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A description based on Schubert classes of
cohomology of flag manifolds

by

Masaki Nakagawa (Takamatsu)

Abstract. We describe the integral cohomology rings of the flag manifolds of types
B, D,,G2 and Fy in terms of their Schubert classes. The main tool is the divided differ-
ence operators of Bernstein—Gelfand—Gelfand and Demazure. As an application, we com-
pute the Chow rings of the corresponding complex algebraic groups, recovering thereby
the results of R. Marlin.

1. Introduction. Let K be a compact connected Lie group and 7' its
maximal torus. The homogeneous space K /T, called the flag manifold, plays
an important role in algebraic topology, algebraic geometry and representa-
tion theory.

In this paper, we are concerned with the integral cohomology of the flag
manifold K/T. As is well known, there are two descriptions of this cohomol-
ogy. The first one is the “Borel presentation”, due to A. Borel [2], which iden-
tifies the rational cohomology ring of K /T with the quotient ring of a polyno-
mial ring by its ideal generated by W-invariants of positive degrees, where W
is the Weyl group of K. Combining Borel’s result and the known structures
of the mod p cohomology rings of K, H. Toda gave general descriptions of the
integral cohomology rings of K/T for all K simple [18]. So far the integral co-
homology rings of flag manifolds for all compact simply connected simple Lie
groups are determined (see [2], [3], [19], [14], [15]). The second is the “Schu-
bert presentation” which describes the integral cohomology H*(K/T;7Z) in
terms of the Schubert classes corresponding to the Schubert varieties derived
from the Bruhat decomposition of G = KC, the complexification of K.

In the Borel presentation, which is given by generators and relations,
the ring structure of H*(K/T;Z) can be relatively easy to obtain. How-
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ever, the generators in this presentation have little geometric meaning. In
contrast, in the Schubert presentation, the Schubert classes correspond to
the geometric objects—the Schubert varieties—and they form an additive
basis for H*(K/T;Z) ([5]). As a disadvantage, the multiplicative structure
among them is closely related to the intersection multiplicities, and is highly
complicated in general.

Up to now, there have been several attempts to establish a connection
between the two descriptions for some types of spaces (see, e.g., [1], [8],
[11]). The main aim of this paper also falls in this category. More precisely,
we express the ring generators in the Borel presentation of H*(K/T;Z) for
K = 50(n), G2 and F}y in terms of Schubert classes. For this, we make use of
the “divided difference operators” introduced independently by Bernstein—
Gelfand-Gelfand [1] and Demazure [6]. For K as above, there exist extra
generators of degrees greater than two. So we cannot apply the divided
difference operators directly to these higher generators. Fortunately, using
the classical fact that, rationally, the cohomology of K /T is generated as
a ring by two-dimensional elements, and the integral cohomology of K/T
has no torsion, we can carry out the computation. An additional aim of this
paper is to apply our results to recovering the Chow rings of the complex
algebraic groups SO(n), Spin(n), Go and Fy4, which were originally computed
by R. Marlin [13]. (In this paper, we denote the compact Lie groups, e.g., by
SO(n), Spin(n), G, F4, while their complexifications by SO(n), Spin(n), Ga,
F4 respectively.) In order to determine the Chow rings of the corresponding
flag manifolds, Marlin relied on the result of Demazure [6] which describes
them as the “cohomology rings of the root system”, and he made elaborate
computations. In this paper, we simplify Marlin’s computations, using the
Borel presentation of H*(K/T;Z) and our result mentioned above.

The paper is organized as follows. In Section 2, we briefly review the
cohomology of flag manifolds, emphasizing the difference between the Borel
and Schubert presentations. In Section 3, we introduce the divided difference
operators of Bernstein—Gelfand—Gelfand and Demazure and collect the re-
sults used later. Sections 4 to 6 are devoted to computations, and we obtain
there the main results of this paper (see Propositions 4.3, 4.7, 5.3 and 6.5).
In Section 7, following Grothendieck’s remark (]9, p. 21, Remarques 2°]), we
compute the Chow rings of SO(n), Spin(n), G2 and F4 (see Theorems 7.2,
7.3, 74 and 7.1).

We observe that the method of this paper can also be applied to the
exceptional Lie groups Fg, F7 and Eg. Indeed, we succeeded in computing
the Chow rings of the complex algebraic groups Eg and E7 in [12].

Acknowledgments. Firstly, we thank Julius Korbas for reading care-
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2. The cohomology of flag manifolds. In this section we briefly
review the Borel and Schubert presentations of the cohomology of flag man-
ifolds.

