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Separation conditions on controlled Moran constructions

by

Antti Käenmäki and Markku Vilppolainen (Jyväskylä)

Abstract. It is well known that the open set condition and the positivity of the
t-dimensional Hausdorff measure are equivalent on self-similar sets, where t is the zero of
the topological pressure. We prove an analogous result for a class of Moran constructions
and we study different kinds of Moran constructions in this respect.

1. Introduction. The widely studied class of self-similar sets was in-
troduced by Hutchinson [15]. A mapping ϕ : R

d → R
d is called a similitude

mapping if there is s > 0 such that |ϕ(x)−ϕ(y)| = s|x−y| for all x, y ∈ R
d. If

the similitude mappings ϕ1, . . . , ϕk are contractive, that is, all the Lipschitz
constants are strictly less than one, then a nonempty compact set E ⊂ R

d

is called self-similar provided that

E = ϕ1(E) ∪ · · · ∪ ϕk(E).

From this, one can easily see that E consists of smaller and smaller pieces
which are geometrically similar to E. However, the self-similar structure is
hard to recognize if these pieces overlap too much. Hutchinson [15] used a
separation condition which guarantees that we can distinguish the pieces.
The idea goes back to Moran [31] who studied similar constructions but
without mappings. In the open set condition, it is required that there exists
an open set V such that all the images ϕi(V ) are pairwise disjoint and
contained in V . Lalley [21] used a stronger version of the condition: in the
strong open set condition, it is required that the open set V above can be
chosen such that V ∩ E 6= ∅.

Assuming the open set condition, Hutchinson [15, §5.3] proved that the
t-dimensional Hausdorff measure Ht of E is positive, where t is the zero
of the so-called topological pressure. See also Moran [31, Theorem III] for
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the corresponding theorem for the Moran constructions. Schief [34, Theo-
rem 2.1] showed, extending the ideas of Bandt and Graf [2], that the open
set condition is not only sufficient but also necessary for the positivity of
the Hausdorff measure. In fact, he proved that Ht(E) > 0 implies the strong
open set condition. Later, Peres, Rams, Simon, and Solomyak [33, Theo-
rem 1.1] showed that this equivalence also holds for self-conformal sets. See
also Fan and Lau [11], Lau, Rao and Ye [22], and Ye [40]. Observe that
in these results, it is essential to have a finite number of mappings. Szarek
and Wędrychowicz [35] have shown that in the infinite case the open set
condition does not necessarily imply the strong open set condition.

The main theme in this article is to study the relationship between sepa-
ration conditions and the Hausdorff measure on limit sets of Moran construc-
tions. More precisely, we study what can be said about Schief’s result in this
setting. Since the open set condition requires the use of mappings, we intro-
duce a representative form for it to be used on Moran constructions. We also
study invariant sets of certain iterated function systems without assuming
conformality. We generalize many classical results into these settings.

The article is organized as follows. In Section 2, we introduce the concept
of semiconformal measure on the symbol space and prove the existence of
such measures. The projection of a semiconformal measure onto the limit set
of a Moran construction gives us valuable information about the limit set
provided that the construction is properly controlled and the pieces used in
the construction are appropriately separated. We introduce the definitions
of the controlled Moran construction (CMC) and suitable separation condi-
tions in Section 3. We also specify a class of CMC’s, the so called tractable
CMC’s, for which a natural separation condition is equivalent to the posi-
tivity of Ht(E), where E is the limit set and t the zero of the topological
pressure. In Section 4, we consider a subclass of tractable CMC’s, which
we call semiconformal CMC’s. We show that this class has properties that
allow us to consider it as a natural replacement of the class of conformal
iterated function systems to the setting of Moran constructions. Without
the assumption of conformality, we study separation conditions on iterated
function systems in Section 5. The last section is devoted to examples.

2. Semiconformal measure. In this section, we work only in the sym-
bol space. We begin by fixing some notation to be used throughout this
article. As usual, let I be a finite set with at least two elements. Put I∗ =⋃∞

n=1 In and I∞ = IN. Now for each i ∈ I∗, there is n ∈ N such that
i = (i1, . . . , in) ∈ In. We call this n the length of i and we write |i| = n.
The length of elements in I∞ is infinity. Moreover, if i ∈ I∗ and j ∈ I∗∪I∞,
then ij denotes the element obtained by juxtaposing i and j. For i ∈ I∗ and
A ⊂ I∞, we define [i; A] = {ij : j ∈ A} and we call [i] = [i; I∞] a cylinder
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set of level |i|. If j ∈ I∗∪I∞ and 1 ≤ n < |j|, we define j|n to be the unique
i ∈ In for which j ∈ [i]. We also set i− = i||i|−1. The notation i ⊥ j means
that i, j ∈ I∗ are incomparable, that is, [i] ∩ [j] = ∅. We call a set A ⊂ I∗

incomparable if all of its elements are mutually incomparable. Finally, i ∧ j

is the common beginning of i ∈ I∗ and j ∈ I∗, that is, i ∧ j = i|n = j|n,
where n = min{k − 1 : i|k 6= j|n}.

Defining

|i− j| =

{
2−|i∧j|, i 6= j,

0, i = j,

for i, j ∈ I∞ makes (I∞, | · |) a compact metric space. We call (I∞, | · |)
a symbol space and an element i ∈ I∞ a symbol. If there is no danger of
misunderstanding, let us also call an element i ∈ I∗ a symbol. Define the
left shift σ : I∞ → I∞ by setting

σ(i1, i2, . . .) = (i2, i3, . . .).

Write σ(i1, . . . , in) = (i2, . . . , in) ∈ In−1. Observe that to be precise in our
definitions, we need to work with “empty symbols”, that is, symbols with
zero length. However, this is left to the reader.

We now present sufficient conditions for the existence of the so-called
semiconformal measure. Our presentation here has common points with [5]
and [4, §2.1.2]. Suppose the collection {si > 0 : i ∈ I∗} satisfies the following
two assumptions:

(S1) There exists a constant D ≥ 1 such that

D−1sisj ≤ sij ≤ Dsisj for all i, j ∈ I∗.

(S2) maxi∈In si → 0 as n → ∞.

Given t ≥ 0, we define the topological pressure to be

P (t) = lim
n→∞

1

n
log

∑

i∈In

st
i.

The limit above exists by the standard theory of subadditive sequences since
∑

i∈In+m

st
i ≤ Dt

∑

i∈In+m

st
i|n

st
σn(i) = Dt

∑

i∈In

st
i

∑

j∈Im

st
j

in view of (S1).

As a function, P : [0,∞) → R is convex: Let 0 ≤ t1 ≤ t2 and λ ∈ (0, 1).
Now Hölder’s inequality implies

∑

i∈In

s
λt1+(1−λ)t2
i =

∑

i∈In

(st1
i )λ(st2

i )1−λ ≤
(∑

i∈In

st1
i

)λ(∑

i∈In

st2
i

)1−λ

from which the convexity follows. According to (S2), we may choose n ∈ N
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so that maxi∈In si < D−1. Then, using (S1), we have

(2.1) P (t) ≤ lim
k→∞

1

kn
log

(
Dt

∑

i∈In

st
i

)k
≤ 1

n
log(D max

i∈In
si)

t +
1

n
log #In.

Hence P (t) → −∞ as t → ∞ and, noting that P (0) = log #I > 0, there
exists a unique t ≥ 0 for which P (t) = 0.

Lemma 2.1. Suppose t ≥ 0. Then

D−tenP (t) ≤
∑

i∈In

st
i ≤ DtenP (t) for all n ∈ N.

Proof. Since

P (t) ≥ lim
k→∞

1

kn
log

(
D−t

∑

i∈In

st
i

)k
= log

(∑

i∈In

st
i

)1/n
+ log D−t/n

by (S2), we get
∑

i∈In st
i ≤ DtenP (t) for each n ∈ N. The other inequality

follows similarly from (2.1).

Let l∞ be the linear space of all bounded sequences on the real line.
Recalling [32, Theorem 7.2], we say that a Banach limit is any mapping
L : l∞ → R for which

(L1) L is linear,

(L2) L((xn)n∈N) = L((xn+1)n∈N),

(L3) lim infn→∞ xn ≤ L((xn)n∈N) ≤ lim supn→∞ xn.

To simplify the notation, we write Limn xn = L((xn)n∈N).

We call a Borel probability measure µ on I∞ t-semiconformal if there
exists a constant c ≥ 1 such that

c−1e−|i|P (t)st
i ≤ µ([i]) ≤ ce−|i|P (t)st

i for all i ∈ I∗.

A Borel probability measure µ on I∞ is called invariant if µ([i])=µ(σ−1([i]))
for each i ∈ I∗, and ergodic if µ(A) = 0 or µ(A) = 1 for every Borel set
A ⊂ I∞ for which A = σ−1(A). The Banach limit is a rather standard tool in
producing an invariant measure from a given measure (for example, see [38,
Corollary 1] and [28, Theorem 3.8]). In the following theorem, we construct
a family of semiconformal measures by applying a Banach limit to a suitable
collection of bounded set functions.

Theorem 2.2. For each t ≥ 0 there exists a unique invariant t-semi-

conformal measure. Furthermore , it is ergodic.

Proof. Define, for each i ∈ I∗ and n ∈ N,

(2.2) νn(i) =

∑
j∈In st

ij∑
j∈I|i|+n st

j

.
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Letting ν(i) = Limn νn(i) and using (L1) and (L2), we have

∑

j∈I

ν(ij) =
∑

j∈I

Lim
n

νn(ij) = Lim
n

∑
j∈I

∑
j∈In st

ijj∑
j∈I|i|+1+n st

j

(2.3)

= Lim
n

νn+1(i) = Lim
n

νn(i) = ν(i)

for all i ∈ I∗. Since, by Lemma 2.1,

νn(i) ≤ Dte−(|i|+n)P (t)
∑

j∈In

st
ij ≤ D2te−(|i|+n)P (t)st

i

∑

j∈In

st
j

≤ D3te−|i|P (t)st
i

and similarly the other way around, we have, using (L3),

(2.4) D−3te−|i|P (t)st
i ≤ ν(i) ≤ D3te−|i|P (t)st

i.

