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A description based on Schubert classes of
cohomology of flag manifolds

by

Masaki Nakagawa (Takamatsu)

Abstract. We describe the integral cohomology rings of the flag manifolds of types
Bn, Dn, G2 and F4 in terms of their Schubert classes. The main tool is the divided differ-
ence operators of Bernstein–Gelfand–Gelfand and Demazure. As an application, we com-
pute the Chow rings of the corresponding complex algebraic groups, recovering thereby
the results of R. Marlin.

1. Introduction. Let K be a compact connected Lie group and T its
maximal torus. The homogeneous space K/T , called the flag manifold, plays
an important role in algebraic topology, algebraic geometry and representa-
tion theory.

In this paper, we are concerned with the integral cohomology of the flag
manifold K/T . As is well known, there are two descriptions of this cohomol-
ogy. The first one is the “Borel presentation”, due to A. Borel [2], which iden-
tifies the rational cohomology ring ofK/T with the quotient ring of a polyno-
mial ring by its ideal generated by W -invariants of positive degrees, where W
is the Weyl group of K. Combining Borel’s result and the known structures
of the mod p cohomology rings of K, H. Toda gave general descriptions of the
integral cohomology rings of K/T for all K simple [18]. So far the integral co-
homology rings of flag manifolds for all compact simply connected simple Lie
groups are determined (see [2], [3], [19], [14], [15]). The second is the “Schu-
bert presentation” which describes the integral cohomology H∗(K/T ; Z) in
terms of the Schubert classes corresponding to the Schubert varieties derived
from the Bruhat decomposition of G = KC, the complexification of K.

In the Borel presentation, which is given by generators and relations,
the ring structure of H∗(K/T ; Z) can be relatively easy to obtain. How-
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ever, the generators in this presentation have little geometric meaning. In
contrast, in the Schubert presentation, the Schubert classes correspond to
the geometric objects—the Schubert varieties—and they form an additive
basis for H∗(K/T ; Z) ([5]). As a disadvantage, the multiplicative structure
among them is closely related to the intersection multiplicities, and is highly
complicated in general.

Up to now, there have been several attempts to establish a connection
between the two descriptions for some types of spaces (see, e.g., [1], [8],
[11]). The main aim of this paper also falls in this category. More precisely,
we express the ring generators in the Borel presentation of H∗(K/T ; Z) for
K = SO(n), G2 and F4 in terms of Schubert classes. For this, we make use of
the “divided difference operators” introduced independently by Bernstein–
Gelfand–Gelfand [1] and Demazure [6]. For K as above, there exist extra
generators of degrees greater than two. So we cannot apply the divided
difference operators directly to these higher generators. Fortunately, using
the classical fact that, rationally, the cohomology of K/T is generated as
a ring by two-dimensional elements, and the integral cohomology of K/T
has no torsion, we can carry out the computation. An additional aim of this
paper is to apply our results to recovering the Chow rings of the complex
algebraic groups SO(n), Spin(n), G2 and F4, which were originally computed
by R. Marlin [13]. (In this paper, we denote the compact Lie groups, e.g., by
SO(n), Spin(n), G2, F4, while their complexifications by SO(n), Spin(n), G2,
F4 respectively.) In order to determine the Chow rings of the corresponding
flag manifolds, Marlin relied on the result of Demazure [6] which describes
them as the “cohomology rings of the root system”, and he made elaborate
computations. In this paper, we simplify Marlin’s computations, using the
Borel presentation of H∗(K/T ; Z) and our result mentioned above.

The paper is organized as follows. In Section 2, we briefly review the
cohomology of flag manifolds, emphasizing the difference between the Borel
and Schubert presentations. In Section 3, we introduce the divided difference
operators of Bernstein–Gelfand–Gelfand and Demazure and collect the re-
sults used later. Sections 4 to 6 are devoted to computations, and we obtain
there the main results of this paper (see Propositions 4.3, 4.7, 5.3 and 6.5).
In Section 7, following Grothendieck’s remark ([9, p. 21, Remarques 2◦]), we
compute the Chow rings of SO(n), Spin(n), G2 and F4 (see Theorems 7.2,
7.3, 7.4 and 7.1).

We observe that the method of this paper can also be applied to the
exceptional Lie groups E6, E7 and E8. Indeed, we succeeded in computing
the Chow rings of the complex algebraic groups E6 and E7 in [12].
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2. The cohomology of flag manifolds. In this section we briefly
review the Borel and Schubert presentations of the cohomology of flag man-
ifolds.

We introduce the notation that is needed in the following.

• K: a compact simply connected simple Lie group of rank l;
• T : a maximal torus of K;
• G = KC: a complexification of K;
• B: a Borel subgroup containing T ;
• t: the Lie algebra of T ; t∗: the dual space of t;
• ( · | · ): the invariant inner product on t (or on t∗);
• ∆ ⊂ t∗: the root system with respect to T ;
• ∆+: the set of positive roots, ∆− = −∆+;
• Π = {α1, . . . , αl}: the system of simple roots;
• α∨ = 2α/(α |α): the coroot corresponding to α ∈ ∆;
• ωi (1 ≤ i ≤ l): the ith fundamental weight, satisfying (ωi |α∨j ) = δij ;
• si = sαi (1 ≤ i ≤ l): the reflection corresponding to the simple root
αi;
• W = W (K): the Weyl group of K generated by the simple reflections
S = {s1, . . . , sl};
• l(w): the length of an element w ∈W with respect to {s1, . . . , sl};
• w0: the longest element of W ;
• ei(x1, . . . , xn): the ith elementary symmetric function in variables
x1, . . . , xn.