We introduce the notation that is needed in the following.

e K: a compact simply connected simple Lie group of rank [;

e T': a maximal torus of K;

e G = KC: a complexification of K

e B: a Borel subgroup containing T’

e t: the Lie algebra of T'; t*: the dual space of t;

e (-|-): the invariant inner product on t (or on t*);

e A C t*: the root system with respect to T’

e AT: the set of positive roots, A~ = —AT;

e [T ={ai,...,qq}: the system of simple roots;

e oV =2a/(a]a): the coroot corresponding to o € A;

o w; (1 <4 <1): the ith fundamental weight, satisfying (w; | o) = dij;

® 5; = 5o, (1 < i <): the reflection corresponding to the simple root
i

o W =W(K): the Weyl group of K generated by the simple reflections
S = {817"->Sl};

e [(w): the length of an element w € W with respect to {s1,...,s};

e wo: the longest element of W;

e ¢;(x1,...,xy): the ith elementary symmetric function in variables
L1y esLp.

Now we review the Borel presentation. The inclusion T <— K induces
the classical fibration
K/T % BT % BK,

where BT (resp. BK) denotes the classifying space of T (resp. K). The
induced homomorphism

(2.1) c=1":H"(BT;Z) — H"(K/T;Z)

is called the characteristic homomorphism and plays a crucial role in Borel’s
work. The Weyl group W acts naturally on 7', hence on H?(BT;Z). We ex-
tend this natural action of W to the whole H*(BT'; Z) and also to H*(BT; F)
= H*(BT;Z) ®z F, where F is any field. We denote by H*(BT;Z)" (resp.
H*(BT;F)V) the ring of W-invariants in H*(BT;Z) (resp. H*(BT;F)).
Then one of the main results of Borel can be stated as follows.
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THEOREM 2.1 (Borel [2]). Let F be a field of characteristic zero. Then
the characteristic homomorphism induces an isomorphism

¢: H*(BT;F)/(HT(BT;F)YV) — H*(K/T;F),
where (HY(BT;F)V) is the ideal in H*(BT;F) generated by the W -invar-
iants of positive degrees.

In particular, one can reduce the computation of the rational cohomol-
ogy ring H*(K/T;Q) to that of the ring of invariants H*(BT;Q)". Ob-
serve that H*(K/T;Q) is generated by H?(K/T;Q) as a ring. In order to
determine the integral cohomology ring H*(K/T;Z), we need further con-
siderations. In [18], Toda established a method to describe the integral coho-
mology ring H*(K/T;7Z) by a minimal system of generators and relations,
from the mod p cohomology rings H*(K;Z/pZ) and the rational cohomol-
ogy ring H*(K/T;Q). In general, besides the two-dimensional generators,
there are extra generators of higher degrees, and hence the characteristic
homomorphism c¢ is not surjective over Z in that case. Along the lines of
Toda’s method, the integral cohomology rings of flag manifolds for all com-
pact simply connected simple Lie groups have been computed (see [2], [3],
[19], [14], [15]). However, as mentioned in the introduction, the generators
have less geometric meaning in the Borel presentation.

We pass to reviewing the Schubert presentation. Recall the Bruhat de-
composition,

G =[] BuB,
weWw
where w denotes any representative of w in W = Ng(T)/T; Ng(T) is the
normalizer of T" in K. It induces a cell decomposition,

G/B= [] BwB/B,
weW

where

X2 = BiB/B = C{®)
is called the Schubert cell. Note that we have a homeomorphism K/T = G /B
by the Iwasawa decomposition. The Schubert variety X,, is defined to be the
closure of X,. Then it is known that

X, =[] X5,
v<w

where < is the Bruhat-Chevalley ordering. The fundamental class [X,]
of Xy lies in Hyy)(G/B;Z). We define the cohomology class Z, €
H?()(GQ/B;Z) as the Poincaré dual of [Xy,w] € Hon_oi(w)(G/B; Z), where
N is the complex dimension of the flag manifold G/B. We call Z,, the
Schubert class. The Schubert classes {Z, }wew form an additive basis for
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H*(G/B;Z). We refer to {Z, }wew as the Schubert basis. In order to com-
plete the description of H*(G/B;Z), we have to compute the intersection
multiplicities. Namely, given u,v € W, we can put

Zu-Zy= Y a7
weW
l(uw)+l(v)=l(w)
for some integers a;,,, and we have to determine these “structure con-
stants” a;,,,. For this problem, several results are available. For example,
we have the following

THEOREM 2.2 (Chevalley formula [5]). If w € W and o € II, then
Zsa : Zw = Z (/BV |Wo<)Zws,@-

BeEAT
l(wsg)=l(w)+1
For recent developments in the Schubert calculus, in particular, on mul-
tiplying Schubert classes, see also [7], [16].

3. Schubert calculus on flag manifolds. As reviewed in the previous
section, there are two different ways of describing the integral cohomology
ring of K/T, and therefore we have two bases for H*(K/T;Z). One is the “al-
gebraic basis” derived from the Borel presentation and the other is the “geo-
metric basis” {Zy, }wew consisting of the Schubert classes. It is interesting to
know how these two bases are related. More precisely, we wish to express the
ring generators obtained in the Borel presentation in terms of the Schubert
basis. Our main tool will be the divided difference operators introduced inde-
pendently by Bernstein-Gelfand—Gelfand [1] and Demazure [6]. We now re-
call their definition. For a € A, we define an endomorphism of H*(BT'; Z) by

Aa(u) = 1“2"‘(“) u e H*(BT;Z).