Next define, for each i ∈ I∗ and n ∈ N,

µn(i) =
∑

j∈In

ν(ji).

Letting µ(i) = Limn µn(i), we have µ(i) > 0 and, using (2.3),

(2.5)
∑

j∈I

µ(ij) = Lim
n

∑

j∈I

∑

j∈In

ν(jij) = µ(i)

for all i ∈ I∗. Observe also that

(2.6)
∑

j∈I

µ(ji) = Lim
n

∑

j∈I

∑

j∈In

ν(jji) = Lim
n

µn+1(i) = µ(i)

for all i ∈ I∗. Using now (2.4) and Lemma 2.1, we have

µn(i) ≤ D3t
∑

j∈In

e−|ij|P (t)st
ij ≤ D4te−|i|P (t)st

i

∑

j∈In

e−|j|P (t)st
j

≤ D5te−|i|P (t)st
i

and similarly the other way around. Hence

(2.7) D−5te−|i|P (t)st
i ≤ µ(i) ≤ D5te−|i|P (t)st

i.

Now, identifying i ∈ I∗ with the cylinder [i], we notice, using (2.5), that
µ is a probability measure on the semialgebra of all cylinder sets. Hence, by
the Carathéodory–Hahn theorem (see [39, Theorem 11.20]), µ extends to a
Borel probability measure on I∞. Observe that by (2.6) and (2.7), µ is an
invariant t-semiconformal measure.

We shall next prove that µ is ergodic. We have learned the following argu-
ment from the proof of [28, Theorem 3.8]. Assume on the contrary that there
exists a µ-measurable set A ⊂ I∞ such that σ−1(A) = A and 0 < µ(A) < 1.
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Fix i ∈ I∗ and take an incomparable set R ⊂ I∗ for which I∞ \A ⊂ ⋃
j∈R[j]

and ∑

j∈R

µ([ij]) ≤ 2µ([i; I∞ \ A]).

Using (2.7), we infer

µ([i; I∞ \ A]) ≥ 2−1D−6tst
i

∑

j∈R

e−|ij|P (t)st
j

≥ 2−1D−16te|i|P (t)µ([i])
∑

j∈R

e−|ij|P (t)e|j|P (t)µ([j])

≥ 2−1D−16tµ([i])µ(I∞ \ A).

Therefore

µ(σ−n(A) ∩ [i]) = µ([i; A]) = µ([i]) − µ([i; I∞ \ A])(2.8)

≤ (1 − 2−1D−16tµ(I∞ \ A))µ([i])

for each i ∈ I∗. Define γ = (1 − 2−1D−16tµ(I∞ \ A)) and η = (1 + γ−1)/2.
Take an incomparable set R ⊂ I∗ for which A ⊂ ⋃

i∈R[i] and
∑

i∈R µ([i]) ≤
ηµ(A). Since now, by (2.8),

µ(A) =
∑

i∈R

µ(A ∩ [i]) =
∑

i∈R

µ(σ−n(A) ∩ [i])

≤
∑

i∈R

γµ([i]) ≤ γηµ(A) < µ(A),

we have finished the proof of the ergodicity.

To prove the uniqueness, assume that µ̃ is another invariant t-semicon-
formal measure. Now there exists c ≥ 1 such that µ̃([i]) ≤ cµ([i]) for all
i ∈ I∗. By the uniqueness of the Carathéodory–Hahn extension, this in-
equality implies that also µ̃ ≤ cµ. The ergodicity of µ implies that µ̃ = µ
(see [37, Theorem 6.10]).

Let us next prove two lemmas for future reference. Define, for i ∈ I∗,

Ωi = {j ∈ I∞ : σn−1(j) ∈ [i] for infinitely many n ∈ N},
Ω0
i = {j ∈ I∞ : σn−1(j) /∈ [i] for every n ∈ N}.

Lemma 2.3. Suppose µ is an invariant ergodic Borel probability measure

on I∞. If i ∈ I∗ and µ([i]) > 0, then µ(Ω0
i) = 0 and µ(Ωi) = 1.

Proof. Take i ∈ I∗ such that µ([i]) > 0. Notice that σ−1(I∞ \ Ω0
i) ⊂

I∞ \ Ω0
i and µ(σ−1(I∞ \ Ω0

i)) = µ(I∞ \ Ω0
i) by the invariance of µ. Since

Ωi =
⋂∞

n=0 σ−n(I∞ \ Ω0
i), we have σ−1(Ωi) = Ωi, and by the ergodicity
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of µ, either µ(Ωi) = 0 or µ(Ωi) = 1. Since

µ(Ωi) = lim
n→∞

µ(σ−n(I∞ \ Ω0
i)) = µ(I∞ \ Ω0

i) ≥ µ([i]) > 0,

it follows that µ(I∞ \ Ω0
i) = µ(Ωi) = 1.

Assume that I has at least three elements. For a fixed j ∈ I, we set
Ij = I \ {j} and define

Pj(t) = lim
n→∞

1

n
log

∑

i∈In
j

st
i.

Lemma 2.4. If P (t) = 0 and j ∈ I then Pj(t) < 0.

Proof. Using Theorem 2.2, we denote by µ the invariant ergodic Borel
probability measure on I∞ for which

c−1st
i ≤ µ([i]) ≤ cst

i

for a constant c ≥ 1 and all i ∈ I∗. Assume now on the contrary that
there is j ∈ I such that Pj(t) = 0. Using Theorem 2.2, we denote by µj the
unique invariant t-semiconformal measure on I∞j . Observe that there exists
a constant cj ≥ 1 such that

c−1
j st

i ≤ µj([i]) ≤ cjs
t
i

for all i ∈ I∗j . Notice also that µj(I
∞ \ I∞j ) = 0 and µ(I∞j ) = 0 by Lemma

2.3. Defining λj = 1
2(µ + µj), we have, for each i ∈ I∗j ,

λj([i]) = λj([i] \ I∞j ) + λj([i] ∩ I∞j )

= 1
2µ([i]) + 1

2µj([i]) ≤ 1
2(c + cj)s

t
i,

and similarly the other way around. Hence also λj is invariant and t-semi-
conformal on I∞j . From the uniqueness, we infer λj = µj , and therefore

1 = µj(I
∞
j ) = λj(I

∞
j ) = 1

2(µ + µj)(I
∞
j ) = 1

2 .

This contradiction finishes the proof.

3. Controlled Moran construction. The collection {Xi ⊂ R
d :

i ∈ I∗} of compact sets with positive diameter is called a controlled Moran

construction (CMC ) if

(M1) Xii ⊂ Xi for all i ∈ I∗ and i ∈ I,
(M2) there exists a constant D ≥ 1 such that

D−1 ≤ diam(Xij)

diam(Xi) diam(Xj)
≤ D for all i, j ∈ I∗,

(M3) there exists n ∈ N such that

max
i∈In

diam(Xi) < D−1.



76 A. Käenmäki and M. Vilppolainen

Lemma 3.1. Given a CMC , there are constants c > 0 and 0 < ̺ < 1
such that maxi∈In diam(Xi) ≤ c̺n for all n ∈ N.

Proof. Using (M3), we find k ∈ N and 0 < a < 1 such that diam(Xi) <
a/D for every i ∈ Ik. Fix n > k, take i ∈ In and set i = i1 · · · il, where l−1
is the integer part of n/k, ij ∈ Ik for j ∈ {1, . . . , l − 1}, and 0 < |il| ≤ k.
Since now, by (M2),

diam(Xi) ≤ Dl−1 diam(Xi1) diam(Xi2) · · ·diam(Xil−1
) diam(Xil

)

≤ Dl−1(a/D)l−1 max
0<|i|≤k

diam(Xi) ≤ a−1 max
0<|i|≤k

diam(Xi)(a
1/k)n,

the proof is finished.

Using the assumption (M1) and Lemma 3.1, we define a projection map-

ping π : I∞ → X such that

{π(i)} =
∞⋂

n=1

Xi|n for i ∈ I∞.

It is clear that π is continuous. The compact set E = π(I∞) is called the
limit set (of the CMC). We define a Borel probability measure m on E to
be t-semiconformal if there exists a constant c ≥ 1 such that

c−1 diam(Xi)
t ≤ m(Xi) ≤ cdiam(Xi)

t for all i ∈ I∗,

m(Xi ∩ Xj) = 0 whenever i ⊥ j.

Observe that in Section 2 we defined a semiconformal measure on I∞. The
overlapping terminology should not be confusing as it is clear from the con-
text which definition we use. Furthermore, for each t ≥ 0, we set

(3.1) P (t) = lim
n→∞

1

n
log

∑

i∈In

diam(Xi)
t

provided that the limit exists. It follows straight from the definition that
if there exists a t-semiconformal measure on E then P (t) = 0. Recalling
Lemma 2.1, the equation P (t) = 0 gives a natural upper bound for the
Hausdorff dimension of E, namely dimH(E) ≤ t.

The following proposition provides sufficient conditions for the existence
of a t-semiconformal measure on E. We say that a CMC has the bounded

overlapping property if supx∈E sup{#R : R ⊂ {i ∈ I∗ : x ∈ Xi} is in-
comparable} < ∞. Observe that in the proposition the assumption that for
all i, j ∈ I∗ and h ∈ I∞ we have π(ih) ∈ Xij whenever π(h) ∈ Xj is
essential (see Example 6.2).