Now we review the Borel presentation. The inclusion T ↪→ K induces
the classical fibration

K/T
ι→ BT

%→ BK,

where BT (resp. BK) denotes the classifying space of T (resp. K). The
induced homomorphism

(2.1) c = ι∗ : H∗(BT ; Z)→ H∗(K/T ; Z)

is called the characteristic homomorphism and plays a crucial role in Borel’s
work. The Weyl group W acts naturally on T , hence on H2(BT ; Z). We ex-
tend this natural action of W to the whole H∗(BT ; Z) and also to H∗(BT ; F)
= H∗(BT ; Z)⊗Z F, where F is any field. We denote by H∗(BT ; Z)W (resp.
H∗(BT ; F)W ) the ring of W -invariants in H∗(BT ; Z) (resp. H∗(BT ; F)).
Then one of the main results of Borel can be stated as follows.
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Theorem 2.1 (Borel [2]). Let F be a field of characteristic zero. Then
the characteristic homomorphism induces an isomorphism

c̄ : H∗(BT ; F)/(H+(BT ; F)W )→ H∗(K/T ; F),

where (H+(BT ; F)W ) is the ideal in H∗(BT ; F) generated by the W -invar-
iants of positive degrees.

In particular, one can reduce the computation of the rational cohomol-
ogy ring H∗(K/T ; Q) to that of the ring of invariants H∗(BT ; Q)W . Ob-
serve that H∗(K/T ; Q) is generated by H2(K/T ; Q) as a ring. In order to
determine the integral cohomology ring H∗(K/T ; Z), we need further con-
siderations. In [18], Toda established a method to describe the integral coho-
mology ring H∗(K/T ; Z) by a minimal system of generators and relations,
from the mod p cohomology rings H∗(K; Z/pZ) and the rational cohomol-
ogy ring H∗(K/T ; Q). In general, besides the two-dimensional generators,
there are extra generators of higher degrees, and hence the characteristic
homomorphism c is not surjective over Z in that case. Along the lines of
Toda’s method, the integral cohomology rings of flag manifolds for all com-
pact simply connected simple Lie groups have been computed (see [2], [3],
[19], [14], [15]). However, as mentioned in the introduction, the generators
have less geometric meaning in the Borel presentation.

We pass to reviewing the Schubert presentation. Recall the Bruhat de-
composition,

G =
∐
w∈W

BẇB,

where ẇ denotes any representative of w in W = NK(T )/T ; NK(T ) is the
normalizer of T in K. It induces a cell decomposition,

G/B =
∐
w∈W

BẇB/B,

where
X◦w = BẇB/B ∼= Cl(w)

is called the Schubert cell. Note that we have a homeomorphism K/T ∼= G/B
by the Iwasawa decomposition. The Schubert variety Xw is defined to be the
closure of X◦w. Then it is known that

Xw =
∐
v≤w

X◦v ,

where ≤ is the Bruhat–Chevalley ordering. The fundamental class [Xw]
of Xw lies in H2l(w)(G/B; Z). We define the cohomology class Zw ∈
H2l(w)(G/B; Z) as the Poincaré dual of [Xw0w] ∈ H2N−2l(w)(G/B; Z), where
N is the complex dimension of the flag manifold G/B. We call Zw the
Schubert class. The Schubert classes {Zw}w∈W form an additive basis for
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H∗(G/B; Z). We refer to {Zw}w∈W as the Schubert basis. In order to com-
plete the description of H∗(G/B; Z), we have to compute the intersection
multiplicities. Namely, given u, v ∈W , we can put

Zu · Zv =
∑
w∈W

l(u)+l(v)=l(w)

awu,vZw

for some integers awu,v, and we have to determine these “structure con-
stants” awu,v. For this problem, several results are available. For example,
we have the following

Theorem 2.2 (Chevalley formula [5]). If w ∈W and α ∈ Π, then

Zsα · Zw =
∑
β∈∆+

l(wsβ)=l(w)+1

(β∨ |ωα)Zwsβ .

For recent developments in the Schubert calculus, in particular, on mul-
tiplying Schubert classes, see also [7], [16].

3. Schubert calculus on flag manifolds. As reviewed in the previous
section, there are two different ways of describing the integral cohomology
ring of K/T , and therefore we have two bases forH∗(K/T ; Z). One is the “al-
gebraic basis” derived from the Borel presentation and the other is the “geo-
metric basis” {Zw}w∈W consisting of the Schubert classes. It is interesting to
know how these two bases are related. More precisely, we wish to express the
ring generators obtained in the Borel presentation in terms of the Schubert
basis. Our main tool will be the divided difference operators introduced inde-
pendently by Bernstein–Gelfand–Gelfand [1] and Demazure [6]. We now re-
call their definition. For α ∈ ∆, we define an endomorphism of H∗(BT ; Z) by

∆α(u) =
u− sα(u)

α
, u ∈ H∗(BT ; Z).

Definition 3.1. For w ∈W , we define the operator

∆w = ∆αi1
◦ · · · ◦∆αik

onH∗(BT ; Z) lowering the degree by 2l(w), where w = si1 · · · sik is a reduced
decomposition of w.

One can show that the operator ∆w is well defined, i.e., it is independent
of the choice of the reduced decomposition of w.

