e∅ + nes)− fk(net)| ≤ C + 2n, k ≤ K, s 6= t, |s| = |t| = n.
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Thus, for n large enough and all s 6= t, |s| = |t| = n, there exists k ≤ K
such that either

fk(nes) ≤ C − 1 and fk(e∅ + net) ≥ 1 + 2n

or
fk(nes) ≥ 1 + 2n and fk(e∅ + net) ≤ C − 1.

Therefore, either

fk(nes) ≤ C − 1 and fk(net) ≥ 2n− 1

or
fk(nes) ≥ 1 + 2n and fk(net) ≤ C + 1.

Let us now define α(k, s) = 1[0,C+1](fk(|s|es)). Then, for n large enough,
we see that for all s 6= t, |s| = |t| = n, there exists k ≤ K so that
α(k, s) 6= α(k, t), which is clearly impossible if n > K. This finishes our
proof.

5. Embeddings of subsets of classical Banach spaces into c+0

Proposition 5.1. Suppose X is a separable Banach space and that f :
X → c+0 is a Lipschitz embedding with constant λ0. Then for any u ∈ X
with ‖u‖ = 1 and any infinite-dimensional subspace Y of X we have

inf
y∈Y
‖y‖=1

‖u+ 2y‖ ≤ λ0.

Proof. The proof is almost identical to that of Proposition 3.1. It follows
from Proposition 4.5 that X has property Π+(λ) for any λ > λ0. We consider
B1 = −u+ 2BX and B2 = u+ 2BX , where BX denotes the closed unit ball
of X. Suppose µ > λ0 and select µ > λ > λ0. Then, for some ν > µ, we can
find finitely many closed sets (Uj , Vj)N

j=1 satisfying

λδ(Uj , Vj) ≥ 2ν

and

{(x, y) ∈ B1 ×B2 : ‖x− y‖ > 2µ} ⊂
N⋃

j=1

(Uj × Vj).

Now let E be any subspace of X of dimension greater than N and let

Aj = {e ∈ E : ‖e‖ = 1, (−u+ 2e, u− 2e) ∈ Uj × Vj}.
We then conclude the proof as in Proposition 3.1. Assume that for any
e ∈ SE , ‖u + 2e‖ > µ. Then A1 ∪ · · · ∪ AN = SE and so there exists e
in SE and k ≤ N such that e and −e belong to Ak, i.e. −u ± 2e ∈ Uk and
u ± 2e ∈ Vk. This implies that δ(Uk, Vk) ≤ 2, which is a contradiction. So,
there exists e ∈ SE with ‖u + 2e‖ ≤ µ and we conclude as in the proof of
Proposition 3.1.
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Theorem 5.2. Suppose 1 ≤ p <∞.

(i) There is a Lipschitz embedding of `p into c+0 with constant (2p+1)1/p

and this is best possible.
(ii) There is a Lipschitz embedding of `+p into c+0 with constant 31/p and

this is best possible.

Proof. Let us prove first that `p has Π+(cp) where cp = (1 + 2p)1/p. The
proof is very similar to that of Theorem 3.2. Let B1 and B2 be balls with
centers a1, a2 and radius r > 0. Suppose µ > cp and µ < ν < cp(µp− 2p)1/p.
Fix ε > 0 such that

cp(µprp − 2p(r + ε)p)1/p − 2εcp > νr.

We select N ∈ N so that
∞∑

k=N+1

|a1(k)|p,
∞∑

k=N+1

|a2(k)|p < εp.

Let E be the linear span of {e1, . . . , eN} where (ej) is the canonical ba-
sis of `p. Let P the canonical projection of `p onto E, Q = I − P and
R = max(‖a1‖, ‖a2‖) + r. Then we partition RBE into finitely many sets
A1, . . . , Am with diam(Aj) < ε.

Now, set Uj = {x ∈ B1 : Px ∈ Aj}, Vj = {x ∈ B2 : Px ∈ Aj} and

S = {(j, k) : ∃(x, y) ∈ Uj × Vk, ‖x− y‖ > µr}.
Thus we have

{(x, y) ∈ B1 ×B2 : ‖x− y‖ > µr} ⊂
⋃

(j,k)∈S

Uj × Vk.

It remains to estimate δ(Uj , Vk) for (j, k) ∈ S. Suppose u ∈ Uj , v ∈ Vk and
that x ∈ Uj , y ∈ Vk are such that ‖x− y‖ > µr. Then

‖u− v‖ ≥ ‖Pu− Pv‖ ≥ ‖Px− Py‖ − 2ε.

