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Abstract. We give a description of all knot diagrams of canonical genus 2 and 3, and
give applications to positive, alternating and homogeneous knots, including a classification
of achiral genus 2 alternating knots, slice or achiral 2-almost positive knots, a proof of
the 3- and 4-move conjectures, and the calculation of the maximal hyperbolic volume for
canonical (weak) genus 2 knots. We also study the values of the link polynomials at roots
of unity, extending denseness results of Jones. Using these values, examples of knots with
non-sharp Morton (canonical genus) inequality are found. Several results are generalized
to arbitrary canonical genus.
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1. Introduction. The notion of a Seifert surface of a knot is classical
[Se]. Seifert proved the existence of these surfaces by an algorithm construct-
ing such a surface out of some diagram of the knot. Briefly, the procedure is
as follows (see [Ad1, §4.3] or [Ro]): smooth out all crossings of the diagram,
plug in discs into the resulting set of disjoint (Seifert) circles and connect
the circles along the crossings by half-twisted bands. We will call the re-
sulting surface the canonical Seifert surface (of this diagram) and its genus
the genus of the diagram. The canonical (or weak) genus of a knot is the
minimal genus of all its diagrams.

The weak genus appears in previous work of several authors, mainly in
the context of showing it being equal to the classical Seifert genus for large
classes of knots ([Cr1] and loc. cit.) However, Morton [Mo] showed that this is
not true in general. Later, further examples have been constructed [Mr, Ko].

Motivated by Morton’s striking observation, in [St4] we started the study
of the weak genus in its own right. We gave a description of knot diagrams
of genus 1 and made some statements about the general case.

The present paper is a continuation of [St4], and relies on similar ideas.
Its motivation was the quest for more interesting phenomena occurring for
knot diagrams of (canonical) genus higher than 1. The genus 1 diagrams,
examined in [St4], revealed to be too narrow a class for such phenomena. In
this paper we will study the weak genus in greater generality. We will prove
several new results about properties of knots with arbitrary weak genus. In
the cases of weak genus 2 and 3 we have obtained a complete description
of diagrams. Using this description, we obtain computational examples and
results, some of them (partly) solving several problems in previous papers of
other authors.

For most practical applications, it is useful to consider weak genus 2. We
therefore study it in detail. All methods should also work for higher gen-
era, but applying them in practice seems hardly worthwhile, as the little
qualitative novelty this project promises is counterbalanced by an extremely
rapid increase of quantitative effort. Diagrams of genus 2 turned out to be
attractive, because their variety is on the one hand sufficient to exhibit inter-
esting phenomena and allows one to apply different types of combinatorial
arguments to prove properties of them and of the knots they represent, but
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on the other hand not too great to make impossible arguments by hand, or
with a reasonable amount of computer calculations. As we will see, many of
the theorems we will prove for weak genus 2 cannot be any longer proved
reasonably (at least with the same methods) for weak genus 3, if they remain
true at all.

We briefly describe the structure of the paper. In §2 we prove our main
result, Theorem 2.1, the description of diagrams of genus 2. It is based on a
combination of computational and mathematical arguments. The subsequent
sections are mostly devoted to applications of this description.

In §3 we give asymptotical estimates for the number of alternating and
positive knots of genus 2 and given crossing number and classify the achiral
alternating ones.

In §4 we show non-homogeneity of two of the undecided cases in [Cr1,
appendix], following from the more general fact that homogeneous genus 2
knots are positive or alternating.

In §5 and §6 we use the Gauß sum inequalities of [St2] in combination
with the result of §2 to show how to classify all positive diagrams of a positive
genus 2 knot, on the simplest non-trivial examples 73 and 75, and classify
all 2-almost positive unknot diagrams, recovering a result announced by
Przytycki and Taniyama [PT] that the only non-trivial achiral (resp. slice)
2-almost positive knot is 41 (resp. 61).

In §7 we prove that there is no almost positive knot of genus 1, and in §8
that any positive knot of genus 2 has a positive diagram of minimal crossing
number. We also give an example of a knot of genus 2 which has a single
positive diagram.

Besides the results mentioned so far, which are direct applications of the
description in Theorem 2.1, we develop several new theoretical tools, valid
for arbitrary weak genus. Most of these tools can again be used to study the
genus 2 case in further detail. As such a tool, most substantially we deal with
behavior of the Jones and HOMFLY polynomials in §9. We show how unity
root evaluations of the polynomials give information on the weak genus, and
use this tool to exhibit the first examples of knots on which the weak genus
inequality of Morton [Mo] is not sharp. We also give, as an aside, using some
arguments from complex analysis and Lie group theory, generalizations of
some denseness theorems of Jones in [J2] about the values at roots of unity
of the Jones polynomial of knots of small braid index. Unity root evaluations
of the Jones polynomial have recently become of interest because of a variety
of relations to quantum physics, in particular the volume conjecture. (See
[DLL, GL, MM].)

Since these unity root evaluations are closely related to the Nakanishi–
Przytycki k-moves, we give several applications to these moves in §10, in
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particular the proof of the 3- and 4-move conjecture for weak genus 2 knots
in §10.4 and §10.5. We also discuss how the criteria using the Jones and
HOMFLY polynomials, and the examples they give rise to, can be comple-
mented by applying the Brandt–Lickorish–Millett–Ho polynomial Q.

A further theoretical result is an asymptotical estimate for the quality of
the Seifert algorithm in giving a minimal (genus) surface in §11.

In §12, we consider the hyperbolic volume. Brittenham [Br1] used a sim-
ilar approach to ours to prove that the weak genus bounds the volume of a
hyperbolic knot. We will slightly improve Brittenham’s estimate of the max-
imal hyperbolic volume for given weak genus, and (numerically) determine
the exact maximum for weak genus 1 and 2.

At the end of the paper we present the description for knot diagrams of
genus 3 in §13, solving completely the knots undecided for homogeneity in
Cromwell’s tables [Cr1, appendix].

In §14 we conclude with some questions, and a counterexample to a
conjecture of Cromwell [Cr2].

Although part of the material presented here (in particular the examples
illustrating our theoretical results) uses some computer calculations, we hope
that it has been obtained (and hence is verifiable) with reasonable effort. To
facilitate this, we include some details of the calculations.

To further motivate our approach we outline applications given in several
separate papers. For example, in [St7] the description of genus 2 diagrams is
used to give a short proof of a result announced in [PT], that positive knots
of genus at least 2 have σ ≥ 4 (which builds on the result for genus 2 stated
here in Corollary 3.2), and in [St3] we give a specific inequality between the
Vassiliev invariant of degree 2 and the crossing number of almost positive
knots of genus 2. In [St5] we generalize the classification of k-almost positive
achiral knots for the case k = 2 (announced also in [PT] and given here
as Proposition 6.1) for alternating knots to k ≤ 4. We will use the present
framework to develop a method for finding estimates on crossing numbers of
semiadequate links in a subsequent paper.

In his recent book [Cr3] (Section 5.3) Cromwell gives an introductory
exposition of the concepts and work which we give a rigorous account on in
[St4] and here.

Notation. For a knot K and a (knot) diagram D, c(D) denotes the cross-
ing number of D, c(K) the crossing number of K (the minimal crossing
number of all its diagrams), w(D) the writhe of D, w(K) the writhe of a
reduced alternating diagram of K if K is alternating (this is an invariant
of K, see [Ka1]), and n(D) the number of Seifert circles of D. σ denotes the
signature of a knot, u its unknotting number, g̃ denotes its weak genus and
g its classical (Seifert) genus. !K denotes the obverse (mirror image) of a



Knots of (canonical) genus two 5

knot K. We will often assume a diagram to be reduced without pointing it
out explicitly; this should always be clear from the context.

v2 denotes the Vassiliev knot invariant of degree 2, normalized to be 0
on the unknot and 1 on the trefoil(s). v3 denotes the primitive Vassiliev
invariant of degree 3, normalized to be 4 resp. −4 on the positive (right-
hand) resp. negative (left-hand) trefoil. As usual, V denotes the Jones [J1],
∆ the Alexander [Al], ∇ the Conway [Co], Q the Brandt–Lickorish–Millett–
Ho [BLM, Ho], and P the HOMFLY (or skein) [F&] polynomial. For the
HOMFLY polynomial, we use the variable convention of [LM1].

For a polynomial Y and an integer kwe denote by [Y (x)]xk the coefficient of
xk in Y (x). The minimal (resp. maximal) degree is defined to be the minimal
(resp. maximal) k with [Y (x)]xk 6= 0 and is denoted by mindegx Y (resp.
maxdegx Y ). The span of Y is the difference between its maximal and minimal
degrees. In case Y has only one variable, it will not be indicated in notation.
The encoded notation for polynomials we use is the one of [St1]: if the absolute
term occurs between the minimal and maximal degrees, then it is bracketed,
else the minimal degree is recorded in braces before the coefficient list.

We use the notation of [Ro] for knots with up to 10 crossings, renumbering
10163, . . . , 10166 by eliminating 10162, the Perko duplication of 10161, as has
been done in the tables of [BZ]. The notation of [HT] is used for knots from
11 crossings on. (Note that for 11-crossing knots this notation differs from
that of [Co] and [Pe].) We use the convention of the Rolfsen pictures to
distinguish between a knot and its obverse whenever necessary.

For two sequences of positive integers (an)
∞
n=1 and (bn)

∞
n=1 we say that

an is O(bn), and write an = O(bn), iff lim supn→∞ an/bn <∞. Likewise, we
say an is O�(bn) iff lim infn→∞ an/bn > 0, and an = O≍(bn) iff an is both
O(bn) and O�(bn).

Z, N, N+, R and C denote the integer, natural, positive natural, real and
complex numbers respectively.

For a set S, the symbols |S| and #S both denote the cardinality of S.
The symbol ⊂ denotes a not necessarily proper inclusion.

2. Knot diagrams of canonical genus 2. It is known that a Seifert
surface obtained by applying Seifert’s algorithm to a knot diagram D has
genus

g(D) =
c(D) − n(D) + 1

2
.

This formula is shown by homotopy retracting the surface to a graph and
determining its Euler characteristic by a simple vertex and edge count. The
weak (or canonical) genus g̃(K) of a knot K is defined as

g̃(K) := min{g(D) : D is a diagram of K}.
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In the following we will describe all knot diagrams of genus 2 and deduce
consequences for knots of weak genus 2 from this description.

As a preparation, we (re)introduce some terminology, recalling inter alia
some of the definitions and facts from [St4]; more details may be found there.

First we need to introduce some transformations of diagrams which will
be crucial later. In 1992, Menasco and Thistlethwaite [MT] proved the (long
conjectured) statement that reduced alternating diagrams of the same knot
(or link) must be transformable by flypes, where a flype is shown in Figure 1.

p
PQ −→

p P
Q

Fig. 1. A flype near the crossing p

p P
Q

p P
Q

type A type B

Fig. 2. A flype of type A and B

The tangle P in Figure 1 is called flypable, and we say that the crossing p
admits a flype or that the diagram admits a flype at (or near) p. According
to the orientation near p we distinguish two types of flypes as in Figure 2.

A clasp (or a matched crossing pair) is a tangle of the form

reverse clasp parallel clasp

distinguished into reverse and parallel clasp depending on the strand orien-
tation.

By switching one of the crossings in a clasp and applying a Reidemeister
II move, one can eliminate both crossings. This procedure is called resolving
a clasp. For the discussion below it is important to remark how resolving a
clasp affects the genus of the diagram. It reduces the genus by 1 if the clasp
is parallel, or if it is reverse and the Seifert circles on which the two clasped
strands lie after the resolution are distinct. In this case we will call the clasp
genus reducing. In contrast, a clasp resolution preserves the genus of the
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diagram if the clasp is reverse and the strands obtained after the resolution
belong to the same Seifert circle (as for example in the t̄′2 move we will just
introduce). Then we call the clasp genus preserving.

We will also need a class of diagram moves studied by Przytycki and
Nakanishi.

Definition 2.1 (see [Pr]). A tk move is a local diagram move replacing
a parallel pair of strands by k parallel half-twists. Similarly, a tk move for k
even is a replacement of a reversely oriented pair of strands by k reversely
oriented half-twists. A k-move is the analogue of a tk move in unoriented
diagrams.

A t2 move is thus replacing a reversely oriented pair of strands by a
reverse clasp. Of particular importance will be, as in [St4], a special instance
of a t2 move.

Definition 2.2. A t̄′2 move or twist is defined to be a t2 move [Pr]
applied near a crossing

−→̄
t′2

(together with the mirrored move), and a reducing t̄′2 move is the reverse
operation to a t̄′2 move. We call a diagram t̄′2 irreducible if there is no sequence
of type B flypes transforming it into a diagram on which a reducing t̄′2 move
can be applied. Let cg denote the maximal crossing number of an alternating
t̄′2 irreducible genus g diagram.

A flype of type A never creates or destroys a fragment obtained from a
crossing by a t̄′2 move and commutes with type B flypes, hence the applicability
of a reducing t̄′2 move after type B flypes is independent of type A flypes. In
terms of the associated Gauß diagram [FS, PV], a knot diagram is (modulo
crossing changes) t̄′2 reducible after type B flypes iff it has three chords which
do not mutually intersect and all intersect the same set of other chords.

In order to discard uninteresting cases, we will mainly consider only prime
diagrams.

Definition 2.3. A diagram D is called composite if there is a closed
curve γ (transversely) intersecting the curve of D in two points, such that
both the interior and exterior of γ contain crossings of D. Otherwise D is
called prime.

It is a simple observation that c0 = 0. Two results of [St4] were c1 = 4
(independently observed by Lee Rudolph) and cg ≤ 8cg−1 + 6, so that cg =
O(8g). However, it was evident that this bound is far from sharp, and later we
showed in [STV] that cg ≤ 12g − 6. The starting point for a significant part
of the material that follows is to obtain a more precise description for g = 2.
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Theorem 2.1. Let K be a weak genus 2 knot. Then any prime genus 2
diagram of K is transformable by type B flypes into one which can be obtained
by crossing changes and t̄′2 moves from an alternating diagram of one of the
24 knots in Figure 3.

51
62 63 75

76
77 812 814

815 923 925 938

939 941 1058 1097

10101 10120 11123 11148

11329 121097 121202 134233

Fig. 3. The 24 alternating genus 2 knots without an alternating t̄′2 reducible diagram
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We will say that a diagram generates a series or a t̄′2 twist sequence of
diagrams by crossing changes and t̄′2 moves (so that a t̄′2 twist sequence is a
special case of what was called in [St6] a “braiding sequence”). In this termi-
nology the description of genus 1 diagrams in [St4] says that the only genus 1
generators are (the reduced alternating diagrams of) 31 and 41. Although
we point out that some knots of Figure 1 occur in multiple diagrams, it will
be sometimes possible and convenient to identify the series generated by all
diagrams of a knot and call them the series generated by the knot.

It is convenient to use an alternating knot as a generating knot. Note
that an alternating diagram which does not admit reducing t̄′2 moves does
not admit such moves after crossing changes either. It is also important to
note that for each alternating knot either all or no alternating diagrams are
t̄′2 irreducible modulo flypes. This follows from the Menasco–Thistlethwaite
flyping theorem [MT], from the fact that the applicability of a reducing t̄′2
move is preserved by type A flypes, and from the commuting of type A and
type B flypes (i.e., if we can apply a type A flype and then a type B flype, we
can do so in reverse order with the same result). Hence it suffices to check
the one specific diagram included in the tables to figure out whether the
knot has a t̄′2 irreducible diagram.

For technical reasons (to have a numbering of the crossings) it will turn
out useful to record and fix a Dowker notation [DT] for each of these knots.
(This is the notation in the tables of [HT].)

51: 6 8 10 2 4

62: 4 8 10 12 2 6

63: 4 8 10 2 12 6

75: 4 10 12 14 2 8 6

76: 4 8 12 2 14 6 10

77: 4 8 10 12 2 14 6

812: 4 8 14 10 2 16 6 12

814: 4 8 10 14 2 16 6 12

815: 4 8 12 2 14 6 16 10

923: 4 10 12 16 2 8 18 6 14

925: 4 8 12 2 16 6 18 10 14

938: 6 10 14 18 4 16 2 8 12

939: 6 10 14 18 16 2 8 4 12

941: 6 10 14 12 16 2 18 4 8

1058: 4 8 14 10 2 18 6 20 12 16

1097: 4 8 12 18 2 16 20 6 10 14

10101: 4 10 14 18 2 16 6 20 8 12

10120: 6 10 18 12 4 16 20 8 2 14

11123: 4 10 14 20 2 8 18 22 6 12 16

11148: 4 10 16 20 12 2 18 6 22 8 14

11329: 6 12 18 22 14 4 20 8 2 10 16

121097: 6 12 20 14 22 4 18 24 8 2 10 16

121202: 6 20 10 24 14 4 18 8 22 12 2 16

134233: 6 12 22 26 16 4 20 24 8 14 2 10 18



10 A. Stoimenow

Proof of Theorem 2.1. By [STV] any genus 2 diagram of a weak genus
2 knot can be obtained modulo type B flypes by crossing changes and t̄′2
moves from an alternating diagram with at most 18 crossings. Now the 24
knots in Figure 3 have been obtained by checking Thistlethwaite’s tables of
≤15-crossing knots for t̄′2 irreducible alternating genus 2 diagrams.