Note that the divided difference operators ∆α, α ∈ ∆, are characterized
by the following two properties:

∆α(ωβ) = δαβ,(3.1)
∆α(uv) = ∆α(u)v + sα(u)∆α(v)(3.2)

for u, v ∈ H∗(BT ; Z).
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The characteristic homomorphism

c : H∗(BT ; Z)→ H∗(K/T ; Z)

can be described by the divided difference operators. Since {Zw}w∈W is a
Z-basis for H∗(K/T ; Z), we can put

c(f) =
∑
l(w)=k

awZw, aw ∈ Z,

for a polynomial f ∈ H2k(BT ; Z). So we have to determine the coefficients
aw. This problem was solved independently by Bernstein–Gelfand–Gelfand
[1] and Demazure [6].

Theorem 3.2 (Bernstein–Gelfand–Gelfand [1], Demazure [6]). For a
polynomial f ∈ H2k(BT ; Z), we have

c(f) =
∑
l(w)=k

∆w(f)Zw.

In particular , for α ∈ Π, we have

c(ωα) = Zsα .

In addition, using the divided difference operators, we can express an
arbitrary Schubert class Zw as a polynomial in the variables Zsi . This is
the Giambelli formula which we now recall (for details, see [10, Section 3]).
Consider the element

d =
∏
α∈∆+

α.

Then we have

Theorem 3.3 (Giambelli formula). The Schubert class Zw correspond-
ing to w ∈W is given by

Zw = c

(
∆w−1w0

(
d

|W |

))
.

In Sections 4–6, we exploit the above theorems to find the correspondence
between “algebraic bases” and “geometric bases” in the cases of K = SO(n),
G2 and F4.

4. The cases of Bn and Dn. In this section, we consider the special
orthogonal group SO(n). First we deal with the odd special orthogonal group
SO(2n+ 1). Let Tn be the standard maximal torus of SO(2n+ 1),
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Tn =





cos 2πt1 − sin 2πt1
sin 2πt1 cos 2πt1

. . .

cos 2πtn − sin 2πtn
sin 2πtn cos 2πtn

1




.

Then we have an isomorphism

H∗(BTn; Z) = Z[t1, . . . , tn].

The system of simple roots is

Π = {α1 = t1 − t2, α2 = t2 − t3, . . . , αn−1 = tn−1 − tn, αn = tn}.
The corresponding fundamental weights {ωi}1≤i≤n are

(4.1)
ωi = t1 + · · ·+ ti (1 ≤ i ≤ n− 1),
ωn = 1

2(t1 + · · ·+ tn).

Let si (1 ≤ i ≤ n) be the reflection corresponding to αi (1 ≤ i ≤ n). Then
the Weyl group W (SO(2n+ 1)) is finite and is generated by si (1 ≤ i ≤ n)
which act on {ti}1≤i≤n as permutations and sign changes:

(4.2) W (SO(2n+ 1)) = 〈s1, . . . , sn〉 ∼= Sn n (Z/2Z)n,

where Sn is the symmetric group of n letters and n means semidirect prod-
uct.

Now we recall the Borel presentation of H∗(SO(2n + 1)/Tn; Z), which
was probably known, in some form, already to Borel. However, in an explicit
form, it first appeared in [19] as far as the author knows.

Theorem 4.1 (Toda–Watanabe [19, Theorem 2.1]). The integral coho-
mology ring of SO(2n+ 1)/Tn is

H∗(SO(2n+ 1)/Tn; Z) = Z[t1, . . . , tn, γ1, . . . , γn]/
ci − 2γi (1 ≤ i ≤ n),

γ2k +
2k−1∑
i=1

(−1)iγiγ2k−i (1 ≤ k ≤ n)

 ,

where we denote by the same symbols ti ∈ H2(SO(2n+1)/Tn; Z) the images
of ti ∈ H2(BTn; Z) under the homomorphism c, ci = ei(t1, . . . , tn) (1 ≤ i
≤ n), and γi = 0 for i > n.

We wish to express the algebra generators {t1, . . . , tn, γ1, . . . , γn} in terms
of Schubert classes. For simplicity, we denote the Schubert class correspond-
ing to w = si1 · · · sik by Zi1···ik , although the reduced decomposition of a



280 M. Nakagawa

Weyl group element may not be unique. The correspondence between ele-
ments of degree 2 is easy. By (4.1), we have

(4.3)
t1 = ω1,

ti = −ωi−1 + ωi (2 ≤ i ≤ n− 1),
tn = −ωn−1 + 2ωn.

Since c(ωi) = Zi, it follows from (4.3) that

(4.4)
t1 = Z1,

ti = −Zi−1 + Zi (2 ≤ i ≤ n− 1),
tn = −Zn−1 + 2Zn.

Next, for γk (1 ≤ k ≤ n), we can put

γk =
∑
l(w)=k

awZw

for some integers aw. We need to determine the coefficients aw. To this end,
we make use of the divided difference operators recalled in the previous
section. In this case, the characteristic homomorphism c is not surjective
over Z and γk (1 ≤ k ≤ n) is not in the image of c. (Strictly speaking,
we should consider the spinor group, because the special orthogonal group
is not simply connected. In that case, γ1 is in the image of c.) However,
2γk = ck is in the image of c. So we can apply Theorem 3.2 to the polynomial
ck = ek(t1, . . . , tn). Thus

ck =
∑
l(w)=k

∆w(ck)Zw.

Let us compute ∆w(ck), where l(w) = k for fixed k (1 ≤ k ≤ n). For
convenience of computation, we introduce the notation

c
(m)
l = el(t1, . . . , tm) (1 ≤ m ≤ n, 1 ≤ l ≤ m),

so that ck = c
(n)
k .

We need the following auxiliary result.