Proposition 3.2. Given a CMC , the limit in (3.1) exists and there is

a unique t ≥ 0 such that P (t) = 0. Assuming P (t) = 0, there exists an

invariant ergodic Borel probability measure µ on I∞ and constants c, c′ > 0
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such that

c−1 diam(Xi)
t ≤ µ([i]) ≤ cdiam(Xi)

t for all i ∈ I∗.

Set m = µ ◦ π−1. Then Ht(A) ≤ c′m(A) for every m-measurable A ⊂ E.

Furthermore, if in addition the CMC has the bounded overlapping property

and for all i, j ∈ I∗ and h ∈ I∞ we have π(ih) ∈ Xij whenever π(h) ∈ Xj,
then m is a t-semiconformal measure on E.

Proof. According to (M2) and Lemma 3.1, the collection {diam(Xi) :
i ∈ I∗} satisfies (S1) and (S2). The proof of the first claim is now trivial.
Suppose P (t) = 0 and denote by µ the t-semiconformal measure on I∞

associated to this collection (see Theorem 2.2). For fixed x ∈ E and r > 0
take i = (i1, i2, . . .) ∈ I∞ such that π(i) = x and choose n to be the smallest
integer for which Xi|n ⊂ B(x, r), where B(x, r) is the open ball centered at

x with radius r. Setting m = µ ◦ π−1 and using (M2), we obtain

m(B(x, r)) ≥ m(Xi|n) ≥ µ([i|n]) ≥ c−1 diam(Xi|n)t

≥ c−1D−t diam(Xi|n−1
)t diam(Xin)t

≥ c−1D−t min
i∈I

diam(Xi)
trt,

which, according to [10, Proposition 2.2(b)], gives the second claim. Fur-
thermore, if the bounded overlapping property holds then the proof of [17,
Theorem 3.7] shows that

m(Xi ∩ Xj) = 0 whenever i ⊥ j

provided that µ([i; π−1(Xh ∩Xk)]) ≤ m(Xih ∩Xik) for all i, h, k ∈ I∗. This
is guaranteed by our extra assumption. Hence

m(Xi) = m
(
Xi \

⋃

i⊥j

Xj ∩ Xi

)

= µ
(
π−1(Xi) \

⋃

i⊥j

π−1(Xj ∩ Xi)
)

= µ([i]),

which finishes the proof of the last claim.

In the definition that follows, we introduce a natural separation condition
to be used in Moran constructions. Given a CMC and r > 0, define

Z(r) = {i ∈ I∗ : diam(Xi) ≤ r < diam(Xi−)},
and if in addition x ∈ E, set

Z(x, r) = {i ∈ Z(r) : Xi ∩ B(x, r) 6= ∅}.
It is often useful to know the cardinality of Z(x, r). We say that a CMC
has the finite clustering property if supx∈E lim supr↓0 #Z(x, r) < ∞. Fur-
thermore, if supx∈E supr>0 #Z(x, r) < ∞ then the CMC is said to have the
uniform finite clustering property.
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Definition 3.3. We say that a CMC satisfies the ball condition if there
exists a constant 0 < δ < 1 such that for each x ∈ E there is r0 > 0 such
that for every 0 < r < r0 there exists a set {xi ∈ conv(Xi) : i ∈ Z(x, r)}
such that the collection {B(xi, δr) : i ∈ Z(x, r)} is disjoint. If r0 > 0 above
can be chosen to be infinity for every x ∈ E then the CMC is said to satisfy
the uniform ball condition. Here conv(A) is the convex hull of the set A.

We shall next prove that the (uniform) ball condition and the (uniform)
finite clustering property are equivalent.

Lemma 3.4. Given a compact connected set A ⊂ R
n and k ∈ N, there

exist x1, . . . , xk ∈ A such that the collection of balls {B(xi, (2k)−1 diam(A)) :
i ∈ {1, . . . , k}} is disjoint and

#{i ∈ {1, . . . , k} : B(xi, (2k)−1 diam(A)) ∩ B(x, (2k)−1 diam(A)) 6= ∅} ≤ 2

for every x ∈ R
n.

Proof. Choose y1, yk ∈ A such that |y1 − yk| = diam(A). Denote the
line going through y1 and yk by L and for each i ∈ {2, . . . , k − 1} set yi =
(1 − i/k)y1 + (i/k)yk ∈ L. Using the connectedness of A, we find for each
i ∈ {1, . . . , k} a point xi ∈ A for which the inner product (xi − yi) · (yk − y1)
is 0.

Theorem 3.5. A CMC satisfies the (uniform) ball condition exactly

when it has the (uniform) finite clustering property.

Proof. We shall prove the nonuniform case. The uniform case follows
similarly. Assuming the ball condition, take x ∈ E and 0 < r < r0. Choose
for each i ∈ Z(x, r) a point xi ∈ conv(Xi) such that the balls B(xi, δr) are
disjoint for all i ∈ Z(x, r). Now clearly

B(xi, δr) ⊂ B(x, (2 + δ)r) for all i ∈ Z(x, r).

Hence

#Z(x, r)δdrdα(d) =
∑

i∈Z(x,r)

Hd(B(xi, δr)) = Hd
( ⋃

i∈Z(x,r)

B(xi, δr)
)

≤ Hd(B(x, (2 + δ)r)) = (2 + δ)drdα(d),

where α(d) denotes the d-dimensional Hausdorff measure of the unit ball.
This shows that the CMC has the finite clustering property.

Conversely, by the finite clustering property, there exists M > 0 such
that for each x ∈ E there is r0 > 0 such that #Z(x, r) < M when-
ever 0 < r < r0. Choose δ = (4MD)−1 mini∈I diam(Xi) and for fixed
x ∈ E and 0 < r < r0 denote the symbols of Z(x, r) by i1, . . . , in, where
n = #Z(x, r). We shall define the points xi1 , . . . , xin needed in the ball
condition inductively. Choose xi1 to be any point of conv(Xi1) and assume
the points xi1 , . . . , xik

, where k ≤ n − 1, have already been chosen such
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that the collection of balls {B(xii
, δr) : i ∈ {1, . . . , k}} is disjoint. Using

Lemma 3.4, we find points y1, . . . , y2n ∈ conv(Xik+1
) such that the collection

{B(yj , (4n)−1 diam(Xik+1
)) : j ∈ {1, . . . , 2n}} is disjoint. Since, by (M2),

δr ≤ (4MD)−1 min
i∈I

diam(Xi) diam(Xi−) ≤ (4n)−1 diam(Xi)

for every i ∈ Z(x, r), Lemma 3.4 also says that the balls B(xii
, δr), i ∈

{1, . . . , k}, can intersect at most 2k of the balls B(yj , (4n)−1 diam(Xik+1
)),

j ∈ {1, . . . , 2n}. Hence, choosing xik+1
∈ {y1, . . . , y2n} such that

B(xik+1
, (4n)−1 diam(Xik+1

)) ∩ B(xii
, δr) = ∅

for every i ∈ {1, . . . , k}, we finish the proof.

It is evident that the bounded overlapping property does not imply the
finite clustering property, and in Example 6.1 we show that the converse
does not hold either. The natural condition

sup
x∈E, r>0

sup{#R : R ⊂ {i ∈ I∗ : Xi ∩ B(x, r) 6= ∅
and diam(Xi−) > r} is incomparable} < ∞

clearly implies both the bounded overlapping property and the uniform finite
clustering property. See also [28, Lemma 2.7]. However, we do not need
this condition as under a minor technical assumption, the finite clustering
property implies the bounded overlapping property.

Lemma 3.6. If a CMC has the finite clustering property then it has the

bounded overlapping property provided that

Xi ∩ E = π([i]) for each i ∈ I∗.

Proof. Set M = supx∈E lim supr↓0 #Z(x, r). Fix x ∈ E and assume that
R ⊂ I∗ is a finite incomparable set such that x ∈ Xi for each i ∈ R. Choose
r > 0 so small that #Z(x, r) ≤ M and

min
j∈Z(x,r)

|j| > max
i∈R

|i|.

By the assumption, x ∈ ⋂
i∈R π([i]), and hence for each i ∈ R there exists

at least one i∗ ∈ Z(x, r) such that i∗|n = i for some n ∈ N. The incompa-
rability of R now implies that i∗ 6= j∗ for distinct i, j ∈ R. Consequently,
#R ≤ #Z(x, r) ≤ M .

Let us examine how the Hausdorff measure is related to the ball condition.
Bear in mind that the finite clustering property and the ball condition are
equivalent.

Theorem 3.7. If a CMC has the uniform finite clustering property and

P (t) = 0, and m is the measure of Proposition 3.2, then there exist constants
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r0 > 0 and K ≥ 1 such that

K−1rt ≤ m(B(x, r)) ≤ Krt whenever x ∈ E and 0 < r < r0.

Consequently , dimH(E) = dimM(E) = t.

Proof. Suppose P (t) = 0 and m = µ ◦ π−1 is the measure of Proposition
3.2. Seeing that π−1(B(x, r)) ⊂ ⋃

i∈Z(x,r)[i], for fixed x ∈ E and r > 0 we
get

m(B(x, r)) ≤ µ
( ⋃

i∈Z(x,r)

[i]
)
≤

∑

i∈Z(x,r)

µ([i])

≤ c
∑

i∈Z(x,r)

diam(Xi)
t ≤ #Z(x, r)crt,

which, together with the uniform finite clustering property and the proof of
Proposition 3.2, gives the first claim.

The second claim follows immediately from [27, Theorem 5.7].

Remark 3.8. We remark that in Theorem 3.7, the measure m can be
replaced with the Hausdorff measure Ht|E on recalling [10, Proposition 2.2].
In fact, it is sufficient to assume the finite clustering property instead of the
uniform finite clustering property to see that Ht|E is proportional to m. In
particular, under this assumption, 0 < Ht(E) < ∞.