DEFINITION 3.1. For w € W, we define the operator
Ay =Ag, 00 A

on H*(BT}; Z) lowering the degree by 2l(w), where w = s;, - - - 54, is a reduced
decomposition of w.

aik

One can show that the operator A,, is well defined, i.e., it is independent
of the choice of the reduced decomposition of w.

Note that the divided difference operators A,, o € A, are characterized
by the following two properties:

(3.1) Aq(wg) = dags,
(3.2) Ap(uv) = Ag(u)v + so(u)An(v)
for u,v € H*(BT;Z).
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The characteristic homomorphism
c: H(BT;Z) — H*(K/T;Z)

can be described by the divided difference operators. Since {Z, }wew is a
Z-basis for H*(K/T;7Z), we can put

C(f) = Z Ay Loy ay € 7,

l(w)=k

for a polynomial f € H?*(BT;Z). So we have to determine the coefficients
aq- This problem was solved independently by Bernstein—Gelfand—Gelfand
[1] and Demazure [6].

THEOREM 3.2 (Bernstein-Gelfand—Gelfand [1], Demazure [6]). For a
polynomial f € H**(BT;Z), we have

(=Y Aulf)Zu
l(w)=k
In particular, for o € I, we have

c(wy) = Zs,

In addition, using the divided difference operators, we can express an
arbitrary Schubert class Z,, as a polynomial in the variables Z,,. This is
the Giambelli formula which we now recall (for details, see [10, Section 3)).
Consider the element

Then we have

THEOREM 3.3 (Giambelli formula). The Schubert class Z,, correspond-
ing to w € W is given by

a1

In Sections 4-6, we exploit the above theorems to find the correspondence
between “algebraic bases” and “geometric bases” in the cases of K = SO(n),
G and Fjy.

4. The cases of B,, and D,,. In this section, we consider the special
orthogonal group SO(n). First we deal with the odd special orthogonal group
SO(2n +1). Let T™ be the standard maximal torus of SO(2n + 1),
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cos2mt;  —sin 27ty

sin 27ty cos 27ty

" =
cos 2mt, —sin2wt,
sin 27t,, cos 27ty
1 J

Then we have an isomorphism
H*(BT™,Z) = Z[t1, ..., ty).
The system of simple roots is
II={a; =t —ta,aa =ta —t3,...,0n—1 = typ_1 — tn,0n =ty }.

The corresponding fundamental weights {w; }1<i<p are
wi =t +-+t; (1<i<n—1),
wn = 2t ).
Let s; (1 < i <n) be the reflection corresponding to a; (1 < i < n). Then
the Weyl group W (SO(2n + 1)) is finite and is generated by s; (1 <i < n)
which act on {tihgign as permutations and sign changes:
(4.2) W(SO2n+1)) = (s1,...,5n) = Sp X (Z/2Z)",
where S, is the symmetric group of n letters and X means semidirect prod-
uct.

Now we recall the Borel presentation of H*(SO(2n + 1)/T™;7Z), which

was probably known, in some form, already to Borel. However, in an explicit
form, it first appeared in [19] as far as the author knows.

THEOREM 4.1 (Toda-Watanabe [19, Theorem 2.1]). The integral coho-
mology ring of SO(2n +1)/T™ is
H*(SO@2n+1)/T™Z) = Zlt1, ... tn, Y1,y -y n)/

ci —2v (1 <i<n),
2%—1

Y2k + Z (—1) ' vivyan—i (1 <k <n)
i=1

(4.1)

)

where we denote by the same symbols t; € H*(SO(2n+1)/T™;Z) the images
of t; € H*(BT™;Z) under the homomorphism c, ¢; = e;(t1,...,t,) (1 <
<n), and v; =0 fori > n.

We wish to express the algebra generators {t1,...,tn,Y1,...,Vn} in terms

of Schubert classes. For simplicity, we denote the Schubert class correspond-
ing to w = s, -+ s;, by Zj,...i,, although the reduced decomposition of a
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Weyl group element may not be unique. The correspondence between ele-
ments of degree 2 is easy. By (4.1), we have

1 = w1,
(4.3) ti=—wi-1+w (2<i<n-1),
th = —Wp—1 + 2wy,

Since ¢(w;) = Z;, it follows from (4.3) that

t) = Zl)
(4.4) ti=—Zia+2 (2<i<n-—1),
tn = —Zn-1+22Z,.