Lemma 4.2. For fixed k, 1 ≤ k ≤ n, we have

(1) ∆i(c
(n)
k ) = 0 (1 ≤ i ≤ n− 1),

(2) ∆n(c(n)
k ) = 2c(n−1)

k−1 ,

(3) ∆i(c
(n−j)
k−j ) = 0 (1 ≤ i ≤ n− j − 1, 1 ≤ j ≤ n− 1),

(4) ∆n−j(c
(n−j)
k−j ) = c

(n−j−1)
k−j−1 (1 ≤ j ≤ n− 1).
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Proof. (1) and (3) follow from the definition of ∆i and the fact that
c
(n)
k = ek(t1, . . . , tn) (resp. c(n−j)k−j = ek−j(t1, . . . , tn−j)) is invariant under the

action of si (1 ≤ i ≤ n− 1) (resp. si (1 ≤ i ≤ n− j − 1)).
By (4.3), we have, for 1 ≤ i ≤ n− 1,

(4.5) ∆i(tj) =


1 (j = i),
−1 (j = i+ 1),
0 (j 6= i, i+ 1)

and

(4.6) ∆n(tj) =
{

2 (j = n),
0 (j 6= n).

Then we compute
n∑
k=0

∆n(c(n)
k ) = ∆n

( n∏
i=1

(1 + ti)
)

= ∆n

(n−1∏
i=1

(1 + ti)
)

(1 + tn) + sn

(n−1∏
i=1

(1 + ti)
)
∆n(1 + tn)

= 2
n−1∏
i=1

(1 + ti) = 2
n−1∑
k=0

c
(n−1)
k

by (3.2) and (4.6). From this, (2) follows. (4) follows from a similar compu-
tation.

By this lemma, we deduce that

∆w(ck) =
{

2 if w = sn−k+1 · · · sn−1sn,

0 otherwise.
Therefore, for 1 ≤ k ≤ n, in H∗(SO(2n+ 1)/Tn; Z) we have

ck = 2Zn−k+1,...,n−1,n.

Since γk is defined by ck=2γk and H∗(SO(2n+ 1)/Tn; Z) is torsion free, we
see that

γk = Zn−k+1,...,n−1,n.

Consequently, we obtain the following result.

Proposition 4.3. In Theorem 4.1, the relation between the ring gener-
ators and the Schubert classes is given by

t1 = Z1,

ti = −Zi−1 + Zi (2 ≤ i ≤ n− 1),
tn = −Zn−1 + 2Zn,
γk = Zn−k+1,...,n−1,n (1 ≤ k ≤ n).
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In particular , we can take Z1, . . . , Zn, Zn−1,n, . . . , Z12···n−1,n as the ring gen-
erators of H∗(SO(2n+ 1)/Tn; Z).

Remark 4.4. The standard projection p from SO(2n + 1)/Tn to
SO(2n+ 1)/U(n) induces an injection

p∗ : H∗(SO(2n+ 1)/U(n); Z) ↪→ H∗(SO(2n+ 1)/Tn; Z).

The cohomology ring H∗(SO(2n + 1)/U(n); Z) has a Z-basis of Schubert
classes {σλ} indexed by strict partitions λ contained in the “staircase” %n =
(n, n− 1, . . . , 1). Observe that the generators Zn−k+1,...,n−1,n (1 ≤ k ≤ n) in
Proposition 4.3 are the p∗-images of the “special Schubert classes” σ(k) (1 ≤
k ≤ n) that were used by P. Pragacz to describe the cohomology ring of
SO(2n+ 1)/U(n) (see [17, Theorem 6.17]).

The case of the even special orthogonal group SO(2n) is almost identical
to that of SO(2n+ 1). So we only exhibit the data and results. Let

Tn =





cos 2πt1 − sin 2πt1
sin 2πt1 cos 2πt1

. . .

cos 2πtn − sin 2πtn
sin 2πtn cos 2πtn




be the standard maximal torus of SO(2n). Then we have an isomorphism

H∗(BTn; Z) = Z[t1, . . . , tn].

The system of simple roots is

Π = {α1 = t1 − t2, α2 = t2 − t3, . . . , αn−1 = tn−1 − tn, αn = tn−1 + tn}.

The corresponding fundamental weights {ωi}1≤i≤n are

(4.7)
ωi = t1 + · · ·+ ti (1 ≤ i ≤ n− 2),

ωn−1 = 1
2(t1 + · · ·+ tn−1 − tn),

ωn = 1
2(t1 + · · ·+ tn−1 + tn).

Let si (1 ≤ i ≤ n) be the reflection corresponding to αi (1 ≤ i ≤ n).
Then W (SO(2n)) is finite and is generated by si (1 ≤ i ≤ n) which act on
{ti}1≤i≤n as permutations and an even number of sign changes:

(4.8) W (SO(2n)) = 〈s1, . . . , sn〉 ∼= Sn n (Z/2Z)n−1.

The Borel presentation of H∗(SO(2n)/Tn; Z) is given by
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Theorem 4.5 (Toda–Watanabe [19, Corollary 2.2]). The integral coho-
mology ring of SO(2n)/Tn is

H∗(SO(2n)/Tn; Z) = Z[t1, . . . , tn, γ1, . . . , γn−1]/
ci − 2γi (1 ≤ i ≤ n− 1), cn

γ2k +
2k−1∑
i=1

(−1)iγiγ2k−i (1 ≤ k ≤ n− 1)

 ,

where we denote by the same symbols ti ∈ H2(SO(2n)/Tn; Z) the images of
ti ∈ H2(BTn; Z) under the homomorphism c, ci = ei(t1, . . . , tn) (1 ≤ i ≤ n),
and γi = 0 for i ≥ n.