One could easily prove that if Ht|E is t-semiconformal then there exists
a set A ⊂ E with Ht(E \ A) = 0 such that supx∈A lim supr↓0 #Z(x, r)
< ∞. Since this hardly generalizes to the whole set E without any additional
assumption, we propose the following definition. We say that a CMC is
tractable if there exists a constant C ≥ 1 such that for each r > 0 we have

(3.2) dist(Xhi, Xhj) ≤ C diam(Xh)r

whenever h ∈ I∗, i, j ∈ Z(r), and dist(Xi, Xj) ≤ r. See Example 6.2 for an
example of a nontractable CMC. Comparing the following theorem to [34,
Theorem 2.1] and [33, Theorem 1.1], we see that the uniform ball condition
is a proper substitute for the open set condition in the setting of tractable
CMC’s. See also Example 6.4.

Theorem 3.9. A tractable CMC has the uniform finite clustering prop-

erty whenever Ht(E) > 0 for the unique t ≥ 0 satisfying P (t) = 0.

Proof. Assume on the contrary that for each N ∈ N there are x′
N ∈ E and

r′N > 0 such that #Z(x′
N , r′N ) ≥ N . For fixed N ∈ N choose i ∈ Z(x′

N , r′N )
so that x′

N = π(ik0) for some k0 ∈ I∞. We define

Ωi = {k ∈ I∞ : σn−1(k) ∈ [i] for infinitely many n ∈ N},
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and taking arbitrary k ∈ Ωi and n ∈ N for which σn(k) ∈ [i], we set
x = π(k) and h = k|n. Finally, pick j1, . . . , jN ∈ Z(x′

N , r′N ) such that
ji 6= jj for i 6= j. Since now dist(Xi, Xji

) ≤ r′N for every i ∈ {1, . . . , N}, we
have dist(Xhi, Xhji

) ≤ C diam(Xh)r
′
N by assumption. Hence

π([hji]) ⊂ Xhji
⊂ B(x, diam(Xhi) + dist(Xhi, Xhji

) + diam(Xhji
))

⊂ B(x, (2D + C) diam(Xh)r
′
N )

for each i ∈ {1, . . . , N} (recall that x ∈ Xhi). Therefore

π
( N⋃

i=1

[hji]
)
⊂ B(x, rn), where rn = (2D + C) diam(Xk|n)r′N ,

and

m(B(x, rn))

rt
n

≥
∑N

i=1 µ([hji])

rt
n

≥ c−1
∑N

i=1 diam(Xhji
)t

rt
n

≥ c−1D−t diam(Xh)
t
∑N

i=1 diam(Xji
)t

(2D + C)t diam(Xh)tr′N
≥ C0N,

where µ is the measure of Proposition 3.2, m = µ ◦ π−1, and the constant
C0 > 0 does not depend on n or N . Since rn ↓ 0 as n → ∞, we obtain

lim sup
r↓0

m(B(x, r))

rt
≥ C0N for all x ∈ π(Ωi),

which, according to [10, Proposition 2.2(b)], gives

(3.3) Ht(π(Ωi)) ≤ 2tC−1
0 N−1m(π(Ωi)).

Since 1 = µ(Ωi) ≤ m(π(Ωi)) ≤ 1 by Lemma 2.3, we have, using (3.3) and
Proposition 3.2,

Ht(E) ≤ Ht(π(Ωi)) + Ht(E \ π(Ωi))

≤ 2tC−1
0 N−1m(π(Ωi)) + c′m(E \ π(Ωi)) ≤ 2tC−1

0 N−1,

which leads to a contradiction as N → ∞.

To summarize the implications of the previous theorem, we finish this
section with the following corollary.

Corollary 3.10. For a tractable CMC , the following are equivalent :

(1) The ball condition.

(2) The uniform ball condition.

(3) Ht(E) > 0 if P (t) = 0.
(4) There exist constants r0 > 0 and K ≥ 1 such that

K−1rt ≤ Ht|E(B(x, r)) ≤ Krt

whenever x ∈ E, 0 < r < r0, and P (t) = 0.
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4. Semiconformal Moran construction. In a tractable CMC, we
require that the relative positions of the sets Xi, i ∈ I∗, follow the rule
given in (3.2). The only restriction on the shapes of these sets comes from
(M2) and (M3). Assuming more on the shape, we are able to prove that
the Hausdorff dimension and upper Minkowski dimension of the limit set
coincide, and if the uniform ball condition is satisfied then the dimension of
the intersection of incomparable cylinder sets is small. We say that a CMC
is semiconformal if there is a constant C∗ ≥ 1 such that

(4.1)
dist(Xhi, Xhj)

diam(Xh)
≤ C∗ dist(Xki, Xkj)

diam(Xk)
for all h, k, i, j ∈ I∗.

This property implies that the limit set is “approximately self-similar”. Ob-
serve that (4.1) is equivalent to the existence of a constant C ≥ 1 for which

C−1 diam(Xh) dist(Xi, Xj) ≤ dist(Xhi, Xhj)(4.2)

≤ C diam(Xh) dist(Xi, Xj)

for all h, i, j ∈ I∗. We notice immediately that a semiconformal CMC is
tractable, which indicates, for example, that the finite clustering property
and the uniform finite clustering property are equivalent.

Let us first introduce natural mappings for a semiconformal CMC.

Lemma 4.1. If a CMC is semiconformal then for each i ∈ I∗ there exists

a mapping ϕi : E → E such that ϕi(π(h)) = π(ih) for h ∈ I∞ and

C−1 diam(Xi)|x − y| ≤ |ϕi(x) − ϕi(y)| ≤ C diam(Xi)|x − y|
for all x, y ∈ E.

Proof. Fix i ∈ I∗ and h, k ∈ I∞. Take ε > 0 and using Lemma 3.1,
choose n ∈ N such that diam(Xi(h|n))+diam(Xi(k|n)) < ε. Now, using (4.2),
we have

|π(ih)−π(ik)| ≤ diam(Xi(h|n))+dist(Xi(h|n), Xi(k|n))+diam(Xi(k|n))(4.3)

≤ C diam(Xi) dist(Xh|n , Xk|n) + ε

≤ C diam(Xi)|π(h) − π(k)| + ε.

On the other hand, choosing n ∈ N such that diam(Xh|n) + diam(Xk|n) < ε,
we get similarly

|π(ih) − π(ik)| ≥ dist(Xi(h|n), Xi(k|n))

≥ C−1 diam(Xi) dist(Xh|n , Xk|n)

≥ C−1 diam(Xi)(|π(h) − π(k)| − diam(Xh|n) − diam(Xk|n))

≥ C−1 diam(Xi)|π(h) − π(k)| − C−1 diam(Xi)ε.

The claim now follows by letting ε ↓ 0 since according to (4.3), we may define
a mapping ϕi : E → E by setting ϕi(π(h)) = π(ih) for h ∈ I∞.
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It follows that the measure of Proposition 3.2 is semiconformal on a semi-
conformal CMC with the finite clustering property, in the following sense.

Lemma 4.2. If a semiconformal CMC has the finite clustering property

and P (t) = 0, and m is the measure of Proposition 3.2, then

m(ϕi(E) ∩ ϕj(E)) = 0 whenever i ⊥ j.

Here ϕi, i ∈ I∗, are the mappings of Lemma 4.1.

Proof. Since Lemma 4.1 clearly implies that diam(ϕi(E)) is proportional
to diam(Xi), the CMC formed by the sets ϕi(E), i ∈ I∗, has the same
topological pressure as the original CMC. Notice that diam(E) > 0 by the
finite clustering property. By the uniqueness of the invariant semiconformal
measure on I∞, also the semiconformal measures determined by these CMC’s
on I∞ are the same. As the finite clustering property remains satisfied in
the new setting and trivially ϕi(E) ∩ E = π([i]) for each i ∈ I∗, Lemma
3.6 implies the bounded overlapping property. By the semiconformality, it is
evident that for all i, j ∈ I∗ and h ∈ I∞ we have π(ih) ∈ ϕij(E) whenever
π(h) ∈ ϕj(E), and hence Proposition 3.2 completes the proof.

Using the mappings of Lemma 4.1, we are able to prove that the Hausdorff
dimension and upper Minkowski dimension of the limit set of a semiconfor-
mal CMC coincide even without assuming the ball condition.

Theorem 4.3. If a CMC is semiconformal and t = dimH(E) then

dimM(E) = t and Ht(E) < ∞.

Proof. We may assume that diam(E) > 0. Let ϕi, i ∈ I∗, be the map-
pings of Lemma 4.1. Notice that, by (M2), there exists a constant δ > 0 such
that

(4.4) diam(Xii) ≥ δ diam(Xi) for all i ∈ I∗ and i ∈ I.

Take x0 ∈ E, h ∈ I∞ such that x0 = π(h), and 0 < r < C diam(E)2. Then
choose n∈N such that h|n∈Z(C−1 diam(E)−1r). Since x0 =ϕh|n(π(σn(h))),
we have

|x0 − ϕh|n(y)| ≤ C diam(Xh|n)|π(σn(h)) − y| ≤ C diam(Xh|n) diam(E) < r

for every y ∈ E. Hence ϕh|n(E) ⊂ E∩B(x0, r). On the other hand, by (4.4),

|ϕh|n(x) − ϕh|n(y)| ≥ C−1 diam(Xh|n)|x − y| ≥ C−2 diam(E)−1δr|x − y|
for all x, y ∈ E. Therefore for each x0 ∈ E and 0 < r < C diam(E)2 there is
a mapping g : E → E ∩ B(x0, r) and a constant a = C−2 diam(E)−1δ such
that

|g(x) − g(y)| ≥ ar|x − y|
for all x, y ∈ E. The claim now follows from [8, Theorem 4].
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The following simple proposition shows the bi-Lipschitz invariance of a
semiconformal CMC. Therefore the collection of all semiconformal CMC’s
is sufficiently large. Observe that despite this property the geometry of the
limit set may change a lot under a bi-Lipschitz map (see [26, Lemma 3.2]).