It would be in principle possible to deal with the crossing numbers 16 to
18 also by computer, but these tables are not yet available to me (those of
16 crossings at least at the time of the original writing), and to save a fair
amount of electronic capacity, it is preferable to use mathematical arguments
instead. Let us give the following

Lemma 2.1. If there is a t̄′2 irreducible alternating genus 2 diagram D of
c crossings with a matched crossing pair (clasp), then there is a t̄′2 irreducible
genus 2 diagram of c− 2 crossings , or c ≤ 12.

For the proof we need to make some definitions.

Definition 2.4. A region of a knot diagram is a connected component
of the complement of its underlying curve in the plane. Every crossing p is
bordered by four (not necessarily distinct) regions. We call two of them, α
and β, opposite at p, notationally α ↽⇀p β, if they do not bound a common
line segment (edge) in a neighborhood of p.

p β

α

One can see that if two of the four regions bordering a crossing are equal,
then they are opposite. In this case we call the crossing reducible or nugatory,
or an isthmus.

Definition 2.5. We call two crossings p and q of a knot diagram linked,
notationally p∩q, if the crossing strands are passed in cyclic order pqpq along
the solid line, and unlinked if the cyclic order is ppqq. Call two crossings p
and q equivalent if they are linked with the same set of other crossings, that
is, ∀c 6= p, q : c ∩ p ⇔ c ∩ q. Call p and q ∼-equivalent (p ∼ q) if they are
equivalent and unlinked, and ∼

∗
-equivalent (p ∼

∗
q) if they are equivalent and

linked.

It is an exercise to check that ∼-equivalence and ∼
∗
-equivalence are indeed

equivalence relations and that two crossings are ∼- (resp. ∼
∗
-) equivalent if

and only if after a sequence of flypes they can be made to form a reverse
(resp. parallel) clasp.

Definition 2.6. If (a1, . . . , an) is a finite sequence of objects, then
(ak1 , . . . , akl) is a subsequence if ki ≥ ki−1 +1, k1 ≥ 1 and kl ≤ n, that is, the
akl ’s do not need to appear immediately one after the other in (a1, . . . , an).
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Definition 2.7. Let α be a region of D, i.e. a connected component of
the complement of the plane curve of D in the plane. The sequence of regions
opposite to α at the crossings that α borders, taken in counterclockwise order
and modulo cyclic permutation, is called the bordering sequence for α in D.

β

γ

γ

δ

εα −→ (βγγδε)

Note that by connecting crossings with the same region γ opposite to α
by arcs in γ we see that the bordering sequence for α has no subsequence of
the kind βγβγ.

Definition 2.8. Call a set of crossings α1, . . . , αn mutually enclosed with
respect to α if α1, . . . , αn belong to the bordering sequence for α and this
bordering sequence can be cyclically permuted so as to have the subsequence
α1α2 . . . αnαn . . . α2α1.

The enclosing index εα,D of α in D is the maximum size of a mutually
enclosed set of non-nugatory crossings with respect to α. The enclosing index
εD of D is the maximum of the enclosing indices of all its regions.

To explain our argument for Lemma 2.1 in more detail, we first need a
further lemma.

Lemma 2.2. If we have a genus reducing clasp resolution D → D′, join-
ing regions β1 and β2 of D to β of D′, and reduce D′ to D′′ by Reidemeister I
moves , flypes and reverse t̄′2 moves , then

c(D) − c(D′′) ≤ 4 + 4εD′ .

Proof. In the absolute term ‘4’, two of the crossings come from the clasp,
and two from the (Reidemeister I) reducible crossings in D′.

If there were three reducible crossings a, b, c in D′ not reducible in D,
then β1 ↽⇀p β2 in D for any p ∈ {a, b, c}, and a ∼ b ∼ c in D (and not
a ∼

∗
b ∼

∗
c, as we can see from (1)), a contradiction to its t̄′2 irreducibility

(see the remark after Definition 2.5).

Separating β in D′ into β1 and β2 in D by reversing the clasp resolution
enables us to add one t̄′2 twist to crossings participating in two mutually
enclosed sets with respect to β in D′, leading to the term involving εD′ .

Proof of Lemma 2.1. We distinguish two cases for the matched crossing
pair in D.
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(i) Strands are reverse and belong to distinct Seifert circles. Then anni-
hilating the matched crossing pair gives a c−2-crossing alternating diagram
D′ of genus 2.

We claim that D′ has no t̄′2 reducible crossings. The reason is that cre-
ating a situation of being able to perform a t̄′2 move after elimination of the
matched pair always forces the strands in the matched pair to belong to the
same Seifert circle (see Figure 4). Namely, if after resolving the clasp, three
crossings a, b and c become ∼-equivalent, then there are two regions α and
β of D such that α ↽⇀p β for some p ∈ {a, b, c}. Resolving the clasp joins two
regions β1 and β2 of D to one region β of D′:

β1

β2

−→ β

Therefore, as a, b, and c are not all ∼-equivalent in D, we can assume
that α ↽⇀a β1 and α ↽⇀

b
β2 in D. But then there exists in D a dashed arc γ

as in Figure 4. Then all Seifert circles on D different from k, the Seifert circle
in the clasp, intersect the dashed curve γ in two points in total. Thus both
these crossings must belong to the same Seifert circle, and hence resolving
the clasp would be genus reducing.

γ

k

β1 β2

Fig. 4. When resolving a clasp makes a reducing t̄′2 move applicable, the segments of the
resolved clasp always belong to the same Seifert circle.

Moreover, D′ has no reducible crossings. Assume that p were such. Then
for some region α of D′ we have α ↽⇀p α. But then either p is reducible in
D, or α = β and β1 ↽⇀p β2. Then we have a dashed curve γ like

(1)

γ

p

β1

β2

Then consider the Seifert circle in D intersecting γ and apply exactly the
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same argument as before to see that the clasp resolution must be genus
reducing.

(ii) Strands are parallel or belong to the same Seifert circle and are re-
verse. Then annihilating the matched crossing pair reduces the canonical
genus of the diagram and we obtain a genus 1 diagram D′.

We will now apply Lemma 2.2. For any genus 1 diagram D′ we have εD′

= 1, and using c(D′′) ≤ 4 we obtain from the lemma c(D) ≤ 12, concluding
the second case of the proof of Lemma 2.1.

Proof of Theorem 2.1 (continued). To show that there are no t̄′2 irre-
ducible genus 2 diagrams with > 13 crossings we proceed by induction on
the crossing number.

The cases of 14 and 15 crossings were excluded using Thistlethwaite’s
tables (as I mentioned above). Then the cases of 16 and 17 crossings can
be (significantly) reduced, with the use of Lemma 2.1, to the cases with no
matched pair.

The latter cases are excluded as follows. Let D be such a diagram (that is,
a genus 2 diagram with no matched pair). Smoothing out a crossing augments
the number of 2-gon components of the diagram complement in the plane
(or equivalently, the number of matched crossing pairs) by at most 2. Thus
after smoothing out a linked pair of crossings in D we obtain a diagram D′

of genus 1 with at most four matched pairs. Then D′ is modulo its reducible
crossings either a diagram obtained from 31 by at most two t̄′2 moves or a
diagram obtained from 41 by at most one t̄′2 move.

Thus D′ has at most seven non-reducible crossings. Now we count the
reducible crossings of D′ (cf. the proof of [St4, Theorem 3.1] or of Lemma 2.2
above). Smoothing out two crossings in D identifies either two pairs or one
triple of regions. If p is reducible in D′, then β1 ↽⇀p β2 in D, where β1,2 are
among the identified regions. There are two or three possible (unordered)
pairs (β1, β2) of identified regions in D, and so there are at most four or six
crossings p as above. Since two of these crossings must be those smoothed
out, D′ cannot have more than four reducible crossings.

We conclude that D′ must have at most 11 crossings, so D has at most
13 crossings.

The same argument inductively excludes all higher crossing numbers, and
Theorem 2.1 is now proved.

Corollary 2.1. With cg as in Definition 2.2, we have c2 = 13.

Remark 2.1. Note that some of the 24 knots may have alternating di-
agrams differing by a type A flype and twisting at them gives mutated dia-
grams, the mutations being type A “flypes” at a t̄′2 twisted crossing as shown
in Figure 5. However, we can often ignore these mutations, since they will
be mostly irrelevant for our work.
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P −→
P

Fig. 5. A “flype” near a t̄′2 twisted crossing is an iterated mutation.

For example, whenever we make use of the Vassiliev invariants, signature
and knot polynomials in our proofs, the arguments apply for all mutated
diagrams as well, as these invariants are preserved under mutation. (For
Vassiliev invariants mutation invariance holds at least up to degree 10, and
all the invariants we will use are of such degree.) This is relevant for Sections 4
to 8. Also mutations do not occur in ≤ 10 crossings (relevant for §5 and §7;
the few cases remaining can be checked directly), and rational knots and the
unknot have no mutants [HR] (relevant for §6).

Thus we consider only one diagram for each of the 24 knots given in
Figure 3.

Remark 2.2. The present description will be used later to prove non-
existence of minimal canonical Seifert surfaces for some knots of genus 2
when both the obstruction of Morton [Mo] and of the Seifert genus fail. (See
Remark 9.1.) An explicit computer check gave minimal canonical Seifert sur-
faces for all knots up to 12 crossings (not only those of genus 2), although
minimal crossing number diagrams do not always suffice to give such a sur-
face. (Among the Rolfsen knots examples are the genus 3 knots 10155, 10157

and 10159 and the genus 2 knots 10162 and 10164, where I found only 11
crossing diagrams doing the job; many more such examples exist.)

In [St4] I showed that the number of knot diagrams of given genus g is
polynomially bounded in the crossing number. One sees that the maximal
exponent in this polynomial is dg − 1, where dg is the maximal number of
∼-equivalence classes in all diagrams of genus g. For genus 1 we had d1−1 = 2
and for genus 2 we obtain d2−1 = 8 for this maximal exponent. The numbers
dn seem not less important than cn and will occur several times later.

Corollary 2.2. The number of diagrams of genus 2 and crossing num-
ber n is O≍(n8). Hence there are O≍(n8) alternating genus 2 knots of cross-
ing number n and O(n9) positive knots of genus 2 or unknotting number 2
and crossing number at most n.

Proof (to be continued). For the alternating case the only non-obvious
point is to show that there are O≍(n8) alternating knots and not only O(n8).
I will give an argument for this at the end of §3.
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The positive case is somewhat more involved as we do not have the
result of [Ka2, Mu, Th1] on minimality (in crossing number) of alternating
diagrams. Therefore we have a result only for bounded but not fixed crossing
number. We also need to use the fact that a positive genus 2 knot has a pos-
itive diagram of minimal crossing number. This is again not straightforward
and will be proved in Theorem 8.1. The result for the unknotting number and
positive knots follows from the inequality u ≥ g (see [St2, Corollary 4.3]).

3. Alternating genus 2 knots. The t̄′2 twist sequences of some of the
24 knots contain those of some others as a subfamily. This happens when
resolving a clasp. The relations are given in Figure 6. Therein the knots
encircled are those whose twist sequences are not contained in any other (we
will call them main), and for the others not all of the sequences containing
them are indicated (but at least one is).

134233

11123 11329 11148

923 938 925 939 941

75 76 77

51

121097 121202

10120 10101 1058 1097

815 812 814

62 63

Fig. 6. Some of the inclusion relations, under resolving clasps, between the twist sequences
of the 24 generating knots, and the indication (by encircling) of the main twist sequences
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Remark 3.1. It is striking and suggested by the figure that inclusions of
series occur only between generators of the same parity of the crossing num-
ber. This will be so for higher genera diagrams, too. As already remarked,
whenever resolving a clasp simplifies the diagram by more than two crossings
(by removing nugatory crossings), the resulting diagram must already have
smaller genus.

We record two minor consequences. First note that 63 is simple but main.
Some reason for this is that it is the only knot among the 24 where the
numbers of positive and negative crossings in the alternating diagram are
both odd. Therefore, we have

Proposition 3.1. Let K be an alternating genus 2 knot such that
{c(K), w(K)} mod 4 = {0, 2}. Then K is an arborescent knot with Conway
notation (p, q)rs(t, u) with p, q, r, s, t, u > 0 all odd.

Another interesting aspect is to consider the achiral knots among the
alternating genus 2 knots. First we obtain

Proposition 3.2. A prime alternating genus 2 knot K has zero signa-
ture if and only if a diagram of K can be obtained from a diagram of 63, 77,
812, 941, 1058 or 121202 by (repeated) t̄′2 moves.

Proof. One direction follows from computing the signatures of the 24
knots and the fact that a t̄′2 move in an alternating diagram does not change
the signature (which follows from the Traczyk–Murasugi formula, see e.g.
[Tr] or [Ka1, p. 437]). For the converse, note that by a result of Menasco
[Me] the primeness of an alternating knot is equivalent to the primeness of
(any)one of its (reduced) alternating diagrams.

Corollary 3.1. Let K be a prime achiral alternating genus 2 knot.
Then a diagram of K can be obtained from a diagram of 63, 812, 1058 or
121202 by (repeated) t̄′2 moves.

Proof. This follows from the preceding proposition by excluding the odd
crossing number knots.

It is, however, much more interesting to have an exact classification of
all such knots. This is obtained by applying the flyping theorem of Menasco
and Thistlethwaite. (Here for completeness I include the composite case.)

Theorem 3.1. Let K be an achiral alternating genus 2 knot. Then a
diagram of K is either

(i) a composite diagram
(a) C(q, q) # C(p, p) with p, q > 0 even or
(b) K# !K with K∈{C(p, q) : p, q > 0 even}∪{P (p, q, r) : p, q, r>0

odd};
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(ii) an arborescent diagram with Conway notation (a, b)cc(a′, b′) with
a, b, c, a′, b′ > 0 odd and {a, b} = {a′, b′} (in which case the knot is
+achiral if a = a′ and −achiral if a = b′),

(iii) a rational diagram C(a, b, b, a) with a, b > 0 even (which is invertible
so the knot is +−achiral), or

(iv) a diagram in the t̄′2 twist sequence of 121202 with a, b, c t̄′2 twists at the
three positive clasps and a′, b′, c′ twists at the three negative clasps ,
such that a, b, c≥0 and {a, b, c}={a′, b′, c′} (in which case the knot
is +achiral or −achiral depending on whether the cyclic orderings of
(a, b, c) and (a′, b′, c′) along the knot are the same or reverse).

Proof. If the knot K is composite it must have two prime factors of
genus 1 and by a result of Menasco [Me] both are alternating. By the unique-
ness of the decomposition into prime factors, if K is achiral both factors must
be so, or mutually obverse. Now use the classification of alternating genus 1
knots in [St4]. It is an easy consequence of that classification that the only
achiral knots among them are the rational knots C(q, q) with q > 0 even.
Then one obtains the above characterization.

c′
a′b′

c

a

b

c′

a′

b′

c

a

b

63 121202

Fig. 7. Schematic drawing of the Gauß diagrams in the t̄′2 twist sequence of 121202 and
63. Orientation of the arrows is ignored. A number like a at each chord denotes that it
stands for a family of a neighboring non-intersecting chords. The crossings are negative
for the groups labeled by a′, b′ and c′, and positive for the groups labeled by a, b and c.
For 121202 all six numbers are even, and for 63 odd.

If the knot K is prime, using Corollary 3.1, we need to discuss four cases.

121202: It is easy to see (e.g., by looking at the Gauß diagram [FS, PV]
shown in Figure 7) that neither the diagram of 121202 nor any other
diagram in its t̄′2 twist sequence admits a flype. Hence the knot is
achiral if and only if the Gauß diagram is isomorphic to itself (or
its mirror image) with the signs of the crossings switched, which
happens exactly in the cases recorded above.

1058: To show that we have no achiral knot here we use the intersection
graph of the Gauß diagram. Its vertices correspond to the arrows



18 A. Stoimenow

in the Gauß diagram and are equipped with the sign of the cross-
ing in the knot diagram. Two vertices a and b are connected by an
edge if and only if the arrows in the Gauß diagram intersect (or the
crossings are linked in the sense of Definition 2.5). A flype preserves
the intersection graph and hence the intersection graph of an achi-
ral alternating knot diagram must have an automorphism reversing
the signs of all vertices. To see that no diagram in the t̄′2 twist se-
quence of 1058 has such an automorphism, consider the equivalence
relation between vertices from Definition 2.5. Then the number of ∼-
equivalence classes of positive resp. negative crossings in each such
diagram is 2 resp. 3, and hence there can be no automorphism of the
desired kind.

812: Use again the intersection graph. Looking at the number of positive
and negative arrows intersecting only one ∼- or ∼

∗
-equivalence class

of arrows, we find that in the form C(a, b, c, d) we must have a = d.
Then b = c follows by looking at the total number of positive and
negative arrows (or the writhe). One can also use known general
arguments about rational knots.

63: The Gauß diagram is shown schematically in Figure 7. Looking at
the number of positive and negative arrows intersecting only ones
of the same sign we find c = c′, and hence by the writhe argument
a + b = a′ + b′. Then counting the number of intersections between
arrows of the same sign we find ab = a′b′, whence {a, b} = {a′, b′}.