By (4.7), we have

(4.9)

t1 = ω1,

ti = −ωi−1 + ωi (2 ≤ i ≤ n− 2),
tn−1 = −ωn−2 + ωn−1 + ωn,

tn = −ωn−1 + ωn.

Since c(ωi) = Zi, it follows from (4.9) that

(4.10)

t1 = Z1,

ti = −Zi−1 + Zi (2 ≤ i ≤ n− 2),
tn−1 = −Zn−2 + Zn−1 + Zn,

tn = −Zn−1 + Zn.

By (4.9), we have, for 1 ≤ i ≤ n− 1,

(4.11) ∆i(tj) =


1 (j = i),
−1 (j = i+ 1),
0 (j 6= i, i+ 1)

and

(4.12) ∆n(tj) =


1 (j = n− 1),
1 (j = n),
0 (j 6= n− 1, n).

Then we obtain the following quite similarly to Lemma 4.2.

Lemma 4.6. For fixed k, 1 ≤ k ≤ n− 1, we have

(1) ∆i(c
(n)
k ) = 0 (1 ≤ i ≤ n− 1),

(2) ∆n(c(n)
k ) = 2c(n−2)

k−1 ,

(3) ∆i(c
(n−j)
k−j+1) = 0 (1 ≤ i ≤ n− j − 1, 2 ≤ j ≤ n− 1),

(4) ∆n−j(c
(n−j)
k−j+1) = c

(n−j−1)
k−j (2 ≤ j ≤ n− 1).
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By this lemma, we deduce that

∆w(c1) =
{

2 if w = sn,

0 otherwise;

∆w(ck) =
{

2 if w = sn−k · · · sn−2sn,

0 otherwise
for 2 ≤ k ≤ n− 1. Therefore

c1 = 2Zn, ck = 2Zn−k,...,n−2,n (2 ≤ k ≤ n− 1)

inH∗(SO(2n)/Tn; Z). Since γk is defined by ck=2γk andH∗(SO(2n)/Tn; Z)
is torsion free, we see that

γ1 = Zn, γk = Zn−k,...,n−2,n (2 ≤ k ≤ n− 1).

Consequently, we obtain the following result.

Proposition 4.7. In Theorem 4.5, the relation between the ring gener-
ators and the Schubert classes is given by

t1 = Z1,

ti = −Zi−1 + Zi (2 ≤ i ≤ n− 2),
tn−1 = −Zn−2 + Zn−1 + Zn,

tn = −Zn−1 + Zn,

γ1 = Zn,

γk = Zn−k,...,n−2,n (2 ≤ k ≤ n− 1).

In particular , we can take Z1, . . . , Zn, Zn−2,n, . . . , Z12···n−2,n as the ring gen-
erators of H∗(SO(2n)/Tn; Z).

Remark 4.8. The standard projection p : SO(2n)/Tn → SO(2n)/U(n)
induces an injection

p∗ : H∗(SO(2n)/U(n); Z) ↪→ H∗(SO(2n)/Tn; Z).

The cohomology ring H∗(SO(2n)/U(n); Z) has a Z-basis of Schubert classes
{σλ} indexed by strict partitions λ contained in %n−1 = (n − 1, . . . , 1).
Observe that the generators Zn, Zn−k,...,n−2,n (2 ≤ k ≤ n − 1) in Propo-
sition 4.7 are the p∗-images of the special Schubert classes σ(k) (1 ≤ k ≤
n− 1) that were also used by P. Pragacz to describe the cohomology ring of
SO(2n)/U(n) (see [17, Theorem 6.17′]).

5. The case of G2. In this section, we concentrate on the exceptional
Lie group G2. Let T be a maximal torus of G2. Following [4], we take the
system of simple roots Π = {α1, α2} and the corresponding fundamental
weights {ω1, ω2}. Then we can identify

H∗(BT ; Z) = Z[ω1, ω2].
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Let si (i = 1, 2) be the reflection corresponding to the simple root αi
(i = 1, 2). Then the Weyl group W (G2) of G2 is finite and is generated
by si (i = 1, 2):

(5.1) W (G2) = 〈s1, s2〉, s21 = s22 = 1, (s1s2)6 = 1.

Now we review the Borel presentation of H∗(G2/T ; Z). We put

(5.2)
t1 = −ω1, t2 = −ω1 + ω2, t3 = 2ω1 − ω2,

ci = ei(t1, t2, t3).

Then we can write

H∗(BT ; Z) = Z[t1, t2, t3]/(c1).

The action of W (G2) on {t1, t2, t3} is given by Table 1.

Table 1

s1 s2

t1 −t2 t1

t2 −t1 t3

t3 −t3 t2

Remark 5.1. The elements {ti}i=1,2,3 are derived from the natural in-
clusion T ⊂ SU(3) ⊂ G2.

The integral cohomology ring of G2/T was first determined by Bott–
Samelson [3], but we prefer to use the presentation due to Toda–Watanabe.

Theorem 5.2 (Bott–Samelson [3], Toda–Watanabe [19]). The integral
cohomology ring of G2/T is

H∗(G2/T ; Z) = Z[t1, t2, t3, γ3]/(%1, %2, %3, %6),

where %1 = c1, %2 = c2, %3 = c3 − 2γ3, %6 = γ2
3 , and we denote by the

same symbols ti ∈ H2(G2/T ; Z) the images of ti ∈ H2(BT ; Z) under the
homomorphism c.