Next, for 7% (1 < k < n), we can put

Yk = Z Aoy Ly

(w)=k

for some integers a,,. We need to determine the coefficients a,,. To this end,
we make use of the divided difference operators recalled in the previous
section. In this case, the characteristic homomorphism c¢ is not surjective
over Z and v, (1 < k < n) is not in the image of c¢. (Strictly speaking,
we should consider the spinor group, because the special orthogonal group
is not simply connected. In that case, v; is in the image of ¢.) However,
29, = ¢ is in the image of ¢. So we can apply Theorem 3.2 to the polynomial

ck = ex(t1,...,ty). Thus
- Y ez

l(w)=k
Let us compute Ay (ck), where l(w) = k for fixed k& (1 < k < n). For
convenience of computation, we introduce the notation

™ =eti,..tm) (1<m<n, 1<1<m),

so that ¢, = c,(cn).

We need the following auxiliary result.

LEMMA 4.2. For fized k, 1 < k < n, we have

(1) A(d™)=0(1<i<n-—1),

(2) A <>fM%%

(3) Al ) =0(1<i<n—j-1,1<j<n-1),
(4) Dpjlc =7V (1< j<n—1).
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Proof. (1) and (3) follow from the definition of A; and the fact that
cé,n) = eg(t1,...,tn) (resp. c,(:__jj) = ex—j(t1,...,tn—;)) is invariant under the
action of s; (1 <i<n-—1) (resp. s; (1 <i<n—j—1)).

By (4.3), we have, for 1 <i <n —1,

1 (=)

(4.5) Adt) =4 1 (G=i+1).
0 (j#dii+1)

and

(46) ) -{ 8;2)’

Then we compute

zn:An(ck :An(ﬁ )
k=0 =1
n—1 n—1
A”(E 1—|—tl> 1+tn)+sn(H(1+ti)>An(1 +ty)

=1
n—1 n—1
=2JJr+t)=2>"¢" "
i=1 k=0

by (3.2) and (4.6). From this, (2) follows. (4) follows from a similar compu-
tation. m

By this lemma, we deduce that

Aupler) =
() {0 otherwise.
Therefore, for 1 < k <n,in H*(SO(2n + 1)/T";Z) we have

2 ifw= Spn—k+1" " Sn—15n,

Cr = 2Zn7k+1,...,n71,n-
Since vy, is defined by ¢ =2+, and H*(SO(2n+1)/T";Z) s torsion free, we
see that

Ve = Ln—k+1,...n—1n-
Consequently, we obtain the following result.

PROPOSITION 4.3. In Theorem 4.1, the relation between the ring gener-
ators and the Schubert classes is given by

= 21,

ti=—Zia+2Z; (2<i<n-1),
th = —Zn—1+ 22y,

Ve = Zn—ktl,..m—1n (1 <k <n).
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In particular, we can take Z1, ..., Zn, Zn-1n,-- -, Z12..n—1,n aS the Ting gen-
erators of H*(SO(2n+1)/T™;,7Z).

REMARK 4.4. The standard projection p from SO(2n + 1)/T™ to
SO(2n +1)/U(n) induces an injection

p* H*(SO(2n +1)/U(n); Z) — H*(SO(2n + 1)/T™ 7).

The cohomology ring H*(SO(2n + 1)/U(n);Z) has a Z-basis of Schubert
classes {o)} indexed by strict partitions A contained in the “staircase” g, =
(n,n—1,...,1). Observe that the generators Z,_p11,. . n-1n (1 <k <n)in
Proposition 4.3 are the p*-images of the “special Schubert classes” o3, (1<
k < n) that were used by P. Pragacz to describe the cohomology ring of
SO(2n+1)/U(n) (see [17, Theorem 6.17]).

The case of the even special orthogonal group SO(2n) is almost identical
to that of SO(2n + 1). So we only exhibit the data and results. Let

cos 2wty —sin 2wty
sin 27ty cos 27ty
T =

cos2rwt, —sin2wt,

sin 27t cos 2mty,

\ /

be the standard maximal torus of SO(2n). Then we have an isomorphism
H*(BT™Z) = Z[t1, . .., ta].
The system of simple roots is
II={a; =t —to,ag =ty —t3,...,an_1 =tp_1 —tp,y =tp_1+1tn}.
The corresponding fundamental weights {w; }1<i<p are
wi =t +-+t (1<i<n—2),

(47) Wn—-1 = (tl + o1 — tn)y
Wn = 2(t1++tn71+tn)

[= DI

Let s; (1 < i < n) be the reflection corresponding to «; (1 < i < n).
Then W(SO(2n)) is finite and is generated by s; (1 < ¢ < n) which act on
{tz‘}lgign as permutations and an even number of sign changes:

(4.8) W(SO(2n)) = (s1,...,8,) = Sy x (Z/22)" L.
The Borel presentation of H*(SO(2n)/T™;7Z) is given by
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THEOREM 4.5 (Toda—Watanabe [19, Corollary 2.2]). The integral coho-
mology ring of SO(2n)/T™ is
H*(SO(2n)/T™Z) = Z[t1, ..., tny Y1y -y Yn—-1]/
¢i—2v (1<i<n-1), ¢
2k—1 ‘
Yok + Y (=D ivar—i 1<k <n—1)

i

where we denote by the same symbols t; € H*>(SO(2n)/T™; Z) the images of
t; € H?(BT™; Z) under the homomorphism c, ¢; = e;(t1,...,t,) (1 <i<n),
and v; =0 fori > n.