Remark 3.2. As far as orientation goes for the composite case, the non-
invertible genus 1 alternating knots are P (p, q, r) with 3 ≤ p < q < r
(see [T]). So, if K is one of these knots, the knot K# !K is +achiral and
K # −!K is −achiral. The other knots are invertible and so +−achiral.

Using the intersection graph arguments we can now easily complete the
proof of Corollary 2.2 in the alternating case.

Proof of Corollary 2.2 (continued). The only point is to convince oneself
that the O≍(n8) alternating diagrams remain in that quantity after mod-
ding out by flypes. For this consider just the diagrams where the number
of t̄′2 moves applied to any ∼-equivalence class of crossings in the diagram
generating the series is different. Then there can be no isomorphism of any
two of the intersection graphs (just because the sets of cardinalities of the
∼-equivalence classes are never the same). But the number of compositions
of length k of some number n into strictly ascending parts is the same as
the number of compositions of n −

(
k
2

)
into k non-strictly ascending parts

(or the number of partitions of n−
(
k
2

)
of length k), which is O≍(nk−1).

The proof of Corollary 2.2 is now complete modulo Theorem 8.1.
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Considering the signature σ, we mention a final consequence of Theo-
rem 2.1 for positive knots, which also follows from [PT].

Corollary 3.2. A positive genus 2 knot has σ = 4.

Proof. It is clear that σ ≤ 4. To show σ = 4 it suffices to check it on the
(positively crossing switched) generating diagrams in Figure 3, as a t̄′2 move
never reduces σ.

4. Homogeneous genus 2 knots. Let us stipulate, throughout this
section, that diagrams and knots are taken up to mirror image. In [Cr1],
Cromwell introduced a certain class of link diagrams he called homogeneous,
which possess minimal (genus) canonical Seifert surfaces. Roughly, a diagram
is homogeneous if the connected components, called blocks, of the comple-
ment of its Seifert picture (set of all Seifert circles lying in the projection
plane) contain only crossings of the same sign. Letting this sign always re-
main the same or always change when passing through a Seifert circle, we
obtain the positive (or negative) and alternating diagrams as special cases.
For five 10-crossing knots Cromwell could not decide about the existence of
a homogeneous diagram: 10144, 10151, 10158, 10160 and 10165. Two of them
have genus 2: 10144 and 10165. The present discussion enables us to handle
these cases.

Theorem 4.1. Any homogeneous genus 2 knot K is alternating or pos-
itive.

Note that this is no longer true for genus 3, as shown by Cromwell’s
example 943.

Corollary 4.1. The knots 10144 and 10165 are non-homogeneous.

Proof. The knots 10144 and 10165 violate obstructions to being positive
(e.g. [Cr1, Theorem 4(b)] or [St2]) or alternating (one edge coefficient of the
Jones polynomial is not ±1, see [Ka2, Mu, Th1]), hence cannot be homoge-
neous.

Before we start with the proof of Theorem 4.1, we need one more defini-
tion.

Definition 4.1. The interior of a Seifert circle is the bounded compo-
nent of its complement in the plane, and its exterior is the unbounded one.
The Seifert circle is called separating if both its interior and exterior contain
at least one other Seifert circle (or equivalently, at least one crossing), and
non-separating otherwise.

First we record a statement we will use later to reduce the number of
cases to discuss.
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Lemma 4.1. Let D be an alternating diagram with (i) exactly three neg-
ative crossings , all connecting a non-separating Seifert circle, or (ii) with
exactly two negative crossings. Assume furthermore that , whichever case (i)
or (ii) we are in, no flype can be performed at any one of these two or three
crossings. Then any homogeneous diagram in the series of all diagrams ob-
tained from D by flypes is either positive or alternating.

Proof. Assume a knot has in (all) its alternating reduced diagram(s) at
most three negative (or positive) crossings. Then the fact that alternating
diagrams are homogeneous shows that any Seifert circle must be connected
from the same side by crossings of the same sign, and then by the non-
existence of isthmus crossings any Seifert circle is connected by either no or
at least two negative crossings. So, if they are at most three, all the negative
crossings connect the same pair of Seifert circles (there cannot be three
Seifert circles, each connected with the other two, for orientation reasons).
Then they belong to the same block.

If the crossings are three, by assumption one of the two Seifert circles
to which they connect has an empty interior (or exterior), and the diagram
does not admit a flype near one of these crossings. Then (e.g. by looking at
the chords of the three crossings in the Gauß diagram) one convinces himself
that the triple of crossings is preserved by flypes, and so the Seifert circle
stays empty after any flype. Thus any alternating diagram of the knot has
at most one separating Seifert circle, and then each homogeneous diagram
in the series of this diagram is either positive or alternating.

If the negative crossings are two and the diagram has two separating
Seifert circles, then these are exactly the Seifert circles connected by the two
negative crossings, and both inside the inner one and outside the outer one
(or inside both if one does not contain the other) there are crossings. But
then these negative crossings admit a flype.

Proof of Theorem 4.1. With g(K) = 2, a homogeneous diagram of K,
if any, must lie in one of the 24 series (the composite diagrams are con-
nected sums of alternating pretzel diagrams, so the claim is trivial for such
diagrams).

The series of 938, 10101, 10120, 11123, 11329, 121097 and 134233 are excluded
by positivity (their alternating diagrams are positive, and hence so is any
homogeneous diagram in their series).

Consider the series of 939, 941, 1097, 11148 and 121202. The diagram of
121202 does not admit a flype (hence it is the only alternating diagram of
121202) and it has exactly one separating Seifert circle. 939, 1097 and 11148

have two negative crossings which do not admit a flype. Finally, 941 has three
negative crossings, none of which admits a flype and which together bound



Knots of (canonical) genus two 21

an empty Seifert circle. Then by the lemma each homogeneous diagram in
the series of all five knots is either positive or alternating.

There remain the 12 arborescent generating knots 51, . . . , 925 and 1058.
To handle these series, use the ≤ 3 negative (or positive) crossing argument
of Lemma 4.1. It works except for 63, 76, 77, 812 and 1058. (Note that in
most cases of two negative crossings they form a flypable clasp and hence
cannot admit a flype themselves.)

63 is excluded because it has only three Seifert circles, hence it cannot
have two separating ones.

812 is excluded because it admits only type B flypes and so the series
of all its diagrams are equivalent, but the one of C(2, 2, 2, 2) contains only
rational knots, and such knots are alternating.

Now, 1058 has an alternating diagram with five clasps, two of them neg-
ative (say, modulo mirroring). We find that the only possibility to flype is to
flype the tangles of these clasps, giving us (modulo symmetries) a total of
four alternating diagrams of 1058. The only way to make them homogeneous,
but not positive and not alternating, is to switch exactly one of the clasps
in three of these diagrams, and then possibly to perform t̄′2 moves. As 1058’s
alternating diagrams differ only by type B flypes, it suffices to consider one
of these three diagrams. But it is easy to see that the diagram simplifies to
an alternating one of one crossing less.

76 is excluded similarly. We have the two negative crossings admitting
a flype, the flypable tangle being a positive clasp. The proof of Lemma 4.1
shows that the possibility to obtain, modulo flypes, a homogeneous diagram
is to switch or not the negative and/or the flypable positive clasp. From
the four cases only the two where the flypable clasp is switched are neither
alternating nor positive. We end up with

and .

But in both cases one can see that after performing any series of t̄′2 moves
the diagram can be simplified to an alternating one.

77 is excluded the same way. The only way to obtain a homogeneous
non-positive and non-alternating diagram is to switch exactly one of the
two positive flypable clasps, but all diagrams in this series simplify to an
alternating one.
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In fact, one should be even a little more careful. Theorem 2.1 just said
that one obtains a diagram in the series modulo type B flypes (and a type B
flype may change the homogeneity of the diagram). But one can find that
the only cases where the flype is necessary are to have 2 and 2 (for 76

and 1058) and 2 and 1 (for 77) flype-admitting crossings on both sides of
the flypable negative clasp(s), and these cases can be handled exactly as
above.

5. Classifying positive diagrams of some positive genus 2 knots.

The strict increase of v2 and v3 under t̄′2 moves at a positive diagram enables
us to classify with reasonable effort all positive diagrams of positive knots
of genus 2 (or higher, if an analogue of Theorem 2.1 is worked out), if they
are not too complicated. We describe this procedure for the examples 73 and
75 (for which the use of v2 suffices). The result is a special case of a more
general procedure, so the discussion aims to show how in principle such a
task can be solved.

For an alternating knot K, denote by K the diagram obtained from an
alternating diagram of K by making it positive by crossing changes (this is
defined up to flypes).

Proposition 5.1. The positive diagrams of 73 are (up to flypes): 73, 84,
811, 813, 912, 914, 921, 937, and 1013. The positive diagrams of 75 are: 75, 86,
88, 814, 98, 915, 919, 1035.

Proof. We have v2(75) = 4 and v2(73) = 5. Let D be a positive dia-
gram of 73 or 75. Then D belongs to the twist sequence of one of the 24
knots above. In the case of 815, 923, 938, 10101, 10120, 11123, 11329, 121097 and
134233 the alternating diagrams are positive, and since t̄′2 moves preserve
alternation, all positive diagrams of their twist sequence are alternating di-
agrams with at least eight crossings, and hence by [Ka2, Mu, Th1] never
belong to 73 or 75. The same is true for the twist sequence of 75, with the
exception that in it exactly the diagram of 75 belongs to itself and no one
belongs to 73.

By an analogous argument the only diagram in the twist sequence of 51

belonging to 73 is 73’s usual (1, 1, 1, 1, 3) pretzel diagram, and no diagram
belongs to 75.

In the series of 939, 941, 1097, 11148 and 121202 the positive diagram
obtained by crossing changes from the alternating one has v2 > 5, and as v2
is (strictly) augmented by applying t̄′2 moves to a positive diagram (by the
Polyak–Viro formula, see [St2, Exercise 4.3]), 73 and 75 do not occur here.

We are left with 925, 1058, 814, 812, 77, 76, 63 and 62. We briefly discuss
these series separately.
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62: Making 62’s diagram positive by crossing changes, we obtain 51. The
(positive) diagram has Dowker notation 4 −8 10 12 −2 6, the alternat-
ing one the same notation only without minus signs. By increase of v2
under t̄′2 moves on a positive diagram we need to apply twists on the
positive generator diagram only as long as v2 ≤ 5. Twisting at cross-
ings 2 to 6, we obtain the diagrams 84 and 811 of 73 (the P (1,−4, 3)
and P (1,−2, 5) pretzel diagrams), and at crossing 1 the diagram 86 of
75. In the case of the diagrams of 73, further twists can be excluded,
since v2 = 5, but for 75 (with v2 = 4), we must also consider a double
twist at crossing 1. This gives a diagram of 97 (with v2 = 5), which
finishes the case distinction for the series of 62.

63: −4 −8 10 −2 12 6.

Since v2 attains the value 5, t̄′2 moves at crossings 2, 3, 4 or 6 cannot
appear with another t̄′2 move. These twists yield the diagram 813 of 73.
Twists at crossings 1 and 5 yield the diagram 88 of 75. For two twists
we thus need to consider only those two crossings. Twisting twice at
one of them gives 97, and twisting once at each gives 923. Both 97

and 923 have v2 = 5, and so we see that there are no more relevant
diagrams.

76: 4 8 12 2 −14 6 −10.

To save work, note that we have 5 ∼ 7 in the sense of Definition 2.5.
Thus crossing 7 can be excluded from twisting. Without twists, this is
a diagram of 51. The twists at crossings 2, 3, 4 or 6 give the diagrams
912, 921 of 73. The twists at crossings 1 and 5 result in the diagrams
98 and 915 of 75. Two twists at crossing 1 or 5 give 97, and one twist
at each of the two gives 923, and so we are done.

77: −4 8 −10 12 2 −14 6.

Without twists, this is a diagram of 51. The twists at crossings 2, 4,
5 or 7 give the diagram 914 of 73. The twist at crossing 3 gives its
diagram 937. The twists at crossings 1 or 6 give the diagram 919 of 75.
Two twists at the latter crossings again give 97 and 923.

812: 4 −8 14 10 −2 −16 6 −12.

This is a diagram of 51. We have three reverse clasps, (2, 5), (3, 7) and
(6, 8), and also 1 ∼ 4. Thus consider only crossings 1, 2, 3 and 6.
Twisting once at 1 or 6, we obtain 75 (1035) and at 2 or 3, 73 (1013)
with v2 = 5. For two twists we need to consider only crossings 1 and
6. Then one obtains diagrams of 97 and 923 with v2 = 5. Thus more
twists cannot give any diagram of interest.
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814: 4 −8 10 14 − 2 16 6 12.

Without a twist this is a diagram of 75 (814). The alternating dia-
gram has a negative clasp (2, 5). Applying a t̄′2 move at a crossing
outside this clasp gives a diagram of an alternating knot of ≥ 9 cross-
ings, which is excluded. Thus consider twists at a crossing in the clasp
(both crossings are equivalent with respect to twists). A twist gives
918 with v2 > 5, which is excluded, so there are no more diagrams of
73 and 75.

925: 4 8 12 2 −16 6 18 −10 14.

Again there is a negative clasp (5, 8). Use the above argument (for
814). Without twists it is 815, and with one twist near a crossing in the
clasp it is 918 with v2 > 5, so there are no diagrams.

1058: 4 −8 14 10 −2 −18 6 20 −12 16.

This is a diagram of 815. With one twist we obtain diagrams of 1055

and 1063 with v2 ≥ 5, so there are no diagrams we seek.

By this exhaustive case distinction we have the desired description.

Besides the diagrams we were interested in, we came across many others
used to exclude further possibilities. From this we also obtain the following
useful

Example 5.1. The knot !10145 is not positive. It is obviously almost
positive as shown by its Rolfsen diagram [Ro, appendix]. This is the reason
for the difficulties in showing its non-positivity by obstructions based on
skein arguments (see e.g. [CM]), as skein arguments apply for almost positive
knots in the same way as for positive ones. The first non-positivity proof is
due to Cromwell [Cr1, Corollary 5.1] and uses the fact that the Alexander
polynomial is monic. In our context the non-positivity follows from the proof
of Proposition 5.1. We have v2(!10145) = 5 and g(!10145) = 2, and so if !10145

were positive, it would have appeared in the above case distinction, but it
did not.

6. Classifying all 2-almost positive diagrams of a slice or achiral

knot. In this section we give a proof of the classification, announced by
Przytycki and Taniyama in [PT], of 2-almost positive achiral and slice knots.
Our proof will actually also describe all 2-almost positive diagrams of such
knots.

Proposition 6.1. The only non-trivial achiral 2-almost positive knot
is 41 (the figure eight knot), and the only non-trivial slice 2-almost positive
knot is 61 (stevedore’s knot). Each of them has only the two obvious 2-almost
positive (twist knot) diagrams.
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Our arguments will also apply to the unknot. We thereby extend the re-
sult, announced by Przytycki and Taniyama and proved in [St3], determining
all almost positive unknot diagrams. Our work can also be considered a par-
tial extension, for special diagrams, of the description of almost alternating
unknot diagrams given recently by Tsukamoto [Ts]. Although for the unknot
the full description of 2-almost positive (and 2-almost special alternating)
diagrams is not short enough to be nicely formulable, we have the following
more self-contained statement, closer in spirit to Tsukamoto’s result.

Proposition 6.2. All 2-almost special alternating unknot diagrams have
an unknotted clasp. All 2-almost positive unknot diagrams are trivializable by
crossing number reducing Reidemeister I , II , and Reidemeister III moves.

This proposition will not be proved separately, since it can be checked as
a consequence of the list of unknot diagrams obtained while proving Propo-
sition 6.1. We will, however, give a shorter proof in subsequent work, where
we will obtain extensions to 3- and 4-almost positive unknot diagrams. Here
we focus on the proof of Proposition 6.1. The procedure is similar to the one
in the previous section, with the difference that it is better now to use the
signature instead of Vassiliev invariants.

Proof of Proposition 6.1. By the slice Bennequin inequality (see [Ru]),
2-almost positive diagrams of achiral or slice knots have canonical genus
g̃ ≤ 2 and σ = 0. For simplicity we restrict ourselves to the (interesting)
case where the diagram is prime, as the composite case reduces to it and to
the almost positive diagram case.

g̃ = 0: A prime diagram of canonical genus zero has no crossings, and
hence is not 2-almost positive.

g̃ = 1: If we have a subdiagram like

then the diagram D reduces to a prime almost positive diagram and so
D belongs to a positive or almost positive knot. If such a knot is slice or
achiral, then it is the unknot. Let p and q be odd and even positive inte-
gers. All prime almost positive diagrams of the unknot are unknotted twist
knot diagrams [St3] (that is, twist knot diagrams with one of the cross-
ings in the clasp changed). Hence D is either an unknotted twist knot di-
agram with one of the crossings in the twist changed, a pretzel diagram
P (3,−1, p) with one of the crossings in the 3-crossing group changed, or a
rational diagram C(4,−q) with two of the crossings in the 4-crossing group
changed.
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If we do not have a subdiagram like the one above, then the classifi-
cation of diagrams of canonical genus 1 [St3] shows that we have either
a C(−2, q) or P (p,−1,−1) diagram, which are the even and odd crossing
number diagrams of the (negative clasp) even crossing number twist knots.
The only achiral twist knot is 41 (a fact almost trivial to prove using knot
polynomials) and the only slice twist knot is 61 (less trivial to prove, see
Casson and Gordon [CG], and [Ka3, p. 215, bottom]). After discussing the
case g̃ = 2 below, in which only the unknot occurs, we will conclude that
each of these knots has only the two 2-almost positive diagrams we just
found.

g̃ = 2: Again we discuss the 24 cases separately. Consider all diagrams
D0 obtained by switching the crossings of the generators so that exactly two
are negative. Then apply t̄′2 moves at some of the positive crossings of D0.
Using the fact that σ does not decrease when a t̄′2 move is applied to a
positive crossing in any diagram, we can exclude any diagrams obtained by
t̄′2 moves (at positive crossings) from D if σ(D) > 0. (Here D will be obtained
by some t̄′2 moves from D0.)