By (5.1), the elements of the Weyl group W (G2) are given by the fol-
lowing table.

l(w) Elements of W (G2)

0 1

1 s1 s2

2 s1s2 s2s1

3 s1s2s1 s2s1s2

4 s1s2s1s2 s2s1s2s1

5 s1s2s1s2s1 s2s1s2s1s2

6 s1s2s1s2s1s2
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Therefore the corresponding Schubert basis for H∗(G2/T ; Z) is as follows:

deg 0 2 4 6 8 10 12

1 Z1 Z12 Z121 Z1212 Z12121

Z2 Z21 Z212 Z2121 Z21212 Z121212

Here we denote Zsi simply by Zi and so on. We wish to express the algebra
generators {t1, t2, t3, γ3} in terms of Schubert classes. Since c(ωi) = Zi (i =
1, 2), it follows from (5.2) that

(5.3) t1 = −Z1, t2 = −Z1 + Z2, t3 = 2Z1 − Z2.

Next we can put
γ3 = a121Z121 + a212Z212

for some integers a121, a212 and we need to determine the coefficients
a121, a212. The characteristic homomorphism c is not surjective over Z and
γ3 is not in its image, but 2γ3 = c3 is. Thus putting

c3 = b121Z121 + b212Z212

for some integers b121, b212, we can compute the coefficients b121, b212 using
the divided difference operators. By (5.2), we have

c3 = t1t2t3 = 2ω3
1 − 3ω2

1ω2 + ω1ω
2
2.

Therefore we derive

b121 = ∆1∆2∆1(c3) = ∆1∆2∆1(2ω3
1 − 3ω2

1ω2 + ω1ω
2
2) = −2,

b212 = ∆2∆1∆2(c3) = ∆2∆1∆2(2ω3
1 − 3ω2

1ω2 + ω1ω
2
2) = 0

from (3.1), (3.2) and Table 1. Thus we have c3 = −2Z121 in H6(G2/T ; Z).
Since γ3 is defined by c3 = 2γ3 and H∗(G2/T ; Z) is torsion free, we see that
γ3 = −Z121. Consequently, we obtain the following result.

Proposition 5.3. In Theorem 5.2, the relation between the ring gener-
ators {t1, t2, t3, γ3} and the Schubert classes is given by

t1 = −Z1, t2 = −Z1 + Z2, t3 = 2Z1 − Z2,

γ3 = −Z121.

In particular , we can take Z1, Z2, Z121 as the ring generators of H∗(G2/T ; Z).

6. The case of F4. In this section, we deal with the exceptional Lie
group F4. Let T be a maximal torus of F4. Following [4], we take the system
of simple roots Π = {αi}1≤i≤4 and the corresponding fundamental weights
{ωi}1≤i≤4. Then we can identify

H∗(BT ; Z) = Z[ω1, ω2, ω3, ω4].
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Let si (1 ≤ i ≤ 4) be the reflection corresponding to αi (1 ≤ i ≤ 4). Then
W (F4) is finite and

(6.1)

W (F4) = 〈s1, s2, s3, s4〉,
s21 = s22 = s23 = s24 = 1,
(s1s2)3 = (s3s4)3 = (s2s3)4 = 1,
s1s3 = s3s1, s1s4 = s4s1, s2s4 = s4s2.

Now we review the Borel presentation of H∗(F4/T ; Z). We put

(6.2)

t1 = −ω4,

t2 = ω1 − ω4,

t3 = −ω1 + ω2 − ω4,

t4 = −ω2 + 2ω3 − ω4,

ci = ei(t1, . . . , t4),
t = 1

2c1 = ω3 − 2ω4.

Then we can write

H∗(BT ; Z) = Z[t1, t2, t3, t4, t]/(c1 − 2t).

The action of W (F4) on {ti}1≤i≤4 is given by Table 2, where blanks indicate
the trivial action.

Table 2

s1 s2 s3 s4

t1 t1 − t
t2 t3 t2 − t
t3 t2 t4 t3 − t
t4 t3 −t4 t4 − t
t t− t4 −t

Remark 6.1. The elements {ti}1≤i≤4 and t are derived from the natural
inclusion T ⊂ Spin(9) ⊂ F4.

The integral cohomology ring of F4/T was determined by Toda–Wata-
nabe [19].

Theorem 6.2 (Toda–Watanabe [19, Theorem A]). The integral coho-
mology ring of F4/T is

H∗(F4/T ; Z) = Z[t1, t2, t3, t4, t, γ3, γ4]/(%1, %2, %3, %4, %6, %8, %12),

where

%1 = c1 − 2t, %2 = c2 − 2t2, %3 = c3 − 2γ3,
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%4 = c4 − 4tγ3 + 8t4 − 3γ4,

%6 = γ2
3 − 3t2γ4 − 4t3γ3 + 8t6,

%8 = 3γ2
4 + 6tγ3γ4 − 3t4γ4 − 13t8,

%12 = γ3
4 − 6t4γ2

4 + 12t8γ4 − 8t12,

and we denote by the same symbols ti ∈ H2(F4/T ; Z) the images of ti ∈
H2(BT ; Z) under c.

Remark 6.3. In [19], Toda and Watanabe described H∗(F4/T ; Z) using
the inclusion H∗(F4/Spin(9); Z) ↪→ H∗(F4/T ; Z) and the known structure
of H∗(F4/Spin(9); Z). Theorem 6.2 is a rewritten form of their result in
terms of the W (F4)-invariants.