By (4.7), we have

tl = Wi,
(4.9) ti=—wi-1+w (2<i<n-2),
th—1 = —wWp—2 + Wn-1+ Wn,
t, = —wWp_1+ wn.
Since ¢(w;) = Z;, it follows from (4.9) that
tl = Zla
(4.10) ti=—-Zi1+2; (2<i<n-2),
tp—1 = —Zp—2+ Zn—l + Zn’
tp = —Zn—1 +Zn
By (4.9), we have, for 1 <i<mn —1,
1 (] = i)v
(4.11) Ai(tj) = -1 (j:i-i—l),
0 (j#4,i+1)
and
1 (j=n-1),
(4.12) An(t)) =K1 (j=n),

0 (jJ#n—1,n).
Then we obtain the following quite similarly to Lemma 4.2.
LEMMA 4.6. For fired k, 1 < k <n —1, we have
(1) &) =0 (1 <i<n 1)
(2) Aule”) =27,
(3) A (c,jjﬁl)_o(1§z’§n—j—1,2§jgn—1),
(4) Ay (e ) =V 2<i<n—1).
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By this lemma, we deduce that

Aufer) = {
Aufer) = {

for 2 < k <n — 1. Therefore
c1 = 2Zy, Cr = 2Zn—kz,...,n—Z,n (2 <k<n-— 1)

in H*(SO(2n)/T™; Z). Since 7y, is defined by ¢, =2, and H*(SO(2n)/T™; Z)
is torsion free, we see that

Y1 = Zn, Ve = Zn—k,...,n—2,n (2 <k<n-— 1)

2 ifw=s,,
0 otherwise;
2 ifw=s,_ - Sp_28n,

0 otherwise

Consequently, we obtain the following result.

PROPOSITION 4.7. In Theorem 4.5, the relation between the ring gener-
ators and the Schubert classes is given by

th =21,
ti=—Zi1+Z; 2<i<n-2),
th—1 = —Zn—2+ Zn_1+ Zp,
ty = —Zn-1+ 2y,
M = Zn,
Ve = Zn—k,.m—2n (2<k<n-—1).
In particular, we can take Z1, ..., Zn, Zn—2mn;- - - £12..n—2,n @S the ring gen-

erators of H*(SO(2n)/T™;Z).

REMARK 4.8. The standard projection p : SO(2n)/T™ — SO(2n)/U(n)
induces an injection

p* L H*(SO(2n)/U(n); Z) — H*(SO(2n)/T™ 7).

The cohomology ring H*(SO(2n)/U(n); Z) has a Z-basis of Schubert classes
{0} indexed by strict partitions A contained in g,—1 = (n —1,...,1).
Observe that the generators Z,, Z,_k, . n-2, (2 < k < n—1) in Propo-
sition 4.7 are the p*-images of the special Schubert classes oy (1 < &k <
n — 1) that were also used by P. Pragacz to describe the cohomology ring of
S0(2n)/U(n) (see [17, Theorem 6.17']).

5. The case of G2. In this section, we concentrate on the exceptional
Lie group Gs. Let T be a maximal torus of Ga. Following [4], we take the
system of simple roots IT = {ai,as} and the corresponding fundamental
weights {w1,wa}. Then we can identify

H*(BT;Z) = Zlw:, wa].



Cohomology of flag manifolds 285

Let s; (i = 1,2) be the reflection corresponding to the simple root «;
(1 = 1,2). Then the Weyl group W(G2) of Go is finite and is generated
by s; (i =1,2):

(5.1) W(G) = (s1,82), s1=s3=1, (s152)% = 1.

Now we review the Borel presentation of H*(G2/T;Z). We put
th = —wi, tr=—wtw, 3=2w —wy
ci = ei(t1,t2,t3).

Then we can write

(5.2)

H*(BT;Z) = Zlt1, ta,t3]/(c1).
The action of W(G2) on {t1,t2,t3} is given by Table 1.

Table 1

REMARK 5.1. The elements {t;};—123 are derived from the natural in-
clusion T' C SU(3) C Gs.

The integral cohomology ring of Ga/T was first determined by Bott—
Samelson [3], but we prefer to use the presentation due to Toda-Watanabe.