Moreover, some symmetries reduce the number of cases to be checked.
When fixing the crossings to be switched to become negative, only one choice
of crossing(s) in each ∼- and ∼

∗
-equivalence class has to be considered. The

diagrams for the other choices are obtained (even after t̄′2 twists) by flypes
from the choice made. Also, when applying twists, it has to be done only at
one choice of crossing(s) in a ∼-equivalence class. (In a ∼

∗
-equivalence class, a

priori all crossings must be discussed, if more than one crossing is involved in
the twisting, and we would like to take care of mutations. However, signature
and unknottedness are invariant under mutations, so that the outcome of our
calculation a posteriori also justifies symmetry reduction in ∼

∗
-equivalence

classes.)

For 51, using signature and symmetry arguments, and that σ(P (−1,−1,
1, 3, 3)) > 0, we see that the only diagrams with σ = 0 are P (−1,−1, 1, 1, p)
with p odd and up to permutation of the entries, and they are all unknotted.
Considering the remaining 23 series, a complete distinction of the cases was
done using KnotScape and is given in the three tables on the following pages.
By explicit computation of σ we find that σ(D0) > 0 except for the choices
of negative crossings given in the tables below (where the aforementioned
symmetries have been discarded). Therein, “ 62 1 3” means the diagram

obtained from that of 62 (given by its Dowker notation specified in §2) by
switching crossings so that all crossings are positive except 1 and 3. It turns
out that in all cases of σ(D0) = 0 the diagram D0 is unknotted. Then
we start applying t̄′2 moves at (combinations of) positive crossings of D0,
noticing that either none of these moves changes σ, or some t̄′2 move gives a
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Table 1. Proof of Proposition 6.1: the series of 62 and 76

62 1 3 2 → 01

4 → 31 2 ∗ 5∗ → 01

5 → 01

2 ∼ 5 6 → 31

3 ∼
∗

4 ∼
∗

6

2 3 1 → 01 4 6 → 31

4 → 01

6 → 01 1 ∗ 4∗ → 01

1 ∗ 6∗ → 01

3 4 1 → 31

2 → 01 2∗ → 01

6 → 01 6∗ → 01

2 6 → 31

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

76 1 3 2 → 01 2 4 → 31

4 → 01 2 5 → 01 2 ∗ 5∗ → 01

5 → 01 4 5 → 01 4 ∗ 5∗ → 01

2 ∼
∗

4

3 ∼ 6 2 3 1 → 01 1 4 → 31

5 ∼ 7 4 → 01 1 5 → 01 1 ∗ 5∗ → 01

5 → 01 4 5 → 01 4 ∗ 5∗ → 01

2 4 1 → 62

3 → 01 3∗ → 01

5 → 31

2 5 1 → 01

3 → 01 1 ∗ 3∗ → 01

4 → 31

knot diagram with σ > 0. In the latter case we exclude any further t̄′2 moves
at that crossing. In the former case it turns out that we always obtain the
unknot. (That arbitrarily many twists at some specific knot diagram give
the unknot can be seen in each situation directly, but it also follows from
checking the first two diagrams in the sequence because of the result of [ST].)
The twisting procedure is denoted, exemplarily, in the following way:

62 1 3 4 → 31

2 ∗ 5∗ → 01

The notation means: the diagram 62 1 3, described above, with one twist

at the crossing numbered 4 gives the trefoil (with σ = 2, so we cannot have
twists at crossing 4), and arbitrarily many twists at crossings 2 and 5 give
the unknot. Here a ‘,’ (comma) on the left of a term ‘x→ y’ means ‘or’, while
‘and’ is written as a space. Thus ‘4 4, 1 5’ means double twist at crossing 4
or twists at crossings 1 and 5. The ∼- and ∼

∗
-equivalences for each generator

are denoted below it to justify why certain crossings are not considered for
symmetry reasons.

Remark 6.1. Looking more carefully at our arguments, we see that we
only needed the knot to be slice or achiral to ensure that the diagram has
genus at most 2; then we only used the fact that the signature is zero. We
could therefore hope to eliminate completely the condition of achirality or
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Table 2. Proof of Proposition 6.1: the series of 63 and 77

63 1 3 2→01 2 2→01

4→01 2 4→31 2 ∗ 5∗→01

5→01 4 4→01 4∗→01

6→31 2 5→01

2 ∼
∗

4

3 ∼
∗

6 2 3 1, 4→01 1 4, 4 6, 5 6→31 4 ∗ 5∗→01

5, 6→01 1 5, 1 6, 4 5→01 1 ∗ 5∗→01

1 ∗ 6∗→01

2 4 1→62

3→01 3 6→31 3∗→01

5→31 6∗→01

6→01

2 5 1→01

3→01 3 6→31 1 ∗ 3∗→01

4→31 1 ∗ 6∗→01

6→01

3 6 1→31

2→01 2 2→01 4∗→01

4→01 2 4→31 2∗→01

5→62 4 4→01

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

77 1 3 2→01 2∗→01

4→31

6→76

2 ∼ 5

4 ∼ 7 1 4 2→01 2 ∗ 6∗→01

3→31

6→01

2 3 1→01

4→01 1 ∗ 4∗→01

6→31

2 4 1→01

3→01 1 ∗ 3 ∗ 6∗→01

6→01

2 6 1→01

3→31 1 ∗ 4∗→01

4→01

3 4 1→31

2→01 2 ∗ 6∗→01

6→01

3 6 1→76

2→31 4∗→01

4→01

sliceness by the condition of zero signature. (This would reprove the result of
Przytycki and Taniyama [PT] that the only 2-almost positive zero signature
knots are twist and additionally show that they have only the two obvious
2-almost positive diagrams.) For this we would basically need a version of
the “slice Bennequin inequality” of [Ru] with signature replacing the slice
genus. But the inequality σ(D) ≥ |w(D)|−n(D)+1 is not true for arbitrary
diagrams. Lee Rudolph disappointed my hopes in this regard, quoting the
braid representation of the untwisted Whitehead double of the trefoil in
Bennequin’s paper [Be, Fig., p. 121 bottom]. It is a 7-string braid (so n(D) =
7) consisting of eight positive bands (so w(D) = 8), but clearly σ = 0.
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Table 3. Proof of Proposition 6.1: the series of 75 and the 8-to-10-crossing generators

75 2 3 1 → 01 1 1 → 01

4 → 01 1 4 → 01 1 ∗ 4∗ → 01

1 ∼ 6, 2 ∼
∗

5, 3 ∼
∗

4 ∼
∗

7 5 → 31 4 4 → 01

812 1 3 7 → 52 4 → 31 2 ∗ 6∗ → 01

2 3 7 → 31 5 → 31 1 ∗ 6∗ → 01

1 ∼ 4, 2 ∼ 5, 3 ∼ 7, 6 ∼ 8 2 6 5 → 52 8 → 31 1 ∗ 3∗ → 01

814 1 4 7 → 52 3 → 31 2 ∗ 6∗ → 01

2 4 5, 7 → 31 1, 3, 6 → 01 1 ∗ 3 ∗ 6∗ → 01

2 ∼ 5, 4 ∼
∗

7, 6 ∼ 8 3 4 1, 7 → 31 2, 6 → 01 2 ∗ 6∗ → 01

815 2 5 4 → 31 8 → 31 1 ∗ 3 ∗ 7∗ → 01

2 ∼
∗

4, 3 ∼ 6, 5 ∼
∗

8

923 2 4 5 → 31 8 → 31 1 ∗ 3 ∗ 7∗ → 01

1 ∼ 6, 2 ∼
∗

5, 4 ∼
∗

8, 7 ∼ 9

925 2 5 4 → 31 8 → 52 1 ∗ 3 ∗ 7∗ → 01

2 ∼
∗

4, 3 ∼ 6, 5 ∼ 8, 7 ∼ 9

1058 2 6 5 → 52 9 → 52 1 ∗ 3 ∗ 8∗ → 01

1 ∼ 4, 2 ∼ 5, 3 ∼ 7, 6 ∼ 9, 8 ∼ 10

7. Almost positive knots. Almost positive knots, although very intu-
itively defined, are rather exotic—the simplest example !10145 has 10 cross-
ings. Therefore, not surprisingly, several properties of such knots have been
proved. For example, they have positive σ, v2 and v3 (see [PT] and [St3]), so
they are chiral and non-slice, and are non-alternating [St5]. Here we add the
following property:

Theorem 7.1. There is no almost positive knot of genus 1.

Proof. Assume K is an almost positive knot of genus 1. By the Benne-
quin–Vogel inequality (or “slice Bennequin inequality” of [Ru]) an almost
positive diagram D of K has genus at most 2. The description of genus 1
diagrams relatively easily excludes the cases where g̃(D) = 1 or D is com-
posite. Thus again we need to consider the 24 series.

To have an almost positive diagram of an almost positive knot we need
to switch (exactly) one crossing in the generator diagram to the negative, all
others to the positive, and possibly apply t̄′2 moves at the positive crossings.
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First note that the negative crossing must have no ∼-equivalent or ∼
∗
-

equivalent crossing. Otherwise, after possible flypes, the negative crossing
can be canceled by a Reidemeister II move or an easy tangle isotopy, giving
a positive diagram.

Then note that the t̄′2 move at a positive crossing p in an almost positive
diagram D changes ∇ (the Conway polynomial) by a multiple of ∇L, where
L is the link resulting by smoothing out the crossing p in D. Now, by [Cr1,
Corollary 2.2, p. 539], ∇L has only non-negative coefficients, hence such a
t̄′2 move never reduces a coefficient in ∇, in particular not [∇]z4. Hence if at
some point [∇]z4 > 0, no further t̄′2 moves can produce a genus 1 knot.

In many cases [∇]z4 > 0 already after the crossing switch (without t̄′2
moves) and we can exclude such cases a priori.

Finally, note that D must have at least 11 crossings, as the only almost
positive knot of at most 10 crossings is !10145, which has genus 2.

These arguments exclude after some check all but seven of the series. We
discuss these cases in more detail.

The argument we apply for these cases basically repeats itself seven times
and consistsmainly in drawing and lookingmore carefully at the corresponding
pictures to see how to eliminate the negative crossing by Reidemeister moves
in most of the cases, and to check that in the remaining cases maxdeg∆=2.
I list the cases, leaving drawing the pictures to the reader.

62: We have 3 ∼
∗

4 ∼
∗

6 and 2 ∼ 5. The negative crossing may be chosen
to be 1. Then the diagram simplifies to a positive diagram, unless it is
twisted at 3. However, if we apply no twists at one of 3, 4 and 6, then
by flypes this crossing can be made to be 3, hence at all these three
crossings there must be t̄′2 moves. The resulting 12-crossing diagram has
maxdeg∆ = 2.

63: 2 ∼
∗

4 and 3 ∼
∗

6. Then modulo flypes and inversion the negative crossing
can only be 1 or 3. In case it is crossing 1, the resulting diagram can
be transformed into a positive one, unless at both crossings 2 and 4, t̄′2
moves are applied, in which case maxdeg∆ = 2. In case crossing 3 is
changed to the negative, the transformation into a positive diagram is
always possible.

76: 3 ∼ 6, 5 ∼ 7, 2 ∼
∗

4. This reduces to checking that the negative crossing
is 1. Then the diagram can be transformed into a positive one, unless it
is twisted at both 2 and 4, in which case maxdeg∆ = 2.

77: 2 ∼ 5, 4 ∼ 7 and inversion symmetry leave us with the negative crossing
being 1 or 3. The former case simplifies to a positive diagram unless it
is twisted at crossings 3 and 6, and so does the latter case, unless it is
twisted at crossings 1 and 6. In both remaining situations maxdeg∆=2.
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814: 2 ∼ 5, 4 ∼
∗

7 and 6 ∼ 8 leave us with crossing 1 or 3. 1 simplifies unless 3
is twisted, in which case maxdeg∆ = 2; 3 simplifies unless 1 is twisted,
in which case again maxdeg∆ = 2.

939: 1 ∼ 4, 2 ∼ 6, 3 ∼ 8 leave us with crossings 5, 7 and 9 possibly negative.
When 5 is negative, then already maxdeg∆ = 2. When one of 7 and 9
is negative, the diagram simplifies unless at the other one there is a t̄′2
move, in which case maxdeg∆ = 2.

Finally, we have

941: 2 ∼ 6, 3 ∼ 8, 5 ∼ 9 leave 1, 4 and 7 to be negative. However, the diagram
has (modulo S2 moves) a Z3-symmetry (rotation through 2π/3), hence
we just need to deal with crossing 1 switched to the negative. This
simplifies to a positive diagram unless it is twisted at both 4 and 7, in
which case maxdeg∆ = 2.

Similar properties to the one I proved remain still open.

Question 7.1. Is there an almost positive knot of 4-ball genus 1 or
unknotting number 1?

The expected answer to both is negative. (Note that in this case the
answer to the second part of the question is a consequence of the answer
to the first part.) To give a negative answer, one could try to apply the
argument excluding 10145—namely that it has an almost positive genus 3
diagram—to the other knots occurring in our proof whose diagrams are
not straightforwardly transformable into positive ones (instead of showing
maxdeg∆ = 2 for them), but this appears to require hard labor.

8. Unique and minimal positive diagrams. One of the achievements
of the revolution initiated by the Jones polynomial was the proof of the fact
that an alternating knot has an alternating diagram of minimal crossing
number [Ka4, Mu, Th1]. Unfortunately, such a sharp tool is yet missing to
answer the problem in the positive case. Hence the question whether there
is a positive knot with no positive minimal diagram is unanswered. In [St5]
I managed to give the negative answer to this question in case the positive
knot is alternating, and subsequently I received a paper [N], where this result
was proved independently. Moreover, it follows from [St4] that the answer is
the same for (positive) knots of genus 1 (in fact, a positive genus 1 knot is
an alternating pretzel knot). Here we extend this result to genus 2.

Theorem 8.1. Any positive genus 2 knot has a positive minimal dia-
gram.

With this theorem we also finish the proof of Corollary 2.2. The main
tool we use to prove it is the Q polynomial of Brandt–Lickorish–Millett
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[BLM] and Ho [Ho] (sometimes also called absolute polynomial) and some
results about its maximal degree obtained by Kidwell [Ki]. (They were later
extended by Thistlethwaite to the Kauffman polynomial.)

Recall that the Q polynomial is a Laurent polynomial in one variable
z for links without orientation, defined by being 1 on the unknot and the
relation

(2) A1 +A−1 = z(A0 +A∞),

where Ai are the Q polynomials of links Ki, and Ki (with i ∈ Z ∪ {∞})
possess diagrams equal except in one spot, where an i-tangle (in the Conway
sense) is inserted (see Figure 8; orientation of any of the link components is
unimportant for this polynomial).

∞ 0 −1 1 4

Fig. 8. The Conway tangles

The following result on maxdegQ will be applied.

Theorem 8.2 (Kidwell [Ki]). Let K be a knot. Then maxdegQ(K) ≤
c(K) − 1 with equality if and only if K is prime alternating.

Corollary 8.1. Let D be a positive diagram with maxdegQ(D) =
c(D) − 2. Then the knot K represented by D has a positive minimal dia-
gram.

Proof. By Theorem 8.2, either c(K) = c(D), in which case the claim is
trivial, or c(K) = c(D) − 1 and K is alternating, in which case the claim
follows from the above mentioned result of [St5].

Lemma 8.1. With the above notation in (2), the Q polynomial has the
following property :

(3) An = (z2 − 1)(An−2 −An−4) +An−6.

Proof. From (2) we have

(4) An +An−2 = z(An−1 +A∞).

Now, adding two copies of (4) for n and n− 2 we obtain

(5) An+2An−2+An−4 =2zA∞+z(An−1+An−3)=(z2 + 2z)A∞+z2An−2.

So

An = (z2 + 2z)A∞ + (z2 − 2)An−2 −An−4.
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Therefore

An − (z2 − 2)An−2 +An−4 = An−2 − (z2 − 2)An−4 +An−6,

which is equivalent to the assertion.

Proof of Theorem 8.1. Take a positive diagram D of a positive genus 2
knot K. If D is composite, the genus 1 case shows that K is the connected
sum of two alternating pretzel knots, hence K is alternating. Thus consider
the prime case. The series of 121097 and 134233 and their progeny in Fig-
ure 6 contain only positive diagrams which are alternating, so these cases
are trivial. Considering 11148, the diagram is made positive by switching the
negative clasp. But all diagrams arising by t̄′2 moves from this diagram can be
simplified near the switched (and possibly twisted) clasp by one crossing, so
as to become alternating. The same argument excludes (the series of) 1097,
925, 814, 76 and 62. The case of 812 is trivial, because it contains only ratio-
nal knots, which are alternating. For 1058 and 77 apply the clasp argument
separately to the two negative clasps.