By (6.1), the elements of the Weyl group W (F4) of length ≤ 4 are given
by the following table.

l(w) Elements of W (F4)

0 1

1 s1 s2 s3 s4

2 s1s2 s1s3 s1s4 s2s1 s2s3

s2s4 s3s2 s3s4 s4s3

3 s1s2s1 s1s2s3 s1s2s4 s1s3s2 s1s3s4

s1s4s3 s2s1s3 s2s1s4 s2s3s2 s2s3s4

s2s4s3 s3s2s1 s3s2s3 s3s2s4 s3s4s3

s4s3s2

4 s1s2s1s3 s1s2s1s4 s1s2s3s2 s1s2s3s4 s1s2s4s3

s1s3s2s1 s1s3s2s3 s1s3s2s4 s1s3s4s3 s1s4s3s2

s2s1s3s2 s2s1s3s4 s2s1s4s3 s2s3s2s1 s2s3s2s3

s2s3s2s4 s2s3s4s3 s2s4s3s2 s3s2s1s3 s3s2s1s4

s3s2s3s4 s3s2s4s3 s3s4s3s2 s4s3s2s1 s4s3s2s3

We have the corresponding Schubert basis {Zw}w∈W (F4). As before, we
denote Zsi simply by Zi and so on. We wish to express the algebra genera-
tors {t1, t2, t3, t4, t, γ3, γ4} in terms of Schubert classes. Since c(ωi) = Zi, it
follows from (6.2) that

(6.3)

t1 = −Z4,

t2 = Z1 − Z4,

t3 = −Z1 + Z2 − Z4,

t4 = −Z2 + 2Z3 − Z4,

t = Z3 − 2Z4.
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Next we can put

γ3 =
∑
l(w)=3

awZw, γ4 =
∑
l(w)=4

awZw

for some integers aw. We wish to determine the coefficients aw. By Theo-
rem 6.2, we have

(6.4)
2γ3 = c3,

3γ4 = c4 − 4tγ3 + 8t4 = c4 − 2tc3 + 8t4.

Therefore 2γ3 and 3γ4 are contained in the image of c. So as in the case of G2,
we apply the divided difference operators to the right hand side of (6.4). The
result can be seen in the following table.

∆121 ∆123 ∆124 ∆132 ∆134 ∆143 ∆213 ∆214

c3 0 2 0 0 0 0 0 0

∆232 ∆234 ∆243 ∆321 ∆323 ∆324 ∆343 ∆432

c3 0 −2 −4 0 0 0 6 0

Here we denote ∆1∆2∆1 simply by ∆121 and so on.
Thus we have

c3 = 2Z123 − 2Z234 − 4Z243 + 6Z343

= 2(Z123 − Z234 − 2Z243 + 3Z343)

in H6(F4/T ; Z). Since γ3 is defined by c3 = 2γ3 and H∗(F4/T ; Z) is torsion
free, we see that

(6.5) γ3 = Z123 − Z234 − 2Z243 + 3Z343.

Similarly we obtain

∆1213 ∆1214 ∆1232 ∆1234 ∆1243 ∆1321 ∆1323 ∆1324 ∆1343

c4 − 2tc3 + 8t4 0 0 0 3 −30 0 12 0 0

∆1432 ∆2132 ∆2134 ∆2143 ∆2321 ∆2323 ∆2324 ∆2343 ∆2432

c4 − 2tc3 + 8t4 0 0 0 0 0 0 0 0 0

∆3213 ∆3234 ∆3243 ∆3432 ∆4321 ∆4323

c4 − 2tc3 + 8t4 0 −3 30 0 0 −24

Thus we have

c4 − 2tc3 + 8t4 = 3Z1234 − 30Z1243 + 12Z1323 − 3Z3234 + 30Z3243 − 24Z4323

= 3(Z1234 − 10Z1243 + 4Z1323 − Z3234 + 10Z3243 − 8Z4323)
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in H8(F4/T ; Z). Since γ4 is defined by c4−2tc3+8t4 = 3γ4 and H∗(F4/T ; Z)
is torsion free, we see that

(6.6) γ4 = Z1234 − 10Z1243 + 4Z1323 − Z3234 + 10Z3243 − 8Z4323.

Unfortunately, from (6.5) and (6.6), we cannot decide which Schubert
classes are indecomposable. This leads us to the use of the Giambelli formula.
We need the following data.

(1) A set of positive roots of F4 is given by

∆+ =

{
ti ± tj (1 ≤ i < j ≤ 4),
ti (1 ≤ i ≤ 4), 1

2(t1 ± t2 ± t3 ± t4)

}
.

(2) The longest element w0 of the Weyl group W (F4) is given by

w0 = s1s2s1s3s2s1s3s2s3s4s3s2s1s3s2s3s4s3s2s1s3s2s3s4.

Then, using the Giambelli formula (Theorem 3.3), we obtain the following
result.

Lemma 6.4. In (6.5) and (6.6), each Schubert class is expressed in terms
of ti (1 ≤ i ≤ 4), t, γ3, γ4 as follows:

Z123 = γ3 − 2t31 + 3t21t− 2t1t2,

Z234 = −t31,
Z243 = −2t31 + 3t21t− t1t2,
Z343 = −t31 + t21t,

Z1234 = −γ4 + (t1 − 2t)γ3 + t31t− t21t2 + 3t4,

Z1243 = γ4 + (−2t1 + 2t)γ3 + 2t41 − 4t31t+ 3t21t
2 − 3t4,

Z1323 = −γ4 − tγ3 + 2t41 − 4t31t+ 4t21t
2 − 2t1t3 + 3t4,

Z3234 = γ4 + (−t1 + 2t)γ3 + t41 − t31t+ t21t
2 − 3t4,

Z3243 = t41 − 2t31t+ t21t
2,

Z4323 = −γ4 + (2t1 − 2t)γ3 − t1t3 + 3t4.