THEOREM 5.2 (Bott—Samelson [3], Toda—Watanabe [19]). The integral
cohomology ring of Go/T s

H*(GQ/T7 Z) = Z[tlv t27 t37 73]/(@17 02, 03, 06)7
where 91 = ¢1, P2 = C3, 03 = C3 — 273, 06 = ’y%, and we denote by the
same symbols t; € H?*(Gq/T;7) the images of t; € H*(BT;Z) under the
homomorphism c.
By (5.1), the elements of the Weyl group W (G2) are given by the fol-
lowing table.

I(w) Elements of W (G2)

0 1

1 S1 S2

2 S182 S281

3 515281 525182

4 81828182 82818281

5 S$15258158281 $251525182
6 515281825182
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Therefore the corresponding Schubert basis for H*(G2/T;7Z) is as follows:

deg 0 2 4 6 8 10 12
1 Zv Zia Zizn Zioi2  Zioi:
Zy  Zoy  Zaiz  Zoi21 Zoiziz Zi21212

Here we denote Z,, simply by Z; and so on. We wish to express the algebra
generators {t1,to,t3,v3} in terms of Schubert classes. Since c(w;) = Z; (i =
1,2), it follows from (5.2) that

(53) t, = —24, to = —Z1 + Zs, tg =271 — Zs.
Next we can put
V3 = a121Z121 + a21224212
for some integers ajo1,a212 and we need to determine the coefficients
a121, a212. The characteristic homomorphism ¢ is not surjective over Z and
~3 is not in its image, but 2v3 = c3 is. Thus putting
c3 = b121Z121 + b212 2212

for some integers bio1, bo12, we can compute the coefficients b1, bo1o using
the divided difference operators. By (5.2), we have

3 = titots = 2w — 3wiws + wiws.
Therefore we derive
bio1 = A1 A A1 (c3) = A1 A A1 (2w} — Bwiwy + wiwd) = —2,
bara = Ag A1 Ag(cs) = Ag Ay Ag(2w? — Bwiws +wiwd) =0

from (3.1), (3.2) and Table 1. Thus we have c3 = —2Z121 in H%(Gy/T;Z).
Since 73 is defined by c¢3 = 2v3 and H*(G2/T;Z) is torsion free, we see that
~v3 = —Z121. Consequently, we obtain the following result.

PROPOSITION 5.3. In Theorem 5.2, the relation between the ring gener-
ators {t1,ta,t3,v3} and the Schubert classes is given by

th=—21, to=—21+2s, t3=271— 2o,
V3 = —Z121
In particular, we can take Zy, Za, Z121 as the ring generators of H*(Go/T;Z).

6. The case of Fj. In this section, we deal with the exceptional Lie
group Fy. Let T be a maximal torus of Fj. Following [4], we take the system
of simple roots IT = {a;}1<i<4 and the corresponding fundamental weights
{wi}1§i§4. Then we can identify

H*(BT;Z) = Z[wl,wg,wg,wd.
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Let s; (1 < i < 4) be the reflection corresponding to «; (1 < i < 4). Then
W (Fy) is finite and

W(F4) = (Slﬂ 52,53, 54>>
st=s2=s3=s1=1,
(s152)% = (sgs4)? = (sas3)* =1,

5183 = 83851, 5154 = 5481, 5254 = S5482.

(6.1)

Now we review the Borel presentation of H*(Fy/T;7Z). We put

tl = —w4,
ty = w1 — wy,
t3 = —wi + w2 — Wy,
t4 = —w9o + 2&)3 — W4,

C; = ei(tl, o ,t4),

t = %Cl = w3 — 2(,«)4.
Then we can write

H*(BT, Z) = Z[tl, t2,t3,t4,t]/(01 — Qt).

The action of W (Fy) on {t;}1<i<a is given by Table 2, where blanks indicate
the trivial action.

Table 2
S$1 82 S3 S4
th t—t
ty | ts to —t
ts | ta ta ts —t
ta t3  —ty  ta—t
¢ t—ty  —t

REMARK 6.1. The elements {¢;}1<i<4 and ¢ are derived from the natural
inclusion T' C Spin(9) C Fy.

The integral cohomology ring of Fy/T was determined by Toda—Wata-
nabe [19].

THEOREM 6.2 (Toda—Watanabe [19, Theorem A]). The integral coho-
mology ring of Fy/T is

H*(F4/T, Z) = Z[tb to, t3a t47 t7 V3, ’74]/(Qla 02, 03, 04, 06, 08, Q12)7
where

o1 =c1—2t, oy=co— 2%  03=c3— 23,



288 M. Nakagawa

01 = cq — 4tz + 8% — 3,
.2 2 3 6
06 = Y3 — 3t ya — 4t7y3 + 8t
08 = 37i + 6tyzys — 3ty — 131,
012 = 75 — 6t1y7 + 1213, — 812,
and we denote by the same symbols t; € H?(Fy/T;7Z) the images of t; €
H?(BT;Z) under c.