This leaves us with 121202, 941, 939 and 63. By Corollary 8.1 it suffices
to check that for any positive diagram D in their series maxdegQ(D) =
c(D)−2. By Lemma 8.1 and Theorem 8.2 this reduces to calculating Q for at
most one t̄′2 move applied near a crossing and a (reverse) clasp being positive
or resolved. However, when the clasp is resolved, the diagram reduces to one
in the series of some specialization, for which maxdegQ(D) = c(D) − 2 or
maxdegQ(D) = c(D)−3 by the above discussion. The formula in Lemma 8.1
then shows that we need to consider just positive clasps without t̄′2 moves.
This leaves a small number of diagrams. E.g., the diagram of 121202 consists
only of clasps, hence only one diagram has to be checked. Switching all
crossings in the diagram of 121202 to the positive, we obtain a diagram of
the knot 122169, for which maxdegQ = 10 is directly verified. 939 and 941

have three non-clasp crossings, hence there are eight diagrams to check,
and for 63 we have 64 diagrams. Using various symmetries one can further
reduce the work, but even that far I had no serious difficulty checking the
8 + 8 + 64 = 80 relevant diagrams by computer.

Our proof actually also shows the following:

Corollary 8.2. Any positive (reduced) diagram of a positive genus 2
knot K has at most c(K) + 3 crossings.

This is, in this special case, a much better estimate than the general
bound c(K)2/2 known from [St2].

The method of the proof can also be used further. In [St4] I exhibited
the (p, q, r)-pretzel knots with p, q, r > 1 odd as positive knots with a unique
positive diagram (up to inversion and moves in S2) and asked whether these
are the only examples. The reason behind this question was that (as I already
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expected at that point) the number of series generators grows rapidly with
the genus and hence so does the number of diagram candidates for a positive
knot of that genus. Here we observe that at least for genus 2 the variety on
generators is not sufficiently large, so that such examples still exist. We take
one of our generators.

Example 8.1. The knot !10120 has a unique positive diagram. To see
this, first exclude the series of the knots up to 925, and 1058. Positive dia-
grams in these series are, or simplify to, arborescent alternating diagrams,
and !10120 has no such diagram. The series of 938, 10101, 11123, 11329, 121097

and 134233 are excluded because all positive diagrams in these series are alter-
nating (and the only t̄′2 irreducible diagrams they contain are the generators
themselves, and t̄′2 (ir)reducibility is preserved by flypes). 1097 is excluded,
because by the above discussion the maximal degree of Q on positive dia-
grams in its series is equal to the crossing number minus 2, and hence all
maximal degrees are even (whereas clearly maxdegQ(10120) = 9). The same
argument excludes 121202 and reduces checking positive diagrams in the se-
ries of 11148 only to the one with no t̄′2 moves applied, which belongs to 10101,
and the diagrams of 939 and 941 made positive by crossing changes and with
exactly one t̄′2 move applied. In all the latter cases maxdeg V = 11, whereas
maxdeg V (!10120) = 12. To finish the argument, it remains to notice that
the alternating diagram of 10120 does not admit a flype itself and because of
the crossing number, no t̄′2 twisted diagram in its series can belong to it.

9. Some evaluations of the Jones and HOMFLY polynomials

9.1. Roots of unity. The first obstruction to particular values of g̃ is an
inequality of Morton [Mo]: maxdegm P/2 ≤ g̃, which shows that g̃ > g for
the untwisted Whitehead double of the trefoil [Mo, Remark 2] and also for
one of the two 11-crossing knots with trivial Alexander polynomial, which
according to [Ga1, Fig. 5] has genus 2 (I cannot identify which one). In
this section we will discuss an alternative approach to such an obstruction,
and apply it to exhibit the first examples of knots on which the weak genus
inequality of Morton is not sharp.

Theorem 9.1. There exist knots K with g̃(K) > 2 = maxdegm P (K)/2.

The present diagram description opens the search for alternative criteria
which can be applied to exclude a knot from belonging to a given t̄′2 twist
sequence. (We noted that some of the t̄′2 twist sequences contain others,
so we need to consider only main t̄′2 twist sequences.) Such a criterion is
the following fact, which is a direct consequence of the skein relations for
the Jones [J1] and HOMFLY [F&] polynomials and has been probably first
noted by Przytycki [Pr].
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Theorem 9.2 (Przytycki). Let a2k = 1, a 6= ±1. Then V (a) ∈ C and
P (ia,m) ∈ C[m2] (for i =

√
−1) are t2k(-move) invariant.

Corollary 9.1. The sets

Pk,g :=

{
PK mod

(il)2k − 1

−l2 − 1

∣∣∣∣ g̃(K) = g

}

and

Vk,g :=

{
VK mod

t2k − 1

t2 − 1

∣∣∣∣ g̃(K) = g

}

are finite for any k and g ∈ N.

Proof. From the theorem it is obvious that for every generator K, the
sets of residues

Vk,K′ := VK′ mod
t2k − 1

t2 − 1
and Pk,K′ := PK′ mod

(il)2k − 1

−l2 − 1
are finite on the series of K. Pk,g and Vk,g are finite unions of such sets.

Proof of Theorem 9.1. We will explain how the knots have been found.
The obvious idea is to compute the sets in Corollary 9.1 for some appropriate
k in all 24 series and to hope not to find the value of any knot therein
for which maxdegm P ≤ 4. Note that the polynomials are preserved by
mutations, so we need to consider just one diagram for any generating knot.

Table 4. The number of evaluations of V and P in the eighth and tenth roots of unity
on each series, and in total. (The number of evaluations for V and P coincide for tenth
roots of unity.)

series 51 62 63 75 76 77 812 814 815 923 925 938 939 941

#V4,K 47 121 202 226 136 119 52 302 702 418 479 1195 413 268

#P4,K 47 121 202 226 136 119 52 302 710 418 487 1231 413 268

#V5,K = #P5,K 112 408 919 988 538 456 146 1610 4281 2634 2554 8588 2271 1270

series 1058 1097 10101 10120 11123 11148 11329 121097 121202 134233 total

#V4,K 157 980 2380 2587 2284 1041 2858 5791 197 5604 6645

#P4,K 163 1020 2429 2673 2349 1073 2970 6084 209 5915 6974

#V5,K = #P5,K 624 8161 23,714 27,510 22,817 8489 34,905 104,620 938 102,940 128,898

The cases k = 2 and k = 3 did not suggest themselves as particularly
interesting at least for V , because the corresponding evaluations can be well
controlled [LM2, Li]. Thus I started with k = 4. In the case of V , this is
mainly the information given by its evaluations at eπi/4 and e3πi/4 (modulo
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conjugation and the value at i, which is equivalent to the Arf invariant [J2,
§12] and hence not very informative). Table 4 summarizes the number of
evaluations of each series.

As noted in Remark 2.2 (and established also in [Ga1]), g̃=g=maxdeg ∆
for ≤10-crossing knots, so we need to look at more complicated examples.
Examining Thistlethwaite’s tables, I found 2010 non-alternating 11-to-15-
crossing knots for which maxdegm P ≤ 4. (Among these 2010 knots only
the expected 12 pretzel knots had maxdegm P ≤ 2.) The unity root test
for V and k = 4 does not exclude any of these 2010 knots from having
g̃ = 2. The test for P with k = 4 produced the same disappointing result.
(The above table shows that it does not bring much improvement compared
to V .)

However, examining V with k = 5 exhibited four 15-crossing knots of the
type sought. These examples are shown in Figure 9. One explanation of this
outcome may be that for k = 5 all four relevant evaluations (at ekπi/5 for
k = 1, 2, 3, 4) admit very little control. The only known result about them is
Jones’s norm bound for k = 1 in terms of the braid index and bridge number
([J2, Propositions 15.3 and 15.6]) and the fact that this evaluation is finite
on closed 3-braids (see [J2, (12.8)]). Experiments with P and k = 5, however,
turned out to be significantly more time and memory consuming, and all the
values on all of the 24 series reported by my C++ program repeated those
of V , so considering P appears little rewarding.

15130745 15136972 15210586 15221824

Fig. 9. The simplest examples of knots for which eg > 2 can be proved using Jones poly-
nomial unity root evaluations, but not using Morton’s inequality

Remark 9.1. M. Hirasawa was able to find a genus 2 Seifert surface
for the last example in Figure 9, 15221824, so that the ordinary genus is not
an applicable obstruction to weak genus 2 either in this case. Later Jake
Rasmussen showed that the other five knots from Figures 9 and 11 all have
genus 2 as well, though his argument, based on direct calculation of the knot
Floer homology, is not constructive.

It would clearly be helpful to find some nice properties of the sets occur-
ring in Corollary 9.1, but such seem unlikely to exist or at least are obscured
by the electronic way of obtaining them.
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Here is a more special example.

15184486 15184487 15197572

Fig. 10. The three 15-crossing pretzel knots (two of them mutants) for which we can
show at least that they have no (reduced) diagram of even crossing number of genus 2,
but which have maxdegm P = 4

Example 9.1. Consider the knots 15184486 and 15184487 of Figure 10.
These knots are slice (generalized) pretzel knots, which are mutants. Their
(common) Jones polynomial is

V (15184486) = V (15184487)

= (−1 3 −6 13 −16 17 −19 12 −7 [4] 4 −5 4 −3 1).

A check of the evaluation of V mod t10−1
t2−1

shows that the polynomial modulus
is not realized in any main series of even crossing number. Thus these knots
do not have a (reduced) genus 2 diagram of even crossing number (although
they clearly have some in the series of 51). A similar situation occurs for
15197572.

9.2. The Jones polynomial on the unit circle. While the unity root values
of V have been useful for practical purposes, we can continue the discussion
of the polynomial evaluations in a more theoretical direction.

More generally, it is possible to say something about the evaluations of
the polynomials on the unit circle. Here are two slightly weaker but hopefully
also useful modifications of Corollary 9.1. They are also possible for P , but
I restrict myself to V for simplicity.

Proposition 9.1. Let z ∈ C with |z| = 1 and z 6= −1. Then the set
{VK(z) : g̃(K) = g} ⊂ C is bounded for any g ∈ N.

Proof. We use the Jones skein relation to expand the Jones polynomial of
a knot in the t̄′2 twist sequence of a diagram in terms of the Jones polynomials
of the diagram and all its crossing-changed versions. We obtain a complex
expression of partial sums of the Neumann series for z2 and z−2. Then we
use the boundedness of these partial sums if |z| = 1 and z 6= −1. (The value
V (1) ≡ 1 is of little interest.)

Proposition 9.2. Let z ∈ C with |z| ≤ 1 and z 6= −1. Then the set
{VK(z) : K is positive and g(K) = g} ⊂ C is bounded for any g ∈ N.
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Proof. In the case of positive t̄′2 twists only, the Neumann series for z−2

do not occur, and we are done as before.

This result seems similar to the boundedness of some other sets of eval-
uations of V on closed braids of given strand number considered by Jones
[J2, §14]. The nature of our sets is quite different, though. Note, for example,
that their closures are countable (so in particular their sets of norms have
empty interior) for |z| < 1, while Jones showed that for the evaluations he
considered, the closure is an interval.

Theorem 9.3. The map f = fg : S1 → R defined for g ∈ N+ by

fg(q) := sup{|VK(q)| : g̃(K) = g}
has the following properties :

(i) f(q) = f(q), where the bar denotes complex conjugation;
(ii) f(1) = 1, f(−1) = ∞;
(iii) f is upper semicontinuous on S1 \ {−1}, that is , for q ∈ S1 and

q 6= −1 we have

lim sup
qn 6=q, qn→q

fg(qn) ≥ fg(q).

(iv) fg satisfies the bound

fg(q) ≤ max
L

|VL(q)| ·
(

2

|1 + q| + 1

)dg

,

where the maximum is taken over L being a(n alternating) link dia-
gram obtained by smoothing out some sets of crossings in an alter-
nating t̄′2 irreducible diagram of genus g. In particular , the order of
the singularity of fg at −1 is at most dg.

The same properties hold if we modify the definition of fg by taking the
supremum only over positive or alternating knots.

Proof. The explicit estimate follows from the same argument as in the
proof of Proposition 9.1. If Vn denote the Jones polynomials of Ln, where
Ln are links with diagrams equal except in one room, where n antiparallel
half-twist crossings are inserted, then from the skein relation for the Jones
polynomial we have

V2n+1(q) = q2nV1(q) +
q2n − 1

q2 − 1
(q1/2 − q−1/2)V∞(q),

with V∞ denoting the Jones polynomial of L∞, and L∞ being the link ob-
tained by smoothing out a(ny) crossing in the room.

Expand this relation with respect to any of the dk crossings at which t̄′2
moves can be applied, obtaining 2dk terms on the right, and take the norm,
applying the triangle inequality and using |q| = 1.
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The upper semicontinuity of fg is straightforward from its definition and
the continuity of V . Thus the only fact remaining to prove is fg(−1) = ∞. For
this, one first easily observes that the determinant (even the whole Alexander
polynomial) depends linearly on the number of t̄′2 twists. Thus we could
achieve arbitrarily high and low determinants in the t̄′2 twist sequence (and at
least one of both types in alternating or positive diagrams), unless all linear
coefficients in this dependence are zero. But the fact that the determinant
never changes sign under a t̄′2 twist implies that all knots in the series have the
same signature, and as any diagram can be unknotted by crossing changes,
it must be 0. This is clearly not the case, and so we have a contradiction.

9.3. Jones’s denseness result for knots. This subsection is unrelated to
our discussion as far as weak genus 2 knots are considered. However, it is
interesting in connection with (or rather in contrast to) the properties of
their Jones polynomial unity root evaluations.

In [J2, Proposition 14.6], Jones proved the denseness of the norms of
V (e2πi/k) on closed 3-braids in [0, 4 cos2 π/k] if k ∈ N \ {1, 2, 3, 4, 6, 10}.

Here we modify this result restricting our attention to knots, which are
closed 3-braids.

Proposition 9.3. If k ∈ N \ {1, 2, 3, 4, 6, 10}, then

(6)
[0, 4 cos2 π/5 − 1], k = 5

[4 cos2 π/k − 3, 4 cos2 π/k − 1], k ≥ 7





⊂ {|VK(e2πi/k)| : K is a closed 3-braid knot} ⊂ [0, 4 cos2 π/k].

Proof. We closely follow Jones’s proof. The second inclusion is due to
him. The essential point is the first inclusion.

In the following we denote by ψ the (reduced) Burau representation.
If β is a braid, then ψβ = ψ(β) is its Burau matrix. We also write ψn
for the n-strand Burau representation, when dealing with different strand
numbers. (Since numbers and braids are disjoint, the subscripts of ψ cannot
be interpreted ambiguously.)

By Jones’s proof, for β ∈ B3 with even exponent sum [β] (in particular

when β’s closure β̂ is a knot) we have

(7)
1

4 cos2 π/k
Vbβ

(e2πi/k)=f(tr(ψβ)) :=1− 1

2 cos2 π/k
+

1

4 cos2 π/k
tr(ψβ),

with ψ being the reduced Burau representation of B3.
Now by [Sq], up to conjugation (not affecting the trace), ψ(β) ∈ U(2),

and hence, if additionally k divides [β], then

ψβ(e
2πi/k)

∣∣
{β∈B3:k | [β]}

⊂ SU(2),

in particular tr(ψ(β)) is real.
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Now

Γ ′ := {β ∈ B3 : β̂ is a knot and k | [β]}
is a coset in B3/Γ , where Γ is the kernel of β 7→ (σ(β), e2πi[β]/k) ∈ S3 × Zk.
(Here σ is not the signature, but the induced permutation homomorphism
B3 → S3.) Again Γ ⊂ B3 is normal and of finite index, hence the closure
of ψ(Γ ) ⊂ SU(2) has non-trivial connected sets. In particular the connected
component of 1 contains an S1 ∋ −1. Therefore, ψ(Γ ′) with each ψ′ also
contains a coset of S1 we call Gψ′ (not necessarily a subgroup), with Gψ′

∋ −ψ′.

If now for some ψ′ ∈ ψ(Γ ′) we had tr(ψ′) = τ (where τ ∈ R), then
|f |

∣∣
Gψ′

would be a continuous function on Gψ′ admitting the values f(−τ)
and f(τ), and for τ 6= 0 we would apply Jones’s argument.

Therefore, we are interested in some ψ′ where |τ | is maximal. Now if ξ1,2
are the eigenvalues of ψ′ (with |ξ1,2| = 1), then because of Γ ′k := {γk :
γ ∈ Γ ′} ⊂ Γ ′ for any 3 ∤ k, we consider the maximal trace of ψ′k with 3 ∤ k,
which is

µ(ξ) := sup
3∤k

|1 + ξk|

with ξ := ξ1/ξ2. One sees that µ is minimized by ξ = e±2πi/3, where it is 1.
Therefore, f ranges at least between f(−1) and f(1) on one of the Gψ′k ,
which implies the assertion.

While this is likely not the maximum we can get in our restricted situation
for 3-braids, Jones’s corollary holds in full strength restricting the evaluations
to knots.

Corollary 9.2. If k ∈ N \ {1, 2, 3, 4, 6, 10}, then

{|VK(e2πi/k)| : K is a knot} = [0,∞).