Proposition 4.4. If {Xi : i ∈ I∗} is a semiconformal CMC with E as

a limit set and h : R
d → R

d is a bi-Lipschitz mapping , then {h(Xi) : i ∈ I∗}
is a semiconformal CMC with h(E) as a limit set.

Proof. Fix constants a, b > 0 such that

a|x − y| ≤ |h(x) − h(y)| ≤ b|x − y| for all x, y ∈ X.

The condition (M1) is clearly satisfied and since adiam(Xi) ≤ diam(h(Xi))
≤ bdiam(Xi) for all i ∈ I∗ and adist(Xi, Xj) ≤ dist(h(Xi), h(Xj)) ≤
bdist(Xi, Xj) for all i, j ∈ I∗, also (M2), (M3), and (4.2) are satisfied.

Examining the method used in [34, Theorem 2.1], one easily sees the
usefulness of the set

W (i) = {j ∈ I∗ : j′ ∈ Z(diam(Xi′)) and(4.5)

dist(Xi′ , Xj′) ≤ 3 diam(Xi′), where

i′ = σ|i∧j|(i) and j′ = σ|i∧j|(j)}
for i ∈ I∗. See also [22, §2] and [33, §3]. Notice that i ∈ W (i). The constant
3 in (4.5) is somewhat arbitrary. The reader will easily see that any constant
strictly larger than 2 would suffice. Let us next prove two technical lemmas.

Lemma 4.5. Given a CMC , the set W (i) is incomparable for every i∈I∗.
Furthermore, if j ∈ W (i) then

D−3 min
i∈I

diam(Xi) diam(Xi) ≤ diam(Xj) ≤ D2 diam(Xi).

Proof. Fix i ∈ I∗. Observe that if i 6= j ∈ W (i) then clearly i ⊥ j.
Take j, h ∈ W (i). If |j ∧ i| < |h ∧ i|, we must have j ⊥ h since otherwise
j = i ∧ j, which contradicts the first observation. If |j ∧ i| = |h ∧ i| =: k
then σk(j), σk(h) ∈ Z(diam(Xσk(i))) and hence j ⊥ h.

To prove the second claim, fix i ∈ I∗, take j ∈ W (i), and set i′ =
σ|i∧j|(i) and j′ = σ|i∧j|(j). Since j′ ∈ Z(diam(Xi′)), we have, using (M2),

diam(Xi′) ≥ diam(Xj′) ≥ D−1 min
i∈I

diam(Xi) diam(Xi′).

Therefore, according to (M2),

diam(Xj) ≥ D−1 diam(Xi∧j) diam(Xj′)

≥ D−2 min
i∈I

diam(Xi) diam(Xi∧j) diam(Xi′)

≥ D−3 min
i∈I

diam(Xi) diam(Xi)
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and

diam(Xj) ≤ D diam(Xi∧j) diam(Xj′)

≤ D diam(Xi∧j) diam(Xi′) ≤ D2 diam(Xi).

Lemma 4.6. If a semiconformal CMC has the finite clustering property

then

sup
i∈I∗

#W (i) < ∞.

Proof. Suppose ϕi, i ∈ I∗, are the mappings of Lemma 4.1, P (t) = 0,
and m = µ ◦ π−1 is the measure of Proposition 3.2. According to Corollary
3.10 and Theorems 3.5 and 3.7, there exists a constant K ≥ 1 such that for
every x ∈ E and r > 0,

m(B(x, r)) ≤ Krt.

Fix i ∈ I∗, take j ∈ W (i), and set i′ = σ|i∧j|(i) and j′ = σ|i∧j|(j). Since
j ∈ W (i) and j′ ∈ Z(diam(Xi′)), we have dist(Xi′ , Xj′) ≤ diam(Xi′) and

dist(Xi, Xj) ≤ C diam(Xi∧j) dist(Xi′ , Xj′)

≤ 3C diam(Xi∧j) diam(Xi′) ≤ 3CD diam(Xi).

Using Lemma 4.5, we obtain

Xj ⊂ B(x, diam(Xi) + 3CD diam(Xi) + diam(Xj))

⊂ B(x, (1 + 3CD + D2) diam(Xi))

for all x ∈ π([i]) and j ∈ W (i). Hence

m
( ⋃

j∈W (i)

Xj

)
≤ m(B(x, (1 + 3CD + D2) diam(Xi)))

≤ K(1 + 3CD + D2)t diam(Xi)
t.

Since, on the other hand, we have a constant c ≥ 1 such that

m
( ⋃

j∈W (i)

Xj

)
≥ m

( ⋃

j∈W (i)

ϕj(E)
)

=
∑

j∈W (i)

m(ϕj(E))

≥
∑

j∈W (i)

µ([j]) ≥ c−1
∑

j∈W (i)

diam(Xj)
t

≥ #W (i)c−1D−3t min
i∈I

diam(Xi)
t diam(Xi)

t,

using Lemmas 4.2 and 4.5, we conclude that

#W (i) ≤ cKD3t(1 + 3CD + D2)t

mini∈I diam(Xi)t
for all i ∈ I∗.

The following theorem generalizes a crucial point of [34, Theorem 2.1] to
the setting of CMC’s. See also [22, Theorem 3.3] and [33, §3].
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Theorem 4.7. If a semiconformal CMC has the finite clustering property

then there are a constant δ > 0 and a symbol h ∈ I∗ such that

dist(Xih, Xjh) > δ(diam(Xi) + diam(Xj)) whenever i ⊥ j.

Proof. Using Lemma 4.6, we choose h ∈ I∗ such that #W (h) =
supi∈I∗ #W (i). Therefore clearly

#{ij : j ∈ W (h)} = #W (h) ≥ #W (ih) for all i ∈ I∗.

Since it follows immediately from the definition (4.5) that {ij : j ∈ W (h)} ⊂
W (ih), we infer that

(4.6) W (ih) = {ij : j ∈ W (h)} for all i ∈ I∗.

Take next i, j ∈ I∗ such that i ⊥ j and set i′ = σ|i∧j|(i) and j′ =
σ|i∧j|(j). Let yj′ = π(k) ∈ Xj′h, where k ∈ [j′h], and choose k ∈ N such that
k|k ∈ Z(diam(Xi′h)). Since k|1 = j′|1 6= i′|1, by (4.6) we have k|k /∈ W (i′h).
Hence the definition (4.5) yields dist(Xk|k , Xi′h) > 3 diam(Xi′h). Since yj′
is in Xk|k , we also have dist(yj′ , Xi′h) > 3 diam(Xi′h). Similarly, changing
the roles of i and j above, we find yi′ ∈ Xi′h such that dist(yi′ , Xj′h) >
3 diam(Xj′h). This implies that

|yi′ − yj′ | ≥ 3max{diam(Xi′h), diam(Xj′h)}
≥ 3

2(diam(Xi′h) + diam(Xj′h)).

Since, on the other hand,

|yi′ − yj′ | ≤ diam(Xi′h) + dist(Xi′h, Xj′h) + diam(Xj′h),

we infer that

dist(Xi′h, Xj′h) ≥ 1
2(diam(Xi′h) + diam(Xj′h)).

Thus, by (4.2) and (M2),

dist(Xih, Xjh) ≥ C−1 diam(Xi∧j) dist(Xi′h, Xj′h)

≥ (2C)−1 diam(Xi∧j)(diam(Xi′h) + diam(Xj′h))

≥ (2CD)−1(diam(Xih) + diam(Xjh))

≥ (2CD2)−1 diam(Xh)(diam(Xi) + diam(Xj))

whenever i ⊥ j. Therefore, choosing δ = (3CD2)−1 diam(Xh) finishes the
proof.

As a corollary, for a semiconformal Moran construction, we may choose
the balls in the ball condition to be centered at E and placed in such a
manner that also larger collections (than required in the definition) of them
are disjoint.
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Corollary 4.8. If a semiconformal CMC satisfies the ball condition

then there are a constant δ > 0 and a point x ∈ E such that

B(ϕi(x), δ diam(Xi)) ∩ B(ϕj(x), δ diam(Xj)) = ∅ whenever i ⊥ j.

Here ϕi, i ∈ I∗, are the mappings of Lemma 4.1.

Proof. Let δ > 0 and h ∈ I∗ be as in Theorem 4.7. Then the claim follows
immediately from Theorems 3.5 and 4.7 by choosing x ∈ π([h]).

The following improvement of Lemma 4.2 can be compared to [30, The-
orem 3.3] and [23, Theorem 1.6].

Proposition 4.9. If a semiconformal CMC satisfies the ball condition

then

dimH(ϕi(E) ∩ ϕj(E)) < dimH(E) whenever i ⊥ j.

Here ϕi, i ∈ I∗, are the mappings of Lemma 4.1.

Proof. Let δ > 0 and h ∈ I∗ be as in Theorem 4.7 and define

A =
⋃

k∈I∗

ϕk(π([h])).

According to Theorem 4.7, we have ϕi(π([h])) ∩ ϕj(π([h])) = ∅ whenever
i ⊥ j, and hence also ϕi(A) ∩ ϕj(A) = ∅ if i ⊥ j. Thus we get

ϕi(E) ∩ ϕj(E) = (ϕi(E \ A) ∩ ϕj(A)) ∪ (ϕi(E) ∩ ϕj(E \ A))

⊂ ϕi(E \ A) ∪ ϕj(E \ A)

whenever i ⊥ j, from which the Lipschitz continuity implies

dimH(ϕi(E) ∩ ϕj(E)) ≤ dimH(ϕi(E \ A) ∪ ϕj(E \ A)) ≤ dimH(E \ A).