REMARK 6.3. In [19], Toda and Watanabe described H*(Fy/T;Z) using
the inclusion H*(Fy/Spin(9);Z) — H*(F4/T;Z) and the known structure
of H*(Fy/Spin(9);Z). Theorem 6.2 is a rewritten form of their result in
terms of the W (Fj)-invariants.

By (6.1), the elements of the Weyl group W (Fj) of length < 4 are given
by the following table.

l(w) Elements of W (Fy)

0 1
S1 S92 S3 S4

2 S182 5183 S184 S281 5253
S254 S3S52 8384 5483

3 518281 15283 S$18284 515382 518384
518483 528183 528184 828382 §25354
525483 §38281 $352S83 538284 535483
548382

4 51828183 51828184 51828382 51525354 51525483

51838251 51535283 51838284 51835483 51848382
52515382 §2515354 52518453  S25352S51 $25352S83
52835254 528385483 852848382 53828183 83828184

53828384 83828483 583848382 84838281 854838283

We have the corresponding Schubert basis {Zy }wew (r,)- As before, we
denote Z,, simply by Z; and so on. We wish to express the algebra genera-
tors {t1,toe,t3,t4,t,v3,74} in terms of Schubert classes. Since c(w;) = Z;, it
follows from (6.2) that

tl - __2347
to = 21 — Za,
(6.3) t3 = =21+ Zy — Zy,

t =235—244.
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Next we can put

V3 = Z AL, V4= Z Ay Ly
l(w)=3

l(w)=4

for some integers a,,. We wish to determine the coefficients a,,. By Theo-
rem 6.2, we have

2,73 = Cs,

(6.4) \ )
3v4 = cq4 — 4ty 4 8t* = ¢4 — 2tcs + 8t*.

Therefore 23 and 3,4 are contained in the image of c. So as in the case of G,
we apply the divided difference operators to the right hand side of (6.4). The
result can be seen in the following table.

A1 Arzz Aras Az Aiza Ay Aoz Aog
c3 0 2 0 0 0 0 0 0

Aoz Azza Aoaz Aszr Aszaz Asaa Asaz Auso
cs3 0 -2 —4 0 0 0 6 0

Here we denote Ay AsA; simply by Aje; and so on.
Thus we have

€3 = 27123 — 27234 — 47243 + 62343
= 2(Z123 — Zaga — 22243 + 3Z343)

in HY(F,/T;Z). Since ~3 is defined by c3 = 2y3 and H*(Fy/T;7Z) is torsion
free, we see that

(6.5) V3 = Z123 — £234 — 224943 + 3Z343.

Similarly we obtain

A1213 A1214 A1232 A1234 A1243 A1321 A1323 A1324 A1343
cs —2tes + 81 0 0 0 3 —30 0 12 0 0

A1432 A2132 A2134 A2143 A2321 A2323 A2324 A2343 A2432
cq—2tcs + 8t 0 0 0 0 0 0 0 0 0

A3213 A3234 A3243 A3432 A4321 A4323
cs —2tes + 82 0 -3 30 0 0 —24

Thus we have

cq — 2ty + 8t* = 371934 — 3021943 + 1271393 — 373934 + 3023243 — 2474303
= 3(Z1234 — 1021243 + 421393 — Z3234 + 1023243 — 8Z4393)
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in H8(Fy/T;7Z). Since 74 is defined by ¢4 —2tcz +8t* = 3v4 and H*(Fy/T;Z)
is torsion free, we see that

(6.6) Ya = Z1234 — 1021243 + 421323 — Z3234 + 1023243 — 8Z4323.

Unfortunately, from (6.5) and (6.6), we cannot decide which Schubert
classes are indecomposable. This leads us to the use of the Giambelli formula.
We need the following data.

(1) A set of positive roots of Fj is given by
o JuEt<ici<a, |
ti (1<i<4), 3(th £ty ttgEty)
(2) The longest element wy of the Weyl group W (Fy) is given by
W = 8§15251535251535253545352515352535453525153525354.

Then, using the Giambelli formula (Theorem 3.3), we obtain the following
result.

LEMMA 6.4. In (6.5) and (6.6), each Schubert class is expressed in terms
of t; (1 <i<4),t,7v3,74 as follows:

Z193 = y3 — 23 + 3t3t — 2t1t%

Zyza = —13,

Zogz = —2t3 + 33t — 1%,

T3 = —t5 + 13,
Zhoga = —ya + (t1 — 2t)y3 + tit — 52 + 3t
Ziouz = Y4 + (—2t1 + 2t)y3 + 2] — 4t5t + 3t3t? — 34,
Zi3n3 = —y4 — ty3 + 261 — 4t3t + 46342 — 26183 + 3t4,
Zsoge = Y4+ (—t1 + 2t)y3 + 1 — 5t + 6542 — 3t4,
Zsouz = 1 — 265t + 634%,

Zyzo3 = —y4 + (201 — 2t)y3 — t1t3 + 3t

In particular, Zy123 and Z1234 are indecomposable in the ring H*(Fy/T; 7).
Consequently, we obtain the following result.