Proof. Use the fact that 1 is always in the interior of the interval on the
left of (6) and apply connected sums.

Now we attempt to generalize Corollary 9.2 to the case k = 10. According
to Jones [J3, p. 263 top], by the work of Coxeter and Moser [CMo], the image
of B3 in the Hecke algebra is finite, so we need to start with 4-braids, which
makes the situation somewhat more subtle.

Proposition 9.4. {|VK(eπi/5)| : K is a knot} = [0,∞).

Proof. First we show that {|VK(eπi/5)| : K is a 4-braid knot} contains
an interval. This argument starts along similar lines as the proof of Propo-
sition 9.3.
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Consider Γ ⊂ B4, which is the kernel of

B4 ∋ β 7→ ([β] mod 10, σ(β), ψ3(β)) ∈ Z10 × S4 ×H(eπi/5, 3),

where H(eπi/5, 3) denotes the 3-strand Hecke algebra of parameter eπi/5, · is
the homomorphism B4 → B3 with σ1,3 = σ1, σ2 = σ2, and all other notations
are as before. (ψ3 = ψ is the reduced 3-strand Burau representation.) Again
Γ ⊂ B3 is normal and of finite index, hence the closure of ψ4(Γ ) ⊂ SU(3)
is non-discrete.

All subgroups S1 of SU(3) are conjugate to subgroups of the standard
maximal toral subgroup, which are of the form

u ∈ [0, 1] 7→



e2kπiu 0 0

0 e2lπiu 0

0 0 e−2(k+l)πiu




for some k, l ∈ Z with (k, l) = 1. We will refer to these S1’s as standard S1’s
and denote them by S1

k,l. (The case of (k, l) > 1 gives no new subgroups,

at least as subsets of SU(3).) Therefore, ψ4(Γ ) contains some AS1
k,lA

−1 for
some A ∈ SU(3).

Now, consider some β ∈ B4 with σ(β) a 4-cycle, and write down the
weighted trace sum for 4-braids. The result is

(8) Vbβ
(eπi/5)=π0(β) :=8c3 − 6c+

1

2c
+

1

c
tr(ψ3(β)) +

(
6c− 3

2c

)
tr(ψ4(β))

with c := cosπ/10. (Keep in mind that ψ3,4 denote Burau representations
of different braid groups.)

If |π0|
∣∣
βΓ

is not constant, we obtain the desired interval. Therefore, as-

sume that in particular |π0|
∣∣
Φ

is constant for the set

Φ = β · [ψ−1
4 (AS1

k,lA
−1) ∩ Γ ].

Now, ψ3(β) is constant on any coset of B4/Γ , and S1
k,l acts on A−1ψ4(β)A

by multiplying by unit norm complex numbers its columns, so in particular
the diagonal entries ξi (i = 1, 2, 3). Therefore, for these ξi,

f(u) = fξ1,ξ2,ξ3(u) = e2πikuξ1 + e2πiluξ2 + e−2πi(k+l)uξ3

must lie for all u ∈ [0, 1] in a sphere (boundary of some ball) in C, which is
specified from (8).

That this happens only in exceptional cases follows by holomorphy ar-
guments. Namely, with (8),

γ = −
(

8c3 − 6c+
1

2c
+

1

c
tr(ψ3(β))

)/(
6c− 3

2c

)
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must be the center of this sphere, i.e.

u 7→ fξ1,ξ2,ξ3(u) − γ

must be of constant norm on [0, 1]. Then so is

|f(u) − γ|2 = (f(u) − γ)(f(u) − γ),

which is holomorphic, since f(u) = fξ1,ξ2,ξ3
(−u). Thus |f(u)−γ|2 is constant

for any u ∈ C.

Assume now that tr(ψ4(β)) = ξ1 + ξ2 + ξ3 6= 0. We claim that ξiλi = 0
for i = 1, 2, 3, with λ1 := k, λ2 := l, λ3 := −(k + l). In particular, since (at
least) two of the λi’s are non-zero, (at least) two of the ξi’s are zero.

Assume the contrary, that is, some ξiλi 6= 0. Then, since (λ1, λ2, λ3)
is completely characterized by being a triple of relatively prime integers
summing up to 0, we can by symmetry assume that ξ1 6= 0 6= k. Since any
α ∈ C \ {0} is of the form e2πiu for u ∈ C, we find that

P (α) = αkξ1 + αlξ2 + α−k−lξ3 − γ

has constant norm for any α ∈ C \ {0}. Letting α → 0 or α → ∞, we see
that this is possible only if P (α) ≡ C ∈ C[α, α−1] is a constant as Laurent
polynomial in α. This in turn is possible (up to interchanging λ2,3 and ξ2,3)
only if (i) ξ1 = ξ2 = 0 and k = −l = 1 or (ii) ξ1 = −ξ2, ξ3 = 0 and
k = l = ±1. These cases contradict the assumptions ξ1 6= 0 or tr(ψ4(β)) 6= 0
resp.

Thus we have shown that if |π0|
∣∣
Φ

is constant, then A−1ψ4(β)A ∈ M,
where M is the (closed) subset of U(3) consisting of the matrices with zero
trace or at least two zero diagonal entries.

But if σ(β) is a 4-cycle, so is σ(β2k+1) for any k ∈ Z, so that in particular
by the same argument any odd power of A−1ψ4(β)A must lie in M. Taking
β = σ1σ2σ

−1
3 and setting U := e−πi/5A−1ψ4(β)A we obtain an element of

infinite order in SU(3), with all odd powers in M. But now, UZ ⊂ SU(3)

is an Abelian closed non-discrete subgroup, and hence UZ contains some
S1. But UZ contains the dense subset U2Z+1, which is also a subset of M,
and hence UZ is contained itself in M. Therefore, M∩ SU(3) contains an
S1 = A′S1

m,nA
′−1.

To show that this is impossible, consider again the trace. If tr 6= 0, we see,
from the two zero entries and Cauchy–Schwarz for the third, that |tr| ≤ 1 on
the whole M. But integrating the (conjugacy invariant) squared trace norm
on the standard S1, and using the equality, for any X ∈ Z[t, t−1],

[X(t)X(1/t)]t0 =

1�

0

|X(e2πiu)|2 du,
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we obtain

1�

0

|e2πimu + e2πinu + e−2(m+n)πiu|2 du =

{
3 for |{m,n,−m− n}| = 3,

5 for |{m,n,−m− n}| = 2.

Thus we must have |tr| > 1 somewhere on the standard S1, and hence on
any other S1 ⊂ SU(3), providing us with the desired contradiction.

In summary, we showed that |VK(eπi/5)| is dense in some interval when
taking knots K ranging over closed 4-braids. From this the proposition fol-
lows by taking connected sums once we can show that there are knots K1,2

with |VK1(e
πi/5)| > 1 and 0 6= |VK2(e

πi/5)| < 1. Luckily, already K1 = 31

(trefoil) and K2 = 51 ((2, 5)-torus knot) do the job, and we are done.

Remark 9.2. V. Jones pointed out that for l = 0, . . . , n− 1, |V (elπi/n)|
is invariant under an n-move (adding or deleting subwords σ±ni ). Thus for
4 ∤ k our result follows directly from his, in particular for k = 10. However,
since no proof was given in this case in [J2], it is worth including one here
anyway.

There is another way to prove the last two statements on norm denseness
in [0,∞), avoiding any braid group theory, and just applying connected sums.
It would go via showing for every k the existence of knots K1,2 such that
ln |VK1(e

2πi/k)|/ln |VK2(e
2πi/k)| is irrational. It is unclear how to find such

knots for general k, but for specific values this is a matter of some calculation.
The following example deals with k = 10, and thus indicates an alternative
(but much less insightful) proof of Proposition 9.4.

Example 9.2. Consider the knots 63, 942, 11391 and 15134298. Writing

V[n](t) :=
tn+1/2 + t−n−1/2

t1/2 + t−1/2
,

note that V (41) = V[2] is (up to units) the minimal polynomial of eπi/5. The
polynomials of our four knots are given by:

V (942) = V[3], V (63) = −V[3] + V[2] + 1, V (11391) = 2 − V 2
[2],

V (15134298) = 3 − 2V 2
[2].

Their evaluations at eπi/5 are (1 ±
√

5)/2, 2 and 3 resp. Then we use the fact
that the first two numbers are inverses of each other up to sign, and ln 3/ln 2
is irrational. (Except for 63, the knots are not amphicheiral, although they
were chosen to have self-conjugate V to make its evaluation at eπi/5 as simple
as possible.)

To apply our results in this subsection to the weak genus, we obtain
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Corollary 9.3. For any even k > 6 and any g ∈ N+ there are infinitely
many knots K with braid index

b(K) ≤
{

3, k 6= 10,

4, k = 10,

which are not k-equivalent to a knot of canonical genus ≤ g.

Note that, when replacing k-equivalence just by isotopy, this is well-
known, because of the result of Birman and Menasco [BM, Theorem 2] that
there exist only finitely many knots of given (Seifert) genus and given braid
index. We will consider the k-moves in more detail later.

10. k-moves and the Brandt–Lickorish–Millett–Ho polynomial

10.1. The minimal coefficients of Q. It becomes clear from the previous
discussion that the Jones polynomial evaluations for themselves will unlikely
give some significantly more powerful and applicable criteria for showing
g̃ > 2 than Morton’s inequality, so it is interesting to find additional meth-
ods that sometimes provide an efficient amplification. Here we study the Q
polynomial in this regard. This is where the effort in examining the 8th roots
of unity of V can be used in practice.

First, we have the following (not maximally sharp, but easy to apply)
criterion on the low degree coefficients of Q.

Proposition 10.1. Let k be a prime. Then Q mod (k, zk) is t4k invari-
ant.

Proof. As in the proof of Lemma 8.1, adding two copies of (4) for n and
n− 2, we get (5). Now we iterate this procedure to obtain

(9)
k∑

i=0

(
k

i

)
An−2i = zkAn−k + z

zk − 2k

z − 2
A∞.

Now, when we orient Kn, the twists are antiparallel, and thus Kn−k is a
knot, even if k is odd (so that mindegAn−k = 0). From the primality of k,
so that modulo k the left hand side collapses to two terms, we get, modulo
k and zk,

An +An−2k =

(
z
zk − 2k

z − 2

)
·A∞.

Subtracting two copies of this equality for n and n − 2k instead of n gives
the assertion.

Remark 10.1. The proof also shows that Q mod (k, zk−1) is invariant
under a t4k move (because always mindegAn−k ≥ −1).
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Since in the study of V we came to treat unity roots of order 8 and 10, it
turns out useful to consider the criterion for k = 5. This criterion has some
chance to give partial information as long as the number of cases left over by
the unity root evaluations is sufficiently less than the total number of values
of Q mod (5, z5), which is very likely 55 = 3125.

Another criterion for the Kauffman polynomial F (a, z + 1/z) follows
again from Przytycki’s work (see [Pr, Corollary 1.17, p. 629]). The Kauffman
polynomial is a powerful invariant, but, especially when dealing with many
and/or high crossing number diagrams, too complex for practical compu-
tations. Hence, to make this result more computationally manageable, we
set again a = 1 and use the Q polynomial. Then from Corollary 1.17(b) of
[Pr] it follows that Q(z + 1/z) is invariant under a t2k move for kth roots of
unity z. However, we need to prove this condition in a slightly sharper form,
replacing the order k by 2k. Our proof is somewhat different from (and less
technical than) Przytycki’s, since it uses generating series.

Proposition 10.2. Q(z + 1/z) mod z2k−1

z3+(−1)k−1
is t2k invariant , and in

particular Q(z + 1/z) mod z4k−1
z4−1

is t4k invariant.

Proof. We use the formula in the proof of Theorem 3.2 of [St8]. We
observed there that the formula (4) and Lemma 8.1 imply that the generating
series

f(z, x) :=
∞∑

n=0

A2n(z)x
n

is of the form

f =
P (z, x)

(1 − x)(1 + (2 − z2)x+ x2)

for some P ∈ Z[z, x]. The invariance of Q(z) under a 2k-move is equivalent
to the denominator dividing xk − 1. Thus we need to choose z so that the
zeros of 1+(2−z2)x+x2 are distinct kth roots of unity, different from 1. Now
if x0 and x1 are these zeros, then x0x1 = 1. Thus x0,1 = e±2lπi/k for some
0 ≤ l ≤ k − 1. We must assume that l 6= k/2 (for even k) and l 6= 0, since
otherwise x0 = x1 is a double zero. Then 2− z2 = −x0 − x1 = 2 cos(2lπ/k),
hence

z2 = 2 + 2 cos

(
2π

k
· l

)
= 4 cos2

(
π

k
· l

)
,

and z = ±2 cos(πl/k). (Since l can be replaced by k − l, the sign freedom is
fictitious.)

Thus Q(z+ 1/z) is invariant if z+ 1/z = 2 cos(πl/k), with 1 ≤ l ≤ k− 1
and l 6= k/2 for even k, which means z = e±lπi/k for such l, and these are
exactly the zeros of the modulo-polynomials stated above.
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In the following we decide to use the second property in Proposition 10.2
for k = 5. (One could also take k = 10 for the first property.)

Clearly, the (Przytycki type) criterion in Proposition 10.2 is more efficient
than the one in Proposition 10.1, already because the number of values of
the invariant is infinite. But our first criterion is easier to compute, and at
least it is not a consequence of the second one, as is shown by the following

Example 10.1. Consider k = 5. The knots 11367 and 91 have Q poly-
nomials that leave the same rest modulo (z20 − 1)/(z4 − 1). But modulo 5
they differ in the z4-term, so 11367 and 91 are not t20 equivalent.

In this example, the difference of Q(z) mod (k, zk) comes out in the high-
est coefficient covered (that of zk−1). Surprisingly, this turns out to be the
case for all other examples I found, that is, Proposition 10.2 was suggested
to imply the weaker version of Proposition 10.1 for t4k moves noted in Re-
mark 10.1. Later I indeed deduced this implication rigorously, but the argu-
ment (using properties of Bernoulli polynomials) requires some space, and
I would rather omit it here.

I tested all prime and composite knots of at most 16 crossings for k =
3, 5, 7; for k = 3 there were about a million coincidences of Q(z + 1/z) mod
z4k−1
z4−1

with different Q(z) mod (k, zk), for k = 5 they were about 3200, and
for k = 7 only one, so in this range of knots for higher k there are too few

coincidences of Q(z + 1/z) mod z4k−1
z4−1

to have an interesting picture.

10.2. Excluding weak genus 2 with the Q polynomial. The original inten-
tion for the Q polynomial criteria was to exclude further knots in the set of
2010 from having g̃ = 2. Then I was fairly surprised that the most promising
candidates (that is, the knots whose V moduli appeared the least number
of times in the series) showed up in (at least one of) the series of 121097 and
134233. Thus in practice the above criteria have been useful to reduce the
number of diagrams in the series to be considered to identify these knots.
The identification was done using KnotScape.

First, I considered diagrams in the series of 134233 and 121097 obtained
by switching crossings and performing at most one t̄′2 move at each cross-
ing/clasp, that is, with ≤ 4 crossings in each ∼-equivalence class. (Resolving
clasps gives diagrams in the subseries of 134233 and 121097 in Figure 6.) Then
I added all the (other) diagrams in these series of at most 17, resp. 18, cross-
ings. From the set of diagrams thus obtained, I selected diagram candidates
for any knot with maxdegm P ≤ 4 by calculating the Jones polynomial, and
tracking down coincidences. Finally, on the diagrams with matching polyno-
mials, Thistlethwaite’s diagram transformation tool knotfind was applied
to identify the knot. By this procedure I managed to identify all the ≤15-
crossing knots with maxdegm P ≤ 4 in genus 2 diagrams except six. We
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already know four of them—they were given in Figure 9, and the other two
are shown in Figure 11.

Thus these two knots deserved closer consideration under the Q polyno-
mial criteria. These criteria proved that the two knots share the status of
those in Figure 9. We give some details just for the first knot, the other one
is examined in the same way.

Example 10.2. Consider 15216607 (Figure 11). We have

V (15216607) mod
t10 − 1

t2 − 1
= ([−3] 0 −2 −3 1 −5 2 −4).

15216607 15217802

Fig. 11. The two prime knots of at most 15 crossings, for which one can use the Q

polynomial to show that the lower bound 2 for eg, coming from Morton’s inequality, is not
sharp. In all remaining (including composite) cases it is sharp (if it is 2), except for the
four knots in Figure 9.