Obviously, {Xi : i ∈ (I |h|)∗} is a CMC having E as a limit set, whereas E\A
is contained in the limit set F of the subconstruction {Xi : i ∈ (I |h|\{h})∗}.
Since both these CMC’s clearly have the uniform finite clustering property,
Lemma 2.4 and Theorem 3.7 imply that dimH(F ) < dimH(E). Consequently,
dimH(E \ A) < dimH(E) and the proof is finished.

We finish this section with the following observation.

Proposition 4.10. Suppose a collection {Xi ⊂ R
d : i ∈ I∗} of compact

sets with positive diameters satisfies the following four conditions :

(C1) Xii ⊂ Xi for all i ∈ I∗ and i ∈ I,
(C2) there exist i, j ∈ I∗ such that Xi ∩ Xj = ∅,
(C3) limn→∞ diam(Xi|n) = 0 for every i ∈ I∞,
(C4) there exists a constant C ≥ 1 such that for all h, i, j ∈ I∗,

C−1 diam(Xh) dist(Xi, Xj) ≤ dist(Xhi, Xhj)

≤ C diam(Xh) dist(Xi, Xj).

Then the collection is a semiconformal CMC.
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Proof. It suffices to prove (M2) and (M3). To show (M2), observe first
that the assumptions (C1) and (C3) guarantee the existence of the limit set
E and the claim in Lemma 4.1 follows from (C1), (C3), and (C4). Notice
also that (C2) implies immediately that diam(E) > 0. Let ϕi, i ∈ I∗, be the
mappings of Lemma 4.1. Then

diam(ϕi(E)) ≥ |ϕi(x) − ϕi(y)| ≥ C−1 diam(Xi)|x − y|
for all x, y ∈ E and it follows that

(4.7) diam(Xi) ≤ C diam(E)−1 diam(ϕi(E))

for every i ∈ I∗. Since

diam(ϕij(E)) = sup
x,y∈E

|ϕi(ϕj(x)) − ϕi(ϕj(y))|

≤ C2 diam(Xi) diam(Xj) sup
x,y∈E

|x − y|

for all i, j ∈ I∗, we see, by (4.7), that

diam(Xij) ≤ C diam(E)−1 diam(ϕij(E)) ≤ C3 diam(Xi) diam(Xj)

for all i, j ∈ I∗. On the other hand,

diam(ϕi(E)) = sup
x,y∈E

|ϕi(x) − ϕi(y)| ≤ C diam(Xi) sup
x,y∈E

|x − y|

implies that

(4.8) diam(Xi) ≥ C−1 diam(E)−1 diam(ϕi(E))

for all i ∈ I∗. Since

diam(ϕij(E)) ≥ |ϕi(ϕj(x)) − ϕi(ϕj(y))| ≥ C−2 diam(Xi) diam(Xj)|x − y|
for all x, y ∈ E and i, j ∈ I∗, we deduce, by (4.8), that

diam(Xij) ≥ C−1 diam(E)−1 diam(ϕij(E)) ≥ C−3 diam(Xi) diam(Xj)

for all i, j ∈ I∗.

To show (M3), set Mn = maxi∈In diam(Xi) for n ∈ N and choose
i1, i2, . . . ∈ I∞ such that Mn = diam(Xin|n) for every n ∈ N. By the
compactness of I∞, the sequence {in}n∈N has a converging subsequence.
Let i ∈ I∞ be its limit. Now for each j ∈ N there is n(j) ∈ N such that
n(j) ≥ j and in(j) ∈ [i|j]. Since in(j)|j = i|j for all j ∈ N, we have, using
(C1) and (C3),

Mn(j) = diam(Xin(j)|n(j)
) ≤ diam(Xin(j)|j ) = diam(Xi|j) → 0 as j → ∞.

The proof is finished by choosing j ∈ N such that Mn(j) < C−3.
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5. Semiconformal iterated function system. We assume that for
each i ∈ I there is a contractive injection ϕi : Ω → Ω defined on an open
subset Ω of R

d and a nonempty closed X ⊂ Ω satisfying

(5.1)
⋃

i∈I

ϕi(X) ⊂ X.

Here the contractivity of ϕi means that there is a constant 0 < si < 1 such
that

(5.2) |ϕi(x) − ϕi(y)| ≤ si|x − y| for all x, y ∈ Ω.

The collection {ϕi : i ∈ I} is then called an iterated function system (IFS ).
As shown in [15, §3], an elegant application of the Banach fixed point theorem
implies the existence of a unique nonempty compact set E ⊂ X for which

E =
⋃

i∈I

ϕi(E).

Such an E is called the invariant set (for the corresponding IFS). Note that
the mappings ϕi need not be injective to ensure the existence of the invariant
set. However, under this additional assumption, Brouwer’s domain invariance
theorem [6, Theorem IV.7.4] implies that ϕi(U) is open whenever U is.

Observe that X can be chosen to be a closed neighborhood of E. Indeed,
fix 0 < ε < dist(E, Rd \ Ω) (if Ω = R

d, any positive ε will do) and take

X = {x ∈ Ω : |x − a| ≤ ε for some a ∈ E}.
Then (5.1) is a consequence of the easily proven fact that

(5.3) dist(ϕi(A), E) ≤ si dist(A, E) for all A ⊂ Ω and i ∈ I.

We say that an IFS is tractable if there exists a compact set A ⊂ Ω and
a constant C > 0 such that for each i ∈ I∗,

|ϕi(x) − ϕi(y)| ≤ C diam(ϕi(A))|x − y| for x, y ∈ A,

and it defines a CMC in this situation, namely {ϕi(A) : i ∈ I∗}. The limit set
of such a CMC is clearly E. Here ϕi = ϕi1 ◦ · · · ◦ϕin for i = (i1, . . . , in) ∈ In

and n ∈ N.

Lemma 5.1. A tractable IFS defines a tractable CMC.

Proof. Choose a compact set A ⊂ X such that {ϕi(A) : i ∈ I∗} is a
CMC. Then

dist(ϕih(A), ϕik(A)) ≤ C diam(ϕi(A)) dist(ϕh(A), ϕk(A)),

which implies (3.2) and finishes the proof.

Furthermore, we say that an IFS is semiconformal if the invariant set E
has positive diameter and there are constants 0 < si ≤ si < 1, i ∈ I∗, and
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D ≥ 1 such that si ≤ Dsi for all i ∈ I∗ and

(5.4) si|x − y| ≤ |ϕi(x) − ϕi(y)| ≤ si|x − y| for all x, y ∈ Ω.

For an interesting class of quasiregular mappings which admit uniform con-
trol of the distortion with respect to iteration, the reader is referred to [25].

The following lemma shows that a semiconformal IFS defines a semicon-
formal CMC. The natural question whether the converse holds arises from
Lemma 4.1. Sufficient geometric conditions on the limit set for the positive
answer to hold are provided in [1]. See also [36, Example 6.2].

Lemma 5.2. If {ϕi : i ∈ I} is a semiconformal IFS , and a compact set

A with positive diameter satisfies ϕi(A) ⊂ A for every i ∈ I, then {ϕi(A) :
i ∈ I∗} is a semiconformal CMC. In particular , a semiconformal IFS is

tractable. Furthermore, ϕi|E, i ∈ I∗, are the mappings of Lemma 4.1.

Proof. To use Proposition 4.10, we have to verify (C1)–(C3). Observe
first that (C1) is clearly satisfied and the positivity of diam(E) implies (C2).
Notice also that the sets ϕi(A), i ∈ I∗, are compact with positive diameter.
Since for fixed i ∈ I∗, we have si diam(A) ≤ diam(ϕi(A)) ≤ si diam(A) by
(5.4), it follows that

(5.5) C−1 diam(ϕi(A))|x − y| ≤ |ϕi(x) − ϕi(y)| ≤ C diam(ϕi(A))|x − y|,
where C = D max{diam(A), diam(A)−1} and x, y ∈ A. Hence, applying
(5.2) to (5.5) several times, we get diam(ϕi(A)) ≤ Csi1 · · · si|i| , which im-
plies (C3). Since (5.5) also yields (C4), that is,

C−1 diam(ϕi(A)) dist(ϕh(A), ϕk(A)) ≤ dist(ϕih(A), ϕik(A))

≤ C diam(ϕi(A)) dist(ϕh(A), ϕk(A))

for all h, k ∈ I∗, we have finished the proof of the first claim.

The second claim follows from (5.5) by recalling that E has positive di-
ameter and satisfies ϕi(E) ⊂ E for every i ∈ I. The third claim is immediate
since {ϕi(E) : i ∈ I∗} is a semiconformal CMC.

We say that an IFS satisfies the open set condition (OSC ) if there exists
a nonempty open set U ⊂ Ω such that

ϕi(U) ∩ ϕj(U) = ∅ whenever i ⊥ j.

See [31, Theorem III] for the motivation of the definition. Adapting the
terminology from [3], we call any such U a feasible set for the OSC. If there
is a feasible set intersecting E, we say that the strong OSC is satisfied. As
an immediate consequence of the definition, each nonempty open subset and
each image ϕi(U) of a feasible set U is feasible as well. Thus, using (5.3)
repeatedly, we see that the OSC is equivalent to the existence of a feasible
set U ⊂ X. Recall that X is a fixed compact ε-neighborhood of the invariant
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set. The next lemma shows that this definition of the OSC is equivalent to
the more commonly used one (see [15, §5.2]).

Lemma 5.3. An IFS satisfies the OSC exactly when there exists a non-

empty open set V ⊂ X such that ϕi(V ) ⊂ V for all i ∈ I and ϕi(V )∩ϕj(V )
= ∅ for i 6= j. Furthermore, there exists a feasible set intersecting E if and

only if there exists a set V as above such that V ∩ E 6= ∅.