On the other hand,

r ≥ ‖x− a1‖ ≥ ‖Qx‖ − ε and r ≥ ‖y − a2‖ ≥ ‖Qy‖ − ε.
Thus

(5.6) ‖Qx−Qy‖ ≤ 2r + 2ε.

Now
µprp < ‖Px− Py‖p + ‖Qx−Qy‖p ≤ ‖Px− Py‖p + 2p(r + ε)p.

Hence
‖Px− Py‖p > µprp − 2p(r + ε)p,

and so
cpδ(Uj , Vk) ≥ cp(µprp − 2p(r + ε)p)1/p − 2εcp > νr.

Hence `p has Π+(cp).
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Next we show that `+p has property Π+(31/p). To do this we repeat the
argument above. We take µ > 31/p and suppose that µ < ν < 31/p(µp−2)1/p.
Choose ε > 0 so that

31/p(µprp − 2(r + ε)p)1/p − 2ε31/p > νr.

Next repeat the construction, but working inside the positive cone `+p . The
only difference is that (5.6) is replaced by

(5.7) ‖Qx−Qy‖ ≤ 21/p max(‖Qx‖, ‖Qy‖) ≤ 21/p(r + ε).

Hence
‖Px− Py‖p > µprp − 2(r + ε)p,

and so this time

31/pδ(Uj , Vk) ≥ 31/p(µprp − 2(r + ε)p)1/p − 2ε31/p > νr.

For the second half of the condition, when 31/p ≤ 2, we note that ϕ(x) = ‖x‖
satisfies (4.4) with θ = 21/p < 31/p.

These calculations combined with Theorem 4.8 show the existence of the
Lipschitz embeddings in parts (i) and (ii). Proposition 5.1 shows that the
constant is best possible when in (i). For (ii) suppose f : `+p → c+0 is an
embedding such that

‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ λ‖x− y‖, x, y ∈ `+p ,

where λ < 31/p. Let f(x) = (fj(x))∞j=1. Let ε = (31/p − λ)/2. Then there
exists N such that

max(fj(e1), fj(0)) < ε, j ≥ N + 1.

Hence if m,n > 1 then

|fj(e1+em)−fj(en)| ≤ max(fj(e1+em), fj(en)) ≤ λ+ε < 31/p, j ≥ N+1.

Now we may pass to a subsequence so that the following limits exist:

lim
k→∞

fj(e1 + enk
) = σj , lim

k→∞
fj(enk

) = τj , 1 ≤ j ≤ N.

Clearly,
|σj − τj | ≤ λ, 1 ≤ j ≤ N.

Now
lim

k→∞
|fj(e1 + enk

)− fj(enk+1
)| ≤ λ, 1 ≤ j ≤ N,

and we have a contradiction since ‖e1 + enk
− enk+1

‖ = 31/p > λ.

6. Spaces embedding isometrically into c0 and c+0 . In this final
section we study isometric embeddings into c0 and c+0 . Note that a separable
Banach space isometrically embeds into c0 if and only if it embeds linearly
and isometrically [8].
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We recall that a metric space (M,d) is an ultrametric space if

(6.8) d(x, y) ≤ max(d(x, z), d(z, y)), x, y, z ∈M.

Note that this implies

(6.9) d(x, y) = max(d(x, z), d(z, y)), d(x, z) 6= d(z, y).

Lemma 6.1. Let (M,d) be a separable ultrametric space. Then there is
a countable subset Γ of [0,∞) such that d(x, y) ∈ Γ for all x, y ∈M.

Proof. For each fixed x ∈ M let Γx = {d(x, y) : y ∈ M}. Suppose Γx is
uncountable; then for some δ > 0 the set Γx∩ (δ,∞) is uncountable. Pick an
uncountable set (yi)i∈I in M so that d(x, yi) > δ and the values of d(x, yi)
are distinct for i ∈ I. Then for i 6= j we have d(yi, yj) > δ by (6.9). This
contradicts the separability of M.

Thus each Γx is countable. Let D be a countable dense subset of M and
let Γ =

⋃
x∈D Γx. If y, z ∈M with y 6= z, pick x ∈ D with d(x, y) < d(x, z).

Then d(y, z) = d(x, z) ∈ Γ by (6.9).

Theorem 6.2. Every separable ultrametric space embeds isometrically
into c+0 .