It turns out that in the series of 134233 the modulus of V for k = 5 appears
28 times. They can be encoded by the twist vectors:

{2,-1, 1, 1, 1,-2,-1, 0,-1}, { 1, 0,-1, 1, 1, 1, 1,-2,-2},

{1, 1, 1, 2,-1, 1,-1, 2,-1}, { 1,-1, 1, 1, 1,-1,-1, 1,-2},

{1, 1, 1, 0, 1, 1,-2,-2,-1}, { 1,-1, 1,-1, 1, 1,-1, 0,-1},

{1, 1, 1, 0, 1,-1,-2,-2, 1}, { 0, 1, 0, 1,-2, 1, 0,-2, 0},

{1, 1, 1, 0, 0, 0,-2,-2, 0}, { 0, 1,-2, 1, 0,-2, 0, 1, 0},

{1, 1, 1,-1,-1, 1,-1, 2, 2}, { 0, 0, 0, 1, 1, 1, 0,-2,-2},

{1, 1, 1,-1,-1, 1,-1,-2, 1}, { 0,-2, 0, 1, 1,-2, 0, 1, 0},

{1, 1,-1, 2,-2, 1, 1,-2,-1}, {-1, 2, 1, 1, 1, 1,-1, 2,-1},

{1, 1,-1,-1, 1, 1,-2, 1,-1}, {-1,-1, 1, 1, 1, 1, 2, 2,-1},

{1, 1,-1,-1,-2, 1, 1,-1, 1}, {-1,-1, 1, 1, 1, 1, 1,-2,-1},

{1, 1,-1,-1,-2, 1, 1,-2, 2}, {-2, 2, 1, 1, 1,-1,-1,-2, 1},

{1, 1,-2,-1, 2, 1,-1, 0,-1}, {-2, 1, 1, 1, 0, 0, 0,-2, 0},

{1, 1,-2,-2, 0, 0, 0, 1, 0}, {-2,-1, 1, 1, 1,-1, 2,-2, 1},

{1, 0, 1, 1, 1, 1,-1,-2,-2}, {-2,-1, 1, 1, 1,-1, 1,-1, 1}.

We explain this notation. First, the crossings are numbered as specified above
in the order of the Dowker notation of 134233 given by

6 12 22 26 16 4 20 24 8 14 2 10 18.

In this notation one skips an entry of a crossing appearing in a clasp with
some crossing (entry) on its left. For example, crossings denoted by ‘6’ and
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‘26’ in the notation form a clasp, so the fourth entry ‘26’ is skipped, and
crossing number 4 in the list refers to the crossing represented by the fifth
integer ‘16’ in the above Dowker notation. To facilitate this renumbering,
the integers of the crossings to be skipped are underlined. An entry xi at
position i (1 ≤ i ≤ 9) in some list denotes the switching and number of t̄′2
moves applied to the crossing at number i. There are two possibilities.

If the crossing numbered i is a single element in its ∼-equivalence class,
then xi = −1 means a switched crossing in the alternating diagram, xi = 0
the crossing in the alternating diagram as it is, and for xi ≥ 1 (resp. xi < −1)
the crossing in the alternating diagram (resp. the switched one) with xi (resp.
−1 − xi) t̄

′
2 moves applied to it.

If the crossing i builds (up to flype) a reverse clasp with another crossing
(that is, there are two elements in its ∼-equivalence class), ‘xi>0’ means the
clasp unswitched with t̄′2 moves applied xi−1 times, ‘xi = 0’ means the clasp
resolved, and ‘xi<0’ means the clasp switched with−1−xi twists applied.

Note that all the values of xi have to be considered, and hence are meant,
only modulo 5 (1).

Similarly for the other main series (clearly only such have to be consid-
ered) the modulus of V appears 22 times for the series of 121097 and once
for 1097.

Checking the 51 diagrams resulting from these vectors modulo 5, we ob-
tain the following values for Q(z + 1/z) mod z10−1

z2−1
:

([−13] 0 0 30 28 42 28 30), ([−23] 0 0 40 38 62 38 40),

([−25] 0 0 54 54 84 54 54).

But

Q(15216607) mod
z10 − 1

z2 − 1
= ([−17] 0 0 38 40 56 40 38)

does not occur among them. Thus the Q polynomial criterion in Proposi-
tion 10.2 excludes all remaining possibilities, and so g̃(15216607) > 2. (In
Remark 9.1 we mentioned that g(15216607) = 2.)

Remark 10.2. It is striking that if we take, as above, the rest Q(z+1/z)

mod z10−1
z2−1

to be an honest polynomial P in z of degree ≤ 7, then always
[P ]1 = [P ]2 = [P ]4−[P ]6 = [P ]3−[P ]7 = 0 (with [P ]i = [P ]zi). This is in fact

true whatever Q ∈ Z[z] may be, because the subalgebra of Z[z, 1/z]/ z
10−1
z2−1

(1) To avoid confusion, let us remark that in a previous(ly cited) version of the paper
a different convention for the twist vectors was used. There, for every crossing an entry
xi = 0 meant the crossing in the alternating diagram switched, xi = 1 the crossing in
the alternating diagram as it is, and xi ≥ 2 (resp. xi < 0) the crossing in the alternating
diagram (resp. the switched one) with xi − 1 (resp. −xi) t̄′2 moves applied to it. Thus if a
crossing builds a (reversely oriented) clasp with another one, as before ‘1’ means the clasp
as it is, ‘0’ means the clasp resolved, and ‘−1’ the clasp switched.
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generated by z+ 1/z = −z3 − z5 − z7 is a Z-module with basis 1, z5, z4 + z6

and z3 + z7, and hence is a rank 4 subalgebra of an algebra of rank 8 over Z.
Therefore, Proposition 10.2 becomes less efficient whenever this subalgebra
(considered also with 10 replaced by other values of n) is small.

For n divisible by 5 an additional restriction comes from the Jones–Rong
result [J4, Rn], showing that (depending on the parity of dimZ5 H1(DK ,Z5))

Q(z + 1/z) mod z5−1
z−1 is always of the form ±5k or ±5k(2z3 + 2z2 + 1) for

some natural number k.

Remark 10.3. For both knots in Figure 11 not only the modulus of the
Jones polynomial, but the whole polynomial itself, and even the HOMFLY
polynomial, are realized by weak genus 2 knots (1427627, 1434335 and 15123857

for 15217802, and 1435025 for 15216607), so that the HOMFLY polynomial
cannot give complete information on the weak genus 2 property.

We find in summary that the six knots in Figures 9 and 11 are indeed
the only examples up to 15 crossings where Morton’s weak genus estimate
g̃ ≥ 2 is not exact. This reveals Morton’s inequality as extremely effective,
at least for g̃ = 2, even at that “high” (in comparison to Rolfsen’s classical
tables) crossing numbers.

Besides the ones given above, this quest produced some further interest-
ing examples with no minimal crossing number diagram of weak genus 2.
In contrast, using a similar argument to that in the proof of Theorem 8.1
for the maximal degree of the Q polynomial on the non-alternating pretzel
knots, one can show that for g̃ = 1 any (weak genus 1) knot has a genus 1
minimal diagram.

10.3. 16-crossing knots. After the verification of 15-crossing knots, the
16-crossing knot tables were released by Thistlethwaite. A check therein
shows that there are 2249 non-alternating 16-crossing prime knots with
maxdegm P ≤ 4. (There were no knots with maxdegm P ≤ 2.) Most of
these knots again have weak genus 2. There are 19 knots that can be excluded
using V mod t10−1

t2−1
, and three using additionally Q(z+1/z) mod z10−1

z2−1
. As a

counterpart to the knots in Figure 10, there is one knot, 161265905, whose V
modulus occurs only in (main) series of even crossing number, so this knot
can have no reduced genus 2 diagram of odd crossing number.

As another novelty, there is one knot, 16686716, which cannot be decided
upon. It has the same V and Q moduli (in fact the same V and P , but not Q
polynomial) as two weak genus 2 knots, 16619178 and 16733071. Thus our criteria
cannot exclude weak genus 2. (Apparently Przytycki’s Kauffman polynomial
criteria do not apply either.) But, after testing all (still potentially relevant)
diagrams in the series of 121097 and 134233 of ≤ 49 crossings corresponding
to twist vectors with all |xi| ≤ 9, I was unable to find a diagram of this knot.
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161265905 16686716

Fig. 12. A weak genus 2 knot with no
reduced weak genus 2 diagram of odd
crossing number.

Fig. 13. Does this knot have weak
genus 2?

Remark 10.4. It is interesting to remark that unusually many of the
above examples are slice, inter alia 15184486, 15184487 and 15221824 from Fig-
ures 9 and 10, and the knots in Figures 11, 12 and 13. It is quite unclear so
far what relation (if any) exists between sliceness and exceptional behavior
regarding Morton’s inequality.

10.4. Unknotting numbers and the 3-move conjecture. Among the family
of k-moves defined above, 3-moves are of particular interest because of their
relation to unknotting numbers. An important conjecture of Nakanishi [Na] is

Conjecture 10.1 (Nakanishi’s 3-move conjecture). Any link is 3-un-
linked , that is , 3-equivalent to some (unique) unlink.

By trivial arguments, this conjecture is true for rational and arborescent
links, and by non-trivial work of Coxeter it has been made checkable for
closures of braids of at most five strands, as he showed in [Cx] that Bn/〈σ3

i 〉
is finite for n ≤ 5, so proving the conjecture reduces to verifying (a repre-
sentative of) a finite number of classes. Qi Chen in his thesis settled all of
them except (the class of) the 5-braid (σ1σ2σ3σ4)

10.

As for our context, we get a finite case simplification for the conjecture
for knots of any given weak genus. The weak genus 1 case is arborescent and
hence trivial, and we can now do by hand the proof of the 3-move conjecture
for weak genus 2 knots.

Proposition 10.3. Any weak genus 2 knot is 3-unlinked.

Proof. Applying 3-moves near the t̄′2 twisted crossings in the 24 genera-
tors, we can simplify any genus 2 knot diagram to one of the generators with
possibly a crossing eliminated or switched, and a clasp resolved or reduced
to one crossing. We obtain this way a link diagram of at most nine crossings.
These links are easy to check directly, but this has also been done previously
by Qi Chen [Ch].

Remark 10.5. A few years after our work was originally done, Dąbkow-
ski and Przytycki disproved the 3-move conjecture [DP].
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10.5. On the 4-move conjecture. Similar arguments to those for the 3-
move conjecture allow us to give a proof of Przytycki’s 4-move conjecture
for weak genus 2 knots.

Conjecture 10.2 (Przytycki [Pr]). Any knot is 4-equivalent to the un-
knot.

Thus we have

Proposition 10.4. Any weak genus 2 knot is 4-equivalent to the unknot.

Proof. By 4-moves we can simplify any genus 2 knot diagram to one
of the generators of the 24 series with possibly crossings switched. As the
conjecture is verified by Nakanishi for knots of up to 10 crossings, we need to
consider just the diagrams of the six last generators (with possibly crossings
switched). In their diagrams we still have the freedom to change clasps.

The 11-crossing generators and 134233 have one of the tangles

T1 = and T2 =

It is easily observed that, whichever way the non-clasp crossings are changed,
the clasps can be adjusted so as to simplify the diagram by eliminating one
crossing (and then it still has genus ≤ 2). Then for the 11-crossing generators
we are done, while for 134233 we work inductively on the crossing number.

121097 has the tangle

a

b

c

and the same argument as for T1 applies, unless none (or all) of crossings a, b
and c are switched. In this case, by switching the lower clasp in the diagram
of 121097, one simplifies the diagram by two crossings independently of how
the remaining crossings are switched:

−→ −→
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Finally, the procedure for 121202 (and it clasp-switched variants) is shown
below:

−→ −→

−→ −→

11. An asymptotical estimate for the Seifert algorithm. The
Seifert algorithm gives us the possibility to construct a lot of Seifert sur-
faces for a knot, and although there is not always a minimal one, we may
hope that these cases are rather exceptional. Theorem 3.1 of [St4] together
with a property of the Alexander polynomial gives us the tools to confirm
this in a way we make precise below.

Theorem 11.1. Fix g ∈ N+. Then

(10)
#{D : maxdeg∆(D) = g([D]) = g(D) = g, c(D) ≤ n}

#{D : g(D) = g, c(D) ≤ n} −−−−→
n→∞

1,

where D is a knot diagram, g(D) denotes its genus , and [D] the knot it
represents.

This theorem says that for an arbitrary genus g diagram with many
crossings, the probability for the canonical Seifert surface to be of minimal
genus is very high. For the proof we use the Alexander polynomial.

Remark 11.1. There is a purely topological result due to Gabai, which
can also be applied (see corollary 2.4 of [Ga2]), as a t̄′2 move corresponds
to change of the Dehn filling of a torus in the complement of the Seifert
surface. (Gabai needs the manifold obtained from the knot complement by
cutting out this torus to be Haken, but this is true for any 3-manifold whose
boundary is a collection of tori.) This leads to a slightly weaker version of the
theorem, in which the property of the degree of the Alexander polynomial
does not appear.

The proof of our theorem bases on the following lemma.

Lemma 11.1. Let S be a subset of Zn with the following property : if
(x1, . . . , xk−1, a, xk+1, . . . , xn) ∈ S and (x1, . . . , xk−1, b, xk+1, . . . , xn) ∈ S
for some a 6= b, then (x1, . . . , xk−1, xk, xk+1, . . . , xn) ∈ S for all xk ∈ Z.
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Then

(11) ∀n ∃εn, kn ∀k ≥ kn :
|S ∩ [−k, k]n|

(2k + 1)n
≥ εn ⇒ S ⊃ [−k, k]n.

Proof. Fix some parameter p ∈ N and use induction on n. For n = 1 the
claim is evident: set ε1 = 1/2p and k1 = p. Assume now the assertion holds
for n− 1. Let S ⊂ Zn and set

ni,k := #(S ∩ ([−k, k]n−1 × {i})), |i| ≤ k.

Set εn := 1 − (1 − εn−1)
2. If there is k′0 such that for all k ≥ k′0 there is at

most one i0 such that
ni0,k

(2k + 1)n−1
≥ εn−1,

then for each such k,

k∑

i=−k

ni,k
(2k + 1)n

<
1

2k + 1
+ εn−1 −−−→

k→∞
εn−1 < εn.

Therefore, there exists k′′0 such that for all k ≥ k′′0 ,

|S ∩ [−k, k]n|
(2k + 1)n

< εn,

and, choosing kn large enough, there is nothing to prove, as the premise of
(11) does not hold. Therefore, assume that for every k′0 there exist k ≥ k′0
and i0 6= i1 such that

ni0,k
(2k + 1)n−1

≥ εn−1,
ni1,k

(2k + 1)n−1
≥ εn−1.

Set kn := kn−1. Then for k ≥ kn there exists k′ ≥ k for which S ⊃
[−k′, k′]n−1 × {i0, i1}. Then S ⊃ [−k′, k′]n ⊃ [−k, k]n.

Note that yet we have the freedom to vary the parameter p. We need this
now.

Lemma 11.2. Lemma 11.1 can be modified by replacing “ ∀n ∃εn, kn” by
“ ∀n ∀ε ∃kn,ε”.

Proof. Let p→ ∞ in the proof of Lemma 11.1.

Proof of Theorem 11.1. Clearly (even taking care of possible flypes) it
suffices to prove the assertion for the t̄′2 twist sequence of one fixed diagram
D, which we parametrize using the twist vectors (x1, . . . , xn) introduced in
§10.2 by {D(x1, . . . , xn)}∞xi=−∞, so that a positive parameter corresponds to
a t̄′2 twisted positive crossing.

Then we apply the previous lemma to

S := {(x1, . . . , xn) : g̃(D(x1, . . . , xn)) > maxdeg∆(D(x1, . . . , xn))}.
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The property needed for S in the preceding lemma is established by the
simple fact that the Alexander polynomials of knots in a 1-parameter t̄′2
twist sequence form an arithmetic progression.

Denoting by cg,n the fraction on the left of (10), assume lim infn→∞ cg,n<1.
It is equivalent to use the k-ball around 0 in the ‖ · ‖1 or ‖ · ‖∞ norm, so this
means to assume

∃ε > 0 ∀k0 ∃k ≥ k0 : |S ∩ [−k, k]n| > ε(2k + 1)n.

Then by Lemma 11.2 we have S ⊃ [−k, k]n for k ≥ kn,ε, hence S = Zn. But
this is clearly impossible, since for example the property of positive diagrams
to have minimal genus canonical Seifert surfaces implies that S ∩ Nn

+ = ∅.
Hence lim infn→∞ cg,n = 1. Therefore limn→∞ cg,n exists, and it is 1.

12. Estimates and applications of the hyperbolic volume. We
conclude the discussion of the weak genus in general, and weak genus 2 in
particular, by some remarks concerning the hyperbolic volume. Surprisingly,
it turned out that with regard to the hyperbolic volume, the setting of [St4]
had been previously considered in a preprint of Brittenham [Br2], of which
I learned only with great delay. Parts of the material in this section (for
example, the reference to [Ad2]) have been completed using Brittenham’s
work.

Definition 12.1. For an alternating knot K define a link K̃ by adding a
circle with linking number lk = 0 (i.e. disjoint from the canonical Seifert sur-
face) around a crossing in each ∼-equivalence class of an alternating diagram
of K.

(12)

(The orientation of the circles is not important.)

In this language one can obtain all weak genus g knots by 1/ni-Dehn

surgery along the unknotted components of K̃ for the genus g generators K.
(In fact, the main generators suffice, and the cases of composite generators
can be discarded.)

In this situation we can apply a result of Thurston (see [NZ]). To state
it, here and below vol(K) denotes the hyperbolic volume of (the comple-
ment of) K, or 0 if K is not hyperbolic. K(n1, . . . , nl) denotes, as in [St6],
the knot in the series of K with twist vector (n1, . . . , nl), as explained
in §10.2.



Knots of (canonical) genus two 55

Theorem 12.1 (Thurston). If vol(K̃)>0, then for all vectors (n1, . . . , nl)
∈ Zl,

vol(K(n1, . . . , nl)) < vol(K̃),

and

vol(K(n1, . . . , nl)) → vol(K̃) as
l

min
i=1

|ni| → ∞.