Proof. Defining V =
⋃

h∈I∗ ϕh(U), where U ⊂ X is a feasible set for the
OSC, we clearly have ϕi(V ) ⊂ V ⊂ X for all i ∈ I. If i 6= j, then

ϕih(U) ∩ ϕjh(U) = ∅ for every h ∈ I∗

and hence ( ⋃

h∈I∗

ϕih(U)
)
∩

( ⋃

h∈I∗

ϕjh(U)
)

= ∅.

Noting that the other direction is trivial finishes the proof.

Given IFS, we say that A ⊂ Ω is forwards invariant if ϕi(A) ⊂ A for all
i ∈ I, and backwards invariant if ϕ−1

i (A) ⊂ A for all i ∈ I. For A ⊂ Ω we
define

FA =
⋃

i⊥j

ϕ−1
i (ϕj(A)),

and for a semiconformal IFS we set

OA = {x ∈ Ω : D dist(x, A) < dist(x, FA ∪ (Rd \ Ω))}.
Here the constant D ≥ 1 is the same as in the definition of the semiconformal
IFS. Observe that FA ⊂ Ω is backwards invariant.

Proposition 5.4. Suppose a given IFS is semiconformal. If U ⊂ Ω is

a feasible set for the OSC then OU 6= ∅. Furthermore, if there exists a set

A ⊂ Ω such that OA 6= ∅ then OA is feasible.

Proof. Let U ⊂ Ω be a nonempty open set for which ϕi(U)∩ϕj(U) = ∅
whenever i ⊥ j. It follows that U ∩ FU = ∅ and since U is open, we get
U ⊂ OU .

Conversely, it suffices to show that ϕi(OA) ∩ ϕj(OA) = ∅ if i ⊥ j.
Suppose that there are i, j ∈ I∗ and x, y ∈ OA such that i ⊥ j and
ϕi(x) = ϕj(y) =: z. Observe that the inverse mapping ϕ−1

i : ϕi(Ω) → Ω
has a Lipschitz constant s−1

i for each i ∈ I∗. According to Kirszbraun’s the-
orem [12, §2.10.43], there exists a Lipschitz extension ϕi : Ω → R

d of ϕ−1
i

having the same Lipschitz constant. Since ϕi(ϕj(A)) ⊂ FA ∪ (Rd \ Ω) and
x ∈ OA, we have
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dist(z, ϕj(A)) = dist(ϕi(x), ϕj(A)) ≥ si dist(x, ϕi(ϕj(A)))

≥ si dist(x, FA ∪ (Rd \ Ω)) > siD dist(x, A)

≥ siDs−1
i dist(ϕi(x), ϕi(A)) ≥ dist(z, ϕi(A))

using (5.4). Changing the roles of i and j above, we end up with a contra-
diction.

We say that a tractable IFS {ϕi : i ∈ I} satisfies the ball condition if the
corresponding CMC {ϕi(A) : i ∈ I∗} satisfies the (uniform) ball condition.
By Lemma 5.2, this defines the ball condition also for a semiconformal IFS.
In this case, we may choose A to be the invariant set E. Observe that if the
IFS is semiconformal and there exists an open set W ⊂ Ω such that for each
r > 0 we have

ϕi(W ) ∩ ϕj(W ) = ∅
for any two distinct i, j ∈ Z(r) then the ball condition is satisfied. See
Example 6.5. In particular, the OSC implies the ball condition in the semi-
conformal case. See also [17, Proposition 3.6]. The following theorem says
that, in fact, the ball condition and the strong OSC are equivalent. Example
6.4 shows that this is not true for tractable IFS’s.

Theorem 5.5. A semiconformal IFS satisfies the ball condition exactly

when OE ∩ E 6= ∅.
Proof. Let us first prove that the ball condition implies OE ∩ E 6= ∅.

Recall that X is the closed ε-neighborhood of E. We may further assume
that

F :=
⋃

i⊥j

ϕ−1
i (ϕj(E)) ∩ X 6= ∅,

since F = ∅ implies dist(E, FE) ≥ ε, which gives E ⊂ OE . It is now sufficient
to find a point x ∈ E with dist(x, F ) > 0.

By Theorem 3.5 and Corollary 4.8, there exist x ∈ E and δ > 0 such
that

|ϕi(x) − ϕjh(x)| > δ diam(ϕi(X))

whenever i ⊥ j and h ∈ I∗. It is easy to see that {ϕjh(x) : h ∈ I∗} is dense
in ϕj(E). So, in fact, we have

dist
(
ϕi(x),

⋃

i⊥j

ϕj(E)
)
≥ δ diam(ϕi(X))

for each i ∈ I∗, which in turn implies that

|ϕi(x) − ϕi(y)| ≥ δ diam(ϕi(X))

for each y ∈ ϕ−1
i (ϕj(E)) when i ⊥ j. On the other hand, Lemma 5.2 shows
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that there is a constant C > 0 such that

|ϕi(x) − ϕi(y)| ≤ C diam(ϕi(X))|x − y|
for all x, y ∈ X and i ∈ I∗. Combining the inequalities above gives |x− y| ≥
C−1δ for each y ∈ F and consequently dist(x, F ) > 0 as desired.

Since the other direction follows immediately from Proposition 5.4, the
proof is finished.

The following proposition generalizes [34, Corollary 2.3] and [33, Corol-
lary 1.2] into the setting of semiconformal IFS’s. Although the argument
used here is similar to the proof of [33, Corollary 1.2], we give the details for
the convenience of the reader.

Proposition 5.6. If a semiconformal IFS satisfies the OSC and

dimH(E) = d then the invariant set E is the closure of its interior.

Proof. As the OSC implies the uniform finite clustering property, we have
P (d) = 0. Hence there exists a constant c > 0 such that

(5.6)
∑

i∈In

sd
i ≥ D−d diam(X)−d

∑

i∈In

diam(ϕi(X))d ≥ c

(see the defining equation (3.1) and Lemma 2.1). Choose the forwards in-
variant feasible set V ⊂ X as in Lemma 5.3 and consider the set

T = V \
⋃

i∈I

ϕi(V ).

The facts that ϕi(T ) ⊂ ϕi(V ) and ϕi(T ) ∩ ϕij(V ) = ∅ for all i ∈ I∗ and
j ∈ I∗ easily lead to the conclusion that ϕi(T )∩ϕj(T ) = ∅ whenever i 6= j.
Furthermore, since ϕi(T ) ⊂ X for each i ∈ I∗, we have

∞ > Hd(X) ≥ Hd
( ⋃

i∈I∗

ϕi(T )
)

=
∑

n∈N

∑

i∈In

Hd(ϕi(T ))(5.7)

≥ Hd(T )
∑

n∈N

∑

i∈In

sd
i.

Now (5.6) and (5.7) together imply that Hd(T ) = 0. This in turn shows that
the set

V \
⋃

i∈I

ϕi(V ) = V \
⋃

i∈I

ϕi(V )

is empty, being an open set with zero measure. Here A stands for the closure
of A. This means that V =

⋃
i∈I ϕi(V ), giving E = V by the uniqueness of

the invariant set.

A similitude IFS, introduced in [15], is the most obvious example of a
semiconformal IFS. Suppose that for each i ∈ I there is a mapping ϕi :
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R
d → R

d and a constant 0 < si < 1 such that

|ϕi(x) − ϕi(y)| = si|x − y| for all x, y ∈ R
d.

Now for a closed ball B centered at the origin, we have ϕi(B) ⊂ B for all
i ∈ I provided that the radius of B is chosen large enough. The collection
{ϕi : i ∈ I} is then an IFS and we call it a similitude IFS.

The following proposition is slightly more general than [3, Theorem 1].

Proposition 5.7. Given a similitude IFS , the set OA is forwards invari-

ant and feasible for the OSC provided that OA 6= ∅ and A ⊂ X is forwards

invariant.

Proof. According to Proposition 5.4, it suffices to show that ϕi(OA) ⊂
OA for all i ∈ I. Assume on the contrary that there exist i ∈ I and x ∈ OA

such that ϕi(x) /∈ OA, that is,

D dist(ϕi(x), A) ≥ dist(ϕi(x), FA).

Notice that here D can be chosen to be 1. Therefore, since A ⊂ ϕ−1
i (A) and

ϕ−1
i (FA) ⊂ FA for every i ∈ I, we obtain

dist(x, FA) > D dist(x, A) ≥ D dist(x, ϕ−1
i (A))

= s−1
i D dist(ϕi(x), A) ≥ s−1

i dist(ϕi(x), FA)

= dist(x, ϕ−1
i (FA)) ≥ dist(x, FA).

This contradiction finishes the proof.

The following corollary summarizes the main implications shown for a
semiconformal IFS. Notice that the topological pressure here is well defined
via Lemma 5.2 as it does not depend on the choice of the corresponding
forwards invariant set.

Corollary 5.8. For a semiconformal IFS , the following conditions are

equivalent :

(1) The ball condition.

(2) The open set condition.

(3) The strong open set condition.

(4) Ht(E) > 0, where t is the zero of the topological pressure.

6. Examples. In this last section, we illustrate the theory by providing
several examples. We begin by showing that the uniform finite clustering
property does not imply the bounded overlapping property.

Example 6.1. The standard Cantor 1/3-set E can be defined as the
invariant set of the similitude IFS formed by the mappings

ϕ0(x) = 1
3x, ϕ1(x) = 1

3x + 2
3
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on R. It is well known that Ht(E) = 1, where t = log 2/log 3 (see [9, Theorem
1.14]). Consider now the CMC {ϕi(X) : i ∈ I∗}, where X = [0, 3] and
I = {0, 1}. It is tractable by Lemma 5.1. The positivity of Ht(E) implies the
uniform finite clustering property by Theorem 3.9. However, as 1 ∈ ϕ0(X)
and ϕ1(1) = 1, we infer by induction that 1 ∈ ϕ1k0(X) for every k ∈ N,
where 1k = (1, . . . , 1) ∈ Ik for each k. Since the infinite set {1k0 : k ∈ N}
is incomparable, we conclude that the bounded overlapping property is not
satisfied.