PROPOSITION 6.5. In Theorem 6.2, the relation between the ring gener-
ators {t1,ta,t3,t4,t,73,v4} and the Schubert classes is given by

t1 = —Zy,

ta = —Zo+ 273 — Zy,



Cohomology of flag manifolds 291

t= Zs—27,,
V3 = Z123 — Z23a — 22243 + 32343,
Y4 = Z1234 — 1021243 + 421323 — Z3234 + 1023243 — 8Z4323.
Furthermore,
Zio3 = 3 — 263 + 313t — 241t
Zi93a = —y4 + (t1 — 2t)y3 + tit — t3t2 + 3t4,

and we can toke Zi,Zy,7Z3, 24, L1093, L1234 aS the ring generators of
H*(Fy)T;7Z).

7. The Chow rings of SO(n), Spin(n), G2 and F4. In this section,
using our description of the integral cohomology rings of the flag manifolds
of types By, Dy, G2 and F}y (see Sections 4-6) and a remark of Grothendieck,
we compute the Chow rings of the corresponding complex algebraic groups.

As in Section 2, let K be a compact simply connected simple Lie group,
T its maximal torus, G = K the complexification of K and B a Borel sub-
group of G containing T'. Let A’(-) denote the Chow group of codimension i
cycles up to rational equivalence and A(-) = @,~, A*(-). Given any charac-
ter x of B, that is, a homomorphism of B into C*, we have the associated
line bundle L, over G/B, which defines an element of A'(G/B), denoted
by ¢(x). This induces a homomorphism

c: B— AY(G/B),

where B denotes the character group of B. Extending this homomorphism
¢ by multiplicativity to the symmetric algebra S(B) of B, one obtains a
homomorphism

(7.1) c: S(B) — A(G/B),

which is also called the characteristic homomorphism.

Then Grothendieck’s remark ([9, p. 21, Remarques 2°]) allows us to
obtain A(G) as the quotient of A(G/B) by the ideal generated by c(B).
Denote by Ty : A(G/B) — A(G) the canonical map onto the quotient. It is
known ([9, Lemme 10]) that the Chow ring A(G/B) of G/B is isomorphic to
the integral cohomology ring H*(G/B;Z) of G/B. Under this isomorphism,
the Schubert variety X,,,, corresponds to the Schubert class Z,, and the
above characteristic homomorphism (7.1) coincides with the characteristic
homomorphism (2.1).

Thus, in order to determine the Chow ring A(G), we need only compute
the quotient ring of H*(K/T;Z) by the ideal generated by c(H?(BT;Z)).
Since K is assumed to be simply connected, H?(BT;Z) = H*(K/T;Z).
Therefore we compute the quotient ring H*(K/T;Z)/(H*(K/T;Z)). We
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will show how to do this for Fy. By Theorem 6.2, we have

H*(Fy/T;7)/(t, t2, t3, ta, t) = Z[ys, 74l / (293, 374,73, Vi)

Taking Proposition 6.5 into account, we can replace v3,v4 with Zj23, Z1234
respectively. Thus we obtain the following

THEOREM 7.1. If G is of type F4, we have
A(F4) = Z[X?n X4]/(2X3a 3X4, X??> XA:E%
where X3 (resp. X4) is the image under T of the element of A(G/B) defined
by the Schubert variety Xyys;syss (165D Xuwgsy sassss) -

In a similar way, we can compute the Chow rings of SO(n), Spin(n)
and Gs. The results are summarized as follows.

THEOREM 7.2. If G is of type B, (SO(2n + 1) or Spin(2n + 1)) and
x; (1 < i < n) is the element of A(G/B) defined by the Schubert variety
Xwosn_ip1-sn_15n- LHhEN
A(SO(2TL + 1)) = Z[Xla X37 X57 s 7X2[(n+1)/2]—1}/(2Xi7 szz)a
A(Spin(2n + 1)) == Z[Xg, X5, ceey XQ[(nJrl)/Q},l]/(QXZ’, szz),
where
pi = 2llos (/AL X — T ().

THEOREM 7.3. If G is of type D, (SO(2n) or Spin(2n)) and 1 (resp.
x; (2 <i<n-—1)) is the element of A(G/B) defined by the Schubert variety
Xuwgsn (1e5p. Xuwgsy_;.sn_nsn (2 <1 <n—1)), then

A(SO(2TL)) = Z[X13X3,X5a cee aXQ[n/Q]—l]/(2Xi7Xipi)7
A(Spin(2n)) = Z[ X5, X5, ..., Xopnyo-11/(2X4, X7),

where

THEOREM 7.4. If G is of type Ga, we have
A(G2) = Z[X3]/(2X3, X3),

where X3 is the image under Tg of the element of A(G/B) defined by the
Schubert variety Xugs, sys; -

We observe that our results obtained in this section agree with those of
Marlin [13].
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