Proof. Pick Γ as in Lemma 6.1. Let (aj)∞j=1 be a countable dense sub-
set of an ultrametric space M . Let D be the collection of finite sequences
(r1, . . . , rn) with rj ∈ Γ for 1 ≤ j ≤ n. For each (r1, . . . , rn) ∈ D we define
a function fr1,...,rn by

fr1,...,rn(x) =
{

min(r1, . . . , rn) if d(x, aj) = rj , 1 ≤ j ≤ n,
0 otherwise.

If x ∈ M let d(x, aj) = sj . Then limn→∞min(s1, . . . , sn) = 0 and it
follows that f(x) = (fr1,...,rn(x))(r1,...,rn)∈D is a map from M into c+0 (D).

If x, y ∈ M and fr1,...,rn(x) 6= fr1,...,rn(y) we can assume without loss
of generality that d(x, aj) = rj for 1 ≤ j ≤ n but d(y, ak) 6= rk for some
1 ≤ k ≤ n. Then from (6.9) we get

|fr1,...,rn(x)− fr1,...,rn(y)| = min(r1, . . . , rn)

≤ rk ≤ max(d(x, ak), d(y, ak)) = d(x, y).

Thus ‖f(x)− f(y)‖ ≤ d(x, y) for x, y ∈M.
On the other hand, if x 6= y there is a least k so that d(x, ak) 6= d(y, ak).

Assume that d(x, ak) > d(y, ak) and rj = d(x, aj) for 1 ≤ j ≤ k. Then
d(x, y) = rk. On the other hand, d(x, y) ≤ rj for 1 ≤ j ≤ k. Hence

d(x, y) = rk = |fr1,...,rk
(x)− fr1,...,rk

(y)|.
Thus f is an isometry.

As a final example we consider an infinite branching tree T defined as the
set of all ordered subsets (nodes) a = (m1, . . . ,mk) (where m1 < · · · < mk)
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of N (including the empty set). Let |a| = k be the length of a so that |∅| = 0.
If a = (m1, . . . ,mk), b = (n1, . . . , nl) are two nodes then we define a ∧ b to
be the node (m1, . . . ,mr) where r ≤ min(k, l) is the greatest integer such
that mj = nj for 1 ≤ j ≤ r. We write a ≺ b if b∧a = a. Furthermore, T is a
graph if we define two nodes a, b to be adjacent if | |a| − |b| | = 1 and a ≺ b
or b ≺ a. The natural graph metric d is thus given by

d(a, b) = |a|+ |b| − 2|a ∧ b|.

Theorem 6.3. The infinite branching tree embeds isometrically into c0.

Proof. For each (a, n) ∈ T × N we define

fa,n(b) =


|b| − |a|, a ≺ b, b 6= a, b|a|+1 = n,
|a| − |b|, a ≺ b, b 6= a, b|a|+1 > n,
0, otherwise.

For fixed b we have fa,n(b) 6= 0 only when a ≺ b, a 6= b and n ≤ b|a|+1, and
this is a finite set. Hence f(b) = (fa,n(b))(a,n)∈T ×N defines a map of T into
c0(T × N).

Suppose that d(b, b′) = 1 and |b′| = |b| + 1. Then by examining cases it
is clear that |fa,n(b) − fa,n(b′)| ≤ 1 for all (a, n) ∈ T × N. It follows that
‖f(b)− f(b′)‖ ≤ d(b, b′) for arbitrary b, b′ ∈ T .

If b 6= b′ pick a = b ∧ b′ and assume as we may that either b′ = a ∧ b = a
or b|a|+1 < b′|a|+1. Put n = b|a|+1. Then

fa,n(b) = |b| − |a|, fa,n(b′) = |a| − |b′|,

so that
|fa,n(b)− fa,n(b′)| = d(b, b′).

Hence f is an isometry.

Remarks. Since c0 2-embeds into c+0 , so does T . It follows from the
fact that T contains a copy of Z that it is again optimal. However, the set
of nodes of the same level of a tree equipped with the geodesic distance,
like T , is a fundamental example of ultrametric space, and therefore, by
Theorem 6.2, embeds isometrically into c+0 .

Let us also mention that we do not know whether the metric spaces c0
and c+0 are Lipschitz isomorphic.

Extending a work of J. Bourgain [7], F. Baudier recently proved in [4]
that the infinite dyadic tree equipped with the geodesic distance metrically
embeds into a Banach space X if and only if X is not super-reflexive. To-
gether with the second named author, F. Baudier also showed in [5] that any
locally finite metric space metrically embeds into any Banach space without
cotype.
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