Example 6.2. We now give a CMC which shows that the assumption
on the relative positions of the sets Xi in the last claim of Proposition 3.2 is
indispensable. Moreover, it is also an example of a nontractable CMC. Using
the mappings ϕi, i ∈ I∗, from the previous example, set

X0 = [0, 1] × [0, 1], X1 = [0, 1] × [−1, 0],

and for j ∈ I and i ∈ I∗,

Xji =

{
ϕi([0, 1]) × [0, 3−|i|] if j = 0,

ϕi([0, 1]) × [−3−|i|, 0] if j = 1.

The CMC determined by these squares obviously has the limit set E =
Ex × {0} ⊂ R

2, where Ex ⊂ R is the standard Cantor 1/3-set. It is equally
obvious that the uniform ball condition is satisfied, which, according to The-
orems 3.7 and 3.5 and Remark 3.8, implies that the measure m of Propo-
sition 3.2 is proportional to Ht|E , where t = log 2/log 3 as in the previous
example. Consequently, m(J) > 0 whenever J is one of the line segments
ϕi([0, 1]) × {0}, i ∈ I∗. In particular,

m(Xi ∩ Xj) > 0

for any incomparable symbols i and j satisfying i|1 6= j|1 and σ(i) = σ(j).
We have thus shown that the measure m is not t-semiconformal. On the
other hand, Lemma 3.6 implies that the bounded overlapping property is
satisfied, as clearly Xi ∩ E = π([i]) for each i ∈ I∗. Therefore, the extra
assumption in Proposition 3.2 is really needed.

Furthermore, this CMC is not tractable. This can be deduced from the
fact that

dist(X0i, X1i) = 0

but

dist(X00i, X01i) ≥ dist(X00, X01) = 1
3

for every i ∈ I∗.

Example 6.3. We now define a class of nonsemiconformal tractable
IFS’s. Suppose I is a finite set and for each i ∈ I there is a mapping
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ϕi : R
2 → R

2 such that

ϕi(x, y) = (aix + ci, biy + di),

where 0 < bi < ai < 1 and ci, di ≥ 0. Defining ai = ai1 · · · ain and bi =
bi1 · · · bin for each i = (i1, . . . , in) ∈ In and n ∈ N, we have

sup
(x1,y1) 6=(x2,y2)

|ϕi(x1, y1) − ϕi(x2, y2)|
|(x1, y1) − (x2, y2)|

= ai,

inf
(x1,y1) 6=(x2,y2)

|ϕi(x1, y1) − ϕi(x2, y2)|
|(x1, y1) − (x2, y2)|

= bi

for all i ∈ I∗. It is clear that bi/ai → 0 as |i| → ∞, showing that the
IFS {ϕi : i ∈ I} is not semiconformal. However, by choosing L = 1 +
maxi∈I{ci, di}/(1−maxi∈I ai) and X = [0, L]2, we get ϕi(X) ⊂ X for every
i ∈ I and

aiL ≤ diam(ϕi(X)) ≤
√

2 aiL

for each i ∈ I∗. The collection {ϕi(X) : i ∈ I∗} is thus a CMC, and
consequently the IFS {ϕi : i ∈ I} is tractable.

According to Corollary 3.10, this CMC satisfies the (uniform) ball condi-
tion if and only if 0 < Ht(E) < ∞, where E is the limit set and

∑
i∈I at

i = 1.
For related dimension results, see [29], [14], and [13].

Observe also that choosing, for example, I = {0, 1}, 0 < b0 = b1 ≤ a0 =
a1 ≤ 1/2, c1 > 0, and d0 ≥ 0 = c0 = d1, it is straightforward to see that the
ball condition is automatically satisfied.

Example 6.4. Recall that by Corollary 5.8, a semiconformal IFS satisfies
the OSC if and only if it satisfies the ball condition. We now show that for
a tractable IFS this equivalence is not necessarily true.

In Example 6.3, choose I = {0, 1}, 0 < b0 = b1 < a0 = a1 ≤ 1/2,
d0 > 0, and c0 = c1 = d1 = 0. It is clear that this tractable IFS satisfies the
OSC. It can be seen by a straightforward calculation that the uniform finite
clustering property fails, implying that the uniform ball condition does not
hold. Alternatively, it follows from the observations done in Example 6.3 that
the invariant set E has Hausdorff dimension − log 2/log a0 provided that the
ball condition is satisfied. However, since E is clearly a subset of {0} × R

having Hausdorff dimension − log 2/log b0, this cannot be the case.
We do not know if there exists a tractable IFS satisfying the ball condition

but not the OSC.

Example 6.5. At first glance, it seems that for a semiconformal IFS the
OSC (especially via Lemma 5.3) is easier to check than the ball condition.
However, there are cases when it is much more convenient to consider the
ball condition than the OSC. We now consider a familiar self-similar set
having this property.
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We identify R
2 and C for notational simplicity and we set η = 1/2+ i/2.

Let I = {0, 1} and let ϕ0, ϕ1 be the similitudes given by the equations

ϕ0(z) = ηz, ϕ1(z) = ηz + η,

where z ∈ C and η = 1/2 − i/2 is the complex conjugate of η. Notice that
the contraction ratio of both mappings is 1/

√
2. The invariant set E of the

IFS {ϕ0, ϕ1} is the well known Lévy’s dragon (see [24]). Since H2(E) > 0, it
follows from [34, Theorem 2.1] that the OSC is satisfied and hence by [34,
Corollary 2.3 and its proof] and Lemma 5.3, we conclude that a nonempty
open set U is feasible only if U ⊂ E. Because of the intricate structure of
the Lévy’s dragon, such an open set is, a priori, virtually impossible to find.
However, it is straightforward to find an open set W ⊂ C satisfying

ϕi(W ) ∩ ϕj(W ) = ∅ whenever |i| = |j| and i 6= j,

from which the ball condition follows for any corresponding semiconformal
CMC. This can be done by choosing W to be the interior of the right-
angled triangle △ = conv{0, 1, η} and looking at the images ϕi(W ) for
i ∈ In with fixed n. The calculations for the disjointness of the images
are straightforward since the vertices ϕi(0) and ϕi(1) of ϕi(△) belong to
the point grid Hn = {ηn(k + il) : k, l ∈ Z} whereas ϕi(η) ∈ Hn+1, and
ϕi(△) = ϕj(△) only if ϕi(0) = ϕj(0) and ϕi(1) = ϕj(1). See [7, p. 222]
for an illustration and apply the calculations done in the appendix of [20].
Notice that the set W above is not feasible since W 6⊂ E.

Example 6.6. We now note that any conformal IFS is semiconformal.
Suppose I is a finite set and for each i ∈ I there is a contractive C1+ε

conformal mapping ϕi : Ω → Ω defined on an open set Ω ⊂ R
d. If there

exists a nonempty closed X ⊂ Ω satisfying
⋃

i∈I

ϕi(X) ⊂ X,

the collection {ϕi : i ∈ I} is an IFS and we call it a conformal IFS. We deduce
from the well known bounded distortion principle that each conformal IFS is
semiconformal. See, for example, [28, Remark 2.3]. Observe that the converse
does not necessarily hold. For example, the semiconformal IFS constructed
in [18, Example 2.1] is not conformal.

Example 6.7. Observe that any IFS bi-Lipschitz conjugate to a con-
formal IFS is semiconformal. Although the bi-Lipschitz conjugacy preserves
positivity and finiteness of the Hausdorff measure, the following example is
of special interest as it emphasizes that to prove Corollary 5.8 we do not
need differentiable mappings.

Let D′ ⊂ [0, 1]2 be the graph of a nondecreasing continuous function
F : [0, 1] → [0, 1] satisfying F (0) = 0 and F (1) = 1. A well known nondiffer-
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entiable example of this kind of function is x 7→ Ht|E([0, x]), where E is the
1/3-Cantor set and t = log 2/log 3. In this case, D′ is known as the devil’s

stairs. We set D = D′ ∪ {(x, x) : |x| > 1}, L = {(x, x) : x ∈ R}, and projL
to be the orthogonal projection onto L. The mapping f = (projL |D)−1 :
L → D is clearly bi-Lipschitz and defining a mapping g : R

2 → R
2 by setting

g(x) = x+ f(projL(x))−projL(x) for each x ∈ R
2, the reader can easily see

that also g is bi-Lipschitz.
Since the line segment L ∩ [0, 1]2 is clearly the invariant set of the simil-

itude IFS {ϕi : i ∈ I}, where

ϕi(x, y) =

(
1

N
x +

i − 1

N
,

1

N
y +

i − 1

N

)

and I = {1, . . . , N}, the set D′ = g(L ∩ [0, 1]2) is the invariant set of a
semiconformal IFS {g ◦ϕi ◦ g−1 : i ∈ I}. Here N ∈ N is chosen so large that
the mappings g ◦ ϕi ◦ g−1 are contractions.

The devil’s stairs are also an example of a semiconformal IFS which is
not conformal (see [16, Theorem 2.1]).

Example 6.8. Defining, for A ⊂ R
d, x ∈ R

d, and r > 0,

por(A, x, r)

= sup{̺ ≥ 0 : there is z ∈ R
d such that B(z, ̺r) ⊂ B(x, r) \ A},

we say that a bounded set A ⊂ R
d is uniformly porous if there are ̺ > 0 and

r0 > 0 such that por(A, x, r) ≥ ̺ for all x ∈ A and 0 < r < r0. The notion
of porosity has arisen from the study of dimensional estimates related to the
boundary behavior of various mappings.

Following the proof of [19, Theorem 4.1], we notice that a uniformly
porous set is contained in a limit set E of a semiconformal CMC satisfying
the uniform ball condition such that dimM(E) ≤ d− c̺d (see Theorem 3.7).
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