As a consequence, we obtain the following theorem.

Theorem 12.2. Let

Sg := {vol(K̃) : K main generator of genus g}.
Then

sup{vol(K) : g̃(K) = g} = maxSg.

Proof. The K̃ are augmented alternating links in the sense of Adams
[Ad2], and hence by his result are hyperbolic, if K is a prime alternating
knot different from a torus knot. Applying Thurston’s result, it remains to
prove that the alternating torus knot is never a main generator. This is an
easy exercise.

This theorem shows in particular that the hyperbolic volume of knots of
bounded weak genus is bounded, with an explicitly computable exact upper
estimate.

In particular, we obtain from Theorem 12.2 by explicit calculation:

Corollary 12.1.

sup{vol(K) : g̃(K) = 1} = vol(3̃1) ≈ 14.6554495068355,

sup{vol(K) : g̃(K) = 2} = vol(1̃34233) ≈ 58.6217980273420.

The (approximate) volumes of K̃ for the main generating knots K of
genus 2 are as follows:

K vol( eK)

63 36.6386237671

941 38.7476335870

1097 43.9663485205

11148 43.9663485205

121097 58.6217980273

121202 38.7476335870

134233 58.6217980273

There is a further application of the hyperbolic volume.

Proposition 12.1. If vol(K̃) > vol(K̃ ′) for two generators K and K ′,
then a generic alternating knot in the series of K has no diagram in the
series of K ′.
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To make precise what ‘generic’ means we make a definition:

Definition 12.2. A subclass B ⊂ C in a class C of links is called asymp-
totically dense or generic if

lim
n→∞

|{K ∈ B : c(K) = n}|
|{K ∈ C : c(K) = n}| = 1.

For example, in [Th2] Thistlethwaite showed that the non-alternating
links are generic in the class of all links. Similarly, a result of [St9] is that
any generic subclass of the class of alternating links contains mutants.

The proof of Proposition 12.1 is similar to the arguments in §11, but
simpler, and is hence omitted. (Again avoiding K ′ to be a torus knot is
easy.)

Example 12.1. We have

vol(9̃38) ≈ 47.2069898171 > vol(1̃097) ≈ 43.9663485205,

so that a generic alternating knot in the series of 938 will not have a diagram
in the series of 1097. (Note that both series have seven ∼-equivalence classes
and thus the number of diagrams in them grows comparably.)

The fact that vol(1̃34233) and vol(1̃21097) are equal is unfortunate, as
otherwise we would be able to conclude that a generic genus 2 alternating
knot of one of the crossing number parities has no genus 2 diagrams of the
other crossing number parity (as we did for specific examples before using
the values of the Jones polynomial at roots of unity). Also, this value is
much higher than the volume of any non-alternating ≤16-crossing knot. (The
maximal volume of such a knot is about 32.9, and the maximal volume among
those knots with maxdegm P ≤ 4 is about 22.9.) Thus the volume does not
seem to have much practical significance as an obstruction to g̃ = 2. On the
other hand, we can use the fact that vol(1̃34233) = vol(1̃21097) is higher than

vol(K̃) for the other main generators K. From this, and Proposition 12.1,
we obtain

Corollary 12.2. A generic alternating genus 2 knot has no non-special
genus 2 diagrams (i.e. such diagrams with a separating Seifert circle).

This is not true for weak genus 1, because of the alternating knots of
even crossing number. For odd crossing number genus 1 alternating knots it
is, in contrast, trivial. However, being such a narrow class, genus 1 diagrams
are not interesting anyway.

To estimate maxSg, Brittenham uses a remark of W. Thurston that any
link L satisfies vol(L) ≤ 4V0c(L), with V0 being the volume of the ideal
tetrahedron. (In [GL, §1.5], Garoufalidis and Le quote private communica-
tion with I. Agol and D. Thurston, stating vol(L) ≤ v8(c(L)−2) for a knot L,
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where v8 ≈ 3.66386 is the volume of the ideal octahedron.) Then Brittenham
studies

Cg := {c(K̃ ′) : K main generator of genus g},
where K̃ ′ is obtained from K̃ by resolving inK clasps of ∼-equivalence classes
with two crossings. (This move preserves the link complement.) Brittenham
shows that maxCg ≤ 30g − 3.

We conclude this section by giving an estimate for maxCg, best possible
for g ≥ 6.

Proposition 12.2. max Cg ≤ 30g− 15, and this inequality is sharp for
g ≥ 6.

In particular, we have a slight improvement of Brittenham’s volume es-
timate:

Corollary 12.3. sup{vol(K) : g̃(K) = g} ≤ (120g − 60)V0.

However, we also know now that a significant further improvement of
Brittenham’s volume estimate is possible only by studying the volume of the
K̃ directly, and not via their crossing number.

Proof of Proposition 12.2. We know from [STV] that dg ≤ 6g−3, and in
each ∼-equivalence class we need four crossings for the trivial loop, and at
most one crossing for the generating knot. (Recall that dg are the numbers
introduced at the end of §2.) If some ∼-equivalence class of the generating
diagram has two ∼-equivalent crossings, their clasp can be resolved, since this
preserves the link complement. Thus each ∼-equivalence class contributes at
most five crossings to c(K̃ ′), showing the estimate claimed.

To show that the estimate is sharp, we need to construct a prime alter-
nating knot K = Kg of genus g ≥ 6 with 6g − 3 ∼-equivalence classes, all
consisting of a single crossing.

Once this is done, it is easy to show that c(K̃ ′) = c(K̃) = 30g − 15.

Let L1, . . . , Ln be the trivial components of K̃. Then K ⊔ Li is non-split
for any i, since 1/ni-surgery on Li changes K, as it may give an alternating
knot of higher crossing number. Also, as this knot is prime (by [Me] and the
primality of the diagram), Li cannot be enclosed in a sphere intersecting K in
an unknotted arc (otherwise the result from K after 1/ni-surgery on Li will
always have K as prime factor). Thus Li and K have at least four mixed

crossings in any diagram of K̃. Since K appears in a reduced alternating
diagram in the diagram of K̃ obtained by the replacements (12), it is also of
minimal crossing number.

We give the Kg in terms of their Seifert graphs; since all Kg are special
alternating, these graphs determine uniquely a special alternating diagram
of Kg (see e.g. [Cr1]; these graphs are trivalent and bipartite). We include



58 A. Stoimenow

the graphs only for g = 6 and g = 7. (The genus can be determined easily,
since the number of regions of the graph is 2g+1.) Given a graph of a knot of
genus g, one can obtain a graph of a knot of genus g+ 2 by the replacement

−→

performed so that the number of edges in each face remains even.

Remark 12.1. Brittenham uses his proof that weak genus bounds the
volume to show in [Br1] that there are (hyperbolic) knots of genus 1 and
arbitrarily large weak genus. Because of the use of Thurston’s theorem, how-
ever, for a given lower weak genus bound, his construction cannot concretely
identify the example. Such examples, although not hyperbolic, have been
previously given in [Mr, St10].

Remark 12.2. While K1 is the trefoil, one can check that for 1 < g ≤ 5
the knots Kg do not exist. This follows for g = 1 from [St4], for g = 2 from
our discussion, and for g = 3 from the calculation given later in §13.2. For
g = 4, 5, one can establish this in the following way. It follows from the
results of [MS] and [SV] that the Seifert graphs of the alternating diagrams
of Kg are exactly the planar, 3-connected, bipartite, 3-valent graphs with
4g − 2 vertices and an odd number of spanning trees. A list of candidates
for such graphs was generated and then examined with MATHEMATICA.
It showed that for 1 < g ≤ 5 no such graphs exist.

13. Genus 3

13.1. The homogeneity of 10151, 10158 and 10160. After having some
success with g̃ = 2, I was encouraged to face the combinatorial explosion and
to try to obtain at least some partial results about g̃ = 3. One motivation
for this attempt were the three undecided genus 3 knots in [Cr1, appendix].
They can now be settled, and thus, together with Corollary 4.1, Cromwell’s
table completed.

Proposition 13.1. The knots 10151, 10158 and 10160 are non-homo-
geneous.
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Proof. These knots all have monic Alexander polynomial, and hence a
homogeneous diagram must be a genus 3 diagram of at most 12 crossings
[Cr1, Corollary 5.1] with no t̄′2 move applied (see proof of [Cr1, Theorem 4]).
As crossing changes commute with flypes, deciding about homogeneity re-
duces to looking for homogeneous diagrams obtained by flypes and crossing
changes from a t̄′2 irreducible alternating diagram of between 10 and 12 cross-
ings. We can exclude special alternating series generators, as homogeneous
diagrams therein are alternating (and positive). Since the leading coefficient
of ∆ is multiplicative under Murasugi sum, and invariant up to sign under
mirroring, the monicness of the Alexander polynomial is preserved by pass-
ing from the homogeneous to the alternating diagram. Therefore, it suffices
to consider only (alternating) generating knots, whose Alexander polynomial
is itself monic. There are 37 such knots.

Unfortunately, (non-)homogeneity of a diagram, unlike alternation and
positivity, is a condition not necessarily preserved by flypes. Thus we must
apply flypes on the 37 generators, obtaining 275 (alternating) generating
diagrams.

Fig. 14. Fragments to exclude, together with their obverses, in a homogeneity test. Un-
oriented lines may have both orientations. The first and third fragments above make the
diagram non-homogeneous even after flypes. The second one may or may not do so (de-
pending on the orientation) but if the diagram is homogeneous, then this property is not
spoiled by reducing the fragment to a clasp (so there is a simpler homogeneous diagram).

We must now consider the diagrams obtained from these 275 by crossing
changes, and then test homogeneity. However, it is useful to make a pre-
selection. There are several simple fragments in a diagram, which either
render it non-homogeneous, or reveal a simpler homogeneous diagram. See
Figure 14. Thus it suffices to consider diagrams without such fragments. More
generally than (excluding) the first fragment, if p ∼ q or p ∼

∗
q, then p and q

must have equal sign. We also apply Kidwell’s inequality (see Theorem 8.2)
to discard diagrams with long bridges (we have maxdegQ = 8 for all three
knots). There remain 1430 diagrams to be considered.

Homogeneity test on these 1430 diagrams gives 430 homogeneous ones.
It is easy to check that none of them matches the Alexander polynomial of
any of the three knots we seek, and so we are done.
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13.2. The complete classification. The above three knots were a moti-
vation to find the t̄′2 irreducible alternating genus 3 knots at least up to 12
crossings. However, a complete classification of the t̄′2 irreducible genus 3
alternating knots is considerably more difficult.

Theorem 3.1 of [St4] shows that at least at c3 ≤ 8c2 + 6 = 110 cross-
ings the series will terminate. The situation becomes then more optimistic,
though. If one repeats the discussion at the end of §2 for a t̄′2 irreducible
alternating genus 3 diagram, this leads to expect c3 to be around 23. Then
we found in [STV] that it is indeed equal to 23. The method there used the
list of maximal Wicks forms compiled as described in [BV]. This method
becomes increasingly efficient when the crossing number grows beyond 15.
After some optimization, I was able to process with it also the crossing num-
bers below 23, finally reaching 17 crossings. For fewer crossings, one can
select generators directly from the alternating knot tables. (I also processed
16 crossings by both methods to check that the results are consistent.) The
number of generating knots is shown in Table 5. (The list of knots is available
electronically [St1].) In particular d3 = 15. These data show that there are a
huge number of generators, which render discussions by hand, or with mod-
erately reasonable electronic calculation, as for g̃ = 2, practically impossible
in most cases.

Table 5. The number of t̄′2 irreducible prime genus 3 alternating knots tabulated by
crossing number c and number of ∼-equivalence classes (# ∼).

c
#∼

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 total

6 4 4

7 1 2 5 8 11 9 36

8 6 10 21 22 30 44 13 146

9 4 16 42 72 64 55 68 7 328

10 2 15 51 104 159 119 52 45 2 549

11 1 10 49 120 194 211 130 20 14 749

12 1 5 32 112 220 229 154 75 2 1 831

13 1 2 17 63 170 252 178 48 18 749

14 1 4 22 63 132 163 82 467

15 2 3 12 25 47 46 23 158

total 1 8 19 47 91 168 267 377 511 563 598 499 411 240 148 46 23 4017
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Nonetheless, one can obtain some interesting information already from
the data in the table, for example:

Proposition 13.2. The number of alternating genus 3 knots of odd and
even crossing number grows in the ratio 42/37.

This is certainly not a fact one would expect from considering the genus 2
case.

13.3. The achiral alternating knots. Achirality is a relatively restrictive
condition on a knot, and so I tried, just as for genus 2, to consider the achiral
alternating knots of genus 3, hoping to reduce significantly the number of
cases and to obtain an interesting collection of knots. As we saw, in order
for a knot to generate a series with an achiral alternating knot, it must be
in particular of even crossing number, zero signature and even number of
∼-equivalence classes of crossings. (In fact, among these classes there must
be equally many of both signs for the same number 1 or 2 of elements.) From
the generators compiled above, 68 passed these tests.

To deal with these 68 cases more conveniently, it is worth mentioning a
further simple criterion which can often be useful. It uses Gauß sums (see
for the definitions [F, FS, St2, PV]).

Proposition 13.3. Let K be the alternating generator of a series con-
taining an alternating achiral knot K ′. Then the following Gauß sums vanish
on a(ny) reduced alternating diagram of K:

wp (writhe)
wp+wq

2 wpwqwr

wp + wq + wr wpwqwr wp + wq + wr

pq
wp+wq

2

Proof. The intersection graph of the Gauß diagram (IGGD) of K ′ has an
automorphism taking each vertex to one with the opposite sign. But building
K out of K ′ means reducing the number of elements in a ∼-equivalence
class in the IGGD to 1 or 2 according to their parity, and hence the above
automorphism carries over to (the IGGD of) K. But the above Gauß sums
are clearly invariants of the intersection graph (and not only of the Gauß
diagram). They change sign under mirroring the knot diagram, and hence
the result follows.

The proof suggests that more is likely.

Conjecture 13.1. If K is the alternating generator of a series contain-
ing an alternating achiral knot , then

(i) K is achiral , or
(ii) K is an iterated mutant of its obverse, or
(iii) K has self-conjugate HOMFLY and/or Kauffman polynomial.
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Clearly (i) and (ii) are stronger than our result. But note that (iii) is
not. Remarkably some of the above simple Gauß sums can sometimes do
better in distinguishing an alternating knot from its obverse than the HOM-
FLY and/or Kauffman polynomial, as one can see from the examples 1048

and 1071.

It is a good exercise to apply the above criteria by hand in some simple
examples. However, for many and/or more complicated diagrams it is easier
and safer to use computer.

Applying Proposition 13.3 on the 68 knots, only the 30 achiral (without
regarding orientation) knots remained. Up to 14 crossings the list is 89, 817,
818, 1043, 1045, 1081, 1088, 10115, 12125, 12273, 12477, 12510, 12960, 121124,
121251, 141202, 145678, 1415366, 1416078, 1416857 and 1417247. There are six
knots of 16 crossings, two of 18 and one of 20 crossings.

Again one can study their series in more detail, as we did for g̃ = 2. For
example, we have

Proposition 13.4. The fibered achiral alternating genus 3 knots are: 89,
817, 818, 1043, 1045, 1081, 1088, 10115, 12125, 12477 and 121124.

Since the maximal number of ∼-equivalence classes of these 30 knots is
12 (16277679, 16309640 and the two 18 crossing knots have that many), we
have

Proposition 13.5. The number of prime achiral alternating genus 3
knots of n crossings is O≍(n5).

14. Questions

Question 14.1. Are there any composite (other than the obvious ones)
or satellite knots of g̃ = 2?

The lack of “exotic” composite g̃ = 2 knots is suggested by a conjecture
of Cromwell:

Conjecture 14.1 (Cromwell [Cr2]). If D is a diagram of a composite
knot K = K1 #K2 and g(D) = g̃(K), then D is composite.

The conjecture is true by Cromwell’s work if D is a diagram of a closed
positive braid and by Menasco’s work [Me] if D is alternating. However, the
conjecture in general turns out to be false, as is shown by the example of
Figure 15, discovered in the course of the work previously described here.

We can pose, however, a different problem:

Question 14.2. Does any knot have only finitely many reduced dia-
grams of minimal (weak) genus? (Of course, we exclude resolved clasps in a
∼-equivalence class.)
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Fig. 15. A counterexample to a conjecture of Cromwell: a prime genus 2 diagram of the
knot 52 # !52

It is an easy observation (similar to the proof of Proposition 10.4) that
there are infinitely many slice knots of g̃ = 2. (See also Remark 10.4.) Take
134233. Then switching two of the clasps we obtain a knot bounding a ribbon
disc with two singularities, and can change by twists the half-twist crossings:

Question 14.3. Can one decide more exactly which weak genus 2 knots
are slice?

Finally, we point out two general problems:

Question 14.4. Is g̃ always additive under connected sum?

In this case the combinatorial nature of g̃ seems to make the problem
much more involved than for g (for which there is an easy cut-and-paste argu-
ment, see [Ad1]). Note again that the answer would be positive if Cromwell’s
conjecture had been true.

Question 14.5. Is g̃ invariant under mutation?
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