In particular , Z123 and Z1234 are indecomposable in the ring H∗(F4/T ; Z).

Consequently, we obtain the following result.

Proposition 6.5. In Theorem 6.2, the relation between the ring gener-
ators {t1, t2, t3, t4, t, γ3, γ4} and the Schubert classes is given by

t1 = −Z4,

t2 = Z1 − Z4,

t3 = −Z1 + Z2 − Z4,

t4 = −Z2 + 2Z3 − Z4,
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t = Z3 − 2Z4,

γ3 = Z123 − Z234 − 2Z243 + 3Z343,

γ4 = Z1234 − 10Z1243 + 4Z1323 − Z3234 + 10Z3243 − 8Z4323.

Furthermore,

Z123 = γ3 − 2t31 + 3t21t− 2t1t2,

Z1234 = −γ4 + (t1 − 2t)γ3 + t31t− t21t2 + 3t4,

and we can take Z1, Z2, Z3, Z4, Z123, Z1234 as the ring generators of
H∗(F4/T ; Z).

7. The Chow rings of SO(n), Spin(n), G2 and F4. In this section,
using our description of the integral cohomology rings of the flag manifolds
of types Bn, Dn, G2 and F4 (see Sections 4–6) and a remark of Grothendieck,
we compute the Chow rings of the corresponding complex algebraic groups.

As in Section 2, let K be a compact simply connected simple Lie group,
T its maximal torus, G = KC the complexification of K and B a Borel sub-
group of G containing T . Let Ai(·) denote the Chow group of codimension i
cycles up to rational equivalence and A(·) =

⊕
i≥0A

i(·). Given any charac-
ter χ of B, that is, a homomorphism of B into C×, we have the associated
line bundle Lχ over G/B, which defines an element of A1(G/B), denoted
by c(χ). This induces a homomorphism

c : B̂ → A1(G/B),

where B̂ denotes the character group of B. Extending this homomorphism
c by multiplicativity to the symmetric algebra S(B̂) of B̂, one obtains a
homomorphism

(7.1) c : S(B̂)→ A(G/B),

which is also called the characteristic homomorphism.
Then Grothendieck’s remark ([9, p. 21, Remarques 2◦]) allows us to

obtain A(G) as the quotient of A(G/B) by the ideal generated by c(B̂).
Denote by TG : A(G/B)→ A(G) the canonical map onto the quotient. It is
known ([9, Lemme 10]) that the Chow ring A(G/B) of G/B is isomorphic to
the integral cohomology ring H∗(G/B; Z) of G/B. Under this isomorphism,
the Schubert variety Xw0w corresponds to the Schubert class Zw and the
above characteristic homomorphism (7.1) coincides with the characteristic
homomorphism (2.1).

Thus, in order to determine the Chow ring A(G), we need only compute
the quotient ring of H∗(K/T ; Z) by the ideal generated by c(H2(BT ; Z)).
Since K is assumed to be simply connected, H2(BT ; Z) ∼= H2(K/T ; Z).
Therefore we compute the quotient ring H∗(K/T ; Z)/(H2(K/T ; Z)). We
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will show how to do this for F4. By Theorem 6.2, we have

H∗(F4/T ; Z)/(t1, t2, t3, t4, t) = Z[γ3, γ4]/(2γ3, 3γ4, γ
2
3 , γ

3
4).

Taking Proposition 6.5 into account, we can replace γ3, γ4 with Z123, Z1234

respectively. Thus we obtain the following

Theorem 7.1. If G is of type F4, we have

A(F4) = Z[X3, X4]/(2X3, 3X4, X
2
3 , X

3
4 ),

where X3 (resp. X4) is the image under TG of the element of A(G/B) defined
by the Schubert variety Xw0s1s2s3 (resp. Xw0s1s2s3s4).

In a similar way, we can compute the Chow rings of SO(n), Spin(n)
and G2. The results are summarized as follows.

Theorem 7.2. If G is of type Bn (SO(2n + 1) or Spin(2n + 1)) and
xi (1 ≤ i ≤ n) is the element of A(G/B) defined by the Schubert variety
Xw0sn−i+1···sn−1sn. Then

A(SO(2n+ 1)) = Z[X1, X3, X5, . . . , X2[(n+1)/2]−1]/(2Xi, X
pi
i ),

A(Spin(2n+ 1)) = Z[X3, X5, . . . , X2[(n+1)/2]−1]/(2Xi, X
pi
i ),

where
pi = 2[log2(n/i)]+1, Xi = TG(xi).

Theorem 7.3. If G is of type Dn (SO(2n) or Spin(2n)) and x1 (resp.
xi (2 ≤ i ≤ n−1)) is the element of A(G/B) defined by the Schubert variety
Xw0sn (resp. Xw0sn−i...sn−2sn (2 ≤ i ≤ n− 1)), then

A(SO(2n)) = Z[X1, X3, X5, . . . , X2[n/2]−1]/(2Xi, X
pi
i ),

A(Spin(2n)) = Z[X3, X5, . . . , X2[n/2]−1]/(2Xi, X
pi
i ),

where
pi = 2[log2

n−1
i

]+1, Xi = TG(xi).

Theorem 7.4. If G is of type G2, we have

A(G2) = Z[X3]/(2X3, X
2
3 ),

where X3 is the image under TG of the element of A(G/B) defined by the
Schubert variety Xw0s1s2s1.

We observe that our results obtained in this section agree with those of
Marlin [